1
|
Vaughn MJ, Yellamelli N, Burger RM, Haas JS. Dopamine receptors D1, D2, and D4 modulate electrical synapses and excitability in the thalamic reticular nucleus. J Neurophysiol 2025; 133:374-387. [PMID: 39706150 DOI: 10.1152/jn.00260.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/23/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a thin shell of gap junction-coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown. Here, we confirmed D1 and D4 expression and showed that D2 receptors are also expressed in TRN. To characterize how dopamine affects both neuronal excitability and electrical synapse coupling strength in the TRN, we performed dual whole cell patch-clamp recordings of TRN neurons and injected them with 500-ms current pulses to measure input resistance, rheobase, spiking frequency, and coupling conductance. Measurements were taken before and after bath application of dopamine or agonists for either D1, D2, or D4 receptors. Our results show that bath application of dopamine did not consistently modulate excitability or electrical synapse strength. However, application of specific dopamine receptor agonists revealed that activation of D1 and D4 receptors increases input resistance and activation of D2-like receptors lowers maximum tonic spike rate. Notably, D2 and D4 receptors depressed electrical synapses. Together, our results suggest that coactivation of D1, D2, and D4 receptors may result in cross talk due to opposing signaling cascades. Furthermore, we show that selective dopamine receptor engagement has substantial potential to modulate TRN circuitry.NEW & NOTEWORTHY Postsynaptic modulation of TRN neurons by activation of specific DA receptor subtypes has not been previously determined. Our research identifies that a previously unreported D2 receptor is expressed in TRN, and we found that D1, D2, and D4 receptors impose distinct excitability changes on TRN. Furthermore, D2 and D4 receptors depress electrical synapses in TRN, identifying a new substrate for modulation of intra-TRN communication.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Nandini Yellamelli
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
2
|
Kang W, Siewe AD, Oluigbo CC, Arijesudade MO, Brailoiu E, Undieh AS. Dopamine internalization via Uptake 2 and stimulation of intracellular D 5-receptor-dependent calcium mobilization and CDP-diacylglycerol signaling. Front Pharmacol 2024; 15:1422998. [PMID: 39525629 PMCID: PMC11543475 DOI: 10.3389/fphar.2024.1422998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Dopamine stimulates CDP-diacylglycerol biosynthesis through D1-like receptors, particularly the D5 subtype most of which is intracellularly localized. CDP-diacylglycerol regulates phosphatidylinositol-4,5-bisphosphate-dependent signaling cascades by serving as obligatory substrate for phosphatidylinositol biosynthesis. Here, we used acute and organotypic brain tissues and cultured cells to explore the mechanism by which extracellular dopamine acts to modulate intracellular CDP-diacylglycerol. Dopamine stimulated CDP-diacylglycerol in organotypic and neural cells lacking the presynaptic dopamine transporter, and this action was selectively mimicked by D1-like receptor agonists SKF38393 and SKF83959. Dopaminergic CDP-diacylglycerol stimulation was blocked by decynium-22 which blocks Uptake2-like transporters and by anti-microtubule disrupters of cytoskeletal transport, suggesting transmembrane uptake and guided transport of the ligands to intracellular sites of CDP-diacylglycerol regulation. Fluorescent or radiolabeled dopamine was saturably transported into primary neurons or B35 neuroblastoma cells expressing the plasmamembrane monoamine transporter, PMAT. Microinjection of 10-nM final concentration of dopamine into human D5-receptor-transfected U2-OS cells rapidly and transiently increased cytosolic calcium concentrations by 316%, whereas non-D5-receptor-expressing U2-OS cells showed no response. Given that U2-OS cells natively express PMAT, bath application of 10 μM dopamine slowly increased cytosolic calcium in D5-expressing cells. These observations indicate that dopamine is actively transported by a PMAT-implicated Uptake2-like mechanism into postsynaptic-type dopaminoceptive cells where the monoamine stimulates its intracellular D5-type receptors to mobilize cytosolic calcium and promote CDP-diacylglycerol biosynthesis. This is probably the first demonstration of functional intracellular dopamine receptor coupling in neural tissue, thus challenging the conventional paradigm that postsynaptic dopamine uptake serves merely as a mechanism for deactivating spent or excessive synaptic transmitter.
Collapse
Affiliation(s)
- Wenfei Kang
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Arlette Deukam Siewe
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Chizurum C. Oluigbo
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
- Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Mercy O. Arijesudade
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Eugen Brailoiu
- Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ashiwel S. Undieh
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
- Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
3
|
Haddish K, Yun JW. Echinacoside stimulates myogenesis and ATP-dependent thermogenesis in the skeletal muscle via the activation of D1-like dopaminergic receptors. Arch Biochem Biophys 2024; 752:109886. [PMID: 38215960 DOI: 10.1016/j.abb.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
4
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Haddish K, Yun JW. Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors. J Microbiol Biotechnol 2023; 33:1268-1280. [PMID: 37463854 PMCID: PMC10619551 DOI: 10.4014/jmb.2306.06041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levels were also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
6
|
Wirtshafter HS, Disterhoft JF. Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus 2023; 33:65-84. [PMID: 36519700 PMCID: PMC9877199 DOI: 10.1002/hipo.23489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
A challenge in both modern and historic neuroscience has been achieving an understanding of neuron circuits, and determining the computational and organizational principles that underlie these circuits. Deeper understanding of the organization of brain circuits and cell types, including in the hippocampus, is required for advances in behavioral and cognitive neuroscience, as well as for understanding principles governing brain development and evolution. In this manuscript, we pioneer a new method to analyze the spatial clustering of active neurons in the hippocampus. We use calcium imaging and a rewarded navigation task to record from 100 s of place cells in the CA1 of freely moving rats. We then use statistical techniques developed for and in widespread use in geographic mapping studies, global Moran's I, and local Moran's I to demonstrate that cells that code for similar spatial locations tend to form small spatial clusters. We present evidence that this clustering is not the result of artifacts from calcium imaging, and show that these clusters are primarily formed by cells that have place fields around previously rewarded locations. We go on to show that, although cells with similar place fields tend to form clusters, there is no obvious topographic mapping of environmental location onto the hippocampus, such as seen in the visual cortex. Insights into hippocampal organization, as in this study, can elucidate mechanisms underlying motivational behaviors, spatial navigation, and memory formation.
Collapse
Affiliation(s)
- Hannah S. Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| | - John F. Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| |
Collapse
|
7
|
Inglebert Y, Debanne D. Calcium and Spike Timing-Dependent Plasticity. Front Cell Neurosci 2021; 15:727336. [PMID: 34616278 PMCID: PMC8488271 DOI: 10.3389/fncel.2021.727336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Since its discovery, spike timing-dependent synaptic plasticity (STDP) has been thought to be a primary mechanism underlying the brain's ability to learn and to form new memories. However, despite the enormous interest in both the experimental and theoretical neuroscience communities in activity-dependent plasticity, it is still unclear whether plasticity rules inferred from in vitro experiments apply to in vivo conditions. Among the multiple reasons why plasticity rules in vivo might differ significantly from in vitro studies is that extracellular calcium concentration use in most studies is higher than concentrations estimated in vivo. STDP, like many forms of long-term synaptic plasticity, strongly depends on intracellular calcium influx for its induction. Here, we discuss the importance of considering physiological levels of extracellular calcium concentration to study functional plasticity.
Collapse
Affiliation(s)
- Yanis Inglebert
- UNIS, UMR1072, INSERM, Aix-Marseille University, Marseille, France.,Department of Pharmacology and Therapeutics and Cell Information Systems, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
8
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
9
|
Kand D, Liu P, Navarro MX, Fischer LJ, Rousso-Noori L, Friedmann-Morvinski D, Winter AH, Miller EW, Weinstain R. Water-Soluble BODIPY Photocages with Tunable Cellular Localization. J Am Chem Soc 2020; 142:4970-4974. [PMID: 32115942 PMCID: PMC7302507 DOI: 10.1021/jacs.9b13219] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Photoactivation of
bioactive molecules allows manipulation of cellular
processes with high spatiotemporal precision. The recent emergence
of visible-light excitable photoprotecting groups has the potential
to further expand the established utility of the photoactivation strategy
in biological applications by offering higher tissue penetration,
diminished phototoxicity, and compatibility with other light-dependent
techniques. Nevertheless, a critical barrier to such applications
remains the significant hydrophobicity of most visible-light excitable
photocaging groups. Here, we find that applying the conventional 2,6-sulfonation
to meso-methyl BODIPY photocages is incompatible
with their photoreaction due to an increase in the excited state barrier
for photorelease. We present a simple, remote sulfonation solution
to BODIPY photocages that imparts water solubility and provides control
over cellular permeability while retaining their favorable spectroscopic
and photoreaction properties. Peripherally disulfonated BODIPY photocages
are cell impermeable, making them useful for modulation of cell-surface
receptors, while monosulfonated BODIPY retains the ability to cross
the cellular membrane and can modulate intracellular targets. This
new approach is generalizable for controlling BODIPY localization
and was validated by sensitization of mammalian cells and neurons
by visible-light photoactivation of signaling molecules.
Collapse
Affiliation(s)
| | | | | | - Logan J Fischer
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | |
Collapse
|
10
|
Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, Quintana R, Rothwell PE, Lujan R, Marsicano G, Martin ED, Thomas MJ, Kofuji P, Araque A. Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity. Neuron 2020; 105:1036-1047.e5. [PMID: 31954621 DOI: 10.1016/j.neuron.2019.12.026] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023]
Abstract
Dopamine is involved in physiological processes like learning and memory, motor control and reward, and pathological conditions such as Parkinson's disease and addiction. In contrast to the extensive studies on neurons, astrocyte involvement in dopaminergic signaling remains largely unknown. Using transgenic mice, optogenetics, and pharmacogenetics, we studied the role of astrocytes on the dopaminergic system. We show that in freely behaving mice, astrocytes in the nucleus accumbens (NAc), a key reward center in the brain, respond with Ca2+ elevations to synaptically released dopamine, a phenomenon enhanced by amphetamine. In brain slices, synaptically released dopamine increases astrocyte Ca2+, stimulates ATP/adenosine release, and depresses excitatory synaptic transmission through activation of presynaptic A1 receptors. Amphetamine depresses neurotransmission through stimulation of astrocytes and the consequent A1 receptor activation. Furthermore, astrocytes modulate the acute behavioral psychomotor effects of amphetamine. Therefore, astrocytes mediate the dopamine- and amphetamine-induced synaptic regulation, revealing a novel cellular pathway in the brain reward system.
Collapse
Affiliation(s)
- Michelle Corkrum
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | - Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | - Marc Pisansky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelvin Loke
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruth Quintana
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad Castilla-La Mancha, Albacete 02008, Spain
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex 33077, France; University of Bordeaux, Bordeaux 33000, France
| | | | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019; 80:103-111. [PMID: 30999216 DOI: 10.1016/j.ceca.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.
Collapse
Affiliation(s)
- Iulia Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
12
|
Hao Y, Shabanpoor A, Metz GA. Stress and corticosterone alter synaptic plasticity in a rat model of Parkinson's disease. Neurosci Lett 2017; 651:79-87. [PMID: 28473257 PMCID: PMC5534221 DOI: 10.1016/j.neulet.2017.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
As a major influence on neuronal function and plasticity, chronic stress can affect the progression and symptoms of neurodegenerative conditions, such as Parkinson's disease (PD). Here we investigated the influence of unilateral dopamine depletion and stress on dopamine-related hallmarks of stress response and neuronal plasticity in a rat model of PD. Animals received either restraint stress or a combination of adrenalectomy and corticosterone (CORT) supplementation to clamp circulating glucocorticoid levels for three weeks prior to unilateral nigrostriatal dopamine depletion. Rats were tested in skilled and non-skilled motor function up to three weeks post-lesion. Midbrain mRNA expression assessments included markers of dopamine function and neuroplasticity, such as tyrosine hydroxylase (TH), synaptophysin (SYN), calcyon, and glucocorticoid receptor (GR). Along with impaired motor performance, stress and clamped CORT partially preserved TH expression in both substantia nigra (SN) and ventral tegmental area (VTA), but differentially modulated the expression of SYN, calcyon, and GR mRNA in midbrain and cortical areas. Stress reduced synaptophysin mRNA expression in SN/VTA, and elevated calcyon mRNA optical density in both non-lesion and lesion hemispheres. Stress and CORT increased GR mRNA in the non-lesion SN/VTA, while in the lesion hemisphere GR mRNA was only elevated by CORT. In the motor cortex and striatum, however, GR was higher in both hemispheres under both experimental conditions. These findings suggest that stress and stress hormones differentially affect dopaminergic function and neuroplasticity in a rat model of PD. The findings suggest a role for stress in motor and non-motor symptoms of PD and stress response.
Collapse
Affiliation(s)
- YongXin Hao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Aref Shabanpoor
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Gerlinde A Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
13
|
Gottschling C, Geissler M, Springer G, Wolf R, Juckel G, Faissner A. First and second generation antipsychotics differentially affect structural and functional properties of rat hippocampal neuron synapses. Neuroscience 2016; 337:117-130. [DOI: 10.1016/j.neuroscience.2016.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 01/23/2023]
|
14
|
Maitra S, Sarkar K, Sinha S, Mukhopadhyay K. The Dopamine Receptor D5 May Influence Age of Onset: An Exploratory Study on Indo-Caucasoid ADHD Subjects. J Child Neurol 2016; 31:1250-6. [PMID: 27250208 DOI: 10.1177/0883073816652233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
The objective was to investigate contribution of the dopamine receptor 5 (DRD5) gene variants in the symptoms of attention-deficit/hyperactivity disorder (ADHD) probands since brain regions identified to be affected in these group of patients have higher expression of the DRD5 receptor. Out of 22 exonic variants, 19 were monomorphic in the Indo-Caucasoid individuals. rs6283 "C" and rs113828117 "A" exhibited significant higher occurrence in families with ADHD probands. Several haplotypes showed biased occurrence in the probands. Early and late onset groups exhibited significantly different genotypic frequencies. A new G>A substitution was observed in the control samples only. The late onset group exhibited higher scores for hyperactivity as compared to the early onset group. The authors infer that the age of onset of ADHD may at least partially be affected by DRD5 variants warranting further investigation on the role of DRD5 in the disease etiology.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | - Kanyakumarika Sarkar
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India Department of Biotechnology, DOABA College, Jalandhar, Panjab, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | | |
Collapse
|
15
|
Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG. Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor. Cell 2016; 163:1176-1190. [PMID: 26590421 DOI: 10.1016/j.cell.2015.10.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
Abstract
The ghrelin receptor (GHSR1a) and dopamine receptor-1 (DRD1) are coexpressed in hippocampal neurons, yet ghrelin is undetectable in the hippocampus; therefore, we sought a function for apo-GHSR1a. Real-time single-molecule analysis on hippocampal neurons revealed dimerization between apo-GHSR1a and DRD1 that is enhanced by DRD1 agonism. In addition, proximity measurements support formation of preassembled apo-GHSR1a:DRD1:Gαq heteromeric complexes in hippocampal neurons. Activation by a DRD1 agonist produced non-canonical signal transduction via Gαq-PLC-IP3-Ca(2+) at the expense of canonical DRD1 Gαs cAMP signaling to result in CaMKII activation, glutamate receptor exocytosis, synaptic reorganization, and expression of early markers of hippocampal synaptic plasticity. Remarkably, this pathway is blocked by genetic or pharmacological inactivation of GHSR1a. In mice, GHSR1a inactivation inhibits DRD1-mediated hippocampal behavior and memory. Our findings identify a previously unrecognized mechanism essential for DRD1 initiation of hippocampal synaptic plasticity that is dependent on GHSR1a, and independent of cAMP signaling.
Collapse
Affiliation(s)
- Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Celine Ullrich
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Rosie Albarran-Zeckler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience and Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Roy G Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
16
|
Rubinstein N, Liu P, Miller EW, Weinstain R. meso-Methylhydroxy BODIPY: a scaffold for photo-labile protecting groups. Chem Commun (Camb) 2015; 51:6369-72. [PMID: 25761909 DOI: 10.1039/c5cc00550g] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we show that by installing a meso-methylhydroxy moiety, the boron dipyrromethene (BODIPY) scaffold can be converted into an efficient caging group, removable by green light. We describe caging and uncaging of important chemical functionalities and demonstrate green light mediated control over biological processes in cultured cell lines and neurons.
Collapse
Affiliation(s)
- Naama Rubinstein
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, Ramat Aviv, Tel-Aviv 6997801, Israel.
| | | | | | | |
Collapse
|
17
|
Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex. PLoS One 2015; 10:e0131948. [PMID: 26133167 PMCID: PMC4489908 DOI: 10.1371/journal.pone.0131948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent upon both DAG and enhanced intracellular Ca2+. These signaling pathways may collaborate to enhance sensory and mnemonic function in the entorhinal cortex during tonic release of dopamine.
Collapse
|
18
|
Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Sci Rep 2015; 5:8694. [PMID: 25732993 PMCID: PMC4346799 DOI: 10.1038/srep08694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis.
Collapse
|
19
|
Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons. Brain Res 2014; 1582:1-11. [DOI: 10.1016/j.brainres.2014.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/02/2014] [Accepted: 07/24/2014] [Indexed: 12/26/2022]
|
20
|
Administration of Dopamine to Rats Disorganizes the Rhythm of Protein Synthesis in Hepatocytes. Bull Exp Biol Med 2014; 157:220-3. [DOI: 10.1007/s10517-014-2529-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Indexed: 10/25/2022]
|
21
|
Frégeau MO, Carrier M, Guillemette G. Mechanism of dopamine D2 receptor-induced Ca(2+) release in PC-12 cells. Cell Signal 2013; 25:2871-7. [PMID: 24055909 DOI: 10.1016/j.cellsig.2013.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/06/2023]
Abstract
Intracellular Ca(2+) levels are tightly regulated in the neuronal system. The loss of Ca(2+) homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca(2+) signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3μM ATP caused an early Ca(2+) release followed by a delayed Ca(2+) release. The delayed Ca(2+) release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca(2+) release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca(2+) release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca(2+) release phenomenon. siRNA targeting of calcyon blocked the delayed Ca(2+) release, decreased ATP-evoked IP3R-mediated Ca(2+) release, and impaired subsequent Ca(2+) oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca(2+) release in PC-12 cells. In schizophrenia, Ca(2+) dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca(2+) levels as well as dopamine signaling.
Collapse
Affiliation(s)
- Marc-Olivier Frégeau
- Faculty of Medicine and Health sciences, Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4 Canada
| | | | | |
Collapse
|
22
|
Araya R, Andino-Pavlovsky V, Yuste R, Etchenique R. Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem Neurosci 2013; 4:1163-7. [PMID: 23672485 DOI: 10.1021/cn4000692] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution.
Collapse
Affiliation(s)
- Roberto Araya
- Department of Biological Sciences,
Howard Hughes Medical Institute, Columbia University, New York, New York 10027, United States
| | - Victoria Andino-Pavlovsky
- Departamento de Química
Inorgánica, Analítica y Química Física,
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón
2 AR1428EHA Buenos Aires, Argentina
| | - Rafael Yuste
- Department of Biological Sciences,
Howard Hughes Medical Institute, Columbia University, New York, New York 10027, United States
| | - Roberto Etchenique
- Departamento de Química
Inorgánica, Analítica y Química Física,
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón
2 AR1428EHA Buenos Aires, Argentina
| |
Collapse
|
23
|
Edelmann E, Lessmann V. Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus. Front Neurosci 2013; 7:25. [PMID: 23508132 PMCID: PMC3589711 DOI: 10.3389/fnins.2013.00025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/13/2013] [Indexed: 11/13/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are generally assumed to be cellular correlates for learning and memory. Different types of LTP induction protocols differing in severity of stimulation can be distinguished in CA1 of the hippocampus. To better understand signaling mechanisms and involvement of neuromodulators such as dopamine (DA) in synaptic plasticity, less severe and more physiological low frequency induction protocols should be used. In the study which is reviewed here, critical determinants of spike timing-dependent plasticity (STDP) at hippocampal CA3-CA1 synapses were investigated. We found that DA via D1 receptor signaling, but not adrenergic signaling activated by the β-adrenergic agonist isoproterenol, is important for successful expression of STDP at CA3-CA1 synapses. The DA effect on STDP is paralleled by changes in spike firing properties, thereby changing intrinsic excitability of postsynaptic CA1 neurons, and gating STDP. Whereas β-adrenergic signaling also leads to a similar (but not identical) regulation of firing pattern, it does not enable STDP. In this focused review we will discuss the current literature on dopaminergic modulation of LTP in CA1, with a special focus on timing dependent (t-)LTP, and we will suggest possible reasons for the selective gating of STDP by DA [but not noradrenaline (NA)] in CA1.
Collapse
Affiliation(s)
- Elke Edelmann
- Institute of Physiology, Medical School, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | | |
Collapse
|
24
|
Camiré O, Topolnik L. Functional compartmentalisation and regulation of postsynaptic Ca2+ transients in inhibitory interneurons. Cell Calcium 2012; 52:339-46. [DOI: 10.1016/j.ceca.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 01/14/2023]
|
25
|
Ha CM, Park D, Han JK, Jang JI, Park JY, Hwang EM, Seok H, Chang S. Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 2012; 287:31813-22. [PMID: 22843680 DOI: 10.1074/jbc.m112.370601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon, once known for interacting directly with the dopamine D(1) receptor (D(1)DR), is implicated in various neuropsychiatric disorders including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Although its direct interaction with D(1)DR has been shown to be misinterpreted, it still plays important roles in D(1)DR signaling. Here, we found that calcyon interacts with the PSD-95 and subsequently forms a ternary complex with D(1)DR through PSD-95. Calcyon is phosphorylated on Ser-169 by the PKC activator phorbol 12-myristate 13-acetate or by the D(1)DR agonist SKF-81297, and its phosphorylation increases its association with PSD-95 and recruitment to the cell surface. Interestingly, the internalization of D(1)DR at the cell surface was enhanced by phorbol 12-myristate 13-acetate and SKF-81297 in the presence of calcyon, but not in the presence of its S169A phospho-deficient mutant, suggesting that the phosphorylation of calcyon and the internalization of the surface D(1)DR are tightly correlated. Our results suggest that calcyon regulates D(1)DR trafficking by forming a ternary complex with D(1)DR through PSD-95 and thus possibly linking glutamatergic and dopamine receptor signalings. This also raises the possibility that a novel ternary complex could represent a potential therapeutic target for the modulation of related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
An YT, Zhu P, Zhong Y, Sheng YC, Zhao Z, Min Y, Xia YY. A neuroprotective mechanism of YGY-E in cerebral ischemic injury in rats. CNS Neurosci Ther 2012; 18:14-20. [PMID: 22280158 DOI: 10.1111/j.1755-5949.2011.00277.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the anticerebral ischemic properties of YGY-E (apigenin-7-O-β-D-glucopyranosy l-4'-O-α-L-rhamnopy-ranosid, a flavonoid glycoside extracted from plant phoenix-tail fern), focusing on its effects on neuronal apoptosis. METHODS In vitro YGY-E treatment was examined in primary cultured rat hippocampal neurons subjected to hypoxia-reoxygenation (H-R) injury. In addition, in vivo effects of YGY-E on neuronal apoptosis were measured by Hoechst staining and in situ DNA end labeling (TUNEL). Finally, B cell lymphoma/lewkmia-2 (Bcl-2) level in ischemic rat brain tissue was evaluated with immunohistochemistry and western blot analyses. RESULTS In vitro YGY-E (50-100 μg/mL) treatment increased the survival rate compared to that of the vehicle-treated group (P < 0.05 and P < 0.01, respectively). In in vivo experiments, YGY-E (2.5-10 mg/kg) decreased the percentage of apoptotic neurons (P < 0.01), increased Bcl-2 (P < 0.01) in ischemic rat brain tissue. These effects were dose dependent. CONCLUSIONS Our findings indicate that YGY-E's neuroprotective effects may be because of its inhibition of neuronal apoptosis by increasing Bcl-2 expression.
Collapse
Affiliation(s)
- Yong-Tong An
- State Key Laboratory of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Kurokawa K, Mizuno K, Ohkuma S. Increase of ryanodine receptors by dopamine D1 receptors is negatively regulated by γ-aminobutyric acid type B receptors in primary cultures of mouse cerebral cortical neurons. J Neurosci Res 2012; 90:1626-38. [PMID: 22504960 DOI: 10.1002/jnr.23058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/23/2012] [Accepted: 03/04/2012] [Indexed: 11/06/2022]
Abstract
Although upregulation of ryanodine receptor (RyR)-1 and -2 is mediated through the activation of dopamine D1 receptors (D1DRs) in the development of psychostimulant-induced place preference, little is known about how such increased expressions of RyRs are negatively regulated. This study investigated negative regulatory mechanisms of increase of RyR-1 and -2 expression by D1DR stimulation with its full agonist, SKF82958 or A 68930, using cultures of mouse cerebral cortical neurons. Sustained exposure to SKF82958 or A 68930 of the neurons increased RyR-1 and -2 proteins in a dose- and time-dependent-manner. The SKF82958-induced increases of RyR-1 and -2 proteins were significantly suppressed by SCH23390 (a selective D1DR antagonist). In addition, the SKF82958- or A 68930-induced increases of RyR-1 and -2 proteins were completely abolished by baclofen (a selective γ-aminobutyric acid type B [GABA(B)] receptor agonist), whereas muscimol (an agonist specific to GABA(A) receptors) had no effect. SKF82958 or A 68930 significantly increased intracellular cAMP level, which was completely suppressed by baclofen. Furthermore, sustained exposure to phorbol 12,13-dibutyrate, a protein kinase C activator, did not change the expression of RyR-1 or -2 proteins. Immunohistochemical study showed colocalizaton of immunoreactivities for three types of proteins, D1DRs and GABA(B) receptor R1 and R2 subunits in the same neuronal bodies, suggesting that the neurochemical changes induced by the activation of D1DRs and GABA(B) receptors occur in the same neurons. These results indicate that RyR-1 and -2 expression facilitated by D1DR stimulation are negatively regulated by GABA(B) receptor via suppression of cAMP production.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
28
|
Topolnik L. Dendritic calcium mechanisms and long-term potentiation in cortical inhibitory interneurons. Eur J Neurosci 2012; 35:496-506. [PMID: 22304664 DOI: 10.1111/j.1460-9568.2011.07988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium (Ca(2+) ) is a major second messenger in the regulation of different forms of synaptic and intrinsic plasticity. Tightly organized in space and time, postsynaptic Ca(2+) transients trigger the activation of many distinct Ca(2+) signaling cascades, providing a means for a highly specific signal transduction and plasticity induction. High-resolution two-photon microscopy combined with highly sensitive synthetic Ca(2+) indicators in brain slices allowed for the quantification and analysis of postsynaptic Ca(2+) dynamics in great detail. Much of our current knowledge about postsynaptic Ca(2+) mechanisms is derived from studying Ca(2+) transients in the dendrites and spines of pyramidal neurons. However, postsynaptic Ca(2+) dynamics differ considerably among different cell types. In particular, distinct rules of postsynaptic Ca(2+) signaling and, accordingly, of Ca(2+) -dependent plasticity operate in GABAergic interneurons. Here, I review recent progress in understanding the complex organization of postsynaptic Ca(2+) signaling and its relevance to several forms of long-term potentiation at excitatory synapses in cortical GABAergic interneurons.
Collapse
Affiliation(s)
- Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-Informatics, Université Laval, Axis of Cellular and Molecular Neurosciences, 2601 Ch. De La Canardière, CRIUSMQ, Québec city, QC, PQ, G1J 2G3, Canada.
| |
Collapse
|
29
|
Xu Z, Dong S, Du D, Jiang N, Sun P, Wang H, Yin L, Zhang X, Cao X, Zhen X, Hu Y. Generation and characterization of hD5 and C-terminal Mutant hD(5m) transgenic rats. Brain Res 2012; 1448:27-41. [PMID: 22386496 DOI: 10.1016/j.brainres.2012.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/21/2012] [Accepted: 01/28/2012] [Indexed: 11/17/2022]
Abstract
Dopamine D1-like receptors play important roles in many brain activities such as cognition and emotion. We have generated human hD5 and mutant human hD5 (hD(5m)) transgenic rats. The C-terminal juxtamembrane domain of mutant hD5 was identical to that of hD5 pseudogenes. The transgenes were driven by the CAMKII promoter that led the expression mainly in the cerebral cortex and hippocampus. We have used different dopamine receptor agonists to compare the pharmacological profiles of the human hD5 and hD(5m) receptors. The results showed that they exhibited distinct pharmacological properties. Our results of pharmacological studies indicated that the C-terminal of D5 receptor could play important roles in agonist binding affinity. Hippocampal long-term potentiation (LTP) evoked by tetanic stimulation was significantly reduced in both transgenic rats. In addition, we found that the overexpression of dopamine hD5 and hD(5m) receptors in the rat brain resulted in memory impairments. Interestingly, an atypical D1-like receptor agonist, SKF83959, could induce anxiety in hD(5m) receptor transgenic rats but had no effect on the anxiety-like behavior in D5 receptor transgenic and wild-type rats.
Collapse
Affiliation(s)
- Zhiliang Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
31
|
Yin HS, Tien TW, Li L, Yang YH, Lai CC. Amphetamine differentially modifies the expression of monoaminergic and GABAergic synaptic boutons and processes in lateral habenula, dorsal and ventral hippocampal formation. Neurotoxicology 2011; 33:235-45. [PMID: 22001174 DOI: 10.1016/j.neuro.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/04/2011] [Accepted: 10/02/2011] [Indexed: 11/16/2022]
Abstract
The habenular complex is thought to be associated with cognitive functions and indirectly connected with the hippocampal formation (HF). Thus the responses of the monoaminergic and GABAergic neurons were examined in both structures to the psychostimulant, amphetamine (Amph). Immunocytochemical analysis was performed on brain sections prepared from adult mice treated with a single or multiple (2 doses/day, 7 doses in total) injections of saline or Amph, 5mg/kg. The synaptic boutons were verified by immuno-electron microscopy specific for parvalbumin (PV), glutamic acid decarboxylase(67) (GAD(67)), aromatic amino acid decarboxylase (AADC) or dopamine-β-hydroxylase (DBH). In the lateral part of the lateral habenula (LHb), at 4h post-acute Amph, the densities of PV-positive boutons/processes and DBH-boutons were decreased by approximate 75% and 72% respectively, compared with corresponding saline-controls; however, at 4h post-repeated Amph exposure, PV was increased by 244%, and DBH unaltered. In the dorsal HF (DHF), at 4h post-repeated Amph exposure, GAD(67)-boutons and PV resembled controls in CA1 and CA3 pyramidal cell layers, whereas in the granule cell layer of dentate gyrus (DG), PV was increased by 112%, and GAD(67) unchanged. As shown by biochemical methods, at 4h post-repeated Amph, the decreased level of DHF GABA probably correlates with the immunocytochemical changes. In the ventral HF (VHF), at 4h post-repeated Amph treatment, PV and the enzymes of CA1 and DG were unaltered, while CA3 PV was decreased by 63%, and AADC-boutons increased 55%. Double immuno-electron microscopy revealed synaptic contacts between PV and GAD(67) containing presynaptic or postsynaptic elements, and between PV or GAD(67) and DBH or AADC. This ultrastructural evidence may support the functional significance of the Amph-induced differential changes, which could reflect Amph toxicity and distinct characteristics of the LHb, DHF and VHF.
Collapse
Affiliation(s)
- Hsiang-Shu Yin
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
32
|
Hervé D. Identification of a specific assembly of the g protein golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum. Front Neuroanat 2011; 5:48. [PMID: 21886607 PMCID: PMC3155884 DOI: 10.3389/fnana.2011.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022] Open
Abstract
In the principal neurons of striatum (medium spiny neurons, MSNs), cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological circumstances, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Gαolf/β2/γ7 in particular association with adenylyl cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor (D1R)-dependent cAMP signaling is modulated by the neuronal levels of Gαolf, indicating that Gαolf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1R responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Gαolf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1R stimulation, occurring despite an unaltered D1R density. In conclusion, alterations in the highly specialized assembly of Gαolf/β2/γ7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1R signaling in the striatum.
Collapse
|
33
|
Kurokawa K, Mizuno K, Kiyokage E, Shibasaki M, Toida K, Ohkuma S. Dopamine D1 receptor signaling system regulates ryanodine receptor expression after intermittent exposure to methamphetamine in primary cultures of midbrain and cerebral cortical neurons. J Neurochem 2011; 118:773-83. [DOI: 10.1111/j.1471-4159.2011.07366.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain 2011; 4:26. [PMID: 21663703 PMCID: PMC3138392 DOI: 10.1186/1756-6606-4-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/13/2011] [Indexed: 01/09/2023] Open
Abstract
Dopamine is an important catecholamine neurotransmitter modulating many physiological functions, and is linked to psychopathology of many diseases such as schizophrenia and drug addiction. Dopamine D1 and D2 receptors are the most abundant dopaminergic receptors in the striatum, and although a clear segregation between the pathways expressing these two receptors has been reported in certain subregions, the presence of D1-D2 receptor heteromers within a unique subset of neurons, forming a novel signaling transducing functional entity has been shown. Recently, significant progress has been made in elucidating the signaling pathways activated by the D1-D2 receptor heteromer and their potential physiological relevance.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | | | | |
Collapse
|
35
|
Roggenhofer E, Fidzinski P, Bartsch J, Kurz F, Shor O, Behr J. Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses. Eur J Neurosci 2010; 32:598-605. [PMID: 20646048 DOI: 10.1111/j.1460-9568.2010.07312.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Encoding of novel information has been proposed to rely on the time-locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular-spiking behavior, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity-dependent long-term potentiation (LTP) in rat CA1 regular-spiking and subicular burst-spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5-10 min facilitates LTP in subicular burst-spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor-facilitated LTP is NMDA receptor-dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor-facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca(2+) signaling. The phenomenon of dopamine-induced facilitation of presynaptic NMDA receptor-dependent LTP in subicular burst-spiking pyramidal cells is in accordance with observations of the time-locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats. Exp Brain Res 2010; 201:641-51. [PMID: 19921157 PMCID: PMC2839508 DOI: 10.1007/s00221-009-2083-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/01/2009] [Indexed: 02/07/2023]
Abstract
Chronic stress causes insensitivity to rewards (anhedonia) in rats, reflected by the absence of anticipatory behavior for a sucrose-reward, which can be reversed by antidepressant treatment or repeated announced transfer to an enriched cage. It was, however, not clear whether the highly rewarding properties of the enriched cage alone caused this reversal or whether the anticipation of this reward as such had an additional effect. Therefore, the present study compared the consequences of the announcement of a reward to the mere effect of a reward alone with respect to their efficacy to counteract the consequences of chronic stress. Two forms of synaptic plasticity, long-term potentiation and long-term depression were investigated in area CA1 of the hippocampus. This was done in socially stressed rats (induced by defeat and subsequent long-term individual housing), socially stressed rats that received a reward (short-term enriched housing) and socially stressed rats to which this reward was announced by means of a stimulus that was repeatedly paired to the reward. The results were compared to corresponding control rats. We show that announcement of enriched housing appeared to have had an additional effect compared to the enriched housing per se as indicated by a significant higher amount of LTP. In conclusion, announced short-term enriched housing has a high and long-lasting counteracting efficacy on stress-induced alterations of hippocampal synaptic plasticity. This information is important for counteracting the consequences of chronic stress in both human and captive rats.
Collapse
|
37
|
Gutknecht E, Vauquelin G, Dautzenberg FM. Corticotropin-releasing factor receptors induce calcium mobilization through cross-talk with Gq-coupled receptors. Eur J Pharmacol 2010; 642:1-9. [PMID: 20594969 DOI: 10.1016/j.ejphar.2010.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 11/20/2022]
Abstract
The cross-talk between corticotropin-releasing factor (CRF) and muscarinic receptors was investigated by measuring evoked transient increases in cytosolic calcium concentration. HEK293 cells stably expressing human CRF type 1 (hCRF(1)) and type 2(a) (hCRF(2(a))) receptors were stimulated with the muscarinic receptor agonist carbachol and shortly after by a CRF agonist. Unexpectedly, this second response was enhanced when compared to stimulating naive cells either with carbachol or CRF agonist only. Priming with 100 microM carbachol increased the maximal CRF agonist response and shifted its concentration-response curve to the left to attain almost the same potency as for stimulating the production of the natural second messenger cyclic AMP. Yet, priming did not affect CRF agonist-stimulated cyclic AMP production itself. Carbachol priming was not restricted to recombinant CRF receptors only since endogenously expressed beta(2)-adrenoceptors also started to produce a robust calcium signal. Without priming no such signal was observed. Similar findings were made in the human retinoblastoma cell line Y79 for endogenously expressed CRF(1) receptors and the type 1 pituitary adenylate cyclase-activating polypeptide receptors but not for the CRF(2(a)) receptors. This differentiation between CRF(1) and CRF(2) receptors was further supported by use of selective agonists and antagonists. The results suggest that stimulating a Gq-coupled receptor shortly before stimulating a Gs-coupled receptor may result in a parallel signaling event on top of the classical cyclic AMP pathway.
Collapse
Affiliation(s)
- Eric Gutknecht
- Johnson & Johnson Research & Development, CNS Research, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | |
Collapse
|
38
|
Hasbi A, O'Dowd BF, George SR. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. Curr Opin Pharmacol 2009; 10:93-9. [PMID: 19897420 DOI: 10.1016/j.coph.2009.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 12/27/2022]
Abstract
The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was/were unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1-D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP(3) receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2-D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store-operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Neto LV, Machado EDO, Luque RM, Taboada GF, Marcondes JB, Chimelli LMC, Quintella LP, Niemeyer P, de Carvalho DP, Kineman RD, Gadelha MR. Expression analysis of dopamine receptor subtypes in normal human pituitaries, nonfunctioning pituitary adenomas and somatotropinomas, and the association between dopamine and somatostatin receptors with clinical response to octreotide-LAR in acromegaly. J Clin Endocrinol Metab 2009; 94:1931-7. [PMID: 19293270 PMCID: PMC2730344 DOI: 10.1210/jc.2008-1826] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Dopamine receptor (DR) and somatostatin receptor subtype expression in pituitary adenomas may predict the response to postsurgical therapies. OBJECTIVES Our objectives were to assess and compare the mRNA levels of DR1-5 and somatostatin receptors 1-5 in normal pituitaries (NPs), nonfunctioning pituitary adenomas (NFPAs), and somatotropinomas. In addition, we determined whether the level of DR expression correlates with the in vivo response to octreotide-LAR in acromegalic patients. DESIGN AND PATIENTS Eight NPs, 30 NFPAs, and 39 somatotropinomas were analyzed for receptor mRNA levels by real-time RT-PCR. The DR2 short variant was estimated as the DR2 long/DR2 total (DR2T). The relationship between DR expression and the postsurgical response to octreotide-LAR was assessed in 19 of the acromegalic patients. RESULTS DR3 was not detected. The relationship between expression levels of DR subtypes in NPs and somatotropinomas was DR2T>>>DR4>>DR5>DR1, whereas in NFPAs, DR2T>>>DR4>>DR1>DR5. The DR2 short variant was the predominant DR2 variant in the majority of samples. In acromegalics treated with octreotide-LAR, DR1 was negatively correlated with percent GH reduction (3 months: r = -0.67, P = 0.002; and 6 months: r = -0.58, P = 0.009), and DR5 was positively correlated with percent IGF-I reduction (3 months: r = 0.55, P = 0.01; and 6 months: r = 0.47, P = 0.04). CONCLUSIONS DR2 is the predominant DR subtype in NPs, NFPAs, and somatotropinomas. The fact that DR1, DR4, and DR5 are also expressed in many adenomas tested suggests that these receptors might also play a role in the therapeutic impact of postsurgical medical therapies in patients with NFPA and acromegaly. This was supported by the finding that the in vivo response to octreotide-LAR was negatively associated with DR1 and positively associated with DR5.
Collapse
Affiliation(s)
- Leonardo Vieira Neto
- Endocrinology Section, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu J, Wang F, Huang C, Long LH, Wu WN, Cai F, Wang JH, Ma LQ, Chen JG. Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol Neurobiol 2009; 29:317-28. [PMID: 18975071 PMCID: PMC11505845 DOI: 10.1007/s10571-008-9323-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
Recent evidences indicate the existence of an atypical D(1) dopamine receptor other than traditional D(1) dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase C(beta) (PLC(beta)). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D(1) dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca(2+)](i)) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca(2+)](i). Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca(2+)](i) rise, indicating that activation of the D(1) dopamine receptor was essential for this response. Increase in [Ca(2+)](i) was a two-step process characterized by an initial increase in [Ca(2+)](i) mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca(2+) entry. Furthermore, SKF83959-stimulated increase in [Ca(2+)](i) was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D(1) receptor by SKF83959 mediates a dose-dependent mobilization of [Ca(2+)](i) via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Astrocytes/drug effects
- Astrocytes/enzymology
- Astrocytes/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Enzyme Activation/drug effects
- Extracellular Space/drug effects
- Extracellular Space/metabolism
- Female
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Male
- Phosphatidylinositols/metabolism
- Prefrontal Cortex/cytology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Signal Transduction/drug effects
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030 China
- Hubei Key Laboratory of Neurological Diseases (HUST), Wuhan, 430030 China
| | - Chao Huang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030 China
- Hubei Key Laboratory of Neurological Diseases (HUST), Wuhan, 430030 China
| | - Wen-Ning Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Fei Cai
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Jiang-Hua Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Li-Qun Ma
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030 China
- Hubei Key Laboratory of Neurological Diseases (HUST), Wuhan, 430030 China
| |
Collapse
|
41
|
Sahu A, Tyeryar KR, Vongtau HO, Sibley DR, Undieh AS. D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol Pharmacol 2009; 75:447-53. [PMID: 19047479 PMCID: PMC2684903 DOI: 10.1124/mol.108.053017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022] Open
Abstract
Dopamine activates phospholipase C in discrete regions of the mammalian brain, and this action is believed to be mediated through a D(1)-like receptor. Although multiple lines of evidence exclude a role for the D(1) subtype of D(1)-like receptors in the phosphoinositide response, the D(5) subtype has not been similarly examined. Here, mice lacking D(5) dopamine receptors were tested for dopamine agonist-induced phosphoinositide signaling both in vitro and in vivo. The results show that hippocampal, cortical, and striatal tissues of D(5) receptor knockout mice significantly or completely lost the ability to produce inositol phosphate or diacylglycerol messengers after stimulation with dopamine or several selective D(1)-like receptor agonists. Moreover, endogenous inositol-1,4,5-trisphosphate stimulation by the phospholipase C-selective D(1)-like agonist 3-methyl-6-chloro-7,8-dihydroxy-1-[3methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) was robust in wild-type animals but undetectable in the D(5) receptor mutants. Hence, D(5) receptors are required for dopamine and selective D(1)-like agonists to induce phospholipase C-mediated phosphoinositide signaling in the mammalian brain.
Collapse
Affiliation(s)
- Asha Sahu
- Department of Pharmaceutical Sciences, Laboratory of Integrative Neuropharmacology, Thomas Jefferson University School of Pharmacy, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
42
|
Paspalas CD, Selemon LD, Arnsten AFT. Mapping the regulator of G protein signaling 4 (RGS4): presynaptic and postsynaptic substrates for neuroregulation in prefrontal cortex. ACTA ACUST UNITED AC 2009; 19:2145-55. [PMID: 19153107 DOI: 10.1093/cercor/bhn235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regulator of G protein signaling 4 (RGS4) regulates intracellular signaling via G proteins and is markedly reduced in the prefrontal cortex (PFC) of patients with schizophrenia. Characterizing the expression of RGS4 within individual neuronal compartments is thus key to understanding its actions on individual G protein-coupled receptors (GPCRs). Here we present an ultrastructural reference map of RGS4 protein in macaque PFC based on immunogold electron microscopic analysis. At the soma, all labeling was asynaptic and affiliated with subsurface cistern microdomains of pyramidal neurons. The nucleus displayed most of immunoreactivity. RGS4 levels were particularly high along proximal apical dendrites and markedly decreased with distance from the soma; clustered label was present at the bifurcation into second-order branches. In distal dendrites and in spines, the protein was found flanking or directly facing the postsynaptic density of symmetric and asymmetric synapses. Axons also expressed RGS4. In fact, the density and distribution of pre- and postsynaptic labeling was correlated with the axon ultrastructure and the type of established synapses. The data indicate that RGS4 is strategically positioned to regulate not only postsynaptic but also presynaptic signaling in response to synaptic and nonsynaptic GPCR activation, having broad yet highly selective influences on multiple aspects of PFC cellular physiology.
Collapse
|
43
|
Dai R, Ali MK, Lezcano N, Bergson C. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients. Neurosignals 2008; 16:112-23. [PMID: 18253052 DOI: 10.1159/000111557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | | | | | |
Collapse
|
44
|
Iwatsubo K, Suzuki S, Li C, Tsunematsu T, Nakamura F, Okumura S, Sato M, Minamisawa S, Toya Y, Umemura S, Ishikawa Y. Dopamine induces apoptosis in young, but not in neonatal, neurons via Ca2+-dependent signal. Am J Physiol Cell Physiol 2007; 293:C1498-508. [PMID: 17804610 DOI: 10.1152/ajpcell.00088.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.
Collapse
Affiliation(s)
- Kousaku Iwatsubo
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li Q, Guo M, Xu X, Xiao X, Xu W, Sun X, Tao H, Li R. Rapid Decrease of GAD 67 Content Before the Convulsion Induced by Hyperbaric Oxygen Exposure. Neurochem Res 2007; 33:185-93. [PMID: 17712632 DOI: 10.1007/s11064-007-9436-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/05/2007] [Indexed: 10/22/2022]
Abstract
Exposure to hyperbaric oxygen (HBO) can lead to seizures, the etiology of which is not completely understood. Glutamic acid decarboxylase (GAD) plays a very important role in maintaining excitatory-inhibitory balance of the central nervous system (CNS). In the present study we investigated the effects of HBO on the activity and content of GAD in vivo and in primarily cultured neurons to probe in detail its effect on the formation of convulsion induced by HBO exposure. The results obtained from in vivo and in vitro experiments were identical. In the latent period before the onset of seizure, the GAD activity followed a rise-and-fall pattern with the prolongation of HBO exposure. At the time of the onset of seizure, GAD activity descended to the normal level. Besides, in the latent period, GAD content also reduced. Such reduction came from a GAD subtype, GAD67, while the content of another GAD subtype, GAD65, remained almost unchanged. Our investigations indicated that GAD is indeed an enzyme highly sensitive to the effect of HBO exposure. The rapid reduction in GAD67 content may be very closely related to seizures induced by HBO exposure.
Collapse
Affiliation(s)
- Quan Li
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Silvers JM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. Neurotoxicity of HIV-1 Tat protein: involvement of D1 dopamine receptor. Neurotoxicology 2007; 28:1184-90. [PMID: 17764744 PMCID: PMC2957183 DOI: 10.1016/j.neuro.2007.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 01/15/2023]
Abstract
Neurotoxic viral proteins released from HIV-infected cells are believed to play a major role in the pathogenesis of the dementia displayed in a significant number of AIDS patients. HIV-1 associated neuropathology severely affects dopaminergic regions of the brain. Growing evidence indicates that HIV-1 neurotoxic proteins, such as Tat may affect the function of the dopamine transmission system. In turn, molecular components of dopamine neurotransmission may participate in a complex network of Tat-induced cell responses which result in neurodegeneration. In this study we investigated whether D1 dopamine receptors are involved in the mechanism of Tat neurotoxicity in primary rat neuronal cell cultures. We found that in rat midbrain cell cultures, which express significant levels of D1 dopamine receptors, the specific D1 antagonist SCH 23390 attenuates the cell death caused by HIV-1 Tat. In rat hippocampal cell cultures, where the expression of D1 receptors is low, SCH 23390 did not change the toxicity of Tat. Thus, the protective effect of SCH 23390 in rat primary neuronal cell cultures is a function of the level of D1 receptor protein expression. Our results provide further evidence for the involvement of the dopaminergic transmission system in the mechanism of HIV-1 Tat neurotoxicity.
Collapse
Affiliation(s)
- Janelle M Silvers
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
47
|
Heijtz RD, Alexeyenko A, Castellanos FX. Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD. Behav Brain Funct 2007; 3:33. [PMID: 17623072 PMCID: PMC1949817 DOI: 10.1186/1744-9081-3-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/10/2007] [Indexed: 12/13/2022] Open
Abstract
Background Calcyon is a single transmembrane protein predominantly expressed in the brain. Very recently, calcyon has been implicated in clathrin mediated endocytosis, a critical component of synaptic plasticity. At the genetic level, preliminary evidence supports an association between attention-deficit/hyperactivity disorder (ADHD) and polymorphisms in the calcyon gene. As little is known about the potential role of calcyon in ADHD, animal models may provide important insights into this issue. Methods We examined calcyon mRNA expression in the frontal-striatal circuitry of three-, five-, and ten-week-old Spontaneously Hypertensive Rats (SHR), the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived). As a complement, we performed a co-expression network analysis using a database of mRNA gene expression profiles of multiple brain regions in order to explore potential functional links of calcyon to other genes. Results In all age groups, SHR expressed significantly more calcyon mRNA in the medial prefrontal and orbital frontal cortices than WKY rats. In contrast, in the motor cortex, dorsal striatum and nucleus accumbens, calcyon mRNA expression was only significantly elevated in SHR in younger animals. In both strains, calcyon mRNA levels decreased significantly with age in all regions studied. In the co-expression network analysis, we found a cluster of genes (many of them poorly studied so far) strongly connected to calcyon, which may help elucidate its role in the brain. The pair-wise relations of calcyon with other genes support its involvement in clathrin mediated endocytosis and, potentially, some other membrane/vesicular processes. Interestingly, no link was found between calcyon and the dopamine D1 receptor, which was previously shown to interact with the C-terminal of calcyon. Conclusion The results indicate an alteration in calcyon expression within the frontal-striatal circuitry of SHR, especially in areas involved in cognitive processes. These findings extend our understanding of the molecular alterations in SHR, a heuristically useful model of ADHD.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, 171 77, Sweden
| | - Andrey Alexeyenko
- Stockholm Bioinformatics Center, Albanova, Stockholm University, Stockholm, 106 91, Sweden
| | - F Xavier Castellanos
- New York University Child Study Center, 215 Lexington Avenue, New York, New York 10016, USA
| |
Collapse
|
48
|
Heijtz RD, Kolb B, Forssberg H. Motor inhibitory role of dopamine D1 receptors: implications for ADHD. Physiol Behav 2007; 92:155-60. [PMID: 17585966 DOI: 10.1016/j.physbeh.2007.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dysregulation of dopamine (DA) neurotransmission in frontal-striatal circuitry has been hypothesized to underlie several neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD). The actions of DA are mediated by five distinct receptor subtypes that belong to the G-protein-coupled receptor super-family and are divided into two major classes, D1-like (D1 and D5) and D2-like (D2, D3, and D4). Accumulating evidence implicates the D1 receptor subtype (D1R) in the regulation of motor and cognitive processes. It is generally assumed that D1R is linked to motor activity in a stimulatory fashion. However, recent findings in rodents suggest a potential role of D1R on motor inhibition, which emerges during late postnatal development. Several lines of evidence indicate that the locus of the inhibitory effects involve subregions of the prefrontal cortex (PFC). These results may be relevant for understanding the neurobiology of ADHD.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Karolinska Institutet, Department of Neuroscience, Retzius väg 8, S-171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
49
|
Araki KY, Sims JR, Bhide PG. Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 2007; 1156:31-45. [PMID: 17509542 PMCID: PMC1994791 DOI: 10.1016/j.brainres.2007.04.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
The outcome of dopaminergic signaling and effectiveness of dopaminergic drugs depend on the relative preponderance of each of the five dopamine receptors in a given brain region. The separate contribution of each receptor to overall dopaminergic tone is difficult to establish at a functional level due to lack of receptor subtype specific pharmacological agents. A surrogate for receptor function is receptor protein or mRNA expression. We examined dopamine receptor mRNA expression by quantitative reverse transcription real-time PCR in the striatum, globus pallidus, frontal cortex and cingulate cortex of embryonic and postnatal mice. Samples of each region were collected by laser capture microdissection. D1- and D2-receptor mRNAs were the most abundant in all the regions of the mature brain. The D1-receptor was predominant over the D2-receptor in the frontal and cingulate cortices whereas the situation was reversed in the striatum and globus pallidus. In the proliferative domains of the embryonic forebrain, D3-, D4- and D5-receptors were predominant. In the corpus striatum and cerebral cortex, the D3- and D4-receptors were the only receptors that showed marked developmental regulation. By analyzing D1 receptor protein expression, we show that developmental changes in mRNA expression reliably translate into changes in protein levels, at least for the D1-receptor.
Collapse
Affiliation(s)
- Kiyomi Y. Araki
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - John R. Sims
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - Pradeep G. Bhide
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| |
Collapse
|
50
|
Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 2007; 97:2448-64. [PMID: 17229830 DOI: 10.1152/jn.00317.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term potentiation of intrinsic excitability (LTP-IE). Here, the intracellular signals that mediate this D1/5 receptor-dependent LTP-IE were determined using whole cell current-clamp recordings in layer V/VI rat pyramidal neurons from PFC slices. After blockade of all major amino acid receptors (V(hold) = -65 mV) brief tetanic stimulation (20 Hz) of local afferents or application of the D1 agonist SKF81297 (0.2-50 microM) induced LTP-IE, as shown by a prolonged (>40 min) increase in depolarizing pulse-evoked spike firing. Pretreatment with the D1/5 antagonist SCH23390 (1 microM) blocked both the tetani- and D1/5 agonist-induced LTP-IE, suggesting a D1/5 receptor-mediated mechanism. The SKF81297-induced LTP-IE was significantly attenuated by Cd(2+), [Ca(2+)](i) chelation, by inhibition of phospholipase C, protein kinase-C, and Ca(2+)/calmodulin kinase-II, but not by inhibition of adenylate cyclase, protein kinase-A, MAP kinase, or L-type Ca(2+) channels. Thus this form of D1/5 receptor-mediated LTP-IE relied on Ca(2+) influx via non-L-type Ca(2+) channels, activation of PLC, intracellular Ca(2+) elevation, activation of Ca(2+)-dependent CaMKII, and PKC to mediate modulation of voltage-dependent ion channel(s). This D1/5 receptor-mediated modulation by PKC coexists with the previously described PKA-dependent modulation of K(+) and Ca(2+) currents to dynamically regulate overall excitability of PFC neurons.
Collapse
Affiliation(s)
- Long Chen
- National Standard Lab of Pharmacology for Chinese Materia Medica, Research Center of Acupuncture and Pharmacology, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|