1
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Sasaki R, Miyaguchi S, Onishi H. Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behav Brain Res 2021; 420:113712. [PMID: 34915075 DOI: 10.1016/j.bbr.2021.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) gene polymorphisms may modulate neurotransmitter efficiency, thereby influencing motor performance and motor learning. However, studies to date have provided no consensus regarding the genetic influence of BDNF genotypes (i.e., Val/Val, Val/Met, or Met/Met type). This study aimed to investigate the effect of BDNF genotype on motor performance and motor learning in healthy human adults via a systematic review and meta-analysis. A total of 19 relevant studies were identified using PubMed and Web of Science search for articles published between 2000 and 2021 with motor performance or motor learning as the primary outcome measures. The results of our systematic review suggest that the BDNF genotype is unlikely to contribute to motor performance and motor learning abilities because only 2/32 datasets (6.3%) from 16 studies on motor performance and 3/19 datasets (17.6%) from 13 studies on motor learning indicated a significant genetic effect. Moreover, a meta-analysis of motor learning publications involving 17 datasets from 11 studies revealed that there was no significant difference in the learning score normalized using baseline data between Val/Val and Met carriers (Val/Met + Met/Met or Val/Met; standardized mean differences = 0.08, P = 0.37) with zero heterogeneity (I2 = 0) and a relatively low risk of publication bias. Taken together, the BDNF genotype may have only a minor impact on individual motor performance and motor learning abilities.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
3
|
The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. PLoS One 2021; 16:e0245107. [PMID: 34106930 PMCID: PMC8189506 DOI: 10.1371/journal.pone.0245107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The study compared the prevalence of the Val66Met Brain-derived Neurotrophic Factor single nucleotide polymorphism (rs6265) in a sample of musicians (N = 50) to an ethnically matched general population sample from the 1000 Human Genome Project (N = 424). Met-carriers of the polymorphism (Val/Met and Met/Met genotypes) are typically present in 25–30% of the general population and have associated deficits in motor learning and plasticity. Many studies have assessed the benefits of long-term music training for neuroplasticity and motor learning. This study takes a unique genetic approach investigating if the prevalence of the Val66Met BDNF polymorphism, which negatively affects motor learning, is significantly different in musicians from the general population. Our genotype and allele frequency analyses revealed that the distribution of the Val66Met polymorphism was not significantly different in musicians versus the general population (p = 0.6447 for genotype analysis and p = 0.8513 allele analysis). In the Musician sample (N = 50), the prevalence of the Val/Met genotype was 40% and the prevalence of the Met/Met genotype was 2%. In the 1000 Human Genome Project subset (N = 424), the prevalence of Val/Met was 33.25% and the Met/Met genotype prevalence was 4%. Therefore, musicians do exist with the Val66Met polymorphism and the characteristics of long-term music training may compensate for genetic predisposition to motor learning deficits. Since the polymorphism has significant implications for stroke rehabilitation, future studies may consider the implications of the polymorphism in music-based interventions such as Neurologic Music Therapy.
Collapse
|
4
|
Kitazawa H, Hasegawa K, Aruga D, Tanaka M. Potential Genetic Contributions of the Central Nervous System to a Predisposition to Elite Athletic Traits: State-of-the-Art and Future Perspectives. Genes (Basel) 2021; 12:genes12030371. [PMID: 33807752 PMCID: PMC8000928 DOI: 10.3390/genes12030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Recent remarkable advances in genetic technologies have allowed for the identification of genetic factors potentially related to a predisposition to elite athletic performance. Most of these genetic variants seem to be implicated in musculoskeletal and cardiopulmonary functions. Conversely, it remains unclear whether functions of the central nervous system (CNS) genetically contribute to elite athletic traits, although the CNS plays critical roles in exercise performance. Accumulating evidence has highlighted the emerging implications of CNS-related genes in the modulation of brain activities, including mental performance and motor-related traits, thereby potentially contributing to high levels of exercise performance. In this review, recent advances are summarized, and future research directions are discussed in regard to CNS-related genes with potential roles in a predisposition to elite athletic traits.
Collapse
Affiliation(s)
- Hiroya Kitazawa
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
| | - Kazuya Hasegawa
- Faculty of Nutritional Sciences, Morioka University, 808 Sunakomi, Takizawa City, Iwate 020-0694, Japan;
| | - Daichi Aruga
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
| | - Masashi Tanaka
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
- Correspondence: ; Tel.: +81-555-83-5200
| |
Collapse
|
5
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. Genetic association research in football: A systematic review. Eur J Sport Sci 2020; 21:714-752. [PMID: 32466725 DOI: 10.1080/17461391.2020.1776401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic variation is responsible for a large amount of the inter-individual performance disparities seen in sport. As such, in the last ten years genetic association studies have become more common; with one of the most frequently researched sports being football. However, the progress and methodological rigour of genetic association research in football is yet to be evaluated. Therefore, the aim of this paper was to identify and evaluate all genetic association studies involving football players and outline where and how future research should be directed. Firstly, a systematic search was conducted in the Pubmed and SPORTDiscus databases, which identified 80 eligible studies. Progression analysis revealed that 103 distinct genes have been investigated across multiple disciplines; however, research has predominately focused on the association of the ACTN3 or ACE gene. Furthermore, 55% of the total studies have been published within the last four years; showcasing that genetic association research in football is increasing at a substantial rate. However, there are several methodological inconsistencies which hinder research implications, such as; inadequate description or omission of ethnicity and on-field positions. Furthermore, there is a limited amount of research on several key areas crucial to footballing performance, in particular; psychological related traits. Moving forward, improved research designs, larger sample sizes, and the utilisation of genome-wide and polygenic profiling approaches are recommended. Finally, we introduce the Football Gene Project, which aims to address several of these limitations and ultimately facilitate greater individualised athlete development within football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK.,Department of Life Sciences, Birmingham City University, City South Campus, Westbourne Road, Edgbaston, B15 3TN, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne, Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| |
Collapse
|
6
|
Jacob Y, Chivers P, Anderton RS. Genetic predictors of match performance in sub-elite Australian football players: A pilot study. J Exerc Sci Fit 2018; 17:41-46. [PMID: 30740132 PMCID: PMC6353729 DOI: 10.1016/j.jesf.2018.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/05/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022] Open
Abstract
The current study aimed to determine whether previously identified candidate polymorphisms were associated with match performance in sub-elite Australian Rules Football (ARF) players. The genotypes of thirty players were analysed along with 3x1-kilometre time trial results, ARF-specific skill assessments (handball and kicking), and match performance (direct game involvements) per minute (DGIs/min) to investigate if there was a relationship between any of the variables. Results support previous findings that aerobic time trials are a significant predictor of DGIs/min in sub-elite ARF players. Significant associations were found for genotypes ADRB2 CC (p = .001), PPARGC1A AA (p = .001), PPARGC1A AG (p < .001), ACE ID (p < .001), COMT AA (p = .003), BDNF AG (p = .008), ADRB1 CC (p = .018) and ADRB3 CC (p = .010) and the 3x1-kilometre time trials (p < .001). In the current study, a variant in the DRD2 gene was a strong predictor of handball possessions during a match. Significance was seen for variants in the BDNF and COMT genes when the kicking and handball skill test results were combined and used in a linear mixed model to predict DGIs/min, suggesting a potential relationship with motor learning. The confirmation of genetic predictors of player performance in a team sport, such as ARF, suggests a portion of the physiological mechanisms of skill and ARF-specific talent may be explained by the expression of a specific number of genes.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Health Sciences, University of Notre Dame Australia, Fremantle, Australia
| | - Paola Chivers
- Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia
| | - Ryan S Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| |
Collapse
|
7
|
The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports (Basel) 2018; 6:sports6030088. [PMID: 30200182 PMCID: PMC6162373 DOI: 10.3390/sports6030088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
In elite sporting codes, the identification and promotion of future athletes into specialised talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways.
Collapse
|
8
|
BDNF Val66Met polymorphism is associated with altered activity-dependent modulation of short-interval intracortical inhibition in bilateral M1. PLoS One 2018; 13:e0197505. [PMID: 29856758 PMCID: PMC5983496 DOI: 10.1371/journal.pone.0197505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
The BDNF Val66Met polymorphism is associated with impaired short-term plasticity in the motor cortex, short-term motor learning, and intermanual transfer of a procedural motor skill. Here, we investigated the impact of the Val66Met polymorphism on the modulation of cortical excitability and interhemispheric inhibition through sensorimotor practice of simple dynamic skills with the right and left first dorsal interosseous (FDI) muscles. To that end, we compared motor evoked potentials (MEP) amplitudes and short-interval intracortical inhibition (SICI) in the bilateral representations of the FDI muscle in the primary motor cortex (M1), and interhemispheric inhibition (IHI) from the left to right M1, before and after right and left FDI muscle training in an alternated sequence. Val66Met participants did not differ from their Val66Val counterparts on motor performance at baseline and following motor training, or on measures of MEP amplitude and IHI. However, while the Val66Val group displayed significant SICI reduction in the bilateral M1 in response to motor training, SICI remained unchanged in the Val66Met group. Further, Val66Val group's SICI decrease in the left M1, which was also observed following unimanual training with the right hand in the Control Right group, was correlated with motor improvement with the left hand. The potential interaction between left and right M1 activity during bimanual training and the implications of altered activity-dependent cortical excitability on short-term motor learning in Val66Met carriers are discussed.
Collapse
|
9
|
Morin-Moncet O, Therrien-Blanchet JM, Ferland MC, Théoret H, West GL. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability. PLoS One 2016; 11:e0169013. [PMID: 28005989 PMCID: PMC5179116 DOI: 10.1371/journal.pone.0169013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs) was associated with increased corticospinal plasticity in primary motor cortex (M1) compared to non-video game players (nonVGPs). Further, we assessed if actionVGPs and nonVGPs displayed differences in procedural motor learning as measured by the SRTT. We found that at the behavioral level, both the actionVGPs and nonVGPs showed evidence of procedural learning with no significant difference between groups. However, the actionVGPs displayed higher visuomotor performance as evidenced by faster reaction times in the SRTT. This observed enhancement in visuomotor performance amongst actionVGPs was associated with increased corticospinal plasticity in M1, as measured by corticospinal excitability changes pre- and post- SRTT and corticospinal excitability at rest before motor practice. Our results show that aVGPs, who are known to have better performance on visual and motor tasks, also display increased corticospinal excitability after completing a novel visuomotor task.
Collapse
Affiliation(s)
| | | | - Marie C. Ferland
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montréal, Canada
- Hôpital Sainte-Justine Research Center, Montréal, Canada
| | - Greg L. West
- Department of Psychology, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
10
|
Chang WH, Hwang JM, Uhm KE, Pascual-Leone A, Kim YH. Corticospinal excitability in the non-dominant hand is affected by BDNF genotype. Neurol Sci 2016; 38:241-247. [PMID: 27783184 DOI: 10.1007/s10072-016-2749-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022]
Abstract
The objective of this study was to assess the functional state of corticospinal projections in the non-dominant hand according to brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms. We investigated this in 34 healthy right-handed individuals (12 men, mean age 27.4 ± 3.4 years) who underwent two experimental sessions consisting of corticospinal excitability measurements with single-pulse transcranial magnetic stimulation (TMS) and hand motor function assessments with a sequential finger motor task of the non-dominant hand. Experimental sessions were separated by periods of at least 2 days to avoid carryover effects. Data were analyzed according to BDNF polymorphism (Val/Val vs. Val/Met vs. Met/Met group). Ten (29.4%), seventeen (50.0%), and seven (20.6%) participants were allocated to the Val/Val, Val/Met, and Met/Met groups, respectively. Motor thresholds to TMS did not differ among groups, but the amplitude of the motor-evoked potentials in the non-dominant hand induced by suprathreshold (120% of MT) TMS was significantly lower in the Met/Met group than in the other two groups (p < 0.05). Movement accuracy and reaction time in the sequential finger motor task showed no significant differences among groups. These results indicate that Met/Met BDNF homozygote status affects corticospinal excitability, and should be controlled for in studies of motor system function using brain stimulation. Our findings may have clinical implications regarding further investigation of the impact of BDNF genotype on the human motor system.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Min Hwang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong Eun Uhm
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Science and Technology, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Jing D, Lee FS, Ninan I. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 2016; 112:84-93. [PMID: 27378336 DOI: 10.1016/j.neuropharm.2016.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNFMet/Met) compared to the wild-type (BDNFVal/Val) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNFMet/Met mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, New York, USA.
| |
Collapse
|
12
|
Taubert M, Villringer A, Lehmann N. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Front Hum Neurosci 2015; 9:692. [PMID: 26834602 PMCID: PMC4714627 DOI: 10.3389/fnhum.2015.00692] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, LeipzigGermany; Clinic for Cognitive Neurology, University Hospital Leipzig, LeipzigGermany
| | - Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| |
Collapse
|
13
|
|