1
|
Bennett C, Ouellette B, Ramirez TK, Cahoon A, Cabasco H, Browning Y, Lakunina A, Lynch GF, McBride EG, Belski H, Gillis R, Grasso C, Howard R, Johnson T, Loeffler H, Smith H, Sullivan D, Williford A, Caldejon S, Durand S, Gale S, Guthrie A, Ha V, Han W, Hardcastle B, Mochizuki C, Sridhar A, Suarez L, Swapp J, Wilkes J, Siegle JH, Farrell C, Groblewski PA, Olsen SR. SHIELD: Skull-shaped hemispheric implants enabling large-scale electrophysiology datasets in the mouse brain. Neuron 2024; 112:2869-2885.e8. [PMID: 38996587 DOI: 10.1016/j.neuron.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. Although new technologies, such as Neuropixels probes, facilitate multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe skull-shaped hemispheric implants enabling large-scale electrophysiology datasets (SHIELD). These 3D-printed skull-replacement implants feature customizable insertion holes, allowing dozens of cortical and subcortical structures to be recorded in a single mouse using repeated multi-probe insertions over many days. We demonstrate the procedure's high success rate, biocompatibility, lack of adverse effects on behavior, and compatibility with imaging and optogenetics. To showcase SHIELD's scientific utility, we use multi-probe recordings to reveal novel insights into how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this method enables powerful, large-scale electrophysiological experiments for the study of distributed neural computation.
Collapse
Affiliation(s)
- Corbett Bennett
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| | - Ben Ouellette
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | - Hannah Cabasco
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Yoni Browning
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Anna Lakunina
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Galen F Lynch
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | - Hannah Belski
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Ryan Gillis
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Conor Grasso
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Robert Howard
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Tye Johnson
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Henry Loeffler
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Heston Smith
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | | | | | - Samuel Gale
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Alan Guthrie
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Vivian Ha
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Warren Han
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Ben Hardcastle
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | - Arjun Sridhar
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Lucas Suarez
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Jackie Swapp
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Joshua Wilkes
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | | | | | | | - Shawn R Olsen
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Haziza S, Chrapkiewicz R, Zhang Y, Kruzhilin V, Li J, Li J, Delamare G, Swanson R, Buzsáki G, Kannan M, Vasan G, Lin MZ, Zeng H, Daigle TL, Schnitzer MJ. Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607428. [PMID: 39185175 PMCID: PMC11343216 DOI: 10.1101/2024.08.15.607428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
Collapse
Affiliation(s)
- Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vasily Kruzhilin
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jane Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Madhuvanthi Kannan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ganesh Vasan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Z Lin
- Departments of Bioengineering & Pediatrics, Stanford University, Stanford CA 94305, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
3
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
4
|
Sarafraz H, Nöbauer T, Kim H, Soldevila F, Gigan S, Vaziri A. Speckle-enabled in vivo demixing of neural activity in the mouse brain. BIOMEDICAL OPTICS EXPRESS 2024; 15:3586-3608. [PMID: 38867774 PMCID: PMC11166431 DOI: 10.1364/boe.524521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 06/14/2024]
Abstract
Functional imaging of neuronal activity in awake animals, using a combination of fluorescent reporters of neuronal activity and various types of microscopy modalities, has become an indispensable tool in neuroscience. While various imaging modalities based on one-photon (1P) excitation and parallel (camera-based) acquisition have been successfully used for imaging more transparent samples, when imaging mammalian brain tissue, due to their scattering properties, two-photon (2P) microscopy systems are necessary. In 2P microscopy, the longer excitation wavelengths reduce the amount of scattering while the diffraction-limited 3D localization of excitation largely eliminates out-of-focus fluorescence. However, this comes at the cost of time-consuming serial scanning of the excitation spot and more complex and expensive instrumentation. Thus, functional 1P imaging modalities that can be used beyond the most transparent specimen are highly desirable. Here, we transform light scattering from an obstacle into a tool. We use speckles with their unique patterns and contrast, formed when fluorescence from individual neurons propagates through rodent cortical tissue, to encode neuronal activity. Spatiotemporal demixing of these patterns then enables functional recording of neuronal activity from a group of discriminable sources. For the first time, we provide an experimental, in vivo characterization of speckle generation, speckle imaging and speckle-assisted demixing of neuronal activity signals in the scattering mammalian brain tissue. We found that despite an initial fast speckle decorrelation, substantial correlation was maintained over minute-long timescales that contributed to our ability to demix temporal activity traces in the mouse brain in vivo. Informed by in vivo quantifications of speckle patterns from single and multiple neurons excited using 2P scanning excitation, we recorded and demixed activity from several sources excited using 1P oblique illumination. In our proof-of-principle experiments, we demonstrate in vivo speckle-assisted demixing of functional signals from groups of sources in a depth range of 220-320 µm in mouse cortex, limited by available speckle contrast. Our results serve as a basis for designing an in vivo functional speckle imaging modality and for maximizing the key resource in any such modality, the speckle contrast. We anticipate that our results will provide critical quantitative guidance to the community for designing techniques that overcome light scattering as a fundamental limitation in bioimaging.
Collapse
Affiliation(s)
- Hossein Sarafraz
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Xiao S, Cunningham WJ, Kondabolu K, Lowet E, Moya MV, Mount RA, Ravasio C, Bortz E, Shaw D, Economo MN, Han X, Mertz J. Large-scale deep tissue voltage imaging with targeted-illumination confocal microscopy. Nat Methods 2024; 21:1094-1102. [PMID: 38840033 PMCID: PMC11500676 DOI: 10.1038/s41592-024-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Voltage imaging with cellular specificity has been made possible by advances in genetically encoded voltage indicators. However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines the signal-to-noise ratio and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating while also maximizing signal detection efficiency. The resulting benefits in signal-to-noise ratio and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different genetically encoded voltage indicator classes.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maria V Moya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cara Ravasio
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dana Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| |
Collapse
|
6
|
Nuerbahati A, Liao J, Lyu J, Abduwali S, Chiang LY. An actively stabilized, miniaturized epi-fluorescence widefield microscope for real-time observation in vivo. Microsc Res Tech 2024; 87:1044-1051. [PMID: 38217330 DOI: 10.1002/jemt.24493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Recent developments in real-time, in vivo micro-imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision-making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi-fluorescence widefield microscope (MEW-M) for real-time observation in vivo with high resolution. The methodology of MEW-M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra-photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real-time imaging performance of MEW-M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single-objective and high-frame-rate imaging, the MEW-M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas. RESEARCH HIGHLIGHTS: A handheld, actively stabilized MEW-M system was introduced. Excellent real-time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
Collapse
Affiliation(s)
| | - Jiasheng Liao
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | - Jing Lyu
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | - Serk Abduwali
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | | |
Collapse
|
7
|
Thomas S, George JG, Ferranti F, Bhattacharya S. Metaoptics for aberration correction in microendoscopy. OPTICS EXPRESS 2024; 32:9686-9698. [PMID: 38571197 DOI: 10.1364/oe.514870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 04/05/2024]
Abstract
Compact and minimally invasive scanning fiber endoscopy probes with micron-level resolution have great potential in detailed tissue interrogation and early disease diagnosis, which are key applications of confocal reflectance imaging at visible wavelengths. State-of-the-art imaging probes commonly employ refractive lens triplets or gradient refractive index (GRIN) lenses as the micro-objective. However, off-axis aberration emerges as a critical factor affecting resolution, especially at the extremities of the imaging field. In response to this challenge, we propose what we believe to be a novel design integrating a metasurface with the GRIN micro-objective to address optical aberrations during beam scan. The metasurface acts as a corrector element for optical aberrations in a fiber-scanning endoscope using the same fiber for excitation and collection. Modeling such hybrid refractive-metasurface designs requires the coupling of simulation techniques across macroscale and nanoscale optics, for which we used an Ansys simulation workflow platform. Operating at a wavelength of 644 nm, this metaoptical element serves as a thin and compact aberration correction surface, ensuring uniform resolution across the entire imaging field. Experimental results from our scanning fiber endoscopy system demonstrate a notable enhancement in optical performance both on-axis and off-axis, achieving a resolution of 3 µm at the center of the imaging field. Impressively, the resolution experiences only a modest degradation by a factor of 0.13 at the edge of the field of view compared to the center.
Collapse
|
8
|
Baker CM, Gong Y. A Semi-supervised Pipeline for Accurate Neuron Segmentation with Fewer Ground Truth Labels. eNeuro 2024; 11:ENEURO.0352-23.2024. [PMID: 38242690 PMCID: PMC10880440 DOI: 10.1523/eneuro.0352-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.
Collapse
Affiliation(s)
- Casey M Baker
- Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701
| | - Yiyang Gong
- Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701
- Neurobiology, Duke University, Durham, North Carolina 27701
| |
Collapse
|
9
|
Sortino R, Cunquero M, Castro-Olvera G, Gelabert R, Moreno M, Riefolo F, Matera C, Fernàndez-Castillo N, Agnetta L, Decker M, Lluch JM, Hernando J, Loza-Alvarez P, Gorostiza P. Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo. Angew Chem Int Ed Engl 2023; 62:e202311181. [PMID: 37823736 DOI: 10.1002/anie.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.
Collapse
Affiliation(s)
- Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Gustavo Castro-Olvera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Miquel Moreno
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, 08025, Barcelona, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Noèlia Fernàndez-Castillo
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Biomedicina de la, Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950, Esplugues de Llobregat, Spain
| | - Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, 08193, Bellaterra, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
10
|
Xiao S, Cunningham WJ, Kondabolu K, Lowet E, Moya MV, Mount R, Ravasio C, Economo MN, Han X, Mertz J. Large-scale deep tissue voltage imaging with targeted illumination confocal microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.548930. [PMID: 37502929 PMCID: PMC10370169 DOI: 10.1101/2023.07.21.548930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Voltage imaging with cellular specificity has been made possible by the tremendous advances in genetically encoded voltage indicators (GEVIs). However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines signal-to-noise ratio (SNR) and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating, while also maximizing signal detection efficiency. The resulting benefits in SNR and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different GEVI classes.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | | | | | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Maria V. Moya
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Rebecca Mount
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Cara Ravasio
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Michael N. Economo
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| |
Collapse
|
11
|
Welton TA, George NM, Ozbay BN, Gentile Polese A, Osborne G, Futia GL, Kushner JK, Kleinschmidt-DeMasters B, Alexander AL, Abosch A, Ojemann S, Restrepo D, Gibson EA. Two-photon microendoscope for label-free imaging in stereotactic neurosurgery. BIOMEDICAL OPTICS EXPRESS 2023; 14:3705-3725. [PMID: 37497482 PMCID: PMC10368057 DOI: 10.1364/boe.492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
We demonstrate a gradient refractive index (GRIN) microendoscope with an outer diameter of ∼1.2 mm and a length of ∼186 mm that can fit into a stereotactic surgical cannula. Two photon imaging at an excitation wavelength of 900 nm showed a field of view of ∼180 microns and a lateral and axial resolution of 0.86 microns and 9.6 microns respectively. The microendoscope was tested by imaging autofluorescence and second harmonic generation (SHG) in label-free human brain tissue. Furthermore, preliminary image analysis indicates that image classification models can predict if an image is from the subthalamic nucleus or the surrounding tissue using conventional, bench-top two-photon autofluorescence.
Collapse
Affiliation(s)
- Tarah A. Welton
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas M. George
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Baris N. Ozbay
- Intelligent Imaging Innovations, Denver, Colorado, 80216, USA
| | - Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory Osborne
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J. Keenan Kushner
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bette Kleinschmidt-DeMasters
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allyson L. Alexander
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Pediatric Neurosurgery, Children’s Hospital Colorado, Aurora CO 80045, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
13
|
Ohmori H, Hirai Y, Matsui R, Watanabe D. High resolution recording of local field currents simultaneously with sound-evoked calcium signals by a photometric patch electrode in the auditory cortex field L of the chick. J Neurosci Methods 2023; 392:109863. [PMID: 37075913 DOI: 10.1016/j.jneumeth.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Functioning of the brain is based on both electrical and metabolic activity of neural ensembles. Accordingly, it would be useful to measure intracellular metabolic signaling simultaneously with electrical activity in the brain in vivo. NEW METHOD We innovated a PhotoMetric-patch-Electrode (PME) recording system that has a high temporal resolution incorporating a photomultiplier tube as a light detector. The PME is fabricated from a quartz glass capillary to transmit light as a light guide, and it can detect electrical signals as a patch electrode simultaneously with a fluorescence signal. RESULTS We measured the sound-evoked Local Field Current (LFC) and fluorescence Ca2+ signal from neurons labeled with Ca2+-sensitive dye Oregon Green BAPTA1 in field L, the avian auditory cortex. Sound stimulation evoked multi-unit spike bursts and Ca2+ signals, and enhanced the fluctuation of LFC. After a brief sound stimulation, the cross-correlation between LFC and Ca2+ signal was prolonged. D-AP5 (antagonist for NMDA receptors) suppressed the sound-evoked Ca2+ signal when applied locally by pressure from the tip of PME. COMPARISON WITH EXISTING METHODS In contrast to existing multiphoton imaging or optical fiber recording methods, the PME is a patch electrode pulled simply from a quartz glass capillary and can measure fluorescence signals at the tip simultaneously with electrical signal at any depth of the brain structure. CONCLUSION The PME is devised to record electrical and optical signals simultaneously with high temporal resolution. Moreover, it can inject chemical agents dissolved in the tip-filling medium locally by pressure, allowing manipulation of neural activity pharmacologically.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasuharu Hirai
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Bijoch Ł, Włodkowska U, Kasztelanic R, Pawłowska M, Pysz D, Kaczmarek L, Lapkiewicz R, Buczyński R, Czajkowski R. Novel Design and Application of High-NA Fiber Imaging Bundles for In Vivo Brain Imaging with Two-Photon Scanning Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12831-12841. [PMID: 36880640 PMCID: PMC10020965 DOI: 10.1021/acsami.2c22985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Here, we provide experimental verification supporting the use of short-section imaging bundles for two-photon microscopy imaging of the mouse brain. The 8 mm long bundle is made of a pair of heavy-metal oxide glasses with a refractive index contrast of 0.38 to ensure a high numerical aperture NA = 1.15. The bundle is composed of 825 multimode cores, ordered in a hexagonal lattice with a pixel size of 14 μm and a total diameter of 914 μm. We demonstrate successful imaging through custom-made bundles with 14 μm resolution. As the input, we used a 910 nm Ti-sapphire laser with 140 fs pulse and a peak power of 9 × 104 W. The excitation beam and fluorescent image were transferred through the fiber imaging bundle. As test samples, we used 1 μm green fluorescent latex beads, ex vivo hippocampal neurons expressing green fluorescent protein and cortical neurons in vivo expressing the fluorescent reporter GCaMP6s or immediate early gene Fos fluorescent reporter. This system can be used for minimal-invasive in vivo imaging of the cerebral cortex, hippocampus, or deep brain areas as a part of a tabletop system or an implantable setup. It is a low-cost solution, easy to integrate and operate for high-throughput experiments.
Collapse
Affiliation(s)
- Łukasz Bijoch
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Urszula Włodkowska
- Nencki
Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Rafał Kasztelanic
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Monika Pawłowska
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Dariusz Pysz
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Radek Lapkiewicz
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ryszard Buczyński
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Rafał Czajkowski
- Nencki
Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| |
Collapse
|
15
|
Early impairments of visually-driven neuronal ensemble dynamics in the rTg4510 tauopathy mouse model. Neurobiol Dis 2023; 178:106012. [PMID: 36696792 DOI: 10.1016/j.nbd.2023.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Collapse
|
16
|
Yu X, Zhou L, Qi T, Zhao H, Xie H. MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging. MICROMACHINES 2023; 14:470. [PMID: 36838170 PMCID: PMC9958604 DOI: 10.3390/mi14020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging deeply below the tissue surface with sub-cellular resolution. However, most of these research activities and clinical applications are constrained by the bulky size of traditional TMP systems. An attractive solution is to develop miniaturized TPMs, but this is challenged by the difficulty of the integration of dynamically scanning optical and mechanical components into a small space. Fortunately, microelectromechanical systems (MEMS) technology, together with other emerging micro-optics techniques, has offered promising opportunities in enabling miniaturized TPMs. In this paper, the latest advancements in both lateral scan and axial scan techniques and the progress of miniaturized TPM imaging will be reviewed in detail. Miniature TPM probes with lateral 2D scanning mechanisms, including electrostatic, electromagnetic, and electrothermal actuation, are reviewed. Miniature TPM probes with axial scanning mechanisms, such as MEMS microlenses, remote-focus, liquid lenses, and deformable MEMS mirrors, are also reviewed.
Collapse
Affiliation(s)
- Xiaomin Yu
- Key Laboratory of Biological Effect of Physical Field and Instrument, Department of Electrical and Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Liang Zhou
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Tingxiang Qi
- BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
| | - Hui Zhao
- BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
- Foshan Lightview Technology Co., Ltd., Foshan 528000, China
| | - Huikai Xie
- BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
- Foshan Lightview Technology Co., Ltd., Foshan 528000, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Kannan M, Vasan G, Haziza S, Huang C, Chrapkiewicz R, Luo J, Cardin JA, Schnitzer MJ, Pieribone VA. Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 2022; 378:eabm8797. [PMID: 36378956 PMCID: PMC9703638 DOI: 10.1126/science.abm8797] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genetically encoded fluorescent voltage indicators are ideally suited to reveal the millisecond-scale interactions among and between targeted cell populations. However, current indicators lack the requisite sensitivity for in vivo multipopulation imaging. We describe next-generation green and red voltage sensors, Ace-mNeon2 and VARNAM2, and their reverse response-polarity variants pAce and pAceR. Our indicators enable 0.4- to 1-kilohertz voltage recordings from >50 spiking neurons per field of view in awake mice and ~30-minute continuous imaging in flies. Using dual-polarity multiplexed imaging, we uncovered brain state–dependent antagonism between neocortical somatostatin-expressing (SST
+
) and vasoactive intestinal peptide–expressing (VIP
+
) interneurons and contributions to hippocampal field potentials from cell ensembles with distinct axonal projections. By combining three mutually compatible indicators, we performed simultaneous triple-population imaging. These approaches will empower investigations of the dynamic interplay between neuronal subclasses at single-spike resolution.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Junjie Luo
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jessica A. Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Kavli Institute of Neuroscience, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| | - Mark J. Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Ma L, Day-Cooney J, Benavides OJ, Muniak MA, Qin M, Ding JB, Mao T, Zhong H. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 2022; 611:762-768. [PMID: 36352228 PMCID: PMC10752255 DOI: 10.1038/s41586-022-05407-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.
Collapse
Affiliation(s)
- Lei Ma
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Omar Jáidar Benavides
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael A Muniak
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jun B Ding
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Pochechuev MS, Fedotov IV, Martynov GN, Solotenkov MA, Ivashkina OI, Rogozhnikova OS, Fedotov AB, Anokhin KV, Zheltikov AM. Implantable graded-index fibers for neural-dynamics-resolving brain imaging in awake mice on an air-lifted platform. JOURNAL OF BIOPHOTONICS 2022; 15:e202200025. [PMID: 35666011 DOI: 10.1002/jbio.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate a versatile framework for cellular brain imaging in awake mice based on suitably tailored segments of graded-index (GRIN) fiber. Closed-form solutions to ray-path equations for graded-index waveguides are shown to offer important insights into image-transmission properties of GRIN fibers, suggesting useful recipes for optimized GRIN-fiber-based deep-brain imaging. We show that the lengths of GRIN imaging components intended for deep-brain studies in freely moving rodents need to be chosen as a tradeoff among the spatial resolution, the targeted imaging depth and the degree of fiber-probe invasiveness. In the experimental setting that we present in this paper, the head of an awake mouse with a GRIN-fiber implant is fixed under a microscope objective, but the mouse is free to move around an in-house-built flat-floored air-lifted platform, exploring a predesigned environment, configured as an arena for one of standard cognitive tests. We show that cellular-resolution deep-brain imaging can be integrated in this setting with robust cell-specific optical neural recording to enable in vivo studies with minimal physical restraints on animal models. The enhancement of the information capacity of the fluorescence signal, achieved via a suitable filtering of the GRIN-fiber readout, is shown to open routes toward practical imaging modalities whereby the deep-brain neuronal dynamics and axonal connections underpinning the integrative functions of essential brain structures can be studied in awake rodent models.
Collapse
Affiliation(s)
| | - Ilya V Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, IQSE, Texas A&M University, College Station, Texas, USA
- Russian Quantum Center, Skolkovo, Moscow, Russia
| | | | - Maxim A Solotenkov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, Moscow, Russia
- National Research Center "Kurchatov Institute", Moscow, Russia
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Olga S Rogozhnikova
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrei B Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow, Russia
- National University of Science and Technology "MISiS,", Moscow, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, Moscow, Russia
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Aleksei M Zheltikov
- Department of Physics and Astronomy, IQSE, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
21
|
Wang C, Calle P, Reynolds JC, Ton S, Yan F, Donaldson AM, Ladymon AD, Roberts PR, de Armendi AJ, Fung KM, Shettar SS, Pan C, Tang Q. Epidural anesthesia needle guidance by forward-view endoscopic optical coherence tomography and deep learning. Sci Rep 2022; 12:9057. [PMID: 35641505 PMCID: PMC9156706 DOI: 10.1038/s41598-022-12950-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Epidural anesthesia requires injection of anesthetic into the epidural space in the spine. Accurate placement of the epidural needle is a major challenge. To address this, we developed a forward-view endoscopic optical coherence tomography (OCT) system for real-time imaging of the tissue in front of the needle tip during the puncture. We tested this OCT system in porcine backbones and developed a set of deep learning models to automatically process the imaging data for needle localization. A series of binary classification models were developed to recognize the five layers of the backbone, including fat, interspinous ligament, ligamentum flavum, epidural space, and spinal cord. The classification models provided an average classification accuracy of 96.65%. During puncture, it is important to maintain a safe distance between the needle tip and the dura mater. Regression models were developed to estimate that distance based on the OCT imaging data. Based on the Inception architecture, our models achieved a mean absolute percentage error of 3.05% ± 0.55%. Overall, our results validated the technical feasibility of using this novel imaging strategy to automatically recognize different tissue structures and measure the distances ahead of the needle tip during the epidural needle placement.
Collapse
Affiliation(s)
- Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Paul Calle
- School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Justin C Reynolds
- School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Sam Ton
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Anthony M Donaldson
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Avery D Ladymon
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Pamela R Roberts
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Alberto J de Armendi
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shashank S Shettar
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chongle Pan
- School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA. .,Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
22
|
Sinefeld D, Xia F, Wang M, Wang T, Wu C, Yang X, Paudel HP, Ouzounov DG, Bifano TG, Xu C. Three-Photon Adaptive Optics for Mouse Brain Imaging. Front Neurosci 2022; 16:880859. [PMID: 35692424 PMCID: PMC9185169 DOI: 10.3389/fnins.2022.880859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for in vivo mouse brain imaging. We use a femtosecond source at 1300 nm to generate three-photon (3P) fluorescence in yellow fluorescent protein (YFP) labeled mouse brain and a microelectromechanical (MEMS) SLM to apply different Zernike phase patterns. The 3P fluorescence signal is used as feedback to calculate the amount of phase correction without direct phase measurement. We show signal improvement in the cortex and the hippocampus at greater than 1 mm depth and demonstrate close to diffraction-limited imaging in the cortical layers of the brain, including imaging of dendritic spines. In addition, we characterize the effective volume for AO correction within brain tissues, and discuss the limitations of AO correction in 3PM of mouse brain.
Collapse
Affiliation(s)
- David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Department of Applied Physics, Electro-Optics Engineering Faculty, Jerusalem College of Technology, Jerusalem, Israel
- *Correspondence: David Sinefeld,
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Hari P. Paudel
- Photonics Center, Boston University, Boston, MA, United States
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Charles AS, Cermak N, Affan RO, Scott BB, Schiller J, Mishne G. GraFT: Graph Filtered Temporal Dictionary Learning for Functional Neural Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3509-3524. [PMID: 35533160 PMCID: PMC9278524 DOI: 10.1109/tip.2022.3171414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical imaging of calcium signals in the brain has enabled researchers to observe the activity of hundreds-to-thousands of individual neurons simultaneously. Current methods predominantly use morphological information, typically focusing on expected shapes of cell bodies, to better identify neurons in the field-of-view. The explicit shape constraints limit the applicability of automated cell identification to other important imaging scales with more complex morphologies, e.g., dendritic or widefield imaging. Specifically, fluorescing components may be broken up, incompletely found, or merged in ways that do not accurately describe the underlying neural activity. Here we present Graph Filtered Temporal Dictionary (GraFT), a new approach that frames the problem of isolating independent fluorescing components as a dictionary learning problem. Specifically, we focus on the time-traces-the main quantity used in scientific discovery-and learn a time trace dictionary with the spatial maps acting as the presence coefficients encoding which pixels the time-traces are active in. Furthermore, we present a novel graph filtering model which redefines connectivity between pixels in terms of their shared temporal activity, rather than spatial proximity. This model greatly eases the ability of our method to handle data with complex non-local spatial structure. We demonstrate important properties of our method, such as robustness to morphology, simultaneously detecting different neuronal types, and implicitly inferring number of neurons, on both synthetic data and real data examples. Specifically, we demonstrate applications of our method to calcium imaging both at the dendritic, somatic, and widefield scales.
Collapse
|
24
|
Hwang Y, Phillips N, Otten DE, Riesen N, Lancaster DG. Efficient coupling between single mode fibers and glass chip waveguides via graded refractive index fiber tips. OPTICS EXPRESS 2022; 30:12294-12307. [PMID: 35472867 DOI: 10.1364/oe.452945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Coupling characteristics between a single mode fiber (SMF) and a waveguide embedded in a glass chip via a graded index fiber (GIF) tip are investigated at a wavelength of 976 nm. The GIF tips comprise a coreless fiber section and a GIF section. A depressed cladding waveguide in a ZBLAN glass chip with a core diameter of 35 μm is coupled with GIF tips that have a range of coreless fiber and GIF lengths. An experimental coupling efficiency as high as 88% is obtained while a numerical simulation predicts 92.9% for the same GIF tip configuration. Since it is measured in the presence of Fresnel reflection, it can be further improved by anti-reflection coating. Additionally, it is demonstrated that a gap can be introduced between the chip waveguide and the GIF tip while maintaining the high coupling efficiency, thus allowing a thin planar optical component to be inserted. The results presented here will enable miniaturization and simplification of photonic chips with integrated waveguides by replacing bulk coupling lenses with integrated optical fibers.
Collapse
|
25
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
26
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Heflin JK, Sun W. Novel Toolboxes for the Investigation of Activity-Dependent Myelination in the Central Nervous System. Front Cell Neurosci 2021; 15:769809. [PMID: 34795563 PMCID: PMC8592894 DOI: 10.3389/fncel.2021.769809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Myelination is essential for signal processing within neural networks. Emerging data suggest that neuronal activity positively instructs myelin development and myelin adaptation during adulthood. However, the underlying mechanisms controlling activity-dependent myelination have not been fully elucidated. Myelination is a multi-step process that involves the proliferation and differentiation of oligodendrocyte precursor cells followed by the initial contact and ensheathment of axons by mature oligodendrocytes. Conventional end-point studies rarely capture the dynamic interaction between neurons and oligodendrocyte lineage cells spanning such a long temporal window. Given that such interactions and downstream signaling cascades are likely to occur within fine cellular processes of oligodendrocytes and their precursor cells, overcoming spatial resolution limitations represents another technical hurdle in the field. In this mini-review, we discuss how advanced genetic, cutting-edge imaging, and electrophysiological approaches enable us to investigate neuron-oligodendrocyte lineage cell interaction and myelination with both temporal and spatial precision.
Collapse
Affiliation(s)
- Jack Kent Heflin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Shcherbakova DM. Near-infrared and far-red genetically encoded indicators of neuronal activity. J Neurosci Methods 2021; 362:109314. [PMID: 34375713 PMCID: PMC8403644 DOI: 10.1016/j.jneumeth.2021.109314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Genetically encoded fluorescent indicators of neuronal activity are ultimately developed to dissect functions of neuronal ensembles during behavior in living animals. Recent development of near-infrared shifted calcium and voltage indicators moved us closer to this goal and enabled crosstalk-free combination with blue light-controlled optogenetic tools for all-optical control and readout. Here I discuss designs of recent near-infrared and far-red calcium and voltage indicators, compare their properties and performance, and overview their applications to spectral multiplexing and in vivo imaging. I also provide perspectives for further development.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
29
|
Adesnik H, Abdeladim L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 2021; 24:1356-1366. [PMID: 34400843 PMCID: PMC9793863 DOI: 10.1038/s41593-021-00902-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Wei B, Wang C, Cheng Z, Lai B, Gan WB, Cui M. Clear optically matched panoramic access channel technique (COMPACT) for large-volume deep brain imaging. Nat Methods 2021; 18:959-964. [PMID: 34354291 DOI: 10.1038/s41592-021-01230-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/14/2020] [Indexed: 11/09/2022]
Abstract
To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume. To increase the tissue access volume, we developed a clear optically matched panoramic access channel technique (COMPACT). With probe dimensions comparable to those of common gradient-index lenses, COMPACT enables a two to three orders of magnitude greater tissue access volume. We demonstrated the capabilities of COMPACT by multiregional calcium imaging in mice during sleep. We believe that large-volume in vivo imaging with COMPACT will be valuable to a variety of deep tissue imaging applications.
Collapse
Affiliation(s)
- Bowen Wei
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Chenmao Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.,Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Baoling Lai
- Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Wen-Biao Gan
- Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA. .,Department of Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Pakpuwadon T, Sasagawa K, Guinto MC, Ohta Y, Haruta M, Takehara H, Tashiro H, Ohta J. Self-Reset Image Sensor With a Signal-to-Noise Ratio Over 70 dB and Its Application to Brain Surface Imaging. Front Neurosci 2021; 15:667932. [PMID: 34211365 PMCID: PMC8239232 DOI: 10.3389/fnins.2021.667932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we propose a complementary-metal-oxide-semiconductor (CMOS) image sensor with a self-resetting system demonstrating a high signal-to-noise ratio (SNR) to detect small intrinsic signals such as a hemodynamic reaction or neural activity in a mouse brain. The photodiode structure was modified from N-well/P-sub to P+/N-well/P-sub to increase the photodiode capacitance to reduce the number of self-resets required to decrease the unstable stage. Moreover, our new relay board was used for the first time. As a result, an effective SNR of over 70 dB was achieved within the same pixel size and fill factor. The unstable state was drastically reduced. Thus, we will be able to detect neural activity. With its compact size, this device has significant potential to become an intrinsic signal detector in freely moving animals. We also demonstrated in vivo imaging with image processing by removing additional noise from the self-reset operation.
Collapse
Affiliation(s)
- Thanet Pakpuwadon
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Mark Christian Guinto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan.,Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Maidashi, Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Japan
| |
Collapse
|
33
|
Cramer SW, Carter RE, Aronson JD, Kodandaramaiah SB, Ebner TJ, Chen CC. Through the looking glass: A review of cranial window technology for optical access to the brain. J Neurosci Methods 2021; 354:109100. [PMID: 33600850 PMCID: PMC8100903 DOI: 10.1016/j.jneumeth.2021.109100] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Deciphering neurologic function is a daunting task, requiring understanding the neuronal networks and emergent properties that arise from the interactions among single neurons. Mechanistic insights into neuronal networks require tools that simultaneously assess both single neuron activity and the consequent mesoscale output. The development of cranial window technologies, in which the skull is thinned or replaced with a synthetic optical interface, has enabled monitoring neuronal activity from subcellular to mesoscale resolution in awake, behaving animals when coupled with advanced microscopy techniques. Here we review recent achievements in cranial window technologies, appraise the relative merits of each design and discuss the future research in cranial window design.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Mayo D429, MMC 96, Twin Cities, Minneapolis, MN, 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA; Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA.
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Mayo D429, MMC 96, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021; 348:109015. [PMID: 33259847 PMCID: PMC8745022 DOI: 10.1016/j.jneumeth.2020.109015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Imaging neuronal activity in awake, behaving animals has become a groundbreaking method in neuroscience that has rapidly enhanced our understanding of how the brain works. In vivo microendoscopic imaging has enabled researchers to see inside the brains of experimental animals and thus has emerged as a technology fit to answer many experimental questions. By combining microendoscopy with cutting edge targeting strategies and sophisticated analysis tools, neuronal activity patterns that underlie changes in behavior and physiology can be identified. However, new users may find it challenging to understand the techniques and to leverage this technology to best suit their needs. Here we present a background and overview of the necessary components for performing in vivo optical calcium imaging and offer some detailed guidance for current recommended approaches.
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Justin N Siemian
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Chien YF, Lin JY, Yeh PT, Hsu KJ, Tsai YH, Chen SK, Chu SW. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:162-172. [PMID: 33659072 PMCID: PMC7899523 DOI: 10.1364/boe.405738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 05/30/2023]
Abstract
Studying neural connections and activities in vivo is fundamental to understanding brain functions. Given the cm-size brain and three-dimensional neural circuit dynamics, deep-tissue, high-speed volumetric imaging is highly desirable for brain study. With sub-micrometer spatial resolution, intrinsic optical sectioning, and deep-tissue penetration capability, two-photon microscopy (2PM) has found a niche in neuroscience. However, the current 2PM typically relies on a slow axial scan for volumetric imaging, and the maximal penetration depth is only about 1 mm. Here, we demonstrate that by integrating a gradient-index (GRIN) lens and a tunable acoustic GRIN (TAG) lens into 2PM, both penetration depth and volume-imaging rate can be significantly improved. Specifically, an ∼ 1-cm long GRIN lens allows imaging relay from any target region of a mouse brain, while a TAG lens provides a sub-second volume rate via a 100 kHz ∼ 1 MHz axial scan. This technique enables the study of calcium dynamics in cm-deep brain regions with sub-cellular and sub-second spatiotemporal resolution, paving the way for interrogating deep-brain functional connectome.
Collapse
Affiliation(s)
- Yu-Feng Chien
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jyun-Yi Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Ting Yeh
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Kuo-Jen Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Pochechuev MS, Solotenkov MA, Fedotov IV, Ivashkina OI, Anokhin KV, Zheltikov AM. Multisite cell- and neural-dynamics-resolving deep brain imaging in freely moving mice with implanted reconnectable fiber bundles. JOURNAL OF BIOPHOTONICS 2020; 13:e202000081. [PMID: 32459884 DOI: 10.1002/jbio.202000081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate a reconnectable implantable ultraslim fiber-optic microendoscope that integrates a branching fiber bundle (BFB) with gradient-index fiber lenses, enabling a simultaneous fluorescence imaging of individual cells in distinctly separate brain regions, including brain structures as distant as the neocortex and hippocampus. We show that fluorescence images of individual calcium-indicator-expressing neurons in the brain of freely moving transgenic mice can be recorded, via the implanted BFB probe, in parallel with time- and cell-resolved traces of calcium signaling, thus enabling correlated circuit-dynamics studies at -multiple sites within the brain of freely moving animals.
Collapse
Affiliation(s)
- Matvey S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Solotenkov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ilya V Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- Russian Quantum Center, Moscow, Russia
- Kazan Quantum Center, A.N.Tupolev Kazan National Research Technical University, Kazan, Russia
- National University of Science and Technology "MISiS", Leninskii pr. 4, Moscow, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
- National Research Center "Kurchatov Institute", Moscow, Russia
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- Russian Quantum Center, Moscow, Russia
- Kazan Quantum Center, A.N.Tupolev Kazan National Research Technical University, Kazan, Russia
- National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
37
|
Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F, Forli A, Vecchia D, Rajamanickam VP, Bertoncini A, Panzeri S, Liberale C, Fellin T. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. eLife 2020; 9:58882. [PMID: 33048047 PMCID: PMC7685710 DOI: 10.7554/elife.58882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Collapse
Affiliation(s)
- Andrea Antonini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Vijayakumar P Rajamanickam
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Bertoncini
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Carlo Liberale
- Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
38
|
Park K, Kim JH, Kong T, Sun W, Lee J, Yang TD, Choi Y. Label-free microendoscopy using a micro-needle imaging probe for in vivo deep tissue imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:4976-4988. [PMID: 33014594 PMCID: PMC7510851 DOI: 10.1364/boe.399428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 05/22/2023]
Abstract
We report a label-free imaging method for microendoscopy that uses a needle-type imaging probe. We inserted a thin GRIN lens that had been attached to a fiber bundle into a medical-grade needle that was used as an imaging probe. The introduction of the needle probe into biological tissue allows for direct access to deep regions that we otherwise could not achieve because of the multiple light scattering. To minimize invasiveness, we introduced the illuminating probe on the tissue surface, using an oblique back-illumination configuration. We achieved three-dimensional depth imaging by changing the depth of penetration. Since only the imaging probe goes deep into the tissue while leaving the illumination channels outside, the achievable signal depends on the location of the illumination channels. We explored this point and investigated the optimal condition for the illumination distance in a systematic way. We also applied this method to ex vivo, as well as in vivo, imaging of a mouse brain, and confirmed that we had visualized the microvasculature embedded deep within the brain.
Collapse
Affiliation(s)
- Kwanjun Park
- Department of Bioengineering, Korea University, Seoul 02841, South Korea
| | - June Hoan Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, South Korea
| | - Taedong Kong
- Department of Bioengineering, Korea University, Seoul 02841, South Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, South Korea
| | - Jonghwan Lee
- School of Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Taeseok Daniel Yang
- School of Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Youngwoon Choi
- Department of Bioengineering, Korea University, Seoul 02841, South Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
39
|
Aru J, Suzuki M, Larkum ME. Cellular Mechanisms of Conscious Processing. Trends Cogn Sci 2020; 24:814-825. [PMID: 32855048 DOI: 10.1016/j.tics.2020.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in neurobiology indicate that the time is ripe to understand how cellular-level mechanisms are related to conscious experience. Here, we highlight the biophysical properties of pyramidal cells, which allow them to act as gates that control the evolution of global activation patterns. In conscious states, this cellular mechanism enables complex sustained dynamics within the thalamocortical system, whereas during unconscious states, such signal propagation is prohibited. We suggest that the hallmark of conscious processing is the flexible integration of bottom-up and top-down data streams at the cellular level. This cellular integration mechanism provides the foundation for Dendritic Information Theory, a novel neurobiological theory of consciousness.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Mototaka Suzuki
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Matthew E Larkum
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
40
|
Wang PY, Boboila C, Chin M, Higashi-Howard A, Shamash P, Wu Z, Stein NP, Abbott LF, Axel R. Transient and Persistent Representations of Odor Value in Prefrontal Cortex. Neuron 2020; 108:209-224.e6. [PMID: 32827456 DOI: 10.1016/j.neuron.2020.07.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/10/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022]
Abstract
The representation of odor in olfactory cortex (piriform) is distributive and unstructured and can only be afforded behavioral significance upon learning. We performed 2-photon imaging to examine the representation of odors in piriform and in two downstream areas, the orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC), as mice learned olfactory associations. In piriform, we observed that odor responses were largely unchanged during learning. In OFC, 30% of the neurons acquired robust responses to conditioned stimuli (CS+) after learning, and these responses were gated by internal state and task context. Moreover, direct projections from piriform to OFC can be entrained to elicit learned olfactory behavior. CS+ responses in OFC diminished with continued training, whereas persistent representations of both CS+ and CS- odors emerged in mPFC. Optogenetic silencing indicates that these two brain structures function sequentially to consolidate the learning of appetitive associations.
Collapse
Affiliation(s)
- Peter Y Wang
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Cristian Boboila
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Matthew Chin
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Alexandra Higashi-Howard
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Philip Shamash
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Zheng Wu
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Nicole P Stein
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - L F Abbott
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
41
|
An aspherical microlens assembly for deep brain fluorescence microendoscopy. Biochem Biophys Res Commun 2020; 527:447-452. [PMID: 32336546 DOI: 10.1016/j.bbrc.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
Abstract
Fluorescence microendoscopy is becoming a standard technique in neuroscience for visualizing neuronal activity in the deep brain. Gradient refractive index (GRIN) lenses are increasingly used for fluorescence microendoscopy; however, they inherently suffer from strong aberrations and distortion. Aspherical lenses change their radius of curvature with distance from the optical axis and can effectively eliminate spherical aberrations. The use of these lenses has not been fully explored in deep brain fluorescence microendoscopy due to technical difficulties in manufacturing miniature aspherical lenses. In this study, we fabricated a novel microendoscope lens assembly comprised two nested pairs of aspherical microlenses made by precision glass molding. This assembly, which was 0.6 mm in diameter and 7.06 mm in length, was assembled in a stainless steel tube of 0.7 mm outer diameter. This assembly exhibited marked improvements in monochromatic and chromatic aberrations compared with a conventional GRIN lens, and is useful for deep brain fluorescence microendoscopy, as demonstrated by two-photon microendoscopic calcium imaging of R-CaMP1.07-labeled mouse hippocampal CA1 neurons. Our aspherical-lens-based approach offers a non-GRIN-lens alternative for fabrication of microendoscopic lenses.
Collapse
|
42
|
Fan LZ, Kheifets S, Böhm UL, Wu H, Piatkevich KD, Xie ME, Parot V, Ha Y, Evans KE, Boyden ES, Takesian AE, Cohen AE. All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell 2020; 180:521-535.e18. [PMID: 31978320 PMCID: PMC7259440 DOI: 10.1016/j.cell.2020.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Linlin Z Fan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Simon Kheifets
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Urs L Böhm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hao Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- Media Lab and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael E Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Vicente Parot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yooree Ha
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Edward S Boyden
- Media Lab and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anne E Takesian
- Harvard Medical School, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Department of Physics, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
43
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
44
|
Cheng Z, Sun S, Gan W, Cui M. Contrast gain through simple illumination control for wide-field fluorescence imaging of scattering samples. OPTICS EXPRESS 2020; 28:2326-2336. [PMID: 32121925 PMCID: PMC7053499 DOI: 10.1364/oe.385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Wide field fluorescence microscopy is the most commonly employed fluorescence imaging modality. However, a major drawback of wide field imaging is the very limited imaging depth in scattering samples. By experimentally varying the control of illumination, we found that the optimized illumination profile can lead to large contrast improvement for imaging at a depth beyond four scattering path lengths. At such imaging depth, we found that the achieved image signal-to-noise ratio can rival that of confocal measurement. As the employed illumination control is very simple, the method can be broadly applied to a wide variety of wide field fluorescence imaging systems.
Collapse
Affiliation(s)
- Zongyue Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Shiyi Sun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
45
|
Jákl P, Šiler M, Ježek J, Trägårdh J, Čižmár T, Zemánek P. Multimode fibre probe calibration. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023802007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multimode fibres (MMF) used in endoscopy have advantage of small diameter and flexibility, thus causing less damage to living animals. However, the imaging requires wavefront shaping techniques to obtain a sharp image despite the mode dispersion in the waveguide. We suggest version of transmission matrix calibration which uses internal modes of the waveguide and, thus, lessens requirements on the endoscopy apparatus removing the external reference path.
Collapse
|
46
|
Clough M, Chen JL. CELLULAR RESOLUTION IMAGING OF NEURONAL ACTIVITY ACROSS SPACE AND TIME IN THE MAMMALIAN BRAIN. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:95-101. [PMID: 32104747 DOI: 10.1016/j.cobme.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While the action potential has long been understood to be the fundamental bit of information in brain, how these spikes encode representations of stimuli and drive behavior remains unclear. Large-scale neuronal recordings with cellular and spike-time resolution spanning multiple brain regions are needed to capture relevant network dynamics that can be sparse and distributed across the population. This review focuses on recent advancements in optical methods that have pushed the boundaries for simultaneous population recordings at increasing volumes, distances, depths, and speeds. The integration of these technologies will be critical for overcoming fundamental limits in the pursuit of whole brain imaging in mammalian species.
Collapse
Affiliation(s)
- Mitchell Clough
- Department of Biomedical Engineering, Boston University, Boston, USA.,Department of Biology, Boston University, Boston, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, USA.,Department of Biology, Boston University, Boston, USA.,Center for Neurophotonics, Boston University, Boston, USA
| |
Collapse
|
47
|
Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. Neuron 2019; 100:1028-1043. [PMID: 30521778 DOI: 10.1016/j.neuron.2018.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Alexander Naka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
48
|
Tadayon MA, Chaitanya S, Martyniuk KM, McGowan JC, Roberts SP, Denny CA, Lipson M. 3D microphotonic probe for high resolution deep tissue imaging. OPTICS EXPRESS 2019; 27:22352-22362. [PMID: 31510530 DOI: 10.1364/oe.27.022352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultra-compact miniaturized optical components for microendoscopic tools and miniaturized microscopes are required for minimally invasive imaging. Current microendoscopic technologies used for deep tissue imaging procedures are limited to a large diameter and/or low resolution due to manufacturing restrictions. We demonstrate a platform for miniaturization of an optical imaging system for microendoscopic applications with a resolution of 1 µm. We designed our probe using cascaded micro-lenses and waveguides (lensguide) to achieve a probe as small as 100 µm x 100 µm with a field of view of 60 µm in diameter. We demonstrate wide-field microscopy based on our polymeric probe fabricated using photolithography and a two-photon polymerization process.
Collapse
|
49
|
Pisano F, Pisanello M, De Vittorio M, Pisanello F. Single-cell micro- and nano-photonic technologies. J Neurosci Methods 2019; 325:108355. [PMID: 31319100 DOI: 10.1016/j.jneumeth.2019.108355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Since the advent of optogenetics, the technology development has focused on new methods to optically interact with single nerve cells. This gave rise to the field of photonic neural interfaces, intended as the set of technologies that can modify light radiation in either a linear or non-linear fashion to control and/or monitor cellular functions. This set includes the use of plasmonic effects, up-conversion, electron transfer and integrated light steering, with some of them already implemented in vivo. This article will review available approaches in this framework, with a particular emphasis on methods operating at the single-unit level or having the potential to reach single-cell resolution.
Collapse
Affiliation(s)
- Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy; Dipartimento di Ingeneria dell'Innovazione, Università del Salento, via per Monteroni, 73100 Lecce, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy.
| |
Collapse
|
50
|
Sun S, He M, Zhang Z, Wang W, Yang X, Kuang C, Liu X. Enhancing the axial resolution of two-photon imaging. APPLIED OPTICS 2019; 58:4892-4897. [PMID: 31503805 DOI: 10.1364/ao.58.004892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
An axial-resolution-enhanced two-photon laser scanning microscopy system is presented in this paper. In the proposed method, we use a spatial light modulator (SLM) for the phase modulation of the excitation light. The axially split point spread function (PSF) is generated by loading a 0-π pattern on the SLM. The final quality-enhanced images are acquired by subtracting the two consecutive images acquired by the original PSF and the split PSF. Because of the fluorescence differential processing, the axial elongation of the particles images is suppressed, and the axial resolution is enhanced accordingly. With the axial resolution enhanced, the overlap between layer images is also reduced, which decreases the background noise of the images and enhances the contrast and image quality of the acquired fluorescence images. The capability of axial resolution and contrast enhancement is successfully demonstrated by both theoretical calculation and experimental results.
Collapse
|