1
|
Cases‐Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024; 18:2951-2965. [PMID: 38899375 PMCID: PMC11619802 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and GliomaInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Lea L. Friker
- Institute of NeuropathologyUniversity Hospital BonnBonnGermany
| | - Philipp Müller
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Albert J. Becker
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | | |
Collapse
|
2
|
Pineau L, Buhler E, Tarhini S, Bauer S, Crepel V, Watrin F, Cardoso C, Represa A, Szepetowski P, Burnashev N. Pathogenic MTOR somatic variant causing focal cortical dysplasia drives hyperexcitability via overactivation of neuronal GluN2C N-methyl-D-aspartate receptors. Epilepsia 2024; 65:2111-2126. [PMID: 38717560 DOI: 10.1111/epi.18000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Genetic variations in proteins of the mechanistic target of rapamycin (mTOR) pathway cause a spectrum of neurodevelopmental disorders often associated with brain malformations and with intractable epilepsy. The mTORopathies are characterized by hyperactive mTOR pathway and comprise tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type II. How hyperactive mTOR translates into abnormal neuronal activity and hypersynchronous network remains to be better understood. Previously, the role of upregulated GluN2C-containing glutamate-gated N-methyl-D-aspartate receptors (NMDARs) has been demonstrated for germline defects in the TSC genes. Here, we questioned whether this mechanism would expand to other mTORopathies in the different context of a somatic genetic variation of the MTOR protein recurrently found in FCD type II. METHODS We used a rat model of FCD created by in utero electroporation of neural progenitors of dorsal telencephalon with expression vectors encoding either the wild-type or the pathogenic MTOR variant (p.S2215F). In this mosaic configuration, patch-clamp whole-cell recordings of the electroporated, spiny stellate neurons and extracellular recordings of the electroporated areas were performed in neocortical slices. Selective inhibitors were used to target mTOR activity and GluN2C-mediated currents. RESULTS Neurons expressing the mutant protein displayed an excessive activation of GluN2C NMDAR-mediated spontaneous excitatory postsynaptic currents. GluN2C-dependent increase in spontaneous spiking activity was detected in the area of electroporated neurons in the mutant condition and was restricted to a critical time window between postnatal days P9 and P20. SIGNIFICANCE Somatic MTOR pathogenic variant recurrently found in FCD type II resulted in overactivation of GluN2C-mediated neuronal NMDARs in neocortices of rat pups. The related and time-restricted local hyperexcitability was sensitive to subunit GluN2C-specific blockade. Our study suggests that GluN2C-related pathomechanisms might be shared in common by mTOR-related brain disorders.
Collapse
Affiliation(s)
- Louison Pineau
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Emmanuelle Buhler
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Sarah Tarhini
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Sylvian Bauer
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Valérie Crepel
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Françoise Watrin
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Alfonso Represa
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Pierre Szepetowski
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Nail Burnashev
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Iijima K, Komatsu K, Miyashita S, Suyama K, Murayama K, Hashizume K, Tabe NK, Miyata H, Iwasaki M, Taya S, Hoshino M. Transcriptional features of low-grade neuroepithelial tumors with the BRAF V600E mutation associated with epileptogenicity. Genes Cells 2024; 29:192-206. [PMID: 38269481 DOI: 10.1111/gtc.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kanako Komatsu
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kyoka Suyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kumiko Murayama
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Nao K Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita City, Akita, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
4
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. eLife 2024; 12:RP91010. [PMID: 38411613 PMCID: PMC10942629 DOI: 10.7554/elife.91010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at DallasRichardsonUnited States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
5
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes mTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553034. [PMID: 37609221 PMCID: PMC10441381 DOI: 10.1101/2023.08.11.553034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Alsalek S, Himstead AS, Self S, Fote GM, Vadera S, Monuki ES, Perez-Rosendahl M, Yong WH. Mesial temporal lobe epilepsy and hippocampal sclerosis associated with BRAFV600E mutant neurons in the Cornu Ammonis: an uncertain pathogenesis and a diagnostic challenge. FREE NEUROPATHOLOGY 2024; 5:5-18. [PMID: 39193025 PMCID: PMC11348864 DOI: 10.17879/freeneuropathology-2024-5269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a common cause of seizures, and hippocampal sclerosis (HS) is the predominant subtype. BRAFV600E mutations in MTLE-HS have only been reported infrequently. Herein, we illustrate the neurologic, radiological, and histopathological details of a patient with MTLE-HS and BRAFV600E mutant neurons. A 31-year-old male with medically refractory epilepsy presented with magnetic resonance imaging (MRI) and electroencephalography (EEG) findings typical of mesial temporal sclerosis without a mass lesion. The surgical specimens showed ILAE Type 1 HS with neurons immunopositive for BRAFV600E mutant protein distributed along the Cornu Ammonis (CA) curvature. Instead of the normal mostly perpendicular orientation of pyramidal neurons relative to the hippocampal surface, the BRAF mutant neurons were often oriented in a parallel manner. On CD34 immunostaining, sparse clusters or nodules of CD34+ stellate cells and single immunopositive stellate cells were identified. BRAFV600E or CD34 immunopositive cells were less than 1 % of total cells. The patient responded well to surgery with no further seizures after 2 years and occasional auras. Hippocampal BRAF mutant non-expansive lesion (HBNL) has been used to describe such lesions with preserved cytoarchitecture and without overt tumor mass. Others may argue for the dual pathology of HS with early ganglioglioma. Whether pre-neoplastic lesions or early tumors, these cases are important for understanding early glioneuronal tumorigenesis and suggest that BRAFV600E studies should be routinely performed on MTLE-HS cases in the setting of clinical trials. With next-generation sequencing, a FANCL deletion was detected in almost half of the alleles in our case, suggesting that many of the histologically normal-appearing cells of the hippocampus contain this alteration. FANCL mutations can result in cytogenetic anomalies and defective DNA repair and therefore may underlie the development of a low frequency BRAF alteration.
Collapse
Affiliation(s)
- Samir Alsalek
- Kaiser Permanente Bernard J. Tyson School of Medicine, 98 S Los Robles Ave, Pasadena, CA 91101, USA
| | - Alexander S Himstead
- Department of Neurosurgery, University of California, Irvine, 200 South Manchester Ave, Suite 210, Orange, CA 92868, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
| | - Scott Self
- Department of Neurosurgery, University of California, Irvine, 200 South Manchester Ave, Suite 210, Orange, CA 92868, USA
| | - Gianna M Fote
- Department of Neurosurgery, University of California, Irvine, 200 South Manchester Ave, Suite 210, Orange, CA 92868, USA
| | - Sumeet Vadera
- Department of Neurosurgery, University of California, Irvine, 200 South Manchester Ave, Suite 210, Orange, CA 92868, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
| | - Mari Perez-Rosendahl
- Department of Pathology and Laboratory Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
| |
Collapse
|
7
|
Rudà R, Bruno F, Pellerino A. Epilepsy in gliomas: recent insights into risk factors and molecular pathways. Curr Opin Neurol 2023; 36:557-563. [PMID: 37865836 DOI: 10.1097/wco.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular pathways governing the development of seizures in glioma patients. RECENT FINDINGS The intrinsic epileptogenicity of the neuronal component of glioneuronal and neuronal tumors is the most relevant factor for seizure development. The two major molecular alterations behind epileptogenicity are the rat sarcoma virus (RAS)/mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase / protein kinase B / mammalian target of rapamycin (P13K/AKT/mTOR) pathways. The BRAFv600E mutation has been shown in experimental models to contribute to epileptogenicity, and its inhibition is effective in controlling both seizures and tumor growth. Regarding circumscribed astrocytic gliomas, either BRAFv600E mutation or mTOR hyperactivation represent targets of treatment. The mechanisms of epileptogenicity of diffuse lower-grade gliomas are different: in addition to enhanced glutamatergic mechanisms, the isocitrate dehydrogenase (IDH) 1/2 mutations and their product D2-hydroxyglutarate (D2HG), which is structurally similar to glutamate, exerts excitatory effects on neurons also dependent on the presence of astrocytes. In preclinical models IDH1/2 inhibitors seem to impact both tumor growth and seizures. Conversely, the molecular factors behind the epileptogenicity of glioblastoma are unknown. SUMMARY This review summarizes the current state of molecular knowledge on epileptogenicity in gliomas and highlights the relationships between epileptogenicity and tumor growth.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | | | | |
Collapse
|
8
|
Xing YL, Panovska D, Petritsch CK. Successes and challenges in modeling heterogeneous BRAF V600E mutated central nervous system neoplasms. Front Oncol 2023; 13:1223199. [PMID: 37920169 PMCID: PMC10619673 DOI: 10.3389/fonc.2023.1223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Central nervous system (CNS) neoplasms are difficult to treat due to their sensitive location. Over the past two decades, the availability of patient tumor materials facilitated large scale genomic and epigenomic profiling studies, which have resulted in detailed insights into the molecular underpinnings of CNS tumorigenesis. Based on results from these studies, CNS tumors have high molecular and cellular intra-tumoral and inter-tumoral heterogeneity. CNS cancer models have yet to reflect the broad diversity of CNS tumors and patients and the lack of such faithful cancer models represents a major bottleneck to urgently needed innovations in CNS cancer treatment. Pediatric cancer model development is lagging behind adult tumor model development, which is why we focus this review on CNS tumors mutated for BRAFV600E which are more prevalent in the pediatric patient population. BRAFV600E-mutated CNS tumors exhibit high inter-tumoral heterogeneity, encompassing clinically and histopathological diverse tumor types. Moreover, BRAFV600E is the second most common alteration in pediatric low-grade CNS tumors, and low-grade tumors are notoriously difficult to recapitulate in vitro and in vivo. Although the mutation predominates in low-grade CNS tumors, when combined with other mutations, most commonly CDKN2A deletion, BRAFV600E-mutated CNS tumors are prone to develop high-grade features, and therefore BRAFV600E-mutated CNS are a paradigm for tumor progression. Here, we describe existing in vitro and in vivo models of BRAFV600E-mutated CNS tumors, including patient-derived cell lines, patient-derived xenografts, syngeneic models, and genetically engineered mouse models, along with their advantages and shortcomings. We discuss which research gaps each model might be best suited to answer, and identify those areas in model development that need to be strengthened further. We highlight areas of potential research focus that will lead to the heightened predictive capacity of preclinical studies, allow for appropriate validation, and ultimately improve the success of "bench to bedside" translational research.
Collapse
Affiliation(s)
| | | | - Claudia K. Petritsch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Ye Q, Srivastava P, Al-Kuwari N, Chen X. Oncogenic BRAFV600E induces microglial proliferation through extracellular signal-regulated kinase and neuronal death through c-Jun N-terminal kinase. Neural Regen Res 2023; 18:1613-1622. [PMID: 36571370 PMCID: PMC10075110 DOI: 10.4103/1673-5374.361516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
Activating V600E in v-Raf murine sarcoma viral oncogene homolog B (BRAF) is a common driver mutation in cancers of multiple tissue origins, including melanoma and glioma. BRAFV600E has also been implicated in neurodegeneration. The present study aims to characterize BRAFV600E during cell death and proliferation of three major cell types of the central nervous system: neurons, astrocytes, and microglia. Multiple primary cultures (primary cortical mixed culture) and cell lines of glial cells (BV2) and neurons (SH-SY5Y) were employed. BRAFV600E and BRAFWT expression was mediated by lentivirus or retrovirus. Blockage of downstream effectors (extracellular signal-regulated kinase 1/2 and JNK1/2) were achieved by siRNA. In astrocytes and microglia, BRAFV600E induces cell proliferation, and the proliferative effect in microglia is mediated by activated extracellular signal-regulated kinase, but not c-Jun N-terminal kinase. Conditioned medium from BRAFV600E-expressing microglia induced neuronal death. In neuronal cells, BRAFV600E directly induces neuronal death, through c-Jun N-terminal kinase but not extracellular signal-regulated kinase. We further show that BRAF-related genes are enriched in pathways in patients with Parkinson's disease. Our study identifies distinct consequences mediated by distinct downstream effectors in dividing glial cells and in neurons following the same BRAF mutational activation and a causal link between BRAF-activated microglia and neuronal cell death that does not require physical proximity. It provides insight into a possibly important role of BRAF in neurodegeneration as a result of either dysregulated BRAF in neurons or its impact on glial cells.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pranay Srivastava
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
10
|
Cantor E, Berkovich R, Navalkele P, Brossier NM. Rapid symptomatic improvement in two patients with ganglioglioma after restarting BRAF inhibitor therapy. Pediatr Blood Cancer 2023; 70:e30296. [PMID: 36916822 PMCID: PMC10500853 DOI: 10.1002/pbc.30296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Evan Cantor
- Division of Hematology and Oncology, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, UCONN School of Medicine, Farmington, Connecticut, USA
| | - Rachel Berkovich
- Departments of Radiology, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Pournima Navalkele
- Division of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California, USA
| | - Nicole M. Brossier
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
12
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
13
|
Xie S, Xu C, Wu C, Lou Y, Duan J, Sang R, Lou Z, Hou J, Ge W, Xi Y, Yang X. Co-dependent regulation of p-BRAF and potassium channel KCNMA1 levels drives glioma progression. Cell Mol Life Sci 2023; 80:61. [PMID: 36763212 PMCID: PMC9918570 DOI: 10.1007/s00018-023-04708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
BRAF mutations have been found in gliomas which exhibit abnormal electrophysiological activities, implying their potential links with the ion channel functions. In this study, we identified the Drosophila potassium channel, Slowpoke (Slo), the ortholog of human KCNMA1, as a critical factor involved in dRafGOF glioma progression. Slo was upregulated in dRafGOF glioma. Knockdown of slo led to decreases in dRafGOF levels, glioma cell proliferation, and tumor-related phenotypes. Overexpression of slo in glial cells elevated dRaf expression and promoted cell proliferation. Similar mutual regulations of p-BRAF and KCNMA1 levels were then recapitulated in human glioma cells with the BRAF mutation. Elevated p-BRAF and KCNMA1 were also observed in HEK293T cells upon the treatment of 20 mM KCl, which causes membrane depolarization. Knockdown KCNMA1 in these cells led to a further decrease in cell viability. Based on these results, we conclude that the levels of p-BRAF and KCNMA1 are co-dependent and mutually regulated. We propose that, in depolarized glioma cells with BRAF mutations, high KCNMA1 levels act to repolarize membrane potential and facilitate cell growth. Our study provides a new strategy to antagonize the progression of gliomas as induced by BRAF mutations.
Collapse
Affiliation(s)
- Shanshan Xie
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chengyan Xu
- Department of Neurosurgery, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jingwei Duan
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Rong Sang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziwei Lou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiaru Hou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and the University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, Gaeta A, Morano A, Anink J, Mühlebner A, Vezzani A, Aronica E, Palma E. GABA A receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022; 12:17956. [PMID: 36289354 PMCID: PMC9605959 DOI: 10.1038/s41598-022-22806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1β. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1β reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures.
Collapse
Affiliation(s)
- Gabriele Ruffolo
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Veronica Alfano
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Alessia Romagnolo
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Till Zimmer
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - James D. Mills
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.83440.3b0000000121901201Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK ,grid.452379.e0000 0004 0386 7187Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Pierangelo Cifelli
- grid.158820.60000 0004 1757 2611Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Gaeta
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Alessandra Morano
- grid.7841.aDepartment of Human Neuroscience, University of Rome Sapienza, Rome, Italy
| | - Jasper Anink
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.7692.a0000000090126352Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annamaria Vezzani
- grid.4527.40000000106678902Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eleonora Aronica
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.419298.f0000 0004 0631 9143Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Eleonora Palma
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
15
|
Wu X, Sosunov AA, Lado W, Teoh JJ, Ham A, Li H, Al-Dalahmah O, Gill BJA, Arancio O, Schevon CA, Frankel WN, McKhann GM, Sulzer D, Goldman JE, Tang G. Synaptic hyperexcitability of cytomegalic pyramidal neurons contributes to epileptogenesis in tuberous sclerosis complex. Cell Rep 2022; 40:111085. [PMID: 35858542 PMCID: PMC9376014 DOI: 10.1016/j.celrep.2022.111085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures. Wu et al. demonstrate that Tsc1 inactivation in late embryonic radial glial cells (RGCs) produces cytomegalic pyramidal neurons that mimic TSC-like dysplastic neurons. They find that enhanced excitatory synaptic transmission in Tsc1-null cytomegalic pyramidal neurons contributes to cortical hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin TV, Born HA, Anderson AE, Bordey A. Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain 2022; 145:1310-1325. [PMID: 34849602 PMCID: PMC9128821 DOI: 10.1093/brain/awab390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Travorn Mahadeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tiffany V Lin
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather A Born
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Koh HY, Jang J, Ju SH, Kim R, Cho GB, Kim DS, Sohn JW, Paik SB, Lee JH. Non-Cell Autonomous Epileptogenesis in Focal Cortical Dysplasia. Ann Neurol 2021; 90:285-299. [PMID: 34180075 DOI: 10.1002/ana.26149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Low-level somatic mosaicism in the brain has been shown to be a major genetic cause of intractable focal epilepsy. However, how a relatively few mutation-carrying neurons are able to induce epileptogenesis at the local network level remains poorly understood. METHODS To probe the origin of epileptogenesis, we measured the excitability of neurons with MTOR mutation and nearby nonmutated neurons recorded by whole-cell patch-clamp and array-based electrodes comparing the topographic distribution of mutation. Computational simulation is used to understand neural network-level changes based on electrophysiological properties. To examine the underlying mechanism, we measured inhibitory and excitatory synaptic inputs in mutated neurons and nearby neurons by electrophysiological and histological methods using the mouse model and postoperative human brain tissue for cortical dysplasia. To explain non-cell-autonomous hyperexcitability, an inhibitor of adenosine kinase was injected into mice to enhance adenosine signaling and to mitigate hyperactivity of nearby nonmutated neurons. RESULTS We generated mice with a low-level somatic mutation in MTOR presenting spontaneous seizures. The seizure-triggering hyperexcitability originated from nonmutated neurons near mutation-carrying neurons, which proved to be less excitable than nonmutated neurons. Interestingly, the net balance between excitatory and inhibitory synaptic inputs onto mutated neurons remained unchanged. Additionally, we found that inhibition of adenosine kinase, which affects adenosine metabolism and neuronal excitability, reduced the hyperexcitability of nonmutated neurons. INTERPRETATION This study shows that neurons carrying somatic mutations in MTOR lead to focal epileptogenesis via non-cell-autonomous hyperexcitability of nearby nonmutated neurons. ANN NEUROL 2021;90:285-299.
Collapse
Affiliation(s)
- Hyun Yong Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang Hyeon Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ryunhee Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gyu-Bon Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dong Seok Kim
- Department of Neurosurgery, Pediatric Epilepsy Clinics, Brain Korea 21 Project for Medical Science, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,SoVarGen, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Nguyen LH, Bordey A. Corrigendum: Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Front Neuroanat 2021; 15:715363. [PMID: 34295225 PMCID: PMC8290855 DOI: 10.3389/fnana.2021.715363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Angélique Bordey
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
19
|
Kobow K, Baulac S, von Deimling A, Lee JH. Molecular diagnostics in drug-resistant focal epilepsy define new disease entities. Brain Pathol 2021; 31:e12963. [PMID: 34196984 PMCID: PMC8412082 DOI: 10.1111/bpa.12963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Structural brain lesions, including the broad range of malformations of cortical development (MCD) and glioneuronal tumors, are among the most common causes of drug-resistant focal epilepsy. Epilepsy surgery can provide a curative treatment option in respective patients. The currently available pre-surgical multi-modal diagnostic armamentarium includes high- and ultra-high resolution magnetic resonance imaging (MRI) and intracerebral EEG to identify a focal structural brain lesion as epilepsy underlying etiology. However, specificity and accuracy in diagnosing the type of lesion have proven to be limited. Moreover, the diagnostic process does not stop with the decision for surgery. The neuropathological diagnosis remains the gold standard for disease classification and patient stratification, but is particularly complex with high inter-observer variability. Here, the identification of lesion-specific mosaic variants together with epigenetic profiling of lesional brain tissue became new tools to more reliably identify disease entities. In this review, we will discuss how the paradigm shifts from histopathology toward an integrated diagnostic approach in cancer and the more recent development of the DNA methylation-based brain tumor classifier have started to influence epilepsy diagnostics. Some examples will be highlighted showing how the diagnosis and our mechanistic understanding of difficult to classify structural brain lesions associated with focal epilepsy has improved with molecular genetic data being considered in decision making.
Collapse
Affiliation(s)
- Katja Kobow
- Department of NeuropathologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐University of Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Stéphanie Baulac
- Institut du Cerveau—Paris Brain Institute—ICMInsermCNRSSorbonne UniversitéParisFrance
| | - Andreas von Deimling
- Department of NeuropathologyUniversitätsklinikum HeidelbergHeidelbergGermany
- CCU NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jeong Ho Lee
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
- SoVarGen, IncDaejeonRepublic of Korea
| |
Collapse
|
20
|
Nguyen LH, Bordey A. Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Front Neuroanat 2021; 15:664695. [PMID: 33897381 PMCID: PMC8064518 DOI: 10.3389/fnana.2021.664695] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) due to mutations in genes along the PI3K-mTOR pathway and the GATOR1 complex causes a spectrum of neurodevelopmental disorders (termed mTORopathies) associated with malformation of cortical development and intractable epilepsy. Despite these gene variants’ converging impact on mTORC1 activity, emerging findings suggest that these variants contribute to epilepsy through both mTORC1-dependent and -independent mechanisms. Here, we review the literature on in utero electroporation-based animal models of mTORopathies, which recapitulate the brain mosaic pattern of mTORC1 hyperactivity, and compare the effects of distinct PI3K-mTOR pathway and GATOR1 complex gene variants on cortical development and epilepsy. We report the outcomes on cortical pyramidal neuronal placement, morphology, and electrophysiological phenotypes, and discuss some of the converging and diverging mechanisms responsible for these alterations and their contribution to epileptogenesis. We also discuss potential therapeutic strategies for epilepsy, beyond mTORC1 inhibition with rapamycin or everolimus, that could offer personalized medicine based on the gene variant.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Angélique Bordey
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|