1
|
He X, Raghavan VS, Mesgarani N. Distinct roles of SNR, speech Intelligibility, and attentional effort on neural speech tracking in noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.616515. [PMID: 39416110 PMCID: PMC11483070 DOI: 10.1101/2024.10.10.616515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Robust neural encoding of speech in noise is influenced by several factors, including signal-to-noise ratio (SNR), speech intelligibility (SI), and attentional effort (AE). Yet, the interaction and distinct role of these factors remain unclear. In this study, fourteen native English speakers performed selective speech listening tasks at various SNR levels while EEG responses were recorded. Attentional performance was assessed using a repeated word detection task, and attentional effort was inferred from subjects' gaze velocity. Results indicate that both SNR and SI enhance neural tracking of target speech, with distinct effects influenced by the previously overlooked role of attentional effort. Specifically, at high levels of SI, increasing SNR leads to reduced attentional effort, which in turn decreases neural speech tracking. Our findings highlight the importance of differentiating the roles of SNR, SI, and AE in neural speech processing and advance our understanding of how noisy speech is processed in the auditory pathway.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Vinay S Raghavan
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Zhao X, Li Y, Yang X. Aging affects Mandarin speakers' understanding of focus sentences in quiet and noisy environments. JOURNAL OF COMMUNICATION DISORDERS 2024; 111:106451. [PMID: 39043003 DOI: 10.1016/j.jcomdis.2024.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Older adults experiencing normal aging make up most patients seeking services at audiology clinics. While research acknowledges that the speech perception abilities of aging adults can be diminished in lower-level speech identification or discrimination, there is less concern about how aging affects higher-level speech understanding, particularly in tonal languages. This study aimed to explore the effects of aging on the comprehension of implied intentions conveyed through prosodic features in Mandarin focus sentences, both in quiet and noisy environments. METHODS Twenty-seven younger listeners (aged 17 to 26) and 27 older listeners (aged 58 to 77) participated in a focus comprehension task. Their task was to interpret SAVO (subject-adverbial-verb-object) sentences with five focus conditions (initial subject-focus, medial adverbial-focus, medial verb-focus, final object-focus, and neutral non-focus) across five background conditions: quiet, white noise (at 0 and -10-dB signal-to-noise ratios, SNRs), and competing speech (at 0 and -10-dB SNRs). Comprehension performances were analyzed based on accuracy rates, and underlying processing patterns were evaluated using confusion matrices. RESULTS Younger listeners consistently excelled across focus conditions in quiet settings, but their scores declined in white noise at the SNR of -10-dB. Older adults exhibited variability in scores across focus conditions but not in background conditions. They scored lower than their younger counterparts, with the highest scores observed in the comprehension of sentences featuring a medial adverbial-focus. Analysis of confusion matrices revealed that younger adults seldom mistook focus conditions, whereas older adults tended to comprehend the other focused items as medial adverbials. CONCLUSIONS Older listeners' performance reflects their over-reliance on top-down language knowledge, while their bottom-up acoustic processing decreases when interpreting Mandarin focus sentences. These findings provide evidence of active cognitive processing in prosody comprehension among aging adults and offer insights for diagnosing and intervening with speech disorders in clinical settings.
Collapse
Affiliation(s)
- Xinxian Zhao
- School of Foreign Studies, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Li
- School of Foreign Studies, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Yang
- School of Foreign Studies, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
3
|
Poe AA, Karawani H, Anderson S. Aging effects on the neural representation and perception of consonant transition cues. Hear Res 2024; 448:109034. [PMID: 38781768 PMCID: PMC11156531 DOI: 10.1016/j.heares.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.
Collapse
Affiliation(s)
- Abigail Anne Poe
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
4
|
Zhao X, Yang X. Aging affects auditory contributions to focus perception in Jianghuai Mandarina). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2990-3004. [PMID: 38717206 DOI: 10.1121/10.0025928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/20/2024] [Indexed: 09/20/2024]
Abstract
Speakers can place their prosodic prominence on any locations within a sentence, generating focus prosody for listeners to perceive new information. This study aimed to investigate age-related changes in the bottom-up processing of focus perception in Jianghuai Mandarin by clarifying the perceptual cues and the auditory processing abilities involved in the identification of focus locations. Young, middle-aged, and older speakers of Jianghuai Mandarin completed a focus identification task and an auditory perception task. The results showed that increasing age led to a decrease in listeners' accuracy rate in identifying focus locations, with all participants performing the worst when dynamic pitch cues were inaccessible. Auditory processing abilities did not predict focus perception performance in young and middle-aged listeners but accounted significantly for the variance in older adults' performance. These findings suggest that age-related deteriorations in focus perception can be largely attributed to declined auditory processing of perceptual cues. Poor ability to extract frequency modulation cues may be the most important underlying psychoacoustic factor for older adults' difficulties in perceiving focus prosody in Jianghuai Mandarin. The results contribute to our understanding of the bottom-up mechanisms involved in linguistic prosody processing in aging adults, particularly in tonal languages.
Collapse
Affiliation(s)
- Xinxian Zhao
- School of Foreign Studies, Tongji University, Shanghai 200092, China
| | - Xiaohu Yang
- School of Foreign Studies, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Brilliant, Yaar-Soffer Y, Herrmann CS, Henkin Y, Kral A. Theta and alpha oscillatory signatures of auditory sensory and cognitive loads during complex listening. Neuroimage 2024; 289:120546. [PMID: 38387743 DOI: 10.1016/j.neuroimage.2024.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The neuronal signatures of sensory and cognitive load provide access to brain activities related to complex listening situations. Sensory and cognitive loads are typically reflected in measures like response time (RT) and event-related potentials (ERPs) components. It's, however, strenuous to distinguish the underlying brain processes solely from these measures. In this study, along with RT- and ERP-analysis, we performed time-frequency analysis and source localization of oscillatory activity in participants performing two different auditory tasks with varying degrees of complexity and related them to sensory and cognitive load. We studied neuronal oscillatory activity in both periods before the behavioral response (pre-response) and after it (post-response). Robust oscillatory activities were found in both periods and were differentially affected by sensory and cognitive load. Oscillatory activity under sensory load was characterized by decrease in pre-response (early) theta activity and increased alpha activity. Oscillatory activity under cognitive load was characterized by increased theta activity, mainly in post-response (late) time. Furthermore, source localization revealed specific brain regions responsible for processing these loads, such as temporal and frontal lobe, cingulate cortex and precuneus. The results provide evidence that in complex listening situations, the brain processes sensory and cognitive loads differently. These neural processes have specific oscillatory signatures and are long lasting, extending beyond the behavioral response.
Collapse
Affiliation(s)
- Brilliant
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany.
| | - Y Yaar-Soffer
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - C S Herrmann
- Experimental Psychology Division, University of Oldenburg, 26111 Oldenburg, Germany
| | - Y Henkin
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - A Kral
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
6
|
Regev J, Relaño-Iborra H, Zaar J, Dau T. Disentangling the effects of hearing loss and age on amplitude modulation frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2589-2602. [PMID: 38607268 DOI: 10.1121/10.0025541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
The processing and perception of amplitude modulation (AM) in the auditory system reflect a frequency-selective process, often described as a modulation filterbank. Previous studies on perceptual AM masking reported similar results for older listeners with hearing impairment (HI listeners) and young listeners with normal hearing (NH listeners), suggesting no effects of age or hearing loss on AM frequency selectivity. However, recent evidence has shown that age, independently of hearing loss, adversely affects AM frequency selectivity. Hence, this study aimed to disentangle the effects of hearing loss and age. A simultaneous AM masking paradigm was employed, using a sinusoidal carrier at 2.8 kHz, narrowband noise modulation maskers, and target modulation frequencies of 4, 16, 64, and 128 Hz. The results obtained from young (n = 3, 24-30 years of age) and older (n = 10, 63-77 years of age) HI listeners were compared to previously obtained data from young and older NH listeners. Notably, the HI listeners generally exhibited lower (unmasked) AM detection thresholds and greater AM frequency selectivity than their NH counterparts in both age groups. Overall, the results suggest that age negatively affects AM frequency selectivity for both NH and HI listeners, whereas hearing loss improves AM detection and AM selectivity, likely due to the loss of peripheral compression.
Collapse
Affiliation(s)
- Jonathan Regev
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Helia Relaño-Iborra
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johannes Zaar
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Eriksholm Research Centre, Snekkersten, 3070, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Copenhagen Hearing and Balance Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, 2100, Denmark
| |
Collapse
|
7
|
Tune S, Obleser J. Neural attentional filters and behavioural outcome follow independent individual trajectories over the adult lifespan. eLife 2024; 12:RP92079. [PMID: 38470243 DOI: 10.7554/elife.92079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Preserved communication abilities promote healthy ageing. To this end, the age-typical loss of sensory acuity might in part be compensated for by an individual's preserved attentional neural filtering. Is such a compensatory brain-behaviour link longitudinally stable? Can it predict individual change in listening behaviour? We here show that individual listening behaviour and neural filtering ability follow largely independent developmental trajectories modelling electroencephalographic and behavioural data of N = 105 ageing individuals (39-82 y). First, despite the expected decline in hearing-threshold-derived sensory acuity, listening-task performance proved stable over 2 y. Second, neural filtering and behaviour were correlated only within each separate measurement timepoint (T1, T2). Longitudinally, however, our results raise caution on attention-guided neural filtering metrics as predictors of individual trajectories in listening behaviour: neither neural filtering at T1 nor its 2-year change could predict individual 2-year behavioural change, under a combination of modelling strategies.
Collapse
Affiliation(s)
- Sarah Tune
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Ershaid H, Lizarazu M, McLaughlin D, Cooke M, Simantiraki O, Koutsogiannaki M, Lallier M. Contributions of listening effort and intelligibility to cortical tracking of speech in adverse listening conditions. Cortex 2024; 172:54-71. [PMID: 38215511 DOI: 10.1016/j.cortex.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Cortical tracking of speech is vital for speech segmentation and is linked to speech intelligibility. However, there is no clear consensus as to whether reduced intelligibility leads to a decrease or an increase in cortical speech tracking, warranting further investigation of the factors influencing this relationship. One such factor is listening effort, defined as the cognitive resources necessary for speech comprehension, and reported to have a strong negative correlation with speech intelligibility. Yet, no studies have examined the relationship between speech intelligibility, listening effort, and cortical tracking of speech. The aim of the present study was thus to examine these factors in quiet and distinct adverse listening conditions. Forty-nine normal hearing adults listened to sentences produced casually, presented in quiet and two adverse listening conditions: cafeteria noise and reverberant speech. Electrophysiological responses were registered with electroencephalogram, and listening effort was estimated subjectively using self-reported scores and objectively using pupillometry. Results indicated varying impacts of adverse conditions on intelligibility, listening effort, and cortical tracking of speech, depending on the preservation of the speech temporal envelope. The more distorted envelope in the reverberant condition led to higher listening effort, as reflected in higher subjective scores, increased pupil diameter, and stronger cortical tracking of speech in the delta band. These findings suggest that using measures of listening effort in addition to those of intelligibility is useful for interpreting cortical tracking of speech results. Moreover, reading and phonological skills of participants were positively correlated with listening effort in the cafeteria condition, suggesting a special role of expert language skills in processing speech in this noisy condition. Implications for future research and theories linking atypical cortical tracking of speech and reading disorders are further discussed.
Collapse
Affiliation(s)
- Hadeel Ershaid
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Drew McLaughlin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Martin Cooke
- Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| | | | | | - Marie Lallier
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
9
|
Panela RA, Copelli F, Herrmann B. Reliability and generalizability of neural speech tracking in younger and older adults. Neurobiol Aging 2024; 134:165-180. [PMID: 38103477 DOI: 10.1016/j.neurobiolaging.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Neural tracking of spoken speech is considered a potential clinical biomarker for speech-processing difficulties, but the reliability of neural speech tracking is unclear. Here, younger and older adults listened to stories in two sessions while electroencephalography was recorded to investigate the reliability and generalizability of neural speech tracking. Speech tracking amplitude was larger for older than younger adults, consistent with an age-related loss of inhibition. The reliability of neural speech tracking was moderate (ICC ∼0.5-0.75) and tended to be higher for older adults. However, reliability was lower for speech tracking than for neural responses to noise bursts (ICC >0.8), which we used as a benchmark for maximum reliability. Neural speech tracking generalized moderately across different stories (ICC ∼0.5-0.6), which appeared greatest for audiobook-like stories spoken by the same person. Hence, a variety of stories could possibly be used for clinical assessments. Overall, the current data are important for developing a biomarker of speech processing but suggest that further work is needed to increase the reliability to meet clinical standards.
Collapse
Affiliation(s)
- Ryan A Panela
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Francesca Copelli
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada.
| |
Collapse
|
10
|
Dikker S, Brito NH, Dumas G. It takes a village: A multi-brain approach to studying multigenerational family communication. Dev Cogn Neurosci 2024; 65:101330. [PMID: 38091864 PMCID: PMC10716709 DOI: 10.1016/j.dcn.2023.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Grandparents play a critical role in child rearing across the globe. Yet, there is a shortage of neurobiological research examining the relationship between grandparents and their grandchildren. We employ multi-brain neurocomputational models to simulate how changes in neurophysiological processes in both development and healthy aging affect multigenerational inter-brain coupling - a neural marker that has been linked to a range of socio-emotional and cognitive outcomes. The simulations suggest that grandparent-child interactions may be paired with higher inter-brain coupling than parent-child interactions, raising the possibility that the former may be more advantageous under certain conditions. Critically, this enhancement of inter-brain coupling for grandparent-child interactions is more pronounced in tri-generational interactions that also include a parent, which may speak to findings that grandparent involvement in childrearing is most beneficial if the parent is also an active household member. Together, these findings underscore that a better understanding of the neurobiological basis of cross-generational interactions is vital, and that such knowledge can be helpful in guiding interventions that consider the whole family. We advocate for a community neuroscience approach in developmental social neuroscience to capture the diversity of child-caregiver relationships in real-world settings.
Collapse
|
11
|
McClaskey CM. Neural hyperactivity and altered envelope encoding in the central auditory system: Changes with advanced age and hearing loss. Hear Res 2024; 442:108945. [PMID: 38154191 PMCID: PMC10942735 DOI: 10.1016/j.heares.2023.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Temporal modulations are ubiquitous features of sound signals that are important for auditory perception. The perception of temporal modulations, or temporal processing, is known to decline with aging and hearing loss and negatively impact auditory perception in general and speech recognition specifically. However, neurophysiological literature also provides evidence of exaggerated or enhanced encoding of specifically temporal envelopes in aging and hearing loss, which may arise from changes in inhibitory neurotransmission and neuronal hyperactivity. This review paper describes the physiological changes to the neural encoding of temporal envelopes that have been shown to occur with age and hearing loss and discusses the role of disinhibition and neural hyperactivity in contributing to these changes. Studies in both humans and animal models suggest that aging and hearing loss are associated with stronger neural representations of both periodic amplitude modulation envelopes and of naturalistic speech envelopes, but primarily for low-frequency modulations (<80 Hz). Although the frequency dependence of these results is generally taken as evidence of amplified envelope encoding at the cortex and impoverished encoding at the midbrain and brainstem, there is additional evidence to suggest that exaggerated envelope encoding may also occur subcortically, though only for envelopes with low modulation rates. A better understanding of how temporal envelope encoding is altered in aging and hearing loss, and the contexts in which neural responses are exaggerated/diminished, may aid in the development of interventions, assistive devices, and treatment strategies that work to ameliorate age- and hearing-loss-related auditory perceptual deficits.
Collapse
Affiliation(s)
- Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC 29425, United States.
| |
Collapse
|
12
|
Frei V, Schmitt R, Meyer M, Giroud N. Processing of Visual Speech Cues in Speech-in-Noise Comprehension Depends on Working Memory Capacity and Enhances Neural Speech Tracking in Older Adults With Hearing Impairment. Trends Hear 2024; 28:23312165241287622. [PMID: 39444375 PMCID: PMC11520018 DOI: 10.1177/23312165241287622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Comprehending speech in noise (SiN) poses a challenge for older hearing-impaired listeners, requiring auditory and working memory resources. Visual speech cues provide additional sensory information supporting speech understanding, while the extent of such visual benefit is characterized by large variability, which might be accounted for by individual differences in working memory capacity (WMC). In the current study, we investigated behavioral and neurofunctional (i.e., neural speech tracking) correlates of auditory and audio-visual speech comprehension in babble noise and the associations with WMC. Healthy older adults with hearing impairment quantified by pure-tone hearing loss (threshold average: 31.85-57 dB, N = 67) listened to sentences in babble noise in audio-only, visual-only and audio-visual speech modality and performed a pattern matching and a comprehension task, while electroencephalography (EEG) was recorded. Behaviorally, no significant difference in task performance was observed across modalities. However, we did find a significant association between individual working memory capacity and task performance, suggesting a more complex interplay between audio-visual speech cues, working memory capacity and real-world listening tasks. Furthermore, we found that the visual speech presentation was accompanied by increased cortical tracking of the speech envelope, particularly in a right-hemispheric auditory topographical cluster. Post-hoc, we investigated the potential relationships between the behavioral performance and neural speech tracking but were not able to establish a significant association. Overall, our results show an increase in neurofunctional correlates of speech associated with congruent visual speech cues, specifically in a right auditory cluster, suggesting multisensory integration.
Collapse
Affiliation(s)
- Vanessa Frei
- Computational Neuroscience of Speech and Hearing, Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
- International Max Planck Research School for the Life Course: Evolutionary and Ontogenetic Dynamics (LIFE), Berlin, Germany
| | - Raffael Schmitt
- Computational Neuroscience of Speech and Hearing, Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
- International Max Planck Research School for the Life Course: Evolutionary and Ontogenetic Dynamics (LIFE), Berlin, Germany
- Competence Center Language & Medicine, Center of Medical Faculty and Faculty of Arts and Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Competence Center Language & Medicine, Center of Medical Faculty and Faculty of Arts and Sciences, University of Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program Dynamics of Healthy Aging, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Evolutionary Neuroscience of Language, Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| | - Nathalie Giroud
- Computational Neuroscience of Speech and Hearing, Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
- International Max Planck Research School for the Life Course: Evolutionary and Ontogenetic Dynamics (LIFE), Berlin, Germany
- Competence Center Language & Medicine, Center of Medical Faculty and Faculty of Arts and Sciences, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Wang B, Xu X, Niu Y, Wu C, Wu X, Chen J. EEG-based auditory attention decoding with audiovisual speech for hearing-impaired listeners. Cereb Cortex 2023; 33:10972-10983. [PMID: 37750333 DOI: 10.1093/cercor/bhad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Auditory attention decoding (AAD) was used to determine the attended speaker during an auditory selective attention task. However, the auditory factors modulating AAD remained unclear for hearing-impaired (HI) listeners. In this study, scalp electroencephalogram (EEG) was recorded with an auditory selective attention paradigm, in which HI listeners were instructed to attend one of the two simultaneous speech streams with or without congruent visual input (articulation movements), and at a high or low target-to-masker ratio (TMR). Meanwhile, behavioral hearing tests (i.e. audiogram, speech reception threshold, temporal modulation transfer function) were used to assess listeners' individual auditory abilities. The results showed that both visual input and increasing TMR could significantly enhance the cortical tracking of the attended speech and AAD accuracy. Further analysis revealed that the audiovisual (AV) gain in attended speech cortical tracking was significantly correlated with listeners' auditory amplitude modulation (AM) sensitivity, and the TMR gain in attended speech cortical tracking was significantly correlated with listeners' hearing thresholds. Temporal response function analysis revealed that subjects with higher AM sensitivity demonstrated more AV gain over the right occipitotemporal and bilateral frontocentral scalp electrodes.
Collapse
Affiliation(s)
- Bo Wang
- Speech and Hearing Research Center, Key Laboratory of Machine Perception (Ministry of Education), School of Intelligence Science and Technology, Peking University, Beijing 100871, China
| | - Xiran Xu
- Speech and Hearing Research Center, Key Laboratory of Machine Perception (Ministry of Education), School of Intelligence Science and Technology, Peking University, Beijing 100871, China
| | - Yadong Niu
- Speech and Hearing Research Center, Key Laboratory of Machine Perception (Ministry of Education), School of Intelligence Science and Technology, Peking University, Beijing 100871, China
| | - Chao Wu
- School of Nursing, Peking University, Beijing 100191, China
| | - Xihong Wu
- Speech and Hearing Research Center, Key Laboratory of Machine Perception (Ministry of Education), School of Intelligence Science and Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, College of Future Technology, Beijing 100871, China
| | - Jing Chen
- Speech and Hearing Research Center, Key Laboratory of Machine Perception (Ministry of Education), School of Intelligence Science and Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, College of Future Technology, Beijing 100871, China
| |
Collapse
|
14
|
Van Hirtum T, Somers B, Dieudonné B, Verschueren E, Wouters J, Francart T. Neural envelope tracking predicts speech intelligibility and hearing aid benefit in children with hearing loss. Hear Res 2023; 439:108893. [PMID: 37806102 DOI: 10.1016/j.heares.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Early assessment of hearing aid benefit is crucial, as the extent to which hearing aids provide audible speech information predicts speech and language outcomes. A growing body of research has proposed neural envelope tracking as an objective measure of speech intelligibility, particularly for individuals unable to provide reliable behavioral feedback. However, its potential for evaluating speech intelligibility and hearing aid benefit in children with hearing loss remains unexplored. In this study, we investigated neural envelope tracking in children with permanent hearing loss through two separate experiments. EEG data were recorded while children listened to age-appropriate stories (Experiment 1) or an animated movie (Experiment 2) under aided and unaided conditions (using personal hearing aids) at multiple stimulus intensities. Neural envelope tracking was evaluated using a linear decoder reconstructing the speech envelope from the EEG in the delta band (0.5-4 Hz). Additionally, we calculated temporal response functions (TRFs) to investigate the spatio-temporal dynamics of the response. In both experiments, neural tracking increased with increasing stimulus intensity, but only in the unaided condition. In the aided condition, neural tracking remained stable across a wide range of intensities, as long as speech intelligibility was maintained. Similarly, TRF amplitudes increased with increasing stimulus intensity in the unaided condition, while in the aided condition significant differences were found in TRF latency rather than TRF amplitude. This suggests that decreasing stimulus intensity does not necessarily impact neural tracking. Furthermore, the use of personal hearing aids significantly enhanced neural envelope tracking, particularly in challenging speech conditions that would be inaudible when unaided. Finally, we found a strong correlation between neural envelope tracking and behaviorally measured speech intelligibility for both narrated stories (Experiment 1) and movie stimuli (Experiment 2). Altogether, these findings indicate that neural envelope tracking could be a valuable tool for predicting speech intelligibility benefits derived from personal hearing aids in hearing-impaired children. Incorporating narrated stories or engaging movies expands the accessibility of these methods even in clinical settings, offering new avenues for using objective speech measures to guide pediatric audiology decision-making.
Collapse
Affiliation(s)
- Tilde Van Hirtum
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Ben Somers
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Benjamin Dieudonné
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Eline Verschueren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Jan Wouters
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Tom Francart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Xu N, Qin X, Zhou Z, Shan W, Ren J, Yang C, Lu L, Wang Q. Age differentially modulates the cortical tracking of the lower and higher level linguistic structures during speech comprehension. Cereb Cortex 2023; 33:10463-10474. [PMID: 37566910 DOI: 10.1093/cercor/bhad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Speech comprehension requires listeners to rapidly parse continuous speech into hierarchically-organized linguistic structures (i.e. syllable, word, phrase, and sentence) and entrain the neural activities to the rhythm of different linguistic levels. Aging is accompanied by changes in speech processing, but it remains unclear how aging affects different levels of linguistic representation. Here, we recorded magnetoencephalography signals in older and younger groups when subjects actively and passively listened to the continuous speech in which hierarchical linguistic structures of word, phrase, and sentence were tagged at 4, 2, and 1 Hz, respectively. A newly-developed parameterization algorithm was applied to separate the periodically linguistic tracking from the aperiodic component. We found enhanced lower-level (word-level) tracking, reduced higher-level (phrasal- and sentential-level) tracking, and reduced aperiodic offset in older compared with younger adults. Furthermore, we observed the attentional modulation on the sentential-level tracking being larger for younger than for older ones. Notably, the neuro-behavior analyses showed that subjects' behavioral accuracy was positively correlated with the higher-level linguistic tracking, reversely correlated with the lower-level linguistic tracking. Overall, these results suggest that the enhanced lower-level linguistic tracking, reduced higher-level linguistic tracking and less flexibility of attentional modulation may underpin aging-related decline in speech comprehension.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xiaoxiao Qin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ziqi Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Chunqing Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
16
|
Quique YM, Gnanateja GN, Dickey MW, Evans WS, Chandrasekaran B. Examining cortical tracking of the speech envelope in post-stroke aphasia. Front Hum Neurosci 2023; 17:1122480. [PMID: 37780966 PMCID: PMC10538638 DOI: 10.3389/fnhum.2023.1122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction People with aphasia have been shown to benefit from rhythmic elements for language production during aphasia rehabilitation. However, it is unknown whether rhythmic processing is associated with such benefits. Cortical tracking of the speech envelope (CTenv) may provide a measure of encoding of speech rhythmic properties and serve as a predictor of candidacy for rhythm-based aphasia interventions. Methods Electroencephalography was used to capture electrophysiological responses while Spanish speakers with aphasia (n = 9) listened to a continuous speech narrative (audiobook). The Temporal Response Function was used to estimate CTenv in the delta (associated with word- and phrase-level properties), theta (syllable-level properties), and alpha bands (attention-related properties). CTenv estimates were used to predict aphasia severity, performance in rhythmic perception and production tasks, and treatment response in a sentence-level rhythm-based intervention. Results CTenv in delta and theta, but not alpha, predicted aphasia severity. Neither CTenv in delta, alpha, or theta bands predicted performance in rhythmic perception or production tasks. Some evidence supported that CTenv in theta could predict sentence-level learning in aphasia, but alpha and delta did not. Conclusion CTenv of the syllable-level properties was relatively preserved in individuals with less language impairment. In contrast, higher encoding of word- and phrase-level properties was relatively impaired and was predictive of more severe language impairments. CTenv and treatment response to sentence-level rhythm-based interventions need to be further investigated.
Collapse
Affiliation(s)
- Yina M. Quique
- Center for Education in Health Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - G. Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Walsh Dickey
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
- Roxelyn and Richard Pepper Department of Communication Science and Disorders, School of Communication. Northwestern University, Evanston, IL, United States
| |
Collapse
|
17
|
Yasmin S, Irsik VC, Johnsrude IS, Herrmann B. The effects of speech masking on neural tracking of acoustic and semantic features of natural speech. Neuropsychologia 2023; 186:108584. [PMID: 37169066 DOI: 10.1016/j.neuropsychologia.2023.108584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Listening environments contain background sounds that mask speech and lead to communication challenges. Sensitivity to slow acoustic fluctuations in speech can help segregate speech from background noise. Semantic context can also facilitate speech perception in noise, for example, by enabling prediction of upcoming words. However, not much is known about how different degrees of background masking affect the neural processing of acoustic and semantic features during naturalistic speech listening. In the current electroencephalography (EEG) study, participants listened to engaging, spoken stories masked at different levels of multi-talker babble to investigate how neural activity in response to acoustic and semantic features changes with acoustic challenges, and how such effects relate to speech intelligibility. The pattern of neural response amplitudes associated with both acoustic and semantic speech features across masking levels was U-shaped, such that amplitudes were largest for moderate masking levels. This U-shape may be due to increased attentional focus when speech comprehension is challenging, but manageable. The latency of the neural responses increased linearly with increasing background masking, and neural latency change associated with acoustic processing most closely mirrored the changes in speech intelligibility. Finally, tracking responses related to semantic dissimilarity remained robust until severe speech masking (-3 dB SNR). The current study reveals that neural responses to acoustic features are highly sensitive to background masking and decreasing speech intelligibility, whereas neural responses to semantic features are relatively robust, suggesting that individuals track the meaning of the story well even in moderate background sound.
Collapse
Affiliation(s)
- Sonia Yasmin
- Department of Psychology & the Brain and Mind Institute,The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Vanessa C Irsik
- Department of Psychology & the Brain and Mind Institute,The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Ingrid S Johnsrude
- Department of Psychology & the Brain and Mind Institute,The University of Western Ontario, London, ON, N6A 3K7, Canada; School of Communication and Speech Disorders,The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest, M6A 2E1, Toronto, ON, Canada; Department of Psychology,University of Toronto, M5S 1A1, Toronto, ON, Canada
| |
Collapse
|
18
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
19
|
Van Hirtum T, Somers B, Verschueren E, Dieudonné B, Francart T. Delta-band neural envelope tracking predicts speech intelligibility in noise in preschoolers. Hear Res 2023; 434:108785. [PMID: 37172414 DOI: 10.1016/j.heares.2023.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Behavioral tests are currently the gold standard in measuring speech intelligibility. However, these tests can be difficult to administer in young children due to factors such as motivation, linguistic knowledge and cognitive skills. It has been shown that measures of neural envelope tracking can be used to predict speech intelligibility and overcome these issues. However, its potential as an objective measure for speech intelligibility in noise remains to be investigated in preschool children. Here, we evaluated neural envelope tracking as a function of signal-to-noise ratio (SNR) in 14 5-year-old children. We examined EEG responses to natural, continuous speech presented at different SNRs ranging from -8 (very difficult) to 8 dB SNR (very easy). As expected delta band (0.5-4 Hz) tracking increased with increasing stimulus SNR. However, this increase was not strictly monotonic as neural tracking reached a plateau between 0 and 4 dB SNR, similarly to the behavioral speech intelligibility outcomes. These findings indicate that neural tracking in the delta band remains stable, as long as the acoustical degradation of the speech signal does not reflect significant changes in speech intelligibility. Theta band tracking (4-8 Hz), on the other hand, was found to be drastically reduced and more easily affected by noise in children, making it less reliable as a measure of speech intelligibility. By contrast, neural envelope tracking in the delta band was directly associated with behavioral measures of speech intelligibility. This suggests that neural envelope tracking in the delta band is a valuable tool for evaluating speech-in-noise intelligibility in preschoolers, highlighting its potential as an objective measure of speech in difficult-to-test populations.
Collapse
Affiliation(s)
- Tilde Van Hirtum
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, Leuven 3000, Belgium.
| | - Ben Somers
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, Leuven 3000, Belgium
| | - Eline Verschueren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, Leuven 3000, Belgium
| | - Benjamin Dieudonné
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, Leuven 3000, Belgium
| | - Tom Francart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, Leuven 3000, Belgium
| |
Collapse
|
20
|
Regev J, Zaar J, Relaño-Iborra H, Dau T. Age-related reduction of amplitude modulation frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2298. [PMID: 37092934 DOI: 10.1121/10.0017835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The perception of amplitude modulations (AMs) has been characterized by a frequency-selective process in the temporal envelope domain and simulated in computational auditory processing and perception models using a modulation filterbank. Such AM frequency-selective processing has been argued to be critical for the perception of complex sounds, including speech. This study aimed at investigating the effects of age on behavioral AM frequency selectivity in young (n = 11, 22-29 years) versus older (n = 10, 57-77 years) listeners with normal hearing, using a simultaneous AM masking paradigm with a sinusoidal carrier (2.8 kHz), target modulation frequencies of 4, 16, 64, and 128 Hz, and narrowband-noise modulation maskers. A reduction of AM frequency selectivity by a factor of up to 2 was found in the older listeners. While the observed AM selectivity co-varied with the unmasked AM detection sensitivity, the age-related broadening of the masked threshold patterns remained stable even when AM sensitivity was similar across groups for an extended stimulus duration. The results from the present study might provide a valuable basis for further investigations exploring the effects of age and reduced AM frequency selectivity on complex sound perception as well as the interaction of age and hearing impairment on AM processing and perception.
Collapse
Affiliation(s)
- Jonathan Regev
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johannes Zaar
- Eriksholm Research Centre, Snekkersten, 3070, Denmark
| | - Helia Relaño-Iborra
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
21
|
De Clercq P, Vanthornhout J, Vandermosten M, Francart T. Beyond linear neural envelope tracking: a mutual information approach. J Neural Eng 2023; 20. [PMID: 36812597 DOI: 10.1088/1741-2552/acbe1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Objective.The human brain tracks the temporal envelope of speech, which contains essential cues for speech understanding. Linear models are the most common tool to study neural envelope tracking. However, information on how speech is processed can be lost since nonlinear relations are precluded. Analysis based on mutual information (MI), on the other hand, can detect both linear and nonlinear relations and is gradually becoming more popular in the field of neural envelope tracking. Yet, several different approaches to calculating MI are applied with no consensus on which approach to use. Furthermore, the added value of nonlinear techniques remains a subject of debate in the field. The present paper aims to resolve these open questions.Approach.We analyzed electroencephalography (EEG) data of participants listening to continuous speech and applied MI analyses and linear models.Main results.Comparing the different MI approaches, we conclude that results are most reliable and robust using the Gaussian copula approach, which first transforms the data to standard Gaussians. With this approach, the MI analysis is a valid technique for studying neural envelope tracking. Like linear models, it allows spatial and temporal interpretations of speech processing, peak latency analyses, and applications to multiple EEG channels combined. In a final analysis, we tested whether nonlinear components were present in the neural response to the envelope by first removing all linear components in the data. We robustly detected nonlinear components on the single-subject level using the MI analysis.Significance.We demonstrate that the human brain processes speech in a nonlinear way. Unlike linear models, the MI analysis detects such nonlinear relations, proving its added value to neural envelope tracking. In addition, the MI analysis retains spatial and temporal characteristics of speech processing, an advantage lost when using more complex (nonlinear) deep neural networks.
Collapse
Affiliation(s)
- Pieter De Clercq
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Jonas Vanthornhout
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
22
|
Gillis M, Kries J, Vandermosten M, Francart T. Neural tracking of linguistic and acoustic speech representations decreases with advancing age. Neuroimage 2023; 267:119841. [PMID: 36584758 PMCID: PMC9878439 DOI: 10.1016/j.neuroimage.2022.119841] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Older adults process speech differently, but it is not yet clear how aging affects different levels of processing natural, continuous speech, both in terms of bottom-up acoustic analysis and top-down generation of linguistic-based predictions. We studied natural speech processing across the adult lifespan via electroencephalography (EEG) measurements of neural tracking. GOALS Our goals are to analyze the unique contribution of linguistic speech processing across the adult lifespan using natural speech, while controlling for the influence of acoustic processing. Moreover, we also studied acoustic processing across age. In particular, we focus on changes in spatial and temporal activation patterns in response to natural speech across the lifespan. METHODS 52 normal-hearing adults between 17 and 82 years of age listened to a naturally spoken story while the EEG signal was recorded. We investigated the effect of age on acoustic and linguistic processing of speech. Because age correlated with hearing capacity and measures of cognition, we investigated whether the observed age effect is mediated by these factors. Furthermore, we investigated whether there is an effect of age on hemisphere lateralization and on spatiotemporal patterns of the neural responses. RESULTS Our EEG results showed that linguistic speech processing declines with advancing age. Moreover, as age increased, the neural response latency to certain aspects of linguistic speech processing increased. Also acoustic neural tracking (NT) decreased with increasing age, which is at odds with the literature. In contrast to linguistic processing, older subjects showed shorter latencies for early acoustic responses to speech. No evidence was found for hemispheric lateralization in neither younger nor older adults during linguistic speech processing. Most of the observed aging effects on acoustic and linguistic processing were not explained by age-related decline in hearing capacity or cognition. However, our results suggest that the effect of decreasing linguistic neural tracking with advancing age at word-level is also partially due to an age-related decline in cognition than a robust effect of age. CONCLUSION Spatial and temporal characteristics of the neural responses to continuous speech change across the adult lifespan for both acoustic and linguistic speech processing. These changes may be traces of structural and/or functional change that occurs with advancing age.
Collapse
Affiliation(s)
- Marlies Gillis
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jill Kries
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Maaike Vandermosten
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
23
|
Mesik J, Wojtczak M. The effects of data quantity on performance of temporal response function analyses of natural speech processing. Front Neurosci 2023; 16:963629. [PMID: 36711133 PMCID: PMC9878558 DOI: 10.3389/fnins.2022.963629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, temporal response function (TRF) analyses of neural activity recordings evoked by continuous naturalistic stimuli have become increasingly popular for characterizing response properties within the auditory hierarchy. However, despite this rise in TRF usage, relatively few educational resources for these tools exist. Here we use a dual-talker continuous speech paradigm to demonstrate how a key parameter of experimental design, the quantity of acquired data, influences TRF analyses fit to either individual data (subject-specific analyses), or group data (generic analyses). We show that although model prediction accuracy increases monotonically with data quantity, the amount of data required to achieve significant prediction accuracies can vary substantially based on whether the fitted model contains densely (e.g., acoustic envelope) or sparsely (e.g., lexical surprisal) spaced features, especially when the goal of the analyses is to capture the aspect of neural responses uniquely explained by specific features. Moreover, we demonstrate that generic models can exhibit high performance on small amounts of test data (2-8 min), if they are trained on a sufficiently large data set. As such, they may be particularly useful for clinical and multi-task study designs with limited recording time. Finally, we show that the regularization procedure used in fitting TRF models can interact with the quantity of data used to fit the models, with larger training quantities resulting in systematically larger TRF amplitudes. Together, demonstrations in this work should aid new users of TRF analyses, and in combination with other tools, such as piloting and power analyses, may serve as a detailed reference for choosing acquisition duration in future studies.
Collapse
Affiliation(s)
- Juraj Mesik
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
24
|
Becker R, Hervais-Adelman A. Individual theta-band cortical entrainment to speech in quiet predicts word-in-noise comprehension. Cereb Cortex Commun 2023; 4:tgad001. [PMID: 36726796 PMCID: PMC9883620 DOI: 10.1093/texcom/tgad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
Speech elicits brain activity time-locked to its amplitude envelope. The resulting speech-brain synchrony (SBS) is thought to be crucial to speech parsing and comprehension. It has been shown that higher speech-brain coherence is associated with increased speech intelligibility. However, studies depending on the experimental manipulation of speech stimuli do not allow conclusion about the causality of the observed tracking. Here, we investigate whether individual differences in the intrinsic propensity to track the speech envelope when listening to speech-in-quiet is predictive of individual differences in speech-recognition-in-noise, in an independent task. We evaluated the cerebral tracking of speech in source-localized magnetoencephalography, at timescales corresponding to the phrases, words, syllables and phonemes. We found that individual differences in syllabic tracking in right superior temporal gyrus and in left middle temporal gyrus (MTG) were positively associated with recognition accuracy in an independent words-in-noise task. Furthermore, directed connectivity analysis showed that this relationship is partially mediated by top-down connectivity from premotor cortex-associated with speech processing and active sensing in the auditory domain-to left MTG. Thus, the extent of SBS-even during clear speech-reflects an active mechanism of the speech processing system that may confer resilience to noise.
Collapse
Affiliation(s)
- Robert Becker
- Corresponding author: Neurolinguistics, Department of Psychology, University of Zurich (UZH), Zurich, Switzerland.
| | - Alexis Hervais-Adelman
- Neurolinguistics, Department of Psychology, University of Zurich, Zurich 8050, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Zurich 8057, Switzerland
| |
Collapse
|
25
|
Niesen M, Bourguignon M, Bertels J, Vander Ghinst M, Wens V, Goldman S, De Tiège X. Cortical tracking of lexical speech units in a multi-talker background is immature in school-aged children. Neuroimage 2023; 265:119770. [PMID: 36462732 DOI: 10.1016/j.neuroimage.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.
Collapse
Affiliation(s)
- Maxime Niesen
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium.
| | - Mathieu Bourguignon
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Laboratory of Neurophysiology and Movement Biomechanics, 1070 Brussels, Belgium.; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| | - Julie Bertels
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Cognition and Computation group, ULBabyLab - Consciousness, Brussels, Belgium
| | - Marc Vander Ghinst
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| | - Serge Goldman
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Nuclear Medicine, 1070 Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| |
Collapse
|
26
|
Liu Y, Luo C, Zheng J, Liang J, Ding N. Working memory asymmetrically modulates auditory and linguistic processing of speech. Neuroimage 2022; 264:119698. [PMID: 36270622 DOI: 10.1016/j.neuroimage.2022.119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Working memory load can modulate speech perception. However, since speech perception and working memory are both complex functions, it remains elusive how each component of the working memory system interacts with each speech processing stage. To investigate this issue, we concurrently measure how the working memory load modulates neural activity tracking three levels of linguistic units, i.e., syllables, phrases, and sentences, using a multiscale frequency-tagging approach. Participants engage in a sentence comprehension task and the working memory load is manipulated by asking them to memorize either auditory verbal sequences or visual patterns. It is found that verbal and visual working memory load modulate speech processing in similar manners: Higher working memory load attenuates neural activity tracking of phrases and sentences but enhances neural activity tracking of syllables. Since verbal and visual WM load similarly influence the neural responses to speech, such influences may derive from the domain-general component of WM system. More importantly, working memory load asymmetrically modulates lower-level auditory encoding and higher-level linguistic processing of speech, possibly reflecting reallocation of attention induced by mnemonic load.
Collapse
Affiliation(s)
- Yiguang Liu
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou 311121, China
| | - Cheng Luo
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Junying Liang
- Department of Linguistics, School of International Studies, Zhejiang University, Hangzhou 310058, China
| | - Nai Ding
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou 311121, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
27
|
Neurodevelopmental oscillatory basis of speech processing in noise. Dev Cogn Neurosci 2022; 59:101181. [PMID: 36549148 PMCID: PMC9792357 DOI: 10.1016/j.dcn.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension. Furthermore, while the extraction of subtler information provided by syllables matured at age 9, its maintenance in noisy backgrounds progressively matured until adulthood. Altogether, these results highlight distinct behaviorally relevant maturational trajectories for the neuronal signatures of speech perception. In accordance with grain-size proposals, neuromaturational milestones are reached increasingly late for linguistic units of decreasing size, with further delays incurred by noise.
Collapse
|
28
|
The significance of right ear auditory processing to balance. Sci Rep 2022; 12:19796. [PMID: 36396714 PMCID: PMC9672090 DOI: 10.1038/s41598-022-24020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although the association between balance and hearing thresholds at different frequencies in the right/left ear is crucial, it has received scant empirical attention. Balance is widely ignored when evaluating hearing in adults. This study examined the relative contribution of left versus right ear hearing at different frequencies to balance, and the mediating role of suprathreshold speech perception on age-balance associations. Pure tone hearing thresholds (500-4000 Hz), suprathreshold speech perception, balance, and risk of falling were evaluated in 295 adults. The results indicate that the right ear contributes more to balance than the left ear. This might imply dominance of the left hemisphere in processing hearing cues for balance. Frequencies within the speech range (500/1000/2000 Hz) were correlated with balance and mediated the interaction between age and balance. These results should be considered when tailoring hearing and balance rehabilitation programs.
Collapse
|
29
|
Gillis M, Van Canneyt J, Francart T, Vanthornhout J. Neural tracking as a diagnostic tool to assess the auditory pathway. Hear Res 2022; 426:108607. [PMID: 36137861 DOI: 10.1016/j.heares.2022.108607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
When a person listens to sound, the brain time-locks to specific aspects of the sound. This is called neural tracking and it can be investigated by analysing neural responses (e.g., measured by electroencephalography) to continuous natural speech. Measures of neural tracking allow for an objective investigation of a range of auditory and linguistic processes in the brain during natural speech perception. This approach is more ecologically valid than traditional auditory evoked responses and has great potential for research and clinical applications. This article reviews the neural tracking framework and highlights three prominent examples of neural tracking analyses: neural tracking of the fundamental frequency of the voice (f0), the speech envelope and linguistic features. Each of these analyses provides a unique point of view into the human brain's hierarchical stages of speech processing. F0-tracking assesses the encoding of fine temporal information in the early stages of the auditory pathway, i.e., from the auditory periphery up to early processing in the primary auditory cortex. Envelope tracking reflects bottom-up and top-down speech-related processes in the auditory cortex and is likely necessary but not sufficient for speech intelligibility. Linguistic feature tracking (e.g. word or phoneme surprisal) relates to neural processes more directly related to speech intelligibility. Together these analyses form a multi-faceted objective assessment of an individual's auditory and linguistic processing.
Collapse
Affiliation(s)
- Marlies Gillis
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jana Van Canneyt
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Jonas Vanthornhout
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
30
|
Weineck K, Wen OX, Henry MJ. Neural synchronization is strongest to the spectral flux of slow music and depends on familiarity and beat salience. eLife 2022; 11:e75515. [PMID: 36094165 PMCID: PMC9467512 DOI: 10.7554/elife.75515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Neural activity in the auditory system synchronizes to sound rhythms, and brain-environment synchronization is thought to be fundamental to successful auditory perception. Sound rhythms are often operationalized in terms of the sound's amplitude envelope. We hypothesized that - especially for music - the envelope might not best capture the complex spectro-temporal fluctuations that give rise to beat perception and synchronized neural activity. This study investigated (1) neural synchronization to different musical features, (2) tempo-dependence of neural synchronization, and (3) dependence of synchronization on familiarity, enjoyment, and ease of beat perception. In this electroencephalography study, 37 human participants listened to tempo-modulated music (1-4 Hz). Independent of whether the analysis approach was based on temporal response functions (TRFs) or reliable components analysis (RCA), the spectral flux of music - as opposed to the amplitude envelope - evoked strongest neural synchronization. Moreover, music with slower beat rates, high familiarity, and easy-to-perceive beats elicited the strongest neural response. Our results demonstrate the importance of spectro-temporal fluctuations in music for driving neural synchronization, and highlight its sensitivity to musical tempo, familiarity, and beat salience.
Collapse
Affiliation(s)
- Kristin Weineck
- Research Group “Neural and Environmental Rhythms”, Max Planck Institute for Empirical AestheticsFrankfurt am MainGermany
- Goethe University Frankfurt, Institute for Cell Biology and NeuroscienceFrankfurt am MainGermany
| | - Olivia Xin Wen
- Research Group “Neural and Environmental Rhythms”, Max Planck Institute for Empirical AestheticsFrankfurt am MainGermany
| | - Molly J Henry
- Research Group “Neural and Environmental Rhythms”, Max Planck Institute for Empirical AestheticsFrankfurt am MainGermany
- Department of Psychology, Toronto Metropolitan UniversityTorontoCanada
| |
Collapse
|
31
|
David W, Gransier R, Wouters J. Evaluation of phase-locking to parameterized speech envelopes. Front Neurol 2022; 13:852030. [PMID: 35989900 PMCID: PMC9382131 DOI: 10.3389/fneur.2022.852030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Humans rely on the temporal processing ability of the auditory system to perceive speech during everyday communication. The temporal envelope of speech is essential for speech perception, particularly envelope modulations below 20 Hz. In the literature, the neural representation of this speech envelope is usually investigated by recording neural phase-locked responses to speech stimuli. However, these phase-locked responses are not only associated with envelope modulation processing, but also with processing of linguistic information at a higher-order level when speech is comprehended. It is thus difficult to disentangle the responses into components from the acoustic envelope itself and the linguistic structures in speech (such as words, phrases and sentences). Another way to investigate neural modulation processing is to use sinusoidal amplitude-modulated stimuli at different modulation frequencies to obtain the temporal modulation transfer function. However, these transfer functions are considerably variable across modulation frequencies and individual listeners. To tackle the issues of both speech and sinusoidal amplitude-modulated stimuli, the recently introduced Temporal Speech Envelope Tracking (TEMPEST) framework proposed the use of stimuli with a distribution of envelope modulations. The framework aims to assess the brain's capability to process temporal envelopes in different frequency bands using stimuli with speech-like envelope modulations. In this study, we provide a proof-of-concept of the framework using stimuli with modulation frequency bands around the syllable and phoneme rate in natural speech. We evaluated whether the evoked phase-locked neural activity correlates with the speech-weighted modulation transfer function measured using sinusoidal amplitude-modulated stimuli in normal-hearing listeners. Since many studies on modulation processing employ different metrics and comparing their results is difficult, we included different power- and phase-based metrics and investigate how these metrics relate to each other. Results reveal a strong correspondence across listeners between the neural activity evoked by the speech-like stimuli and the activity evoked by the sinusoidal amplitude-modulated stimuli. Furthermore, strong correspondence was also apparent between each metric, facilitating comparisons between studies using different metrics. These findings indicate the potential of the TEMPEST framework to efficiently assess the neural capability to process temporal envelope modulations within a frequency band that is important for speech perception.
Collapse
Affiliation(s)
- Wouter David
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
32
|
Gnanateja GN, Devaraju DS, Heyne M, Quique YM, Sitek KR, Tardif MC, Tessmer R, Dial HR. On the Role of Neural Oscillations Across Timescales in Speech and Music Processing. Front Comput Neurosci 2022; 16:872093. [PMID: 35814348 PMCID: PMC9260496 DOI: 10.3389/fncom.2022.872093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
This mini review is aimed at a clinician-scientist seeking to understand the role of oscillations in neural processing and their functional relevance in speech and music perception. We present an overview of neural oscillations, methods used to study them, and their functional relevance with respect to music processing, aging, hearing loss, and disorders affecting speech and language. We first review the oscillatory frequency bands and their associations with speech and music processing. Next we describe commonly used metrics for quantifying neural oscillations, briefly touching upon the still-debated mechanisms underpinning oscillatory alignment. Following this, we highlight key findings from research on neural oscillations in speech and music perception, as well as contributions of this work to our understanding of disordered perception in clinical populations. Finally, we conclude with a look toward the future of oscillatory research in speech and music perception, including promising methods and potential avenues for future work. We note that the intention of this mini review is not to systematically review all literature on cortical tracking of speech and music. Rather, we seek to provide the clinician-scientist with foundational information that can be used to evaluate and design research studies targeting the functional role of oscillations in speech and music processing in typical and clinical populations.
Collapse
Affiliation(s)
- G. Nike Gnanateja
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dhatri S. Devaraju
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthias Heyne
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yina M. Quique
- Center for Education in Health Sciences, Northwestern University, Chicago, IL, United States
| | - Kevin R. Sitek
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Monique C. Tardif
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel Tessmer
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Heather R. Dial
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Communication Sciences and Disorders, University of Houston, Houston, TX, United States
| |
Collapse
|
33
|
Zendel BR. The importance of the motor system in the development of music-based forms of auditory rehabilitation. Ann N Y Acad Sci 2022; 1515:10-19. [PMID: 35648040 DOI: 10.1111/nyas.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing abilities decline with age, and one of the most commonly reported hearing issues in older adults is a difficulty understanding speech when there is loud background noise. Understanding speech in noise relies on numerous cognitive processes, including working memory, and is supported by numerous brain regions, including the motor and motor planning systems. Indeed, many working memory processes are supported by motor and premotor cortical regions. Interestingly, lifelong musicians and nonmusicians given music training over the course of weeks or months show an improved ability to understand speech when there is loud background noise. These benefits are associated with enhanced working memory abilities, and enhanced activity in motor and premotor cortical regions. Accordingly, it is likely that music training improves the coupling between the auditory and motor systems and promotes plasticity in these regions and regions that feed into auditory/motor areas. This leads to an enhanced ability to dynamically process incoming acoustic information, and is likely the reason that musicians and those who receive laboratory-based music training are better able to understand speech when there is background noise. Critically, these findings suggest that music-based forms of auditory rehabilitation are possible and should focus on tasks that promote auditory-motor interactions.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
34
|
Gillis M, Decruy L, Vanthornhout J, Francart T. Hearing loss is associated with delayed neural responses to continuous speech. Eur J Neurosci 2022; 55:1671-1690. [PMID: 35263814 DOI: 10.1111/ejn.15644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
We investigated the impact of hearing loss on the neural processing of speech. Using a forward modeling approach, we compared the neural responses to continuous speech of 14 adults with sensorineural hearing loss with those of age-matched normal-hearing peers. Compared to their normal-hearing peers, hearing-impaired listeners had increased neural tracking and delayed neural responses to continuous speech in quiet. The latency also increased with the degree of hearing loss. As speech understanding decreased, neural tracking decreased in both populations; however, a significantly different trend was observed for the latency of the neural responses. For normal-hearing listeners, the latency increased with increasing background noise level. However, for hearing-impaired listeners, this increase was not observed. Our results support the idea that the neural response latency indicates the efficiency of neural speech processing: more or different brain regions are involved in processing speech, which causes longer communication pathways in the brain. These longer communication pathways hamper the information integration among these brain regions, reflected in longer processing times. Altogether, this suggests decreased neural speech processing efficiency in HI listeners as more time and more or different brain regions are required to process speech. Our results suggest that this reduction in neural speech processing efficiency occurs gradually as hearing deteriorates. From our results, it is apparent that sound amplification does not solve hearing loss. Even when listening to speech in silence at a comfortable loudness, hearing-impaired listeners process speech less efficiently.
Collapse
Affiliation(s)
- Marlies Gillis
- KU Leuven, Department of Neurosciences, ExpORL, Leuven, Belgium
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | | | - Tom Francart
- KU Leuven, Department of Neurosciences, ExpORL, Leuven, Belgium
| |
Collapse
|
35
|
Schmitt R, Meyer M, Giroud N. Better speech-in-noise comprehension is associated with enhanced neural speech tracking in older adults with hearing impairment. Cortex 2022; 151:133-146. [DOI: 10.1016/j.cortex.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
|
36
|
Aldag N, Büchner A, Lenarz T, Nogueira W. Towards decoding selective attention through cochlear implant electrodes as sensors in subjects with contralateral acoustic hearing. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac4de6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives: Focusing attention on one speaker in a situation with multiple background speakers or noise is referred to as auditory selective attention. Decoding selective attention is an interesting line of research with respect to future brain-guided hearing aids or cochlear implants (CIs) that are designed to adaptively adjust sound processing through cortical feedback loops. This study investigates the feasibility of using the electrodes and backward telemetry of a CI to record electroencephalography (EEG). Approach: The study population included 6 normal-hearing (NH) listeners and 5 CI users with contralateral acoustic hearing. Cortical auditory evoked potentials (CAEP) and selective attention were recorded using a state-of-the-art high-density scalp EEG and, in the case of CI users, also using two CI electrodes as sensors in combination with the backward telemetry system of these devices (iEEG). Main results: In the selective attention paradigm with multi-channel scalp EEG the mean decoding accuracy across subjects was 94.8 % and 94.6 % for NH listeners and CI users, respectively. With single-channel scalp EEG the accuracy dropped but was above chance level in 8 to 9 out of 11 subjects, depending on the electrode montage. With the single-channel iEEG, the selective attention decoding accuracy could only be analyzed in 2 out of 5 CI users due to a loss of data in the other 3 subjects. In these 2 CI users, the selective attention decoding accuracy was above chance level. Significance: This study shows that single-channel EEG is suitable for auditory selective attention decoding, even though it reduces the decoding quality compared to a multi-channel approach. CI-based iEEG can be used for the purpose of recording CAEPs and decoding selective attention. However, the study also points out the need for further technical development for the CI backward telemetry regarding long-term recordings and the optimal sensor positions.
Collapse
|
37
|
Dikker S, Mech EN, Gwilliams L, West T, Dumas G, Federmeier KD. Exploring age-related changes in inter-brain synchrony during verbal communication. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Palana J, Schwartz S, Tager-Flusberg H. Evaluating the Use of Cortical Entrainment to Measure Atypical Speech Processing: A Systematic Review. Neurosci Biobehav Rev 2021; 133:104506. [PMID: 34942267 DOI: 10.1016/j.neubiorev.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cortical entrainment has emerged as promising means for measuring continuous speech processing in young, neurotypical adults. However, its utility for capturing atypical speech processing has not been systematically reviewed. OBJECTIVES Synthesize evidence regarding the merit of measuring cortical entrainment to capture atypical speech processing and recommend avenues for future research. METHOD We systematically reviewed publications investigating entrainment to continuous speech in populations with auditory processing differences. RESULTS In the 25 publications reviewed, most studies were conducted on older and/or hearing-impaired adults, for whom slow-wave entrainment to speech was often heightened compared to controls. Research conducted on populations with neurodevelopmental disorders, in whom slow-wave entrainment was often reduced, was less common. Across publications, findings highlighted associations between cortical entrainment and speech processing performance differences. CONCLUSIONS Measures of cortical entrainment offer useful means of capturing speech processing differences and future research should leverage them more extensively when studying populations with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Joseph Palana
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Harvard Medical School, Boston Children's Hospital, 1 Autumn Street, Boston, MA, 02215, USA
| | - Sophie Schwartz
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
39
|
Crosse MJ, Zuk NJ, Di Liberto GM, Nidiffer AR, Molholm S, Lalor EC. Linear Modeling of Neurophysiological Responses to Speech and Other Continuous Stimuli: Methodological Considerations for Applied Research. Front Neurosci 2021; 15:705621. [PMID: 34880719 PMCID: PMC8648261 DOI: 10.3389/fnins.2021.705621] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Cognitive neuroscience, in particular research on speech and language, has seen an increase in the use of linear modeling techniques for studying the processing of natural, environmental stimuli. The availability of such computational tools has prompted similar investigations in many clinical domains, facilitating the study of cognitive and sensory deficits under more naturalistic conditions. However, studying clinical (and often highly heterogeneous) cohorts introduces an added layer of complexity to such modeling procedures, potentially leading to instability of such techniques and, as a result, inconsistent findings. Here, we outline some key methodological considerations for applied research, referring to a hypothetical clinical experiment involving speech processing and worked examples of simulated electrophysiological (EEG) data. In particular, we focus on experimental design, data preprocessing, stimulus feature extraction, model design, model training and evaluation, and interpretation of model weights. Throughout the paper, we demonstrate the implementation of each step in MATLAB using the mTRF-Toolbox and discuss how to address issues that could arise in applied research. In doing so, we hope to provide better intuition on these more technical points and provide a resource for applied and clinical researchers investigating sensory and cognitive processing using ecologically rich stimuli.
Collapse
Affiliation(s)
- Michael J. Crosse
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- X, The Moonshot Factory, Mountain View, CA, United States
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Nathaniel J. Zuk
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Giovanni M. Di Liberto
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Centre for Biomedical Engineering, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
- School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Aaron R. Nidiffer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Sophie Molholm
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Edmund C. Lalor
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
40
|
Tune S, Alavash M, Fiedler L, Obleser J. Neural attentional-filter mechanisms of listening success in middle-aged and older individuals. Nat Commun 2021; 12:4533. [PMID: 34312388 PMCID: PMC8313676 DOI: 10.1038/s41467-021-24771-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Successful listening crucially depends on intact attentional filters that separate relevant from irrelevant information. Research into their neurobiological implementation has focused on two potential auditory filter strategies: the lateralization of alpha power and selective neural speech tracking. However, the functional interplay of the two neural filter strategies and their potency to index listening success in an ageing population remains unclear. Using electroencephalography and a dual-talker task in a representative sample of listeners (N = 155; age=39-80 years), we here demonstrate an often-missed link from single-trial behavioural outcomes back to trial-by-trial changes in neural attentional filtering. First, we observe preserved attentional-cue-driven modulation of both neural filters across chronological age and hearing levels. Second, neural filter states vary independently of one another, demonstrating complementary neurobiological solutions of spatial selective attention. Stronger neural speech tracking but not alpha lateralization boosts trial-to-trial behavioural performance. Our results highlight the translational potential of neural speech tracking as an individualized neural marker of adaptive listening behaviour.
Collapse
Affiliation(s)
- Sarah Tune
- Department of Psychology, University of Lübeck, Lübeck, Germany.
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| | - Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Lorenz Fiedler
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Eriksholm Research Centre, Snekkersten, Denmark
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany.
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
41
|
Van Canneyt J, Wouters J, Francart T. Cortical compensation for hearing loss, but not age, in neural tracking of the fundamental frequency of the voice. J Neurophysiol 2021; 126:791-802. [PMID: 34232756 DOI: 10.1152/jn.00156.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Auditory processing is affected by advancing age and hearing loss, but the underlying mechanisms are still unclear. We investigated the effects of age and hearing loss on temporal processing of naturalistic stimuli in the auditory system. We used a recently developed objective measure for neural phase-locking to the fundamental frequency of the voice (f0) which uses continuous natural speech as a stimulus, that is, "f0-tracking." The f0-tracking responses from 54 normal-hearing and 14 hearing-impaired adults of varying ages were analyzed. The responses were evoked by a Flemish story with a male talker and contained contributions from both subcortical and cortical sources. Results indicated that advancing age was related to smaller responses with less cortical response contributions. This is consistent with an age-related decrease in neural phase-locking ability at frequencies in the range of the f0, possibly due to decreased inhibition in the auditory system. Conversely, hearing-impaired subjects displayed larger responses compared with age-matched normal-hearing controls. This was due to additional cortical response contributions in the 38- to 50-ms latency range, which were stronger for participants with more severe hearing loss. This is consistent with hearing-loss-induced cortical reorganization and recruitment of additional neural resources to aid in speech perception.NEW & NOTEWORTHY Previous studies disagree on the effects of age and hearing loss on the neurophysiological processing of the fundamental frequency of the voice (f0), in part due to confounding effects. Using a novel electrophysiological technique, natural speech stimuli, and controlled study design, we quantified and disentangled the effects of age and hearing loss on neural f0 processing. We uncovered evidence for underlying neurophysiological mechanisms, including a cortical compensation mechanism for hearing loss, but not for age.
Collapse
Affiliation(s)
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tom Francart
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Lunner T, Alickovic E, Graversen C, Ng EHN, Wendt D, Keidser G. Three New Outcome Measures That Tap Into Cognitive Processes Required for Real-Life Communication. Ear Hear 2021; 41 Suppl 1:39S-47S. [PMID: 33105258 PMCID: PMC7676869 DOI: 10.1097/aud.0000000000000941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
To increase the ecological validity of outcomes from laboratory evaluations of hearing and hearing devices, it is desirable to introduce more realistic outcome measures in the laboratory. This article presents and discusses three outcome measures that have been designed to go beyond traditional speech-in-noise measures to better reflect realistic everyday challenges. The outcome measures reviewed are: the Sentence-final Word Identification and Recall (SWIR) test that measures working memory performance while listening to speech in noise at ceiling performance; a neural tracking method that produces a quantitative measure of selective speech attention in noise; and pupillometry that measures changes in pupil dilation to assess listening effort while listening to speech in noise. According to evaluation data, the SWIR test provides a sensitive measure in situations where speech perception performance might be unaffected. Similarly, pupil dilation has also shown sensitivity in situations where traditional speech-in-noise measures are insensitive. Changes in working memory capacity and effort mobilization were found at positive signal-to-noise ratios (SNR), that is, at SNRs that might reflect everyday situations. Using stimulus reconstruction, it has been demonstrated that neural tracking is a robust method at determining to what degree a listener is attending to a specific talker in a typical cocktail party situation. Using both established and commercially available noise reduction schemes, data have further shown that all three measures are sensitive to variation in SNR. In summary, the new outcome measures seem suitable for testing hearing and hearing devices under more realistic and demanding everyday conditions than traditional speech-in-noise tests.
Collapse
Affiliation(s)
- Thomas Lunner
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
- Department of Electrical Engineering, Division Automatic Control, Linköping University, Linköping, Sweden
- Department of Health Technology, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Emina Alickovic
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Electrical Engineering, Division Automatic Control, Linköping University, Linköping, Sweden
| | | | - Elaine Hoi Ning Ng
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
- Oticon A/S, Kongebakken, Denmark
| | - Dorothea Wendt
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Health Technology, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Gitte Keidser
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Keidser G, Naylor G, Brungart DS, Caduff A, Campos J, Carlile S, Carpenter MG, Grimm G, Hohmann V, Holube I, Launer S, Lunner T, Mehra R, Rapport F, Slaney M, Smeds K. The Quest for Ecological Validity in Hearing Science: What It Is, Why It Matters, and How to Advance It. Ear Hear 2021; 41 Suppl 1:5S-19S. [PMID: 33105255 PMCID: PMC7676618 DOI: 10.1097/aud.0000000000000944] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 12/03/2022]
Abstract
Ecological validity is a relatively new concept in hearing science. It has been cited as relevant with increasing frequency in publications over the past 20 years, but without any formal conceptual basis or clear motive. The sixth Eriksholm Workshop was convened to develop a deeper understanding of the concept for the purpose of applying it in hearing research in a consistent and productive manner. Inspired by relevant debate within the field of psychology, and taking into account the World Health Organization's International Classification of Functioning, Disability, and Health framework, the attendees at the workshop reached a consensus on the following definition: "In hearing science, ecological validity refers to the degree to which research findings reflect real-life hearing-related function, activity, or participation." Four broad purposes for striving for greater ecological validity in hearing research were determined: A (Understanding) better understanding the role of hearing in everyday life; B (Development) supporting the development of improved procedures and interventions; C (Assessment) facilitating improved methods for assessing and predicting ability to accomplish real-world tasks; and D (Integration and Individualization) enabling more integrated and individualized care. Discussions considered the effects of variables and phenomena commonly present in hearing-related research on the level of ecological validity of outcomes, supported by examples from a few selected outcome domains and for different types of studies. Illustrated with examples, potential strategies were offered for promoting a high level of ecological validity in a study and for how to evaluate the level of ecological validity of a study. Areas in particular that could benefit from more research to advance ecological validity in hearing science include: (1) understanding the processes of hearing and communication in everyday listening situations, and specifically the factors that make listening difficult in everyday situations; (2) developing new test paradigms that include more than one person (e.g., to encompass the interactive nature of everyday communication) and that are integrative of other factors that interact with hearing in real-life function; (3) integrating new and emerging technologies (e.g., virtual reality) with established test methods; and (4) identifying the key variables and phenomena affecting the level of ecological validity to develop verifiable ways to increase ecological validity and derive a set of benchmarks to strive for.
Collapse
Affiliation(s)
- Gitte Keidser
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
| | - Graham Naylor
- Hearing Sciences—Scottish Section, School of Medicine, University of Nottingham, Glasgow, United Kingdom
| | | | - Andreas Caduff
- Applied Physics Department and the Center for Electromagnetic Research and Characterization, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jennifer Campos
- KITE—Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Simon Carlile
- School of Medical Sciences, University of Sydney, Sydney, Australia
- X-The Moonshot Factory, Mountain View, California, USA
| | - Mark G. Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Giso Grimm
- Auditory Signal Processing and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
| | - Volker Hohmann
- Auditory Signal Processing and Cluster of Excellence “Hearing4all”, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
| | - Inga Holube
- Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, and Cluster of Excellence “Hearing4all”, Oldenburg, Germany
| | - Stefan Launer
- Department of Science and Technology, Sonova AG, Staefa, Switzerland
| | - Thomas Lunner
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
| | - Ravish Mehra
- Facebook Reality Labs Research, Redmond, Washington, DC, USA
| | - Frances Rapport
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Malcolm Slaney
- Machine Hearing Group, Google Research, Mountain View, California, USA
| | | |
Collapse
|
44
|
Van Canneyt J, Wouters J, Francart T. Neural tracking of the fundamental frequency of the voice: The effect of voice characteristics. Eur J Neurosci 2021; 53:3640-3653. [DOI: 10.1111/ejn.15229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Jan Wouters
- ExpORL Department of Neurosciences KU Leuven Leuven Belgium
| | - Tom Francart
- ExpORL Department of Neurosciences KU Leuven Leuven Belgium
| |
Collapse
|
45
|
Mesik J, Ray L, Wojtczak M. Effects of Age on Cortical Tracking of Word-Level Features of Continuous Competing Speech. Front Neurosci 2021; 15:635126. [PMID: 33867920 PMCID: PMC8047075 DOI: 10.3389/fnins.2021.635126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/12/2021] [Indexed: 01/17/2023] Open
Abstract
Speech-in-noise comprehension difficulties are common among the elderly population, yet traditional objective measures of speech perception are largely insensitive to this deficit, particularly in the absence of clinical hearing loss. In recent years, a growing body of research in young normal-hearing adults has demonstrated that high-level features related to speech semantics and lexical predictability elicit strong centro-parietal negativity in the EEG signal around 400 ms following the word onset. Here we investigate effects of age on cortical tracking of these word-level features within a two-talker speech mixture, and their relationship with self-reported difficulties with speech-in-noise understanding. While undergoing EEG recordings, younger and older adult participants listened to a continuous narrative story in the presence of a distractor story. We then utilized forward encoding models to estimate cortical tracking of four speech features: (1) word onsets, (2) "semantic" dissimilarity of each word relative to the preceding context, (3) lexical surprisal for each word, and (4) overall word audibility. Our results revealed robust tracking of all features for attended speech, with surprisal and word audibility showing significantly stronger contributions to neural activity than dissimilarity. Additionally, older adults exhibited significantly stronger tracking of word-level features than younger adults, especially over frontal electrode sites, potentially reflecting increased listening effort. Finally, neuro-behavioral analyses revealed trends of a negative relationship between subjective speech-in-noise perception difficulties and the model goodness-of-fit for attended speech, as well as a positive relationship between task performance and the goodness-of-fit, indicating behavioral relevance of these measures. Together, our results demonstrate the utility of modeling cortical responses to multi-talker speech using complex, word-level features and the potential for their use to study changes in speech processing due to aging and hearing loss.
Collapse
Affiliation(s)
- Juraj Mesik
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
46
|
Kurthen I, Galbier J, Jagoda L, Neuschwander P, Giroud N, Meyer M. Selective attention modulates neural envelope tracking of informationally masked speech in healthy older adults. Hum Brain Mapp 2021; 42:3042-3057. [PMID: 33783913 PMCID: PMC8193518 DOI: 10.1002/hbm.25415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/07/2022] Open
Abstract
Speech understanding in noisy situations is compromised in old age. This study investigated the energetic and informational masking components of multi‐talker babble noise and their influence on neural tracking of the speech envelope in a sample of healthy older adults. Twenty‐three older adults (age range 65–80 years) listened to an audiobook embedded in noise while their electroencephalogram (EEG) was recorded. Energetic masking was manipulated by varying the signal‐to‐noise ratio (SNR) between target speech and background talkers and informational masking was manipulated by varying the number of background talkers. Neural envelope tracking was measured by calculating temporal response functions (TRFs) between speech envelope and EEG. Number of background talkers, but not SNR modulated the amplitude of an earlier (around 50 ms time lag) and a later (around 300 ms time lag) peak in the TRFs. Selective attention, but not working memory or peripheral hearing additionally modulated the amplitude of the later TRF peak. Finally, amplitude of the later TRF peak was positively related to accuracy in the comprehension task. The results suggest that stronger envelope tracking is beneficial for speech‐in‐noise understanding and that selective attention is an important ability supporting speech‐in‐noise understanding in multi‐talker scenes.
Collapse
Affiliation(s)
- Ira Kurthen
- Developmental Psychology: Infancy and Childhood, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jolanda Galbier
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Laura Jagoda
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Pia Neuschwander
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Phonetics and Speech Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,Cognitive Psychology Unit, Institute of Psychology, University of Klagenfurt, Klagenfurt, Austria.,University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Kim S, Schwalje AT, Liu AS, Gander PE, McMurray B, Griffiths TD, Choi I. Pre- and post-target cortical processes predict speech-in-noise performance. Neuroimage 2021; 228:117699. [PMID: 33387631 PMCID: PMC8291856 DOI: 10.1016/j.neuroimage.2020.117699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding speech in noise (SiN) is a complex task that recruits multiple cortical subsystems. There is a variance in individuals' ability to understand SiN that cannot be explained by simple hearing profiles, which suggests that central factors may underlie the variance in SiN ability. Here, we elucidated a few cortical functions involved during a SiN task and their contributions to individual variance using both within- and across-subject approaches. Through our within-subject analysis of source-localized electroencephalography, we investigated how acoustic signal-to-noise ratio (SNR) alters cortical evoked responses to a target word across the speech recognition areas, finding stronger responses in left supramarginal gyrus (SMG, BA40 the dorsal lexicon area) with quieter noise. Through an individual differences approach, we found that listeners show different neural sensitivity to the background noise and target speech, reflected in the amplitude ratio of earlier auditory-cortical responses to speech and noise, named as an internal SNR. Listeners with better internal SNR showed better SiN performance. Further, we found that the post-speech time SMG activity explains a further amount of variance in SiN performance that is not accounted for by internal SNR. This result demonstrates that at least two cortical processes contribute to SiN performance independently: pre-target time processing to attenuate neural representation of background noise and post-target time processing to extract information from speech sounds.
Collapse
Affiliation(s)
- Subong Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Adam T Schwalje
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Andrew S Liu
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Bob McMurray
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Inyong Choi
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
48
|
Intskirveli I, Metherate R. Nicotine Enhances Amplitude and Consistency of Timing of Responses to Acoustic Trains in A1. Front Neural Circuits 2021; 15:597401. [PMID: 33679335 PMCID: PMC7935554 DOI: 10.3389/fncir.2021.597401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic nicotine enhances neural processing in primary auditory cortex (A1) as determined using tone-evoked, current-source density (CSD) measurements. For example, nicotine enhances the characteristic frequency (CF)-evoked current sink in layer 4 of A1, increasing amplitude and decreasing latency. However, since presenting auditory stimuli within a stream of stimuli increases the complexity of response dynamics, we sought to determine the effects of nicotine on CSD responses to trains of CF stimuli (one-second trains at 2–40 Hz; each train repeated 25 times). CSD recordings were obtained using a 16-channel multiprobe inserted in A1 of urethane/xylazine-anesthetized mice, and analysis focused on two current sinks in the middle (layer 4) and deep (layers 5/6) layers. CF trains produced adaptation of the layer 4 response that was weak at 2 Hz, stronger at 5–10 Hz and complete at 20–40 Hz. In contrast, the layer 5/6 current sink exhibited less adaptation at 2–10 Hz, and simultaneously recorded auditory brainstem responses (ABRs) showed no adaptation even at 40 Hz. Systemic nicotine (2.1 mg/kg) enhanced layer 4 responses throughout the one-second stimulus train at rates ≤10 Hz. Nicotine enhanced both response amplitude within each train and the consistency of response timing across 25 trials. Nicotine did not alter the degree of adaptation over one-second trials, but its effect to increase amplitudes revealed a novel, slower form of adaptation that developed over multiple trials. Nicotine did not affect responses that were fully adapted (20–40 Hz trains), nor did nicotine affect any aspect of the layer 5/6 current sink or ABRs. The overall effect of nicotine in layer 4 was to enhance all responses within each train, to emphasize earlier trials across multiple trials, and to improve the consistency of timing across all trials. These effects may improve processing of complex acoustic streams, including speech, that contain information in the 2–10 Hz range.
Collapse
Affiliation(s)
- Irakli Intskirveli
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
49
|
Verschueren E, Vanthornhout J, Francart T. The effect of stimulus intensity on neural envelope tracking. Hear Res 2021; 403:108175. [PMID: 33494033 DOI: 10.1016/j.heares.2021.108175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Objectives In recent years, there has been significant interest in recovering the temporal envelope of a speech signal from the neural response to investigate neural speech processing. The research focus is now broadening from neural speech processing in normal-hearing listeners towards hearing-impaired listeners. When testing hearing-impaired listeners, speech has to be amplified to resemble the effect of a hearing aid and compensate for peripheral hearing loss. Today it is not known with certainty how or if neural speech tracking is influenced by sound amplification. As these higher intensities could influence the outcome, we investigated the influence of stimulus intensity on neural speech tracking. Design We recorded the electroencephalogram (EEG) of 20 normal-hearing participants while they listened to a narrated story. The story was presented at intensities from 10 to 80 dB A. To investigate the brain responses, we analyzed neural tracking of the speech envelope by reconstructing the envelope from the EEG using a linear decoder and by correlating the reconstructed with the actual envelope. We investigated the delta (0.5-4 Hz) and the theta (4-8 Hz) band for each intensity. We also investigated the latencies and amplitudes of the responses in more detail using temporal response functions, which are the estimated linear response functions between the stimulus envelope and the EEG. Results Neural envelope tracking is dependent on stimulus intensity in both the TRF and envelope reconstruction analysis. However, provided that the decoder is applied to the same stimulus intensity as it was trained on, envelope reconstruction is robust to stimulus intensity. Besides, neural envelope tracking in the delta (but not theta) band seems to relate to speech intelligibility. Similar to the linear decoder analysis, TRF amplitudes and latencies are dependent on stimulus intensity: The amplitude of peak 1 (30-50 ms) increases, and the latency of peak 2 (140-160 ms) decreases with increasing stimulus intensity. Conclusion Although brain responses are influenced by stimulus intensity, neural envelope tracking is robust to stimulus intensity when using the same intensity to test and train the decoder. Therefore we can assume that intensity will not be a confounder when testing hearing-impaired participants with amplified speech using the linear decoder approach. In addition, neural envelope tracking in the delta band appears to be correlated with speech intelligibility, showing the potential of neural envelope tracking as an objective measure of speech intelligibility.
Collapse
Affiliation(s)
- Eline Verschueren
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven - University of Leuven, Herestraat 49, bus 721, Leuven 3000, Belgium.
| | - Jonas Vanthornhout
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven - University of Leuven, Herestraat 49, bus 721, Leuven 3000, Belgium
| | - Tom Francart
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven - University of Leuven, Herestraat 49, bus 721, Leuven 3000, Belgium
| |
Collapse
|
50
|
Abstract
Speech processing in the human brain is grounded in non-specific auditory processing in the general mammalian brain, but relies on human-specific adaptations for processing speech and language. For this reason, many recent neurophysiological investigations of speech processing have turned to the human brain, with an emphasis on continuous speech. Substantial progress has been made using the phenomenon of "neural speech tracking", in which neurophysiological responses time-lock to the rhythm of auditory (and other) features in continuous speech. One broad category of investigations concerns the extent to which speech tracking measures are related to speech intelligibility, which has clinical applications in addition to its scientific importance. Recent investigations have also focused on disentangling different neural processes that contribute to speech tracking. The two lines of research are closely related, since processing stages throughout auditory cortex contribute to speech comprehension, in addition to subcortical processing and higher order and attentional processes.
Collapse
Affiliation(s)
- Christian Brodbeck
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, U.S.A
| | - Jonathan Z. Simon
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, U.S.A
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, U.S.A
- Department of Biology, University of Maryland, College Park, Maryland 20742, U.S.A
| |
Collapse
|