1
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Flood MD, Moore-Dotson JM, Eggers ED. Dopamine D1 receptor activation contributes to light-adapted changes in retinal inhibition to rod bipolar cells. J Neurophysiol 2018; 120:867-879. [PMID: 29847232 PMCID: PMC6139461 DOI: 10.1152/jn.00855.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels, but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study, we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, whereas D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells. NEW & NOTEWORTHY We demonstrated a new aspect of dopaminergic signaling that is involved in mediating light adaptation of retinal inhibition. This D1 receptor-dependent mechanism likely acts through receptors located directly on amacrine cells, in addition to its potential role in modulating the strength of serial inhibition between amacrine cells. Our results also suggest that another D2/D4 receptor-dependent or dopamine-independent mechanism must also be involved in light adaptation of inhibition to rod bipolar cells.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| | - Johnnie M Moore-Dotson
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| |
Collapse
|
3
|
Dunn VK, Gleason E. Inhibition of endocytosis suppresses the nitric oxide-dependent release of Cl- in retinal amacrine cells. PLoS One 2018; 13:e0201184. [PMID: 30044876 PMCID: PMC6059450 DOI: 10.1371/journal.pone.0201184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022] Open
Abstract
Our lab has previously shown that nitric oxide (NO) can alter the synaptic response properties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated current, which can convert inhibitory synapses into excitatory synapses. Recently, we have shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a, Dynole 34-2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps were used to measure the NO-dependent shift in the reversal potential of the GABA-gated currents under both conditions. Our results reveal that activating the synaptic vesicle cycle in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. However, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift in the reversal potential for the GABA-gated currents, we also tested the effects of the clathrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift. These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of synaptic vesicles.
Collapse
Affiliation(s)
- Vernon K. Dunn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
4
|
Murphy-Baum BL, Taylor WR. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina. J Physiol 2018; 596:477-495. [PMID: 29222817 DOI: 10.1113/jp275195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons combine excitatory and inhibitory signals to perform computations. In the retina, interactions between excitation and inhibition enable neurons to detect specific visual features. We describe how several excitatory and inhibitory mechanisms work together to allow transient OFF α ganglion cells in the rabbit retina to respond selectively to high temporal frequencies and thus detect faster image motion. The weightings of these different mechanisms change with the contrast and spatiotemporal properties of the visual input, and thereby support temporal tuning in α cells over a range of visual conditions. The results help us understand how ganglion cells selectively integrate excitatory and inhibitory signals to extract specific information from the visual input. ABSTRACT The 20 to 30 types of ganglion cell in the mammalian retina represent parallel signalling pathways that convey different information to the brain. α ganglion cells are selective for high temporal frequencies in visual inputs, which makes them particularly sensitive to rapid motion. Although α ganglion cells have been studied in several species, the synaptic basis for their selective temporal tuning remains unclear. Here, we analyse excitatory synaptic inputs to transient OFF α ganglion cells (t-OFF α GCs) in the rabbit retina. We show that convergence of excitatory and inhibitory synaptic inputs within the bipolar cell terminals presynaptic to the t-OFF α GCs shifts the temporal tuning to higher temporal frequencies. GABAergic inhibition suppresses the excitatory input at low frequencies, but potentiates it at high frequencies. Crossover glycinergic inhibition and sodium channel activity in the presynaptic bipolar cells also potentiate high frequency excitatory inputs. We found differences in the spatial and temporal properties, and contrast sensitivities of these mechanisms. These differences in stimulus selectivity allow these mechanisms to generate bandpass temporal tuning of t-OFF α GCs over a range of visual conditions.
Collapse
Affiliation(s)
- Benjamin L Murphy-Baum
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| | - W Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Dopamine-Dependent Sensitization of Rod Bipolar Cells by GABA Is Conveyed through Wide-Field Amacrine Cells. J Neurosci 2017; 38:723-732. [PMID: 29217689 DOI: 10.1523/jneurosci.1994-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022] Open
Abstract
The vertebrate retina has the remarkable ability to support visual function under conditions of limited illumination, including the processing of signals evoked by single photons. Dim-light vision is regulated by several adaptive mechanisms. The mechanism explored in this study is responsible for increasing the light sensitivity and operational range of rod bipolar cells, the retinal neurons operating immediately downstream of rod photoreceptors. This sensitization is achieved through the sustained dopamine-dependent GABA release from other retinal neurons. Our goals were to identify the cell type responsible for the GABA release and the site of its modulation by dopamine. Previous studies have suggested the involvement of amacrine and/or horizontal cells. We now demonstrate, using mice of both sexes, that horizontal cells do not participate in this mechanism. Instead, sustained GABA input is provided by a subpopulation of wide-field amacrine cells, which stimulate the GABAC receptors at rod bipolar cell axons. We also found that dopamine does not act directly on either of these cells. Rather, it suppresses inhibition imposed on these wide-field cells by another subpopulation of upstream GABAergic amacrine cells, thereby sustaining the GABAC receptor activation required for rod bipolar cell sensitization.SIGNIFICANCE STATEMENT The vertebrate retina has an exquisite ability to adjust information processing to ever-changing conditions of ambient illumination, from bright sunlight to single-photon counting under dim starlight. Operation under each of these functional regimes requires an engagement of specific adaptation mechanisms. Here, we describe a mechanism optimizing the performance of the dim-light channel of vision, which consists of sensitizing rod bipolar cells by a sustained GABAergic input originating from a population of wide-field amacrine cells. Wide-field amacrine cells span large segments of the retina, making them uniquely equipped to normalize and optimize response sensitivity across distant receptive fields and preclude any bias toward local light-intensity fluctuations.
Collapse
|
6
|
Maddox JW, Khorsandi N, Gleason E. TRPC5 is required for the NO-dependent increase in dendritic Ca 2+ and GABA release from chick retinal amacrine cells. J Neurophysiol 2017; 119:262-273. [PMID: 28978766 DOI: 10.1152/jn.00500.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GABAergic signaling from amacrine cells (ACs) is a fundamental aspect of visual signal processing in the inner retina. We have previously shown that nitric oxide (NO) can elicit release of GABA independently from activation of voltage-gated Ca2+ channels in cultured retinal ACs. This voltage-independent quantal GABA release relies on a Ca2+ influx mechanism with pharmacological characteristics consistent with the involvement of the transient receptor potential canonical (TRPC) channels TRPC4 and/or TRPC5. To determine the identity of these channels, we evaluated the ability of NO to elevate dendritic Ca2+ and to stimulate GABA release from cultured ACs under conditions known to alter the function of TRPC4 and 5. We found that these effects of NO are phospholipase C dependent, have a biphasic dependence on La3+, and are unaffected by moderate concentrations of the TRPC4-selective antagonist ML204. Together, these results suggest that NO promotes GABA release by activating TRPC5 channels in AC dendrites. To confirm a role for TRPC5, we knocked down the expression of TRPC5 using CRISPR/Cas9-mediated gene knockdown and found that both the NO-dependent Ca2+ elevations and increase in GABA release are dependent on the expression of TRPC5. These results demonstrate a novel NO-dependent mechanism for regulating neurotransmitter output from retinal ACs. NEW & NOTEWORTHY Elucidating the mechanisms regulating GABAergic synaptic transmission in the inner retina is key to understanding the flexibility of retinal ganglion cell output. Here, we demonstrate that nitric oxide (NO) can activate a transient receptor potential canonical 5 (TRPC5)-mediated Ca2+ influx, which is sufficient to drive vesicular GABA release from retinal amacrine cells. This NO-dependent mechanism can bypass the need for depolarization and may have an important role in processing the visual signal by enhancing retinal amacrine cell GABAergic inhibitory output.
Collapse
Affiliation(s)
- J Wesley Maddox
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Nikka Khorsandi
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
7
|
The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina. J Neurosci 2015; 35:13336-50. [PMID: 26424882 DOI: 10.1523/jneurosci.1712-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene.
Collapse
|
8
|
Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, Sethuramanujam S, Schwab D, Briggman KL, Awatramani GB. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 2015; 86:276-91. [PMID: 25801705 DOI: 10.1016/j.neuron.2015.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.
Collapse
Affiliation(s)
- Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Kara Ronellenfitch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Stuart Trenholm
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Rishi Vasandani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Schwab
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road F165, Evanston, IL 60208, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
9
|
Moore-Dotson JM, Klein JS, Mazade RE, Eggers ED. Different types of retinal inhibition have distinct neurotransmitter release properties. J Neurophysiol 2015; 113:2078-90. [PMID: 25568157 DOI: 10.1152/jn.00447.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+) buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Justin S Klein
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
10
|
Presynaptic inhibition by α2 receptor/adenylate cyclase/PDE4 complex at retinal rod bipolar synapse. J Neurosci 2014; 34:9432-40. [PMID: 25009274 DOI: 10.1523/jneurosci.0766-14.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptor (GPCR)-mediated presynaptic inhibition is a fundamental mechanism regulating synaptic transmission in the CNS. The classical GPCR-mediated presynaptic inhibition in the CNS is produced by direct interactions between the G(βγ) subunits of the G-protein and presynaptic Ca(2+) channels, K(+) channels, or synaptic proteins that affect transmitter release. This mode of action is shared by well known GPCRs such as the α2, GABA(B), and CB1 receptors. We report that the α2 receptor-mediated inhibition of presynaptic Ca(2+) channel and transmitter release in rat retinal rod bipolar cells depends on the G(α) subunit via a G(α)-adenylate cyclase-cAMP cascade and requires participation of the type 4 phosphodiesterase (PDE4), a new role for phosphodiesterase in neural signaling. By using the G(α) instead of the G(βγ) subunits, this mechanism is able to use a cyclase/PDE enzyme pair to dynamically control a cyclic nucleotide second messenger (i.e., cAMP) for the regulation of synaptic transmission, an operating strategy that shows remarkable similarity to that of dynamic control of cGMP and transmitter release from photoreceptors by the guanylate cyclase/PDE6 pair in phototransduction. Our results demonstrate a new paradigm of GPCR-mediated presynaptic inhibition in the CNS and add a new regulatory mechanism at a critical presynaptic site in the visual pathway that controls the transmission of scotopic information. They also provide a presynaptic mechanism that could contribute to neuroprotection of retinal ganglion cells by α2 agonists, such as brimonidine, in animal models of glaucoma and retinal ischemia and in glaucoma patients.
Collapse
|
11
|
Distinct roles for inhibition in spatial and temporal tuning of local edge detectors in the rabbit retina. PLoS One 2014; 9:e88560. [PMID: 24586343 PMCID: PMC3931627 DOI: 10.1371/journal.pone.0088560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
This paper examines the role of inhibition in generating the receptive-field properties of local edge detector (LED) ganglion cells in the rabbit retina. We confirm that the feed-forward inhibition is largely glycinergic but, contrary to a recent report, our data demonstrate that the glycinergic inhibition contributes to temporal tuning for the OFF and ON inputs to the LEDs by delaying the onset of spiking; this delay was more pronounced for the ON inputs (∼340 ms) than the OFF inputs (∼12 ms). Blocking glycinergic transmission reduced the delay to spike onset and increased the responses to flickering stimuli at high frequencies. Analysis of the synaptic conductances indicates that glycinergic amacrine cells affect temporal tuning through both postsynaptic inhibition of the LEDs and presynaptic modulation of the bipolar cells that drive the LEDs. The results also confirm that presynaptic GABAergic transmission contributes significantly to the concentric surround antagonism in LEDs; however, unlike presumed LEDs in the mouse retina, the surround is only partly generated by spiking amacrine cells.
Collapse
|
12
|
Smith BJ, Tremblay F, Côté PD. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 2013; 116:279-90. [DOI: 10.1016/j.exer.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
13
|
Protti DA, Di Marco S, Huang JY, Vonhoff CR, Nguyen V, Solomon SG. Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate. J Physiol 2013; 592:49-65. [PMID: 24042496 PMCID: PMC3903351 DOI: 10.1113/jphysiol.2013.257352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The centre–surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial organisation of excitatory and inhibitory synaptic inputs onto ON and OFF ganglion cells in the primate retina. All RGCs showed an increase in excitation in response to stimulus of preferred polarity. Inhibition onto RGCs comprised two types of responses to preferred polarity: some RGCs showed an increase in inhibition whilst others showed removal of tonic inhibition. Excitatory inputs were strongly spatially tuned but inhibitory inputs showed more variable organisation: in some neurons they were as strongly tuned as excitation, and in others inhibitory inputs showed no spatial tuning. We targeted one source of inner retinal inhibition by functionally ablating spiking amacrine cells with bath application of tetrodotoxin (TTX). TTX significantly reduced the spatial tuning of excitatory inputs. In addition, TTX reduced inhibition onto those RGCs where a stimulus of preferred polarity increased inhibition. Reconstruction of the spatial tuning properties by somatic injection of excitatory and inhibitory synaptic conductances verified that TTX-mediated inhibition onto bipolar cells increases the strength of the surround in RGC spiking output. These results indicate that in the primate retina inhibitory mechanisms in the inner plexiform layer sharpen the spatial tuning of ganglion cells.
Collapse
Affiliation(s)
- D A Protti
- D. A. Protti: Anderson Stuart Bldg (F13), The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Eggers ED, Klein JS, Moore-Dotson JM. Slow changes in Ca2(+) cause prolonged release from GABAergic retinal amacrine cells. J Neurophysiol 2013; 110:709-19. [PMID: 23657284 DOI: 10.1152/jn.00913.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The timing of neurotransmitter release from neurons can be modulated by many presynaptic mechanisms. The retina uses synaptic ribbons to mediate slow graded glutamate release from bipolar cells that carry photoreceptor inputs. However, many inhibitory amacrine cells, which modulate bipolar cell output, spike and do not have ribbons for graded release. Despite this, slow glutamate release from bipolar cells is modulated by slow GABAergic inputs that shorten the output of bipolar cells, changing the timing of visual signaling. The time course of light-evoked inhibition is slow due to a combination of receptor properties and prolonged neurotransmitter release. However, the light-evoked release of GABA requires activation of neurons upstream from the amacrine cells, so it is possible that prolonged release is due to slow amacrine cell activation, rather than slow inherent release properties of the amacrine cells. To test this idea, we directly activated primarily action potential-dependent amacrine cell inputs to bipolar cells with electrical stimulation. We found that the decay of GABAC receptor-mediated electrically evoked inhibitory currents was significantly longer than would be predicted by GABAC receptor kinetics, and GABA release, estimated by deconvolution analysis, was inherently slow. Release became more transient after increasing slow Ca(2+) buffering or blocking prolonged L-type Ca(2+) channels and Ca(2+) release from intracellular stores. Our results suggest that GABAergic amacrine cells have a prolonged buildup of Ca(2+) in their terminals that causes slow, asynchronous release. This could be a mechanism of matching the time course of amacrine cell inhibition to bipolar cell glutamate release.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
15
|
Abstract
AbstractFeedback is a ubiquitous feature of neural circuits in the mammalian central nervous system (CNS). Analogous to pure electronic circuits, neuronal feedback provides either a positive or negative influence on the output of upstream components/neurons. Although the particulars (i.e., connectivity, physiological encoding/processing/signaling) of circuits in higher areas of the brain are often unclear, the inner retina proves an excellent model for studying both the anatomy and physiology of feedback circuits within the functional context of visual processing. Inner retinal feedback to bipolar cells is almost entirely mediated by a single class of interneurons, the amacrine cells. Although this might sound like a simple circuit arrangement with an equally simple function, anatomical, molecular, and functional evidence suggest that amacrine cells represent an extremely diverse class of CNS interneurons that contribute to a variety of retinal processes. In this review, I classify the amacrine cells according to their anatomical output synapses and target cell(s) (i.e., bipolar cells, ganglion cells, and/or amacrine cells) and discuss specifically our current understandings of amacrine cell-mediated feedback and output to bipolar cells on the synaptic, cellular, and circuit levels, while drawing connections to visual processing.
Collapse
|
16
|
Light-evoked lateral GABAergic inhibition at single bipolar cell synaptic terminals is driven by distinct retinal microcircuits. J Neurosci 2011; 31:15884-93. [PMID: 22049431 DOI: 10.1523/jneurosci.2959-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory amacrine cells (ACs) filter visual signals crossing the retina by modulating the excitatory, glutamatergic output of bipolar cells (BCs) on multiple temporal and spatial scales. Reciprocal feedback from ACs provides focal inhibition that is temporally locked to the activity of presynaptic BC activity, whereas lateral feedback originates from ACs excited by distant BCs. These distinct feedback mechanisms permit temporal and spatial computation at BC terminals. Here, we used a unique preparation to study light-evoked IPSCs recorded from axotomized terminals of ON-type mixed rod/cone BCs (Mb) in goldfish retinal slices. In this preparation, light-evoked IPSCs could only reach axotomized BC terminals via the lateral feedback pathway, allowing us to study lateral feedback in the absence of overlapping reciprocal feedback components. We found that light evokes ON and OFF lateral IPSCs (L-IPSCs) in Mb terminals having different temporal patterns and conveyed via distinct retinal pathways. The relative contribution of rods versus cones to ON and OFF L-IPSCs was light intensity dependent. ACs presynaptic to Mb BC terminals received inputs via AMPA/KA- and NMDA-type receptors in both the ON and OFF pathways, and used TTX-sensitive sodium channels to boost signal transfer along their processes. ON and OFF L-IPSCs, like reciprocal feedback IPSCs, were mediated by both GABA(A) and GABA(C) receptors. However, our results suggest that lateral and reciprocal feedback do not cross-depress each other, and are therefore mediated by distinct populations of ACs. These findings demonstrate that retinal inhibitory circuits are highly specialized to modulate BC output at different light intensities.
Collapse
|
17
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
18
|
Oesch NW, Taylor WR. Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS One 2010; 5:e12447. [PMID: 20805982 PMCID: PMC2929195 DOI: 10.1371/journal.pone.0012447] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/08/2010] [Indexed: 11/18/2022] Open
Abstract
The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.
Collapse
Affiliation(s)
- Nicholas W Oesch
- Neuroscience Graduate Program, Oregon Health and Sciences University, Portland, Oregon, United States of America.
| | | |
Collapse
|
19
|
Tekmen M, Gleason E. Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells. J Neurophysiol 2010; 104:1849-66. [PMID: 20685929 DOI: 10.1152/jn.00031.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the regulation of L-type voltage-gated Ca(2+) current is an important component of elucidating the signaling capabilities of retinal amacrine cells. Here we ask how the cytosolic Ca(2+) environment and the balance of Ca(2+)-dependent effectors shape native L-type Ca(2+) channel function in these cells. To achieve this, whole cell voltage clamp recordings were made from cultured amacrine cells under conditions that address the contribution of mitochondrial Ca(2+) uptake (MCU), Ca(2+)/calmodulin (CaM)-dependent channel inactivation (CDI), protein kinase A (PKA), and Ca(2+)-induced Ca(2+) release (CICR). Under control conditions, repeated activation of the L-type channels produces a progressive enhancement of the current. Inhibition of MCU causes a reduction in the Ca(2+) current amplitude that is dependent on Ca(2+) influx as well as cytosolic Ca(2+) buffering, consistent with CDI. Including the Ca(2+) buffer bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) internally can shift the balance between enhancement and inhibition such that inhibition of MCU can enhance the current. Inhibition of PKA can remove the enhancing effect of BAPTA suggesting that cyclic AMP-dependent phosphorylation is involved. Inhibition of CaM suppresses CDI but spares the enhancement, consistent with the substantially higher sensitivity of the Ca(2+)-sensitive adenylate cyclase 1 (AC1) to Ca(2+)/CaM. Inhibition of the ryanodine receptor reduces the current amplitude, suggesting that CICR might normally amplify the activation of AC1 and stimulation of PKA activity. These experiments reveal that the amplitude of L-type Ca(2+) currents in retinal amacrine cells are both positively and negatively regulated by Ca(2+)-dependent mechanisms.
Collapse
Affiliation(s)
- Merve Tekmen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
20
|
Abstract
GABAergic feedback inhibition from amacrine cells shapes visual signaling in the inner retina. Rod bipolar cells (RBCs), ON-sensitive cells that depolarize in response to light increments, receive reciprocal GABAergic feedback from A17 amacrine cells and additional GABAergic inputs from other amacrine cells located laterally in the inner plexiform layer. The circuitry and synaptic mechanisms underlying lateral GABAergic inhibition of RBCs are poorly understood. A-type and rho-subunit-containing (C-type) GABA receptors (GABA(A)Rs and GABA(C)Rs) mediate both forms of inhibition, but their relative activation during synaptic transmission is unclear, and potential interactions between adjacent reciprocal and lateral synapses have not been explored. Here, we recorded from RBCs in acute slices of rat retina and isolated lateral GABAergic inhibition by pharmacologically ablating A17 amacrine cells. We found that amacrine cells providing lateral GABAergic inhibition to RBCs receive excitatory synaptic input mostly from ON bipolar cells via activation of both Ca(2+)-impermeable and Ca(2+)-permeable AMPA receptors (CP-AMPARs) but not NMDA receptors (NMDARs). Voltage-gated Ca(2+) (Ca(v)) channels mediate the majority of Ca(2+) influx that triggers GABA release, although CP-AMPARs contribute a small component. The intracellular Ca(2+) signal contributing to transmitter release is amplified by Ca(2+)-induced Ca(2+) release from intracellular stores via activation of ryanodine receptors. Furthermore, lateral nonreciprocal feedback is mediated primarily by GABA(C)Rs that are activated independently from receptors mediating reciprocal feedback inhibition. These results illustrate numerous physiological differences that distinguish GABA release at reciprocal and lateral synapses, indicating complex, pathway-specific modulation of RBC signaling.
Collapse
|
21
|
Eggers ED, Lukasiewicz PD. Interneuron circuits tune inhibition in retinal bipolar cells. J Neurophysiol 2009; 103:25-37. [PMID: 19906884 DOI: 10.1152/jn.00458.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
22
|
Adaptable mechanisms that regulate the contrast response of neurons in the primate lateral geniculate nucleus. J Neurosci 2009; 29:5009-21. [PMID: 19369570 DOI: 10.1523/jneurosci.0219-09.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The response of the classical receptive field of visual neurons can be suppressed by stimuli that, when presented alone, cause no change in the discharge rate. This suppression reveals the presence of an extraclassical receptive field (ECRF). In recordings from the lateral geniculate nucleus (LGN) of a New World primate, the marmoset, we characterize the mechanisms that contribute to the ECRF by measuring their spatiotemporal tuning during prolonged exposure to a high-contrast grating (contrast adaptation). The ECRF was strongest in magnocellular cells, where contrast adaptation reduced suppression from the ECRF: adaptation of the ECRF transferred across spatial frequency, temporal frequency, and orientation, but not across space. This implies that the ECRF of LGN cells comprises multiple adaptable mechanisms, each broadly tuned but spatially localized, and consistent with a retinal origin. Signals from the ECRF saturated at high contrasts, and so adaptation of one part of the ECRF brought into its operating range signals from other parts of the visual field. Although the ECRF is adaptable, its major impact during contrast adaptation to a spatially extended pattern was to reduce visual response and hence reduce a neuron's susceptibility to contrast adaptation; in normal viewing, a major role of the ECRF might be to protect visual sensitivity in scenes dominated by high contrast.
Collapse
|
23
|
A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 2008; 3:25-32. [PMID: 19003460 DOI: 10.1007/s11571-008-9059-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022] Open
Abstract
In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the "linear-nonlinear" (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the circuit elements could explain the higher-order retinal functions. However, in such a model, each class of retinal neurons is mostly omitted and thus, how those neurons play roles in the visual computations cannot be explored. Here, we present a spatio-temporal computational model of the vertebrate retina, based on the response function for each class of retinal neurons and on the anatomical inter-cellular connections. This model was capable of not only reproducing the spatio-temporal filtering properties of the outer retinal neurons, but also realizing the object segregation mechanism in the inner retinal circuit involving the "wide-field" amacrine cells. Moreover, the first-order Wiener kernels calculated for the neurons in our model showed a reasonable fit to the kernels previously measured in the real retinal neuron in situ.
Collapse
|
24
|
Petit-Jacques J, Bloomfield SA. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 2008; 100:993-1006. [PMID: 18497354 DOI: 10.1152/jn.01399.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of on-center starburst amacrine cells to steady light stimuli were recorded in the dark-adapted mouse retina. The response to spots of dim white light appear to show two components, an initial peak that correspond to the onset of the light stimulus and a series of oscillations that ride on top of the initial peak relaxation. The frequency of oscillations during light stimulation was three time higher than the frequency of spontaneous oscillations recorded in the dark. The light-evoked responses in starburst cells were exclusively dependent on the release of glutamate likely from presynaptic bipolar axon terminals and the binding of glutamate to AMPA/kainate receptors because they were blocked by 6-cyano-7-nitroquinoxalene-2,3-dione. The synaptic pathway responsible for the light responses was blocked by AP4, an agonist of metabotropic glutamate receptors that hyperpolarize on-center bipolar cells on activation. Light responses were inhibited by the calcium channel blockers cadmium ions and nifedipine, suggesting that the release of glutamate was calcium dependent. The oscillatory component of the response was specifically inhibited by blocking the glutamate transporter with d-threo-beta-benzyloxyaspartic acid, suggesting that glutamate reuptake is necessary for the oscillatory release. GABAergic antagonists bicuculline, SR 95531, and picrotoxin increased the amplitude of the initial peak while they inhibit the frequency of oscillations. TTX had a similar effect. Strychnine, the blocker of glycine receptors did not affect the initial peak but strongly decreased the oscillations frequency. These inhibitory inputs onto the bipolar axon terminals shape and synchronize the oscillatory component.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
25
|
Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11:667-75. [PMID: 18432197 DOI: 10.1038/nn.2117] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/03/2008] [Indexed: 11/09/2022]
Abstract
Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6b(rd1) (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks.
Collapse
Affiliation(s)
- Pamela S Lagali
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Royer AS, Miller RF. Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell. Vis Neurosci 2007; 24:619-34. [PMID: 17900378 DOI: 10.1017/s0952523807070617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/24/2007] [Indexed: 11/07/2022]
Abstract
We evaluated the contributions of somatic and dendritic impulses to the receptive field dimensions of amacrine cells in the amphibian retina. For this analysis, we used the NEURON simulation program with a multicompartmental, multichannel model of an On-Off amacrine cell with a three-dimensional structure obtained through computer tracing techniques. Simulated synaptic inputs were evenly spaced along the dendritic branches and organized into eight annuli of increasing radius. The first set of simulations activated each ring progressively to simulate an area summation experiment, while a second approach activated each annulus individually. Both sets of simulations were done with and without the presence of Na channels in the dendrites and soma. Unexpectedly, the receptive field dimensions observed in the area summation simulations was often smaller than that predicted from the summation of the annular simulations. Collisions of action potentials moving in opposite directions in the dendrites largely accounted for this contraction in receptive field size for the area summation studies. The presence of dendritic Na channels increased the size of the receptive field beyond that achieved in their absence and allowed the physiological size of the receptive field to approximate the physical dimensions of the dendritic tree. This receptive field augmentation was the result of impulse generating ability in the dendrites which enhanced the signal observed at the soma. These simulations provide a plausible mechanistic explanation for physiological recordings from amacrine cells that show similar phenomena.
Collapse
Affiliation(s)
- Audrey S Royer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
27
|
Sen M, McMains E, Gleason E. Local influence of mitochondrial calcium transport in retinal amacrine cells. Vis Neurosci 2007; 24:663-78. [PMID: 17697441 DOI: 10.1017/s0952523807070551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/26/2007] [Indexed: 11/07/2022]
Abstract
Ca2+-dependent synaptic transmission from retinal amacrine cells is thought to be initiated locally at dendritic processes. Hence, understanding the spatial and temporal impact of Ca2+ transport is fundamental to understanding how amacrine cells operate. Here, we provide the first examination of the local effects of mitochondrial Ca2+ transport in neuronal processes. By combining mitochondrial localization with measurements of cytosolic Ca2+, the local impacts of mitochondrial Ca2+ transport for two types of Ca2+ signals were investigated. Disruption of mitochondrial Ca2+ uptake with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) produces cytosolic Ca2+ elevations. The amplitudes of these elevations decline with distance from mitochondria suggesting that they are related to mitochondrial Ca2+ transport. The time course of the FCCP-dependent Ca2+ elevations depend on the availability of ER Ca2+ and we provide evidence that Ca2+ is released primarily via nearby ryanodine receptors. These results indicate that interactions between the ER and mitochondria influence cytosolic Ca2+ in amacrine cell processes and cell bodies. We also demonstrate that the durations of glutamate-dependent Ca2+ elevations are dependent on their proximity to mitochondria in amacrine cell processes. Consistent with this observation, disruption of mitochondrial Ca2+ transport alters the duration of glutamate-dependent Ca2+ elevations near mitochondria but not at sites more than 10 microm away. These results indicate that mitochondria influence local Ca2+-dependent signaling in amacrine cell processes.
Collapse
Affiliation(s)
- Madhumita Sen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
28
|
Heflin SJ, Cook PB. Narrow and wide field amacrine cells fire action potentials in response to depolarization and light stimulation. Vis Neurosci 2007; 24:197-206. [PMID: 17640411 DOI: 10.1017/s095252380707040x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 04/25/2007] [Indexed: 11/05/2022]
Abstract
Action potentials in amacrine cells are important for lateral propagation of signals across the inner retina, but it is unclear how many subclasses of amacrine cells contain voltage-gated sodium channels or can fire action potentials. This study investigated the ability of amacrine cells with narrow (< 200 μm) and wide (> 200 μm) dendritic fields to fire action potentials in response to depolarizing current injections and light stimulation. The pattern of action potentials evoked by current injections revealed two distinct classes of amacrine cells; those that responded with a single action potential (single-spiking cells) and those that responded with repetitive action potentials (repetitive-spiking cells). Repetitive-spiking cells differed from single-spiking cells in several regards: Repetitive-spiking cells were more often wide field cells, while single-spiking cells were more often narrow field cells. Repetitive-spiking cells had larger action potential amplitudes, larger peak voltage-gated NaV currents lower action potential thresholds, and needed less current to induce action potentials. However, there was no difference in the input resistance, holding current or time constant of these two classes of cells. The intrinsic capacity to fire action potentials was mirrored in responses to light stimulation; single-spiking amacrine cells infrequently fired action potentials to light steps, while repetitive-spiking amacrine cells frequently fired numerous action potentials. These results indicate that there are two physiologically distinct classes of amacrine cells based on the intrinsic capacity to fire action potentials.
Collapse
Affiliation(s)
- Stephanie J Heflin
- Program in Neuroscience, Boston University, Boston, Massachusetts 02214, USA
| | | |
Collapse
|
29
|
Zaghloul KA, Manookin MB, Borghuis BG, Boahen K, Demb JB. Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells. J Neurophysiol 2007; 97:4327-40. [PMID: 17460102 DOI: 10.1152/jn.01091.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A retinal ganglion cell receptive field is made up of an excitatory center and an inhibitory surround. The surround has two components: one driven by horizontal cells at the first synaptic layer and one driven by amacrine cells at the second synaptic layer. Here we characterized how amacrine cells inhibit the center response of on- and off-center Y-type ganglion cells in the in vitro guinea pig retina. A high spatial frequency grating (4-5 cyc/mm), beyond the spatial resolution of horizontal cells, drifted in the ganglion cell receptive field periphery to stimulate amacrine cells. The peripheral grating suppressed the ganglion cell spiking response to a central spot. Suppression of spiking was strongest and observed most consistently in off cells. In intracellular recordings, the grating suppressed the subthreshold membrane potential in two ways: a reduced slope (gain) of the stimulus-response curve by approximately 20-30% and, in off cells, a tonic approximately 1-mV hyperpolarization. In voltage clamp, the grating increased an inhibitory conductance in all cells and simultaneously decreased an excitatory conductance in off cells. To determine whether center response inhibition was presynaptic or postsynaptic (shunting), we measured center response gain under voltage-clamp and current-clamp conditions. Under both conditions, the peripheral grating reduced center response gain similarly. This result suggests that reduced gain in the ganglion cell subthreshold center response reflects inhibition of presynaptic bipolar terminals. Thus amacrine cells suppressed ganglion cell center response gain primarily by inhibiting bipolar cell glutamate release.
Collapse
Affiliation(s)
- Kareem A Zaghloul
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
30
|
Chávez AE, Singer JH, Diamond JS. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 2006; 443:705-8. [PMID: 17036006 DOI: 10.1038/nature05123] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/31/2006] [Indexed: 11/08/2022]
Abstract
Feedback inhibition at reciprocal synapses between A17 amacrine cells and rod bipolar cells (RBCs) shapes light-evoked responses in the retina. Glutamate-mediated excitation of A17 cells elicits GABA (gamma-aminobutyric acid)-mediated inhibitory feedback onto RBCs, but the mechanisms that underlie GABA release from the dendrites of A17 cells are unknown. If, as observed at all other synapses studied, voltage-gated calcium channels (VGCCs) couple membrane depolarization to neurotransmitter release, feedforward excitatory postsynaptic potentials could spread through A17 dendrites to elicit 'surround' feedback inhibitory transmission at neighbouring synapses. Here we show, however, that GABA release from A17 cells in the rat retina does not depend on VGCCs or membrane depolarization. Instead, calcium-permeable AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs), activated by glutamate released from RBCs, provide the calcium influx necessary to trigger GABA release from A17 cells. The AMPAR-mediated calcium signal is amplified by calcium-induced calcium release (CICR) from intracellular calcium stores. These results describe a fast synapse that operates independently of VGCCs and membrane depolarization and reveal a previously unknown form of feedback inhibition within a neural circuit.
Collapse
Affiliation(s)
- Andrés E Chávez
- Synaptic Physiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701, USA
| | | | | |
Collapse
|
31
|
Miller JA, Denning KS, George JS, Marshak DW, Kenyon GT. A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: a computer model. Vis Neurosci 2006; 23:779-94. [PMID: 17020633 PMCID: PMC3350093 DOI: 10.1017/s0952523806230104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/05/2022]
Abstract
Brisk Y-type ganglion cells in the cat retina exhibit a high frequency resonance (HFR) in their responses to large, rapidly modulated stimuli. We used a computer model to test whether negative feedback mediated by axon-bearing amacrine cells onto ganglion cells could account for the experimentally observed properties of HFRs. Temporal modulation transfer functions (tMTFs) recorded from model ganglion cells exhibited HFR peaks whose amplitude, width, and locations were qualitatively consistent with experimental data. Moreover, the wide spatial distribution of axon-mediated feedback accounted for the observed increase in HFR amplitude with stimulus size. Model phase plots were qualitatively similar to those recorded from Y ganglion cells, including an anomalous phase advance that in our model coincided with the amplification of low-order harmonics that overlapped the HFR peak. When axon-mediated feedback in the model was directed primarily to bipolar cells, whose synaptic output was graded, or else when the model was replaced with a simple cascade of linear filters, it was possible to produce large HFR peaks but the region of anomalous phase advance was always eliminated, suggesting the critical involvement of strongly non-linear feedback loops. To investigate whether HFRs might contribute to visual processing, we simulated high frequency ocular tremor by rapidly modulating a naturalistic image. Visual signals riding on top of the imposed jitter conveyed an enhanced representation of large objects. We conclude that by amplifying responses to ocular tremor, HFRs may selectively enhance the processing of large image features.
Collapse
Affiliation(s)
- J A Miller
- Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
32
|
Miller RF, Staff NP, Velte TJ. Form and Function of on-off Amacrine Cells in the Amphibian Retina. J Neurophysiol 2006; 95:3171-90. [PMID: 16481463 DOI: 10.1152/jn.00090.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
on-off amacrine cells were studied with whole cell recording techniques and intracellular staining methods using intact retina-eyecup preparations of the tiger salamander ( Ambystoma tigrinum) and the mudpuppy ( Necturus maculosus). Morphological characterization of these cells included three-dimensional reconstruction methods based on serial optical sections obtained with a confocal microscope. Some cells had their detailed morphology digitized with a computer-assisted tracing system and converted to compartmental models for computer simulations. The dendrites of on-off amacrine cells have spines and numerous varicosities. Physiological recordings confirmed that on-off amacrine cells generate both large- and small-amplitude impulses attributed, respectively, to somatic and dendritic generation sites. Using a multichannel model for impulse generation, computer simulations were carried out to evaluate how impulses are likely to propagate throughout these structures. We conclude that the on-off amacrine cell is organized with multifocal dendritic impulse generating sites and that both dendritic and somatic impulse activity contribute to the functional repertoire of these interneurons: locally generated dendritic impulses can provide regional activation, while somatic impulse activity results in rapid activation of the entire dendritic tree.
Collapse
Affiliation(s)
- Robert F Miller
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
33
|
Vigh J, von Gersdorff H. Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse. J Neurosci 2006; 25:11412-23. [PMID: 16339035 PMCID: PMC6725896 DOI: 10.1523/jneurosci.2203-05.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA and GABAA receptors mediate most of the fast signaling in the CNS. However, the retina must, in addition, also convey slow and sustained signals. Given that AMPA and GABAA receptors desensitize quickly in the continuous presence of agonist, how are sustained excitatory and inhibitory signals transmitted reliably across retinal synapses? Reciprocal synapses between bipolar and amacrine cells in the retina are thought to play a fundamental role in tuning the bipolar cell output to the dynamic range of ganglion cells. Here, we report that glutamate release from goldfish bipolar cell terminals activates first AMPA receptors, followed by fast and transient GABAA-mediated feedback. Subsequently, prolonged NMDA receptor activation triggers GABAA and a slow, sustained GABAC-mediated reciprocal inhibition. The synaptic delay of the NMDA/GABAC-mediated feedback showed stronger dependence on the depolarization of the bipolar cell terminal than the fast AMPA/GABAA-mediated response. Although the initial depolarization mediated by AMPA receptors was important to prime the NMDA action, NMDA receptors could trigger feedback by themselves in most of the bipolar terminals tested. This AMPA-independent feedback (delay approximately 10 ms) was eliminated in 2 mm external Mg2+ and reduced in some terminals, but not eliminated, by TTX. NMDA receptors on amacrine cells with depolarized resting membrane potentials therefore can mediate the late reciprocal feedback triggered by continuous glutamate release. Our findings suggest that the characteristics of NMDA receptors (high agonist affinity, slow desensitization, and activation/deactivation kinetics) are well suited to match the properties of GABAC receptors, which thus provide part of the prolonged inhibition to bipolar cell terminals.
Collapse
Affiliation(s)
- Jozsef Vigh
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
34
|
Dhingra NK, Freed MA, Smith RG. Voltage-gated sodium channels improve contrast sensitivity of a retinal ganglion cell. J Neurosci 2006; 25:8097-103. [PMID: 16135767 PMCID: PMC6725442 DOI: 10.1523/jneurosci.1962-05.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated channels in a retinal ganglion cell are necessary for spike generation. However, they also add noise to the graded potential and spike train of the ganglion cell, which may degrade its contrast sensitivity, and they may also amplify the graded potential signal. We studied the effect of blocking Na+ channels in a ganglion cell on its signal and noise amplitudes and its contrast sensitivity. A spot was flashed at 1-4 Hz over the receptive field center of a brisk transient ganglion cell in an intact mammalian retina maintained in vitro. We measured signal and noise amplitudes from its intracellularly recorded graded potential light response and measured its contrast detection thresholds with an "ideal observer." When Na+ channels in the ganglion cell were blocked with intracellular lidocaine N-ethyl bromide (QX-314), the signal-to-noise ratio (SNR) decreased (p < 0.05) at all tested contrasts (2-100%). Likewise, bath application of tetrodotoxin (TTX) reduced the SNR and contrast sensitivity but only at lower contrasts (< or = 50%), whereas at higher contrasts, it increased the SNR and sensitivity. The opposite effect of TTX at high contrasts suggested involvement of an inhibitory surround mechanism in the inner retina. To test this hypothesis, we blocked glycinergic and GABAergic inputs with strychnine and picrotoxin and found that TTX in this case had the same effect as QX-314: a reduction in the SNR at all contrasts. Noise analysis suggested that blocking Na+ channels with QX-314 or TTX attenuates the amplitude of quantal synaptic voltages. These results demonstrate that Na+ channels in a ganglion cell amplify the synaptic voltage, enhancing the SNR and contrast sensitivity.
Collapse
Affiliation(s)
- Narender K Dhingra
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | | | |
Collapse
|
35
|
Koizumi A, Hayashida Y, Kiuchi T, Yamada Y, Fujii A, Yagi T, Kaneko A. The interdependence and independence of amacrine cell dendrites: patch-clamp recordings and simulation studies on cultured GABAergic amacrine cells. J Integr Neurosci 2006; 4:363-80. [PMID: 16178063 DOI: 10.1142/s0219635205000859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/18/2005] [Indexed: 11/18/2022] Open
Abstract
Previously we reported that cultured rat GABAergic amacrine cells can evoke subthreshold graded depolarization and action potentials. Both types of electrical signals are thought to contribute to neurotransmitter release from their dendrites, because Ca(2+) channels in amacrine cells can be activated at a subthreshold level (around -50 mV). The aim of the present study is to describe the spatiotemporal pattern of the spread of these electrical signals in an amacrine cell, using a computer simulation study. The simulation is based on physiological data, obtained by dual whole-cell patch-clamp recordings on the soma and the dendrites of cultured rat GABAergic amacrine cells. We determined passive and active properties of amacrine cells from the physiological recordings. Then, using the NEURON simulator, we conducted computer simulations on a reconstructed model of amacrine cells. We show that graded potentials and action potentials spread through amacrine cells with distinct patterns, and discuss the electrical interrelationship among the dendrites of an amacrine cell. Subthreshold graded potentials applied to a distal dendrite were sufficiently localized, so that each dendrite could behave independently (dendritic independence). However, at a suprathreshold level, once action potentials were triggered, they propagated into every dendrite, exciting the entire cell (dendritic interdependence). We also showed that GABAergic inhibitory inputs on the dendrites suppress the dendritic interdependence of amacrine cells. These results suggest that an inhibitory amacrine cell can mediate both local and wide-field lateral inhibition, regulated by the spatiotemporal pattern of excitatory and inhibitory synaptic inputs on its dendrites.
Collapse
Affiliation(s)
- Amane Koizumi
- Keio University School of Medicine, Department of Physiology, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tian M, Yang XL. C-type natriuretic peptide modulates glutamate receptors on cultured rat retinal amacrine cells. Neuroscience 2006; 139:1211-20. [PMID: 16600513 DOI: 10.1016/j.neuroscience.2006.02.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 02/08/2006] [Accepted: 02/23/2006] [Indexed: 11/20/2022]
Abstract
C-type natriuretic peptide, widely distributed in the CNS, may work as a neuromodulator. In this work, we investigated modulation by C-type natriuretic peptide of functional properties of glutamate receptors in rat retinal GABAergic amacrine cells in culture. Immunocytochemical data revealed that natriuretic peptide receptor-B was strongly expressed on the membrane of cultured GABAergic amacrine cells. By whole cell recording techniques we further identified the glutamate receptor expressed on the GABAergic amacrine cells as an AMPA-preferring subtype. Incubation with C-type natriuretic peptide suppressed the AMPA receptor-mediated current of these cells in a dose-dependent manner by decreasing the efficacy and apparent affinity for glutamate. The effect of C-type natriuretic peptide was reversed by HS-142-1, a guanylyl cyclase-coupled natriuretic peptide receptor-A/B antagonist. Meanwhile, the selective natriuretic peptide receptor-C agonist cANF did not change the glutamate current. In conjunction with the immunocytochemical data, these results suggest that the C-type natriuretic peptide effect may be mediated by natriuretic peptide receptor-B. Furthermore, incubation of retinal cultures in the C-type natriuretic peptide-containing medium elevated cGMP immunoreactivity in the GABAergic amacrine cells, and the C-type natriuretic peptide effect on the glutamate current was mimicked by application of 8-Br-cGMP. It is therefore concluded that C-type natriuretic peptide may modulate the glutamate current by increasing the intracellular concentration of cGMP in these cells via activation of natriuretic peptide receptor-B.
Collapse
Affiliation(s)
- M Tian
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | | |
Collapse
|
37
|
Ichinose T, Shields CR, Lukasiewicz PD. Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. J Neurosci 2005; 25:1856-65. [PMID: 15716422 PMCID: PMC6725932 DOI: 10.1523/jneurosci.5208-04.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal bipolar cells are slow potential neurons that respond to photoreceptor inputs with graded potentials and do not fire action potentials. We found that transient ON bipolar cells recorded in retinal slices possess voltage-gated sodium channels located on either their dendrites or somas. The sodium currents in these neurons did not generate spikes but enhanced voltage responses evoked by visual stimulation, which selectively boosted transmission to transient ganglion cells. In contrast, sodium currents were not found in sustained ON bipolar cells, and light responses in sustained bipolar cells and ganglion cells were not affected by TTX. The presence of sodium channels in transient ON bipolar cells contributed to the separation of transient and sustained signals by selectively enhancing the responses of ON transient ganglion cells to light. Our results suggest that bipolar cell sodium channels augment transient signals and contribute to the temporal segregation of visual information.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
38
|
Ishikane H, Gangi M, Honda S, Tachibana M. Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 2005; 8:1087-95. [PMID: 15995702 DOI: 10.1038/nn1497] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/08/2005] [Indexed: 11/08/2022]
Abstract
Synchronized oscillatory activity is generated among visual neurons in a manner that depends on certain key features of visual stimulation. Although this activity may be important for perceptual integration, its functional significance has yet to be explained. Here we find a very strong correlation between synchronized oscillatory activity in a class of frog retinal ganglion cells (dimming detectors) and a well-known escape response, as shown by behavioral tests and multi-electrode recordings from isolated retinas. Escape behavior elicited by an expanding dark spot was suppressed and potentiated by intraocular injection of GABA(A) receptor and GABA(C) receptor antagonists, respectively. Changes in escape behavior correlated with antagonist-evoked changes in synchronized oscillatory activity but not with changes in the discharge rate of dimming detectors. These antagonists did not affect the expanding dark spot-induced responses in retinal ganglion cells other than dimming detectors. Thus, synchronized oscillations in the retina are likely to encode escape-related information in frogs.
Collapse
Affiliation(s)
- Hiroshi Ishikane
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
39
|
Azuma T, Enoki R, Iwamuro K, Kaneko A, Koizumi A. Multiple spatiotemporal patterns of dendritic Ca2+ signals in goldfish retinal amacrine cells. Brain Res 2004; 1023:64-73. [PMID: 15364020 DOI: 10.1016/j.brainres.2004.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/24/2022]
Abstract
Although it has been reported that dendritic neurotransmitter releases from amacrine cells are regulated by the intracellular Ca(2+) concentration ([Ca(2+)](i)), their spatiotemporal patterns are not well explained. Fast Ca(2+) imagings of amacrine cells in the horizontal slice preparation of goldfish retinas under whole-cell patch-clamp recordings were undertaken to better investigate the spatiotemporal patterns of dendritic [Ca(2+)](i). We found that amacrine cell dendrites showed inhomogeneous [Ca(2+)](i) increases in both Na(+) spiking cells and cells without Na(+) spikes. The spatiotemporal properties of inhomogeneous [Ca(2+)](i) increases were classified into three patterns: local, regional and global. Local [Ca(2+)](i) increases were observed in very discrete regions and appeared as discontinuous patches, presumably evoked by local excitatory postsynaptic potentials. Regional [Ca(2+)](i) increases were observed in either a single or a small number of dendrites, presumably reflecting the result of dendritic action potentials. Global [Ca(2+)](i) increases were observed in the entire dendrites of a cell and were mediated by Na(+) action potentials or multiple Na(+) action potentials riding on slow depolarization. Ca(2+)-mediated potentials also evoked global [Ca(2+)](i) increase in cells without Na(+) spikes. These spatiotemporal dynamics of dendritic Ca(2+) signals may reflect multiple modes of synaptic integration on the dendrites of amacrine cells.
Collapse
Affiliation(s)
- Taro Azuma
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjyuku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
40
|
Arai I, Yamada Y, Asaka T, Tachibana M. Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs. J Neurophysiol 2004; 92:715-25. [PMID: 15277593 DOI: 10.1152/jn.00159.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the visual system, optimal light stimulation sometimes generates gamma-range (ca. 20 approximately 80 Hz) synchronous oscillatory spike discharges. This phenomenon is assumed to be related to perceptual integration. Applying a planar multi-electrode array to the isolated frog retina, Ishikane et al. demonstrated that dimming detectors, off-sustained type ganglion cells, generate synchronous oscillatory spike discharges in response to diffuse dimming illumination. In the present study, applying the whole cell current-clamp technique to the isolated frog retina, we examined how light-evoked oscillatory spike discharges were generated in dimming detectors. Light-evoked oscillatory ( approximately 30 Hz) spike discharges were triggered by rhythmic ( approximately 30 Hz) fluctuations superimposed on a depolarizing plateau potential. When a suprathreshold steady depolarizing current was injected into a dimming detector, only a few spikes were evoked at the stimulus onset. However, repetitive spikes were triggered by a gamma-range sinusoidal current superimposed on the steady depolarizing current. Thus the light-evoked rhythmic fluctuations are likely to be generated presynaptically. The light-evoked rhythmic fluctuations were suppressed not by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl)triethylammonium bromide (QX-314), a Na(+) channel blocker, to the whole cell clamped dimming detector but by bath-application of tetrodotoxin to the retina. The light-evoked rhythmic fluctuations were suppressed by a GABA(A) receptor antagonist but potentiated by a GABA(C) receptor antagonist, whereas these fluctuations were little affected by a glycine receptor antagonist. Because amacrine cells are spiking neurons and because GABA is one of the main transmitters released from amacrine cells, amacrine cells may participate in generating rhythmically fluctuated synaptic input to dimming detectors.
Collapse
Affiliation(s)
- Itaru Arai
- Dept. of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
41
|
McMahon MJ, Packer OS, Dacey DM. The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 2004; 24:3736-45. [PMID: 15084653 PMCID: PMC6729348 DOI: 10.1523/jneurosci.5252-03.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the center-surround receptive field is a fundamental property of retinal ganglion cells, the circuitry that mediates surround inhibition remains controversial. We examined the contribution of horizontal cells and amacrine cells to the surround of parasol ganglion cells of macaque and baboon retina by measuring receptive field structure before and during the application of drugs that have been shown previously to affect surrounds in a range of mammalian and nonmammalian species. Carbenoxolone and cobalt, thought to attenuate feedback from horizontal cells to cones, severely reduced the surround. Tetrodotoxin, which blocks sodium spiking in amacrine cells, and picrotoxin, which blocks the inhibitory action of GABA, only slightly reduced the surround. These data are consistent with the hypothesis that the surrounds of light-adapted parasol ganglion cells are generated primarily by non-GABAergic horizontal cell feedback in the outer retina, with a small contribution from GABAergic amacrine cells of the inner retina.
Collapse
Affiliation(s)
- Matthew J McMahon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
42
|
Tukker JJ, Taylor WR, Smith RG. Direction selectivity in a model of the starburst amacrine cell. Vis Neurosci 2004; 21:611-25. [PMID: 15579224 DOI: 10.1017/s0952523804214109] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Indexed: 11/06/2022]
Abstract
The starburst amacrine cell (SBAC), found in all mammalian retinas,
is thought to provide the directional inhibitory input recorded in
On–Off direction-selective ganglion cells (DSGCs). While voltage
recordings from the somas of SBACs have not shown robust direction
selectivity (DS), the dendritic tips of these cells display
direction-selective calcium signals, even when γ-aminobutyric acid
(GABAa,c) channels are blocked, implying that inhibition is
not necessary to generate DS. This suggested that the distinctive
morphology of the SBAC could generate a DS signal at the dendritic
tips, where most of its synaptic output is located. To explore this
possibility, we constructed a compartmental model incorporating
realistic morphological structure, passive membrane properties, and
excitatory inputs. We found robust DS at the dendritic tips but not at
the soma. Two-spot apparent motion and annulus radial motion produced
weak DS, but thin bars produced robust DS. For these stimuli, DS was
caused by the interaction of a local synaptic input signal with a
temporally delayed “global” signal, that is, an excitatory
postsynaptic potential (EPSP) that spread from the activated inputs
into the soma and throughout the dendritic tree. In the preferred
direction the signals in the dendritic tips coincided, allowing
summation, whereas in the null direction the local signal preceded the
global signal, preventing summation. Sine-wave grating stimuli produced
the greatest amount of DS, especially at high velocities and low
spatial frequencies. The sine-wave DS responses could be accounted for
by a simple mathematical model, which summed phase-shifted signals from
soma and dendritic tip. By testing different artificial morphologies,
we discovered DS was relatively independent of the morphological
details, but depended on having a sufficient number of inputs at the
distal tips and a limited electrotonic isolation. Adding voltage-gated
calcium channels to the model showed that their threshold effect can
amplify DS in the intracellular calcium signal.
Collapse
Affiliation(s)
- John J Tukker
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
43
|
Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW. A model of high-frequency oscillatory potentials in retinal
ganglion cells. Vis Neurosci 2004; 20:465-80. [PMID: 14977326 PMCID: PMC3348786 DOI: 10.1017/s0952523803205010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
High-frequency oscillatory potentials (HFOPs) have been recorded from
ganglion cells in cat, rabbit, frog, and mudpuppy retina and in
electroretinograms (ERGs) from humans and other primates. However, the
origin of HFOPs is unknown. Based on patterns of tracer coupling, we
hypothesized that HFOPs could be generated, in part, by negative
feedback from axon-bearing amacrine cells excited via
electrical synapses with neighboring ganglion cells. Computer
simulations were used to determine whether such axon-mediated feedback
was consistent with the experimentally observed properties of HFOPs.
(1) Periodic signals are typically absent from ganglion cell PSTHs, in
part because the phases of retinal HFOPs vary randomly over time and
are only weakly stimulus locked. In the retinal model, this phase
variability resulted from the nonlinear properties of axon-mediated
feedback in combination with synaptic noise. (2) HFOPs increase as a
function of stimulus size up to several times the receptive-field
center diameter. In the model, axon-mediated feedback pooled signals
over a large retinal area, producing HFOPs that were similarly size
dependent. (3) HFOPs are stimulus specific. In the model, gap junctions
between neighboring neurons caused contiguous regions to become phase
locked, but did not synchronize separate regions. Model-generated HFOPs
were consistent with the receptive-field center dynamics and spatial
organization of cat alpha cells. HFOPs did not depend qualitatively on
the exact value of any model parameter or on the numerical precision of
the integration method. We conclude that HFOPs could be mediated, in
part, by circuitry consistent with known retinal anatomy.
Collapse
Affiliation(s)
- Garrett T Kenyon
- P-21, Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cui J, Ma YP, Lipton SA, Pan ZH. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J Physiol 2003; 553:895-909. [PMID: 14514876 PMCID: PMC2343622 DOI: 10.1113/jphysiol.2003.052092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the properties of glycine receptors and glycinergic synaptic inputs at the axon terminals of rod bipolar cells (RBCs) in rats by patch-clamp recording. Glycine currents recorded from isolated axon terminals were larger than those from isolated somata/dendrites; this was confirmed by puffing glycine onto these two regions in retinal slices. The current density at terminal endings was more than one order of magnitude higher than the density at somatic/dendritic regions. Glycine currents from isolated terminals and isolated somata/dendrites showed similar sensitivity to picrotoxinin blockade. Single-channel opening recorded from isolated terminals and somata/dendrites displayed a similar main-state conductance of ~46 pS. Application of glycine effectively suppressed depolarization-evoked increases in intracellular Ca2+ at the terminals. In the presence of GABAA and GABAC antagonists, strychnine-sensitive chloride currents were evoked in RBCs in retinal slices by puffing kainate onto the inner plexiform layer. No such currents were observed if the recorded RBCs did not retain axon terminals or if Ca2+ was replaced by Co2+ in the extracellular solution. The currents displayed discrete miniature-like events, which were partially blocked by tetrodotoxin. Consistent with early studies in the rabbit and mouse, this study demonstrates that glycine receptors are highly concentrated at the axon terminals of rat RBCs. The pharmacological and physiological properties of glycine receptors located in the axon terminal and somatic/dendritic regions, however, appear to be the same. This study provides evidence for the existence of functional glycinergic synaptic input at the axon terminals of RBCs, suggesting that glycine receptors may play a role in modulating bipolar cell synaptic transmission.
Collapse
Affiliation(s)
- Jinjuan Cui
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|