1
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. iScience 2024; 27:109652. [PMID: 38650988 PMCID: PMC11033178 DOI: 10.1016/j.isci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.
Collapse
Affiliation(s)
- Kurt M. Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Tabitha H. Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Matilde Castro
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Yasmin Padovan-Hernandez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - David J. Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Patricia H. Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
- Johns Hopkins University Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
2
|
Edwards T, Bouyoucos IA, Hasler CT, Fry M, Anderson WG. Understanding olfactory and behavioural responses to dietary cues in age-1 lake sturgeon Acipenser fulvescens. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111560. [PMID: 38056556 DOI: 10.1016/j.cbpa.2023.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Detection of environmental cues is essential for all vertebrates and is typically established by the olfactory epithelium and olfactory sensory neurons (OSNs). In fishes, microvillous and ciliated OSNs are the principal types, typically detecting amino acids and bile salts, respectively. Activation of OSN receptors by specific ligands initiate downstream signal processing often leading to behavioural responses. In this study we used electrophysiological and behavioural techniques to evaluate olfactory detection and behaviour in juvenile lake sturgeon Acipenser fulvescens in response to hatchery- and natural dietary cues. We hypothesized that electro-olfactogram (EOG) and behavioural responses would be dependent on diet type. We predicted that inhibition of the phospholipase C/inositol 1,4,5-triphosphate (PLC/IP3) secondary transduction pathway would reduce EOG responses to dietary cues and, inhibition of the adenylyl cyclase/adenosine 3,5-cyclic monophosphate (cAMP) pathway, would have no effect. Furthermore, we predicted a strong EOG response would be manifested in a change in behaviour. We observed that both the PLC/IP3 and cAMP pathways were significantly involved in the detection of dietary cues. However, EOG responses did not manifest to behavioural responses, although the foraging activity to the hatchery cue was significantly greater compared to the control. Our results support the notion that lake sturgeon raised in a hatchery and fed a commercial pelleted diet may become accustomed to it prior to release into the wild. Further, this study suggests that, in conservation aquaculture settings, lake sturgeon should be exposed to natural dietary cues prior to release as one strategy to promote food recognition.
Collapse
Affiliation(s)
- Tyler Edwards
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada.
| | - Ian A Bouyoucos
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| | - Caleb T Hasler
- The University of Winnipeg, Department of Biology, 515 Portage Ave Winnipeg, Manitoba R3B 2E9, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| | - W Gary Anderson
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
3
|
Perturbation of amygdala/somatostatin-nucleus of the solitary tract projections reduces sensitivity to quinine in a brief-access test. Brain Res 2022; 1783:147838. [PMID: 35182570 PMCID: PMC8950164 DOI: 10.1016/j.brainres.2022.147838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Neural processing in the nucleus of the solitary tract (NST) is critical for concentration-dependent intake of normally preferred and avoided taste stimuli (e.g. affective responding); and is influenced by descending input from numerous forebrain regions. In one region, the central nucleus of the amygdala (CeA), a subpopulation of neurons that project to the NST express the neuropeptide somatostatin (Sst). The present study investigated whether this CeA/Sst-to-NST pathway contributes to concentration-dependent intake of sucrose and quinine hydrochloride (QHCl) solutions using brief-access lick trials (5s). In both female and male mice, we used virus-based optogenetic tools and laser light illumination to manipulate the activity of CeA/Sst neurons that project to the NST. During light-induced inhibition of CeA/Sst-to-NST neurons, mice licked significantly more to our three highest concentrations of QHCl compared to control mice, while sucrose intake was unaffected. Interestingly, light-induced activation of this descending pathway did not influence licking of either sucrose or QHCl. These findings suggest that the CeA/Sst-to-NST pathway must be active for normal affective responding to an exemplary aversive taste stimulus.
Collapse
|
4
|
Lin JY, Mukherjee N, Bernstein MJ, Katz DB. Perturbation of amygdala-cortical projections reduces ensemble coherence of palatability coding in gustatory cortex. eLife 2021; 10:e65766. [PMID: 34018924 PMCID: PMC8139825 DOI: 10.7554/elife.65766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Taste palatability is centrally involved in consumption decisions-we ingest foods that taste good and reject those that don't. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. To probe this issue, we discretely perturbed (with optogenetics) activity in rats' BLA→GC axons during taste deliveries. This perturbation strongly altered GC taste responses, but while the perturbation itself was tonic (2.5 s), the alterations were not-changes preferentially aligned with the onset times of previously-described taste response epochs, and reduced evidence of palatability-related activity in the 'late-epoch' of the responses without reducing the amount of taste identity information available in the 'middle epoch.' Finally, BLA→GC perturbations changed behavior-linked taste response dynamics themselves, distinctively diminishing the abruptness of ensemble transitions into the late epoch. These results suggest that BLA 'organizes' behavior-related GC taste dynamics.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Narendra Mukherjee
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Max J Bernstein
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
5
|
Bartonjo JJ, Lundy RF. Distinct Populations of Amygdala Somatostatin-Expressing Neurons Project to the Nucleus of the Solitary Tract and Parabrachial Nucleus. Chem Senses 2021; 45:687-698. [PMID: 32940663 DOI: 10.1093/chemse/bjaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rostral forebrain structures, such as the central nucleus of the amygdala (CeA), send projections to the nucleus of the solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence might originate from a shared or distinct population of neurons marked by expression of somatostatin (Sst). In Sst-reporter mice, the retrograde tracers' cholera toxin subunit B AlexaFluor-488 and -647 conjugates were injected into the taste-responsive regions of the NST and the ipsilateral PBN. In Sst-cre mice, the cre-dependent retrograde tracers' enhanced yellow fluorescent protein Herpes Simplex Virus (HSV) and mCherry fluorescent protein HSV were injected into the NST and the ipsilateral PBN. The results showed that ~40% of CeA-to-PBN neurons expressed Sst compared with ~ 23% of CeA-to-NST neurons. For both the CeA Sst-positive and -negative populations, the vast majority projected to the NST or PBN but not both nuclei. Thus, a subset of CeA-to-NST and CeA-to-PBN neurons are marked by Sst expression and are largely distinct from one another. Separate populations of CeA/Sst neurons projecting to the NST and PBN suggest that differential modulation of taste processing might, in part, rely on differences in local brainstem/forebrain synaptic connections.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
6
|
Jarvie BC, Chen JY, King HO, Palmiter RD. Satb2 neurons in the parabrachial nucleus mediate taste perception. Nat Commun 2021. [PMID: 33431851 DOI: 10.1038/s41467‐020‐20100‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neural circuitry mediating taste has been mapped out from the periphery to the cortex, but genetic identity of taste-responsive neurons has remained elusive. Here, we describe a population of neurons in the gustatory region of the parabrachial nucleus that express the transcription factor Satb2 and project to taste-associated regions, including the gustatory thalamus and insular cortex. Using calcium imaging in awake, freely licking mice, we show that Satb2 neurons respond to the five basic taste modalities. Optogenetic activation of these neurons enhances taste preferences, whereas chronic inactivation decreases the magnitude of taste preferences in both brief- and long-access taste tests. Simultaneous inactivation of Satb2 and calcitonin gene-related peptide neurons in the PBN abolishes responses to aversive tastes. These data suggest that taste information in the parabrachial nucleus is conveyed by multiple populations of neurons, including both Satb2 and calcitonin gene-related peptide neurons.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Jane Y Chen
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Hunter O King
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA. .,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Jarvie BC, Chen JY, King HO, Palmiter RD. Satb2 neurons in the parabrachial nucleus mediate taste perception. Nat Commun 2021; 12:224. [PMID: 33431851 PMCID: PMC7801645 DOI: 10.1038/s41467-020-20100-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
The neural circuitry mediating taste has been mapped out from the periphery to the cortex, but genetic identity of taste-responsive neurons has remained elusive. Here, we describe a population of neurons in the gustatory region of the parabrachial nucleus that express the transcription factor Satb2 and project to taste-associated regions, including the gustatory thalamus and insular cortex. Using calcium imaging in awake, freely licking mice, we show that Satb2 neurons respond to the five basic taste modalities. Optogenetic activation of these neurons enhances taste preferences, whereas chronic inactivation decreases the magnitude of taste preferences in both brief- and long-access taste tests. Simultaneous inactivation of Satb2 and calcitonin gene-related peptide neurons in the PBN abolishes responses to aversive tastes. These data suggest that taste information in the parabrachial nucleus is conveyed by multiple populations of neurons, including both Satb2 and calcitonin gene-related peptide neurons.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Jane Y Chen
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Hunter O King
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Lundy R. Comparison of GABA, Somatostatin, and Corticotrophin-Releasing Hormone Expression in Axon Terminals That Target the Parabrachial Nucleus. Chem Senses 2020; 45:275-282. [PMID: 32107535 DOI: 10.1093/chemse/bjaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. Some sources of descending input such as the central nucleus of the amygdala (CeA) might utilize somatostatin (Sst) and/or corticotrophin-releasing hormone (Crh) to influence taste processing in the PBN (Panguluri S, Saggu S, Lundy R. 2009. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 1298:57-69; Magableh A, Lundy R. 2014. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 39:673-682). Since the predominate effect of CeA stimulation on PBN taste-evoked responses is inhibition, this study used transgenic reporter lines (Sst/TdTomato and Crh/TdTomato) and electron microscopy to assess Sst/gamma aminobutyric acid (GABA) and Crh/GABA coexpression in axon terminals within the PBN. Robust expression of Sst and Crh axon terminals was observed in the PBN. The majority of Sst-positive axon terminals were positive for GABA expression, while the majority of Crh terminals were not. The results indicate that Sst-expressing neurons, but not Crh neurons, are a source of GABAergic input to the PBN. To assess whether the CeA is a source of GABAergic input to the PBN, the CeA of Sst-cre mice was injected with cre-dependent enhanced yellow fluorescent protein (EYFP) virus and PBN tissue processed for GABA and EYFP expression. Again, the majority of EYFP Sst-positive axon terminals in the PBN coexpressed GABA. Together, the present results suggest that CeA neurons marked by Sst expression represent a major extrinsic source of GABAergic input to the PBN and this could underlie the predominate inhibitory effect of CeA stimulation on taste-evoked responses in the PBN.
Collapse
Affiliation(s)
- Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., HSC A, rm 1003, Louisville, KY, USA
| |
Collapse
|
9
|
Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, Jiang L, Yu L, Zhuo M, Qiu S. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020; 11:640. [PMID: 32005806 PMCID: PMC6994462 DOI: 10.1038/s41467-020-14281-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII+ (aICCamKII) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aICCamKII neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aICCamKII neurons project directly to the vGluT2+ neurons in the lateral hypothalamus (LH), and the right-side aICCamKII-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior.
Collapse
Affiliation(s)
- Yu Wu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Changwan Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ming Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Kai Qian
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Xinyou Lv
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Haiting Wang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lifei Jiang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lina Yu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Shuang Qiu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci 2019; 19:302-316. [PMID: 29662204 DOI: 10.1038/nrn.2018.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wide range of maternal exposures - undernutrition, obesity, diabetes, stress and infection - are associated with an increased risk of metabolic disease in offspring. Developmental influences can cause persistent structural changes in hypothalamic circuits regulating food intake in the service of energy balance. The physiological relevance of these alterations has been called into question because maternal impacts on daily caloric intake do not persist to adulthood. Recent behavioural and epidemiological studies in humans provide evidence that the relative contribution of appetitive traits related to satiety, reward and the emotional aspects of food intake regulation changes across the lifespan. This Opinion article outlines a neurodevelopmental framework to explore the possibility that crosstalk between developing circuits regulating different modalities of food intake shapes future behavioural responses to environmental challenges.
Collapse
|
11
|
Mukherjee N, Wachutka J, Katz DB. Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics. eLife 2019; 8:e45968. [PMID: 31232693 PMCID: PMC6625792 DOI: 10.7554/elife.45968] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Sensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former via a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they preceded the action-related transition - thus, the same perturbation impacted behavior or not, depending on the transition latency in that particular trial. Our results suggest a distributed attractor network model of taste processing, and a dynamical role for cortex in driving motor behavior.
Collapse
Affiliation(s)
- Narendra Mukherjee
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Donald B Katz
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| |
Collapse
|
12
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
13
|
Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 2018; 27:42-56. [PMID: 29107504 PMCID: PMC5762260 DOI: 10.1016/j.cmet.2017.09.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain's reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes-those controlling homeostatic and hedonic feeding-are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding.
Collapse
|
14
|
c-Fos expression in the parabrachial nucleus following intraoral bitter stimulation in the rat with dietary-induced zinc deficiency. Brain Res 2017; 1659:1-7. [DOI: 10.1016/j.brainres.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 11/21/2022]
|
15
|
Abstract
The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147;
| | - Anne-Kathrin Eiselt
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147;
| |
Collapse
|
16
|
Martin LJ, Sollars SI. Contributory role of sex differences in the variations of gustatory function. J Neurosci Res 2016; 95:594-603. [DOI: 10.1002/jnr.23819] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Louis J. Martin
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| | - Suzanne I. Sollars
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| |
Collapse
|
17
|
Baez-Santiago MA, Reid EE, Moran A, Maier JX, Marrero-Garcia Y, Katz DB. Dynamic taste responses of parabrachial pontine neurons in awake rats. J Neurophysiol 2016; 115:1314-23. [PMID: 26792879 DOI: 10.1152/jn.00311.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 12/29/2022] Open
Abstract
The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively "dynamics free." On the other hand, the majority of the input to PbN descends from forebrain regions such as gustatory cortex (GC), which processes tastes with "temporal codes" in which firing reflects first the presence, then the identity, and finally the desirability of the stimulus. Therefore a reasonable alternative hypothesis is that PbN responses might be dominated by dynamics similar to those observed in GC. Here we examined simultaneously recorded single-neuron PbN (and GC) responses in awake rats receiving exposure to basic taste stimuli. We found that pontine taste responses were almost entirely confined to canonically identified taste-PbN (t-PbN). Taste-specificity was found, furthermore, to be time varying in a larger percentage of these t-PbN responses than in responses recorded from the tissue around PbN (including non-taste-PbN). Finally, these time-varying properties were a good match for those observed in simultaneously recorded GC neurons-taste-specificity appeared after an initial nonspecific burst of action potentials, and palatability emerged several hundred milliseconds later. These results suggest that the pontine taste relay is closely allied with the dynamic taste processing performed in forebrain.
Collapse
Affiliation(s)
- Madelyn A Baez-Santiago
- Biology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts;
| | - Emily E Reid
- Psychology Department, Brandeis University, Waltham, Massachusetts
| | - Anan Moran
- Psychology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts; Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; and
| | - Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Donald B Katz
- Biology Department, Brandeis University, Waltham, Massachusetts; Psychology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
18
|
|
19
|
Li CS, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster. J Neurophysiol 2015; 113:3778-86. [PMID: 25744880 DOI: 10.1152/jn.00362.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/04/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois; Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Heilongjiang, People's Republic of China
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, People's Republic of China; and
| | - Young K Cho
- Department of Physiology and Neuroscience, College of Dentistry, and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
20
|
Neurotensin: revealing a novel neuromodulator circuit in the nucleus accumbens–parabrachial nucleus projection of the domestic chick. Brain Struct Funct 2014; 221:605-16. [DOI: 10.1007/s00429-014-0928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
|
21
|
Magableh A, Lundy R. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 2014; 39:673-82. [PMID: 25086873 DOI: 10.1093/chemse/bju038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pontine parabrachial nucleus (PBN) receives substantial descending input from higher order forebrain regions that exerts inhibitory and excitatory influences on taste-evoked responses. Somatostatin (Sst) and corticotrophin releasing hormone (Crh) reporter mice were used in conjunction with injection of the retrograde tracer CTb-488 into the caudal PBN to determine the extent to which Sst and Crh cell types contribute to the descending pathways originating in the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). Five to 7 days following injections, the animals were euthanized and tissue sections prepared for confocal microscopy. Crh cell types in each forebrain site except IC project to the PBN with the greatest percentage originating in the BNST. For Sst cell types, the largest percentage of double-labeled cells was found in the CeA followed by the BNST. Few retrogradely labeled cells in the LH coexpressed Sst, whereas no double-labeled cells were observed in IC. The present results suggest that Sst and Crh cell types are a substantial component of the descending pathways from the amygdala and/or BNST to the PBN and are positioned to exert neuromodulatory effects on central taste processing.
Collapse
Affiliation(s)
- Ali Magableh
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
22
|
Tokita K, Armstrong WE, St John SJ, Boughter JD. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli. Front Neural Circuits 2014; 8:86. [PMID: 25120438 PMCID: PMC4114292 DOI: 10.3389/fncir.2014.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl). Fos-like immunoreactivity (FLI) was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose) and bitter (0.003 M quinine) compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.
Collapse
Affiliation(s)
- Kenichi Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
23
|
Maeda N, Kobashi M, Mitoh Y, Fujita M, Minagi S, Matsuo R. Differential involvement of two cortical masticatory areas in submandibular salivary secretion in rats. Brain Res 2013; 1543:200-8. [PMID: 24309141 DOI: 10.1016/j.brainres.2013.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 01/01/2023]
Abstract
To evaluate the role of the masticatory area in the cerebral cortex in the masticatory-salivary reflex, we investigated submandibular salivary secretion, jaw-movement trajectory and electromyographic activity of the jaw-opener (digastric) and jaw-closer (masseter) muscles evoked by repetitive electrical stimulation of the cortical masticatory area in anesthetized rats. Rats have two cortical masticatory areas: the anterior area (A-area) in the orofacial motor cortex, and the posterior area (P-area) in the insular cortex. Our defined P-area extended more caudally than the previous reported one. P-area stimulation induced vigorous salivary secretion (about 20 µl/min) and rhythmical jaw movements (3-4 Hz) resembling masticatory movements. Salivary flow persisted even after minimizing jaw movements by curarization. A-area stimulation induced small and fast rhythmical jaw movements (6-8 Hz) resembling licking of solutions, but not salivary secretion. These findings suggest that P-area controls salivary secretion as well as mastication, and may be involved in the masticatory-salivary reflex.
Collapse
Affiliation(s)
- Naoto Maeda
- Department of Occlusal and Oral Functional Rehabilitation, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Motoi Kobashi
- Department of Oral Physiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Masako Fujita
- Department of Oral Physiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shogo Minagi
- Department of Occlusal and Oral Functional Rehabilitation, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Ryuji Matsuo
- Department of Oral Physiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
24
|
Dayawansa S, Ruch S, Norgren R. Parabrachial-hypothalamic interactions are required for normal conditioned taste aversions. Am J Physiol Regul Integr Comp Physiol 2013; 306:R190-200. [PMID: 24259462 DOI: 10.1152/ajpregu.00333.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats with bilateral excitotoxic lesions of the parabrachial nuclei (PBN) fail to acquire a conditioned taste aversion (CTA), yet they retain the ability to express a CTA learned prior to incurring the damage. Rats with bilateral electrolytic lesions of the lateral hypothalamus (LH) also have CTA learning deficits. The PBN have reciprocal neural connections with the LH. This suggests that these CTA deficits may be functionally related. Electrolytic lesions damage fibers of passage, as well as intrinsic neurons. Thus, these LH lesions might also interrupt reciprocal connections between the PBN and other ventral forebrain areas, such as the amygdala and bed nucleus of the stria terminalis. To distinguish the source of the LH-lesion deficit, we tested for CTA first after bilateral excitotoxic lesions of LH and subsequently with a second set of animals that had asymmetric excitotoxic PBN and LH lesions. The rats with bilateral excitotoxic LH lesions showed deficits when acquiring a postlesion CTA. The asymmetrical PBN-LH lesions not only slowed acquisition of a CTA but also sped up extinction. This implies that interaction between the two structures, at minimum, facilitates CTA learning and may have a role in its consolidation.
Collapse
Affiliation(s)
- Samantha Dayawansa
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | |
Collapse
|
25
|
Riley CA, King MS. Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos-immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats. Chem Senses 2013; 38:705-17. [PMID: 23978688 PMCID: PMC3777562 DOI: 10.1093/chemse/bjt039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Projections from the central amygdala (CeA) and lateral hypothalamus (LH) modulate the activity of gustatory brainstem neurons, however, the role of these projections in gustatory behaviors is unclear. The goal of the current study was to determine the effects of electrical stimulation of the CeA or LH on unconditioned taste reactivity (TR) behaviors in response to intra-oral infusion of tastants. In conscious rats, electrical stimulation of the CeA or LH was delivered with and without simultaneous intra-oral infusion of taste solutions via an intra-oral cannula. Immunohistochemistry for the Fos protein was used to identify neurons in the gustatory brainstem activated by the electrical and/or intra-oral stimulation. In the absence of intra-oral infusion of a tastant, electrical stimulation of either the CeA or the LH increased the number of ingestive, but not aversive, TR behaviors performed. During intra-oral infusions of taste solutions, CeA stimulation tended to increase aversive behaviors whereas LH stimulation dramatically reduced the number of aversive responses to quinine hydrochloride (QHCl). These data indicate that projections from the CeA and LH alter TR behaviors. A few of the behavioral effects were accompanied by changes in the number of Fos-immunoreactive neurons in the gustatory brainstem, suggesting a possible anatomical substrate for these effects.
Collapse
Affiliation(s)
- Christopher A Riley
- Department of Biology Department, Unit 8264, Stetson University, 421 North Woodland Boulevard, DeLand, FL 32723, USA.
| | | |
Collapse
|
26
|
Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses. J Neurosci 2012; 32:9981-91. [PMID: 22815512 DOI: 10.1523/jneurosci.0669-12.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.
Collapse
|
27
|
Wang Q, Li J, Yang X, Chen K, Sun B, Yan J. Inhibitory effect of activation of GABAA receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Neuroscience 2012; 223:277-84. [DOI: 10.1016/j.neuroscience.2012.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
28
|
Li CS, Chung S, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J Neurophysiol 2012; 108:1288-98. [DOI: 10.1152/jn.00121.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabrachial nuclei (PbN), the second central relay for the gustatory pathway, transfers taste information to various forebrain gustatory nuclei and to the gustatory cortex. The nucleus accumbens is one of the critical neural substrates of the reward system, and the nucleus accumbens shell region (NAcSh) is associated with feeding behavior. Taste-evoked neuronal responses of PbN neurons are modulated by descending projections from the gustatory nuclei in the forebrain. In the present study, we investigated whether taste-responsive neurons in the PbN project to the NAcSh and whether pontine gustatory neurons are subject to modulatory influence from the NAcSh in urethane-anesthetized hamsters. Extracellular single-unit activity was recorded in the PbN, and taste responses were confirmed by the delivery of 32 mM sucrose, NaCl, quinine hydrochloride, and 3.2 mM citric acid to the anterior tongue. The NAcSh was then stimulated (0.5 ms, ≤100 μA) bilaterally using concentric bipolar stimulating electrodes. A total of 98 taste neurons were recorded from the PbN. Eighteen neurons were antidromically invaded from the NAcSh, mostly the ipsilateral NAcSh ( n = 16). Stimulation of the ipsilateral and contralateral NAcSh suppressed the neuronal activity of 88 and 55 neurons, respectively; 52 cells were affected bilaterally. In a subset of pontine neurons tested, electrical stimulation of the NAcSh during taste stimulation also suppressed taste-evoked neuronal firing. These results demonstrated that taste-responsive neurons in the PbN not only project to the NAcSh but also are under substantial descending inhibitory influence from the bilateral NAcSh.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Jiamusi, People's Republic of China
| | - Sooyoung Chung
- Center for Neural Science L7313, Korea Institute of Science and Technology, Seoul, Korea
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, and School of Stomatology, Capital Medical University, Beijing, People's Republic of China; and
| | - Young K. Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon, Korea
| |
Collapse
|
29
|
Involvement of brain ANG II in acute sodium depletion induced salty taste changes. ACTA ACUST UNITED AC 2012; 179:15-22. [PMID: 22846885 DOI: 10.1016/j.regpep.2012.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/09/2011] [Accepted: 07/20/2012] [Indexed: 02/07/2023]
Abstract
Many investigations have been devoted to determining the role of angiotensin II (ANG II) and aldosterone (ALD) in sodium-depletion-induced sodium appetite, but few were focused on the mechanisms mediating the salty taste changes accompanied with sodium depletion. To further elucidate the mechanism of renin-angiotensin-aldosterone system (RAAS) action in mediating sodium intake behavior and accompanied salty taste changes, the present study examined the salty taste function changes accompanied with sodium depletion induced by furosemide (Furo) combined with different doses of angiotensin converting enzyme (ACE) inhibitor, captopril (Cap). Both the peripheral and central RAAS activity and the nuclei Fos immunoreactivity (Fos-ir) expression in the forebrain area were investigated. Results showed that sodium depletion induced by Furo+low-Cap increased taste preference for hypertonic NaCl solution with amplified brain action of ANG II but without peripheral action, while Furosemide combined with a high dose of captopril can partially inhibit the formation of brain ANG II, with parallel decreased effects on salty taste changes. And the resulting elevating forebrain ANG II may activate a variety of brain areas including SFO, PVN, SON and OVLT in sodium depleted rats injected with Furo+low-Cap, which underlines salty taste function and sodium intake behavioral changes. Neurons in SFO and OVLT may be activated mainly by brain ANG II, while PVN and SON activation may not be completely ANG II dependent. These findings suggested that forebrain derived ANG II may play a critical role in the salty taste function changes accompanied with acute sodium depletion.
Collapse
|
30
|
Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats. Brain Res Bull 2012; 89:8-15. [PMID: 22796484 DOI: 10.1016/j.brainresbull.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl.
Collapse
|
31
|
de Araujo IE, Geha P, Small DM. Orosensory and Homeostatic Functions of the Insular Taste Cortex. CHEMOSENS PERCEPT 2012; 5:64-79. [PMID: 25485032 PMCID: PMC4254792 DOI: 10.1007/s12078-012-9117-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.
Collapse
Affiliation(s)
- Ivan E. de Araujo
- The John B. Pierce Laboratory, School of Medicine, Yale University, 290 Congress Avenue, New Haven, CT 06519, USA. Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Paul Geha
- The John B. Pierce Laboratory, School of Medicine, Yale University, 290 Congress Avenue, New Haven, CT 06519, USA. Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Dana M. Small
- The John B. Pierce Laboratory, School of Medicine, Yale University, 290 Congress Avenue, New Haven, CT 06519, USA. Department of Psychiatry, School of Medicine, Yale University, 300 George Street, Suite 901, New Haven, CT 06511, USA
| |
Collapse
|
32
|
Stone ME, Maffei A, Fontanini A. Amygdala stimulation evokes time-varying synaptic responses in the gustatory cortex of anesthetized rats. Front Integr Neurosci 2011; 5:3. [PMID: 21503144 PMCID: PMC3071977 DOI: 10.3389/fnint.2011.00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/17/2011] [Indexed: 11/13/2022] Open
Abstract
Gustatory stimuli are characterized by a specific hedonic value; they are either palatable or aversive. Hedonic value, along with other psychological dimensions of tastes, is coded in the time-course of gustatory cortex (GC) neural responses and appears to emerge via top-down modulation by the basolateral amygdala (BLA). While the importance of BLA in modulating gustatory cortical function has been well established, the nature of its input onto GC neurons is largely unknown. Somewhat conflicting results from extracellular recordings point to either excitatory or inhibitory effects. Here, we directly test the hypothesis that BLA can evoke time-varying - excitatory and inhibitory - synaptic responses in GC using in vivo intracellular recording techniques in urethane anesthetized rats. Electrical stimulation of BLA evoked a post-synaptic potential (PSP) in GC neurons that resulted from a combination of short and long latency components: an initial monosynaptic, glutamatergic potential followed by a multisynaptic, GABAergic hyperpolarization. As predicted by the dynamic nature of amygdala evoked potentials, trains of five BLA stimuli at rates that mimic physiological firing rates (5-40 Hz) evoke a combination of excitation and inhibition in GC cells. The magnitude of the different components varies depending on the frequency of stimulation, with summation of excitatory and inhibitory inputs reaching its maximum at higher frequencies. These experiments provide the first description of BLA synaptic inputs to GC and reveal that amygdalar afferents can modulate gustatory cortical network activity and its processing of sensory information via time-varying synaptic dynamics.
Collapse
Affiliation(s)
- Martha E Stone
- Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| | | | | |
Collapse
|
33
|
Rosen AM, Victor JD, Di Lorenzo PM. Temporal coding of taste in the parabrachial nucleus of the pons of the rat. J Neurophysiol 2011; 105:1889-96. [PMID: 21307316 DOI: 10.1152/jn.00836.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have provided evidence that temporal coding contributes significantly to encoding taste stimuli at the first central relay for taste, the nucleus of the solitary tract (NTS). However, it is not known whether this coding mechanism is also used at the next synapse in the central taste pathway, the parabrachial nucleus of the pons (PbN). In the present study, electrophysiological responses to taste stimuli (sucrose, NaCl, HCl, and quinine) were recorded from 44 cells in the PbN of anesthetized rats. In 29 cells, the contribution of the temporal characteristics of the response to the discrimination of various taste qualities was assessed. A family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that spike timing in 14 PbN cells (48%) conveyed a significant amount of information about taste quality, beyond what could be conveyed by spike count alone. In another 14 cells (48%), the rate envelope (time course) of the response contributed significantly more information than spike count alone. Across cells there was a significant correlation (r = 0.51; P < 0.01) between breadth of tuning and the proportion of information conveyed by temporal dynamics. Comparison with previous data from the NTS (Di Lorenzo PM and Victor JD. J Neurophysiol 90: 1418-31, 2003 and J Neurophysiol 97: 1857-1861, 2007) showed that temporal coding in the NTS occurred in a similar proportion of cells and contributed a similar fraction of the total information at the same average level of temporal precision, even though trial-to-trial variability was higher in the PbN than in the NTS. These data suggest that information about taste quality conveyed by the temporal characteristics of evoked responses is transmitted with high fidelity from the NTS to the PbN.
Collapse
Affiliation(s)
- Andrew M Rosen
- Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | |
Collapse
|
34
|
Zhang C, Kang Y, Lundy RF. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation. Brain Res 2011; 1368:108-18. [PMID: 21040715 PMCID: PMC3053030 DOI: 10.1016/j.brainres.2010.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non-specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
35
|
de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ 2011; 52:69-86. [PMID: 20865373 DOI: 10.1007/978-3-642-14426-4_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gustatory system allows the brain to monitor the presence of chemicals in the oral cavity and initiate appropriate responses of acceptance or rejection. Among such chemicals are the nutrients that must be rapidly recognized and ingested for immediate oxidation or storage. In the periphery, the gustatory system consists of a highly efficient sensing mechanism, where distinct cell types express receptors that bind specifically to chemicals associated with one particular taste quality. These specialized receptors connect to the brain via dedicated pathways, the stimulation of which triggers stereotypic behavioral responses as well as neurotransmitter release in brain reward dopamine systems. However, evidence also exists in favor of the concept that the critical regulators of long-term nutrient choice are physiological processes taking place after ingestion and independently of gustation. We will appraise the hypothesis that organisms can develop preferences for nutrients independently of oral taste stimulation. Of particular interest are recent findings indicating that disrupting nutrient utilization interferes with activity in brain dopamine pathways. These findings establish the metabolic fate of nutrients as previously unanticipated reward signals that regulate the reinforcing value of foods. In particular, it suggests a role for brain dopamine reward systems as metabolic sensors, allowing for signals generated by the metabolic utilization of nutrients to regulate neurotransmitter release and food reinforcement.
Collapse
Affiliation(s)
- Ivan E de Araujo
- The John B Pierce Laboratory and Department of Psychiatry, Yale University School of Medicine, 290 Congress Avenue, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
36
|
Oliveira-Maia AJ, Roberts CD, Simon SA, Nicolelis MAL. Gustatory and reward brain circuits in the control of food intake. Adv Tech Stand Neurosurg 2011; 36:31-59. [PMID: 21197607 DOI: 10.1007/978-3-7091-0179-7_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gustation is a multisensory process allowing for the selection of nutrients and the rejection of irritating and/or toxic compounds. Since obesity is a highly prevalent condition that is critically dependent on food intake and energy expenditure, a deeper understanding of gustatory processing is an important objective in biomedical research. Recent findings have provided evidence that central gustatory processes are distributed across several cortical and subcortical brain areas. Furthermore, these gustatory sensory circuits are closely related to the circuits that process reward. Here, we present an overview of the activation and connectivity between central gustatory and reward areas. Moreover, and given the limitations in number and effectiveness of treatments currently available for overweight patients, we discuss the possibility of modulating neuronal activity in these circuits as an alternative in the treatment of obesity.
Collapse
Affiliation(s)
- A J Oliveira-Maia
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA,
| | | | | | | |
Collapse
|
37
|
Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study. Neuroscience 2010; 171:351-65. [PMID: 20832453 DOI: 10.1016/j.neuroscience.2010.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 11/21/2022]
Abstract
The present study investigated the subnuclear organization of collateralized efferent projection patterns from the mouse parabrachial nucleus (PbN), the second taste relay in rodents, to higher gustatory centers, including the ventroposteromedial nucleus of the thalamus (VPMpc), central nucleus of the amygdala (CeA) and lateral hypothalamus (LH). We made injections of the retrograde tracer red and green latex microspheres into the VMPpc and CeA (VPMpc-CeA group), VMPpc and LH (VPMpc-LH group) or CeA and LH (CeA-LH group, n=6 for each group). Injections into these areas preferentially resulted in retrograde labeling in the ipsilateral PbN in all groups. Cells projecting to the VPMpc, CeA, and LH were generally found in all subnuclei, but were differentially distributed. VPMpc-projecting cells predominated in gustatory-related subnuclei, CeA-projecting neurons predominated in the external lateral (el) subnucleus, and concentrated labeling was observed in the dorsal lateral subnucleus (dl) following LH injection. Double-labeled neurons were found for all groups, almost entirely ipsilaterally and primarily in the medial (m), waist area (wa), ventral lateral (vl) and el subnuclei. These results suggest that PbN neurons in different subdivisions have different projection and collateralization patterns to the VPMpc, CeA and LH. Functional implications of these projections are discussed with an emphasis on their roles in taste.
Collapse
|
38
|
Kang Y, Lundy RF. Amygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat. J Neurophysiol 2010; 104:726-41. [PMID: 20519577 DOI: 10.1152/jn.00341.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on neural coding of taste information is not well understood. The present study examined responses of 110 NST neurons to 15 taste stimuli before, during, and after electrical stimulation of the CeA in rats. The taste stimuli consisted of different concentrations of NaCl (0.03, 0.1, 0.3 M), sucrose (0.1, 0.3, 1.0 M), citric acid (0.005, 0.01 M), quinine HCl (0.003, 0.03 M), and 0.03 M MSG, 0.1 M KCl, as well as 0.1 M NaCl, 0.01 M citric acid, and 0.03 M MSG mixed with 10 muM amiloride. In 66% of NST cells sampled (73/110) response rates to the majority of effective taste stimuli were either inhibited or augmented. Nevertheless, the magnitude of effect across stimuli was often differential, which provides a neurophysiological mechanism to alter neural coding. Subsequent analysis of across-unit patterns showed that amygdalofugal input plays a role in shaping spatial patterns of activation and could potentially influence the perceptual similarity and/or discrimination of gustatory stimuli by altering this feature of neural coding.
Collapse
Affiliation(s)
- Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
39
|
Potes CS, Lutz TA, Riediger T. Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 2010; 1334:31-44. [PMID: 20382134 DOI: 10.1016/j.brainres.2010.03.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 01/10/2023]
Abstract
The ability of the pancreatic hormone amylin to inhibit food intake relies on a direct activation of the area postrema (AP). This activation is synaptically transmitted to the nucleus of the solitary tract (NTS), the lateral parabrachial nucleus (LPB), the central amygdaloid nucleus (Ce) and the lateral bed nucleus of stria terminalis (BSTL). Interestingly, neurons of the rostro-dorsal lateral hypothalamic area (dLHA), which are activated during fasting, are inhibited by peripheral amylin, although they lack amylin receptors. Using the retrograde tracer cholera toxin-B (Ctb) we analyzed whether the dLHA receives neuronal projections from amylin-activated brain areas. The anterograde tracer biotinylated dextran-amine (BDA) was used to confirm the projections and to identify further neuronal pathways potentially involved in amylin signaling. We identified dense projections from the amylin activated neurons in the LPB and sparse projections from the NTS to the dLHA. LPB fiber efferents were found in close proximity to dLHA nuclei activated by 24h of fasting. The AP and the Ce showed no projections to the dLHA. Dense efferents were also observed from the LPB to other hypothalamic areas, namely to the ventromedial, dorsomedial, paraventricular and arcuate nuclei. This study provides neuroanatomical evidence that among the amylin activated areas, the LPB provides the strongest input to the dLHA, thus it may mediate the amylin-induced inhibition of the dLHA.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich Switzerland
| | | | | |
Collapse
|
40
|
Takenoya F, Yagi M, Kageyama H, Shiba K, Endo K, Nonaka N, Date Y, Nakazato M, Shioda S. Distribution of neuropeptide W in the rat brain. Neuropeptides 2010; 44:99-106. [PMID: 19948359 DOI: 10.1016/j.npep.2009.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
Abstract
Neuropeptide W (NPW), which was recently isolated from the porcine hypothalamus, has been identified as the endogenous ligand of the orphan G protein-coupled receptors GPR7 (NPBWR1) and GPR8 (NPBWR2). Infusion of NPW increases food intake in the light phase, whereas in the dark phase, it has the opposite effect. In this study, we used RT-PCR analysis to examine the gene expression of NPW mRNA in the rat brain, and performed a detailed analysis of the distribution of NPW-positive neurons by use of immunohistochemistry at both the light and electron microscopic levels. NPW mRNA expression was demonstrated in the hypothalamic paraventricular nucleus (PVN), arcuate nucleus (ARC), ventromedial nucleus (VMH) and lateral hypothalamus (LH). At the light microscopic level, NPW-like immunoreactive (NPW-LI) cell bodies were found in the preoptic area (POA), PVN, ARC, VMH, LH, PMD (dorsal premammillary nucleus), periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), and prepositus nucleus (Pr). NPW-LI axon terminals were shown in the POA, bed nucleus of the stria terminalis (BST), amygdala, PVN, ARC, VMH, LH, and PAG, LPB. In addition, at the electron microscopic level, NPW-LI cell bodies and dendritic processes were often seen to receive inputs from other unknown neurons in the ARC, PVN, VMH and amygdala. Our observations indicate that NPW-LI neurons widely distributed in the rat brain region. These finding suggest that NPW may have important roles in feeding behavior, energy homeostasis, emotional response and regulation of saliva secretion.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Panguluri S, Saggu S, Lundy R. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 2009; 1298:57-69. [PMID: 19699720 PMCID: PMC2769563 DOI: 10.1016/j.brainres.2009.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin-releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and 7 days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue-responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double-labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double-labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double-labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN.
Collapse
Affiliation(s)
- Siva Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Shalini Saggu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina 29425
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
42
|
|
43
|
Hajnal A, Norgren R, Kovacs P. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann N Y Acad Sci 2009; 1170:347-64. [PMID: 19686159 DOI: 10.1111/j.1749-6632.2009.03930.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cumulative evidence in rats suggests that the pontine parabrachial nuclei (PBN) are necessary for assigning hedonic value to taste stimuli. In a series of studies, our laboratory has investigated the parabrachial coding of sapid sucrose in normal and obese rats. First, using chronic microdialysis, we demonstrated that sucrose intake increases dopamine release in the nucleus accumbens, an effect that is dependent on oral stimulation and on concentration. The dopamine response was independent of the thalamocortical gustatory system but was blunted substantially by lesions of the PBN. Similar lesions of the PBN but not the thalamic taste relay diminished cFos activation in the nucleus accumbens caused by sucrose ingestion. Recent single-neuron recording studies have demonstrated that processing of sucrose-evoked activity in the PBN is altered in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which develop obesity due to chronic overeating and express increased avidity to sweet. Compared with lean controls, taste neurons in OLETF rats had reduced overall sensitivity to sucrose and altered concentration responses, with decreased responses to lower concentrations and augmented responses to higher concentrations. The decreased sensitivity to sucrose was specific to NaCl-best neurons that also responded to sucrose, but the concentration effects were carried by the sucrose-specific neurons. Collectively, these findings support the hypothesis that the PBN enables taste stimuli to engage the reward system and, in doing so, influences food intake and body weight regulation. Obesity, in turn, may further alter the gustatory code via forebrain connections to the taste relays or hormonal changes consequent to weight gain.
Collapse
Affiliation(s)
- Andras Hajnal
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
44
|
Abstract
Previous studies demonstrate that lesions to the rodent parabrachial nucleus (PBN) disrupt the formation of gustatory-postingestive associations, while preserving gustatory and viscerosensory functions. This suggests that the rodent PBN functions essentially as an integrative circuit, supporting the conditioning of tastants to postingestive factors. In the case of primates, however, anatomical studies have failed to demonstrate gustatory projections from medullary nuclei to PBN. It should therefore be inferred that the primate PBN lacks the associative functions assigned to its rodent counterpart. Moreover, the ability of rodent midbrain dopaminergic systems to respond to the activation of palatable tastants depends on the integrity of the gustatory PBN. However, recent studies demonstrate that caloric palatable compounds do not require taste signaling to produce elevated brain dopamine levels. This raises the possibility that, in rodents, PBN neurons are important for the detection of postingestive effects of nutrients that occur independently of gustatory input. If confirmed, such function would assign non-associative roles to the rodent PBN, approximating its functional organization to its primate counterpart. We are currently testing this possibility by monitoring the behavioral responses to caloric glucose solutions in sweet-blind mice having sustained bilateral lesions to the PBN. Preliminary results indicate that the rodent PBN regulates nutrient intake even when no gustatory inputs are involved. This favors the assignment of non-gustatory, homeostatic functions to the rodent PBN during feeding, a concept that brings an additional perspective on the rodent versus primate functional discrepancy associated with the anatomy of this pontine nucleus.
Collapse
Affiliation(s)
- Ivan E de Araujo
- Department of Psychiatry, The John B Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
45
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
46
|
Travers SP, Geran LC. Bitter-responsive brainstem neurons: characteristics and functions. Physiol Behav 2009; 97:592-603. [PMID: 19303890 DOI: 10.1016/j.physbeh.2009.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
The sensation that humans describe as "bitter" is evoked by a large group of chemically diverse ligands. Bitter stimuli are avoided by a range of species and elicit reflex rejection, behaviors considered adaptations to the toxicity of many of these compounds. We review novel evidence for neurons that are narrowly tuned to bitter ligands at the initial stages of central processing. These "B-best" neurons in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) respond to multiple types of bitter stimuli and exhibit average responses to bitter tastants that are 6-8 times larger than to moderate concentrations of compounds representing other qualities. However, in the PBN B-best units are appreciably activated by intense salt and acid. Neurons broadly sensitive to salts and acids ("AN" neurons) also responded to bitter stimuli. This sensitivity appeared restricted to stronger intensities of ionic bitters, as cycloheximide remained ineffective across concentrations. In addition to chemosensitive profile, B-best neurons were also distinctive with regard to their posterior receptive fields, long latencies, slow firing rates and projection status. Compared to B-best NST cells, those in the PBN received increased convergence from anterior and posterior receptive fields and responded to a greater number of bitter stimuli. We conclude that B-best neurons likely contribute to pathways underlying gaping, aversive hedonic quality and taste coding. The differential responsiveness of B-best and AN neurons to ionic and nonionic bitter ligands also suggests a potential substrate for discrimination within this quality.
Collapse
Affiliation(s)
- Susan P Travers
- College of Dentistry, Oral Biology, The Ohio State University, Columbus OH 43210, USA
| | | |
Collapse
|
47
|
Fontanini A, Grossman SE, Figueroa JA, Katz DB. Distinct subtypes of basolateral amygdala taste neurons reflect palatability and reward. J Neurosci 2009; 29:2486-95. [PMID: 19244523 PMCID: PMC2668607 DOI: 10.1523/jneurosci.3898-08.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/05/2009] [Accepted: 01/14/2009] [Indexed: 11/21/2022] Open
Abstract
The amygdala processes multiple, dissociable properties of sensory stimuli. Given its central location within a dense network of reciprocally connected regions, it is reasonable to expect that basolateral amygdala (BLA) neurons should produce a rich repertoire of dynamical responses to taste stimuli. Here, we examined single BLA neuron taste responses in awake rats and report the existence of two distinct subgroups of BLA taste neurons operating simultaneously during perceptual processing. One neuron type produced long, protracted responses with dynamics that were strikingly similar to those previously observed in gustatory cortex. These responses reflect cooperation between amygdala and cortex for the purposes of processing palatability. A second type of BLA taste neuron may be part of the system often described as being responsible for reward learning: these neurons produced very brief, short-latency responses to rewarding stimuli; when the rat participated in procuring the taste by pressing a lever in response to a tone, however, those phasic taste responses vanished, phasic responses to the tone appearing instead. Our data provide strong evidence that the neural handling of taste is actually a distributed set of processes and that BLA is a nexus of these multiple processes. These results offer new insights into how amygdala imbues naturalistic sensory stimuli with value.
Collapse
Affiliation(s)
- Alfredo Fontanini
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Stephen E. Grossman
- Volen National Center for Complex Systems
- Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02454, and
| | | | - Donald B. Katz
- Volen National Center for Complex Systems
- Department of Psychology, and
- Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02454, and
| |
Collapse
|
48
|
Zhu M, Cho YK, Li CS. Activation of delta-opioid receptors reduces excitatory input to putative gustatory cells within the nucleus of the solitary tract. J Neurophysiol 2008; 101:258-68. [PMID: 19019978 DOI: 10.1152/jn.90648.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rostral nucleus of the solitary tract (NST) is the first central relay in the gustatory pathway and plays a key role in processing and modulation of gustatory information. Here, we investigated the effects of opioid receptor agonists and antagonists on synaptic responses of the gustatory parabrachial nuclei (PbN)-projecting neurons in the rostral NST to electrical stimulation of the solitary tract (ST) using whole cell recordings in the hamster brain stem slices. ST-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced by met-enkephalin (MetE) in a concentration-dependent fashion and this effect was eliminated by naltrexone hydrochloride, a nonselective opioid receptor antagonist. Bath application of naltrindole hydrochloride, a selective delta-opioid receptor antagonist, eliminated MetE-induced reduction of EPSCs, whereas CTOP, a selective mu-opioid receptor antagonist had no effect, indicating that delta-opioid receptors are involved in the reduction of ST-evoked EPSCs induced by MetE. SNC80, a selective delta-opioid receptor agonist, mimicked the effect of MetE. The SNC80-induced reduction of ST-evoked EPSCs was eliminated by 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist but not by naltriben mesylate, a selective delta2-opioid receptor antagonist, indicating that delta1-opioid receptors mediate the reduction of ST-evoked EPSCs induced by SNC80. Single-cell reverse transcriptase-polymerase chain reaction analysis revealed the presence of delta1-opioid receptor mRNA in cells that responded to SNC80 with a reduction in ST-evoked EPSCs. Moreover, Western blot analysis demonstrated the presence of 40-kDa delta-opioid receptor proteins in the rostral NST tissue. These results suggest that postsynaptic delta1-opioid receptors are involved in opioid-induced reduction of ST-evoked EPSCs of PbN-projecting rostral NST cells.
Collapse
Affiliation(s)
- Mingyan Zhu
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Room 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA
| | | | | |
Collapse
|
49
|
Terminal field specificity of forebrain efferent axons to brainstem gustatory nuclei. Brain Res 2008; 1248:76-85. [PMID: 19028464 DOI: 10.1016/j.brainres.2008.10.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/22/2022]
Abstract
Rostral forebrain structures like the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) send projections to the nucleus of solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence originates from a shared or distinct population of forebrain neurons. Under electrophysiological guidance, the retrograde tracers fast blue (FB) and fluorogold (FG) or green (GFB) and red (RFB) fluorescent latex microbeads were injected iontophoretically or by pressure pulses (10 ms at 20 psi) into the taste-responsive regions of the NST and the ipsilateral PBN in six rats. Seven days later, the animals were euthanized and tissue sections containing the LH, CeA, BNST, and GC were processed for co-localization of FB and FG or GFB and RFB. The results showed that the CeA is the major source of input to the NST (82.3+/-7.6 cells/section) and the PBN (76.7+/-11.5), compared to the BNST (31.8+/-4.5; 37.0+/-4.8), the LH (35.0+/-5.4; 33.6+/-5.7), and the GC (27.5+/-4.0; 29.0+/-4.6). Of the total number of retrogradely labeled cells, the incidence of tracer co-localization was 17+/-3% in the GC, 17+/-2% in the CeA, 15+/-3% in the BNST and 16+/-1% in the LH. Thus, irrespective of forebrain source the majority of descending input to the gustatory NST and PBN originates from distinct neuronal populations. This arrangement provides an anatomical substrate for differential modulation of taste processing in the first and second central relays of the ascending gustatory system.
Collapse
|
50
|
Roussin AT, Di Lorenzo PM. Oh, How Sweet It Is. Focus on “Altered Pontine Processing in a Rat Model of Obesity”. J Neurophysiol 2008; 100:1697-8. [DOI: 10.1152/jn.90823.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|