1
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Li AS, Iijima A, Huang J, Li QX, Chen Y. Putative Mode of Action of the Monoterpenoids Linalool, Methyl Eugenol, Estragole, and Citronellal on Ligand-Gated Ion Channels. ENGINEERING (BEIJING, CHINA) 2020; 6:541-545. [PMID: 38274392 PMCID: PMC10810144 DOI: 10.1016/j.eng.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Essential oil has been used as sedatives, anticonvulsants, and local anesthetics in traditional medical remedies; as preservatives for food, fruit, vegetable, and grain storage; and as bio-pesticides for food production. Linalool (LL), along with a few other major components such as methyl eugenol (ME), estragole (EG), and citronellal, are the active chemicals in many essential oils such as basil oil. Basil oil and the aforementioned monoterpenoids are potent against insect pests. However, the molecular mechanism of action of these chemical constituents is not well understood. It is well-known that the γ-aminobutyric acid type A receptors (GABAARs) and nicotinic acetylcholine receptor (nAChR) are primary molecular targets of the synthetic insecticides used in the market today. Furthermore, the GABAAR-targeted therapeutics have been used in clinics for many decades, including barbiturates and benzodiazepines, to name just a few. In this research, we studied the electrophysiological effects of LL, ME, EG, and citronellal on GABAAR and nAChR to further understand their versatility as therapeutic agents in traditional remedies and as insecticides. Our results revealed that LL inhibits both GABAAR and nAChR, which may explain its insecticidal activity. LL is a concentration-dependent, non-competitive inhibitor on GABAAR, as the half-maximal effective concentration (EC50) values of γ-aminobutyric acid (GABA) for the rat α1β3γ2L GABAAR were not affected by LL: (36.2 ± 7.9) μmol·L-1 and (36.1 ± 23.8) μmol·L-1 in the absence and presence of 5 mmol·L-1 LL, respectively. The half-maximal inhibitory concentration (IC50) of LL on GABAAR was approximately 3.2 mmol·L-1. Considering that multiple monoterpenoids are found within the same essential oil, it is likely that LL has a synergistic effect with ME, which has been previously characterized as both a GABAAR agonist and a positive allosteric modulator, and with other monoterpenoids, which offers a possible explanation for the sedative and anticonvulsant effects and the insecticidal activities of LL.
Collapse
Affiliation(s)
- Amy S. Li
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
- Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akimasa Iijima
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Junhao Huang
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yongli Chen
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| |
Collapse
|
3
|
Pafundo DE, Miyamae T, Lewis DA, Gonzalez-Burgos G. Presynaptic Effects of N-Methyl-D-Aspartate Receptors Enhance Parvalbumin Cell-Mediated Inhibition of Pyramidal Cells in Mouse Prefrontal Cortex. Biol Psychiatry 2018; 84:460-470. [PMID: 29523414 PMCID: PMC6068001 DOI: 10.1016/j.biopsych.2018.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Testing hypotheses regarding the role of N-methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia requires understanding the mechanisms of NMDAR regulation of prefrontal cortex (PFC) circuit function. NMDAR antagonists are thought to produce pyramidal cell (PC) disinhibition. However, inhibitory parvalbumin-positive basket cells (PVBCs) have modest NMDAR-mediated excitatory drive and thus are unlikely to participate in NMDAR antagonist-mediated disinhibition. Interestingly, recent studies demonstrated that presynaptic NMDARs enhance transmitter release at central synapses. Thus, if presynaptic NMDARs enhance gamma-aminobutyric acid release at PVBC-to-PC synapses, they could participate in NMDAR-dependent PC disinhibition. Here, we examined whether presynaptic NMDAR effects could modulate gamma-aminobutyric acid release at PVBC-to-PC synapses in mouse PFC. METHODS Using whole-cell recordings from synaptically connected pairs in mouse PFC, we determined whether NMDA or NMDAR antagonist application affects PVBC-to-PC inhibition in a manner consistent with a presynaptic mechanism. RESULTS NMDAR activation enhanced by ∼40% the synaptic current at PVBC-to-PC pairs. This effect was consistent with a presynaptic mechanism given that it was 1) observed with postsynaptic NMDARs blocked by intracellular MK801, 2) associated with a lower rate of transmission failures and a higher transmitter release probability, and 3) blocked by intracellular MK801 in the PVBC. NMDAR antagonist application did not affect the synaptic currents in PVBC-to-PC pairs, but it reduced the inhibitory currents elicited in PCs with simultaneous glutamate release by extracellular stimulation. CONCLUSIONS We demonstrate that NMDAR activation enhances PVBC-to-PC inhibition in a manner consistent with presynaptic mechanisms, and we suggest that the functional impact of this presynaptic effect depends on the activity state of the PFC network.
Collapse
Affiliation(s)
- Diego E Pafundo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016; 317:47-64. [PMID: 26762803 DOI: 10.1016/j.neuroscience.2015.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We propose that the higher modulatory role of A2AR and mGluR5, in combination with the role of CB1Rs, provide DH with higher functional flexibility of its NMDARs, compared with VH.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
5
|
Bagewadi HG, Ak AK, Shivaramegowda RM. An Experimental Study to Evaluate the Effect of Memantine in Animal Models of Anxiety in Swiss Albino Mice. J Clin Diagn Res 2015; 9:FF01-5. [PMID: 26435964 DOI: 10.7860/jcdr/2015/13233.6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Due to the adverse effects produced by the present conventional medicines for anxiety disorders, research for newer drugs is still desirable. From the literature it is evident that NMDA receptors play a key role in animal models of anxiety. AIM The present study is done to evaluate the antianxiety effect of memantine in swiss albino mice. MATERIALS AND METHODS The experimental study was conducted from November 2014 to January 2015. Animals were divided into four groups. Twelve mice were randomly allotted in each group. Animals in the first group received normal saline as a control 10ml/kg, lorazepam 0.5mg/kg was administered to second group, memantine 3mg/kg as a test drug was given to the third group and memantine 3mg/kg + lorazepam 0.5mg/kg was administered to the fourth group. All the drugs were given for 7 consecutive days by intraperitoneal route. RESULTS Results were analyzed by one-way ANOVA followed by Post-hoc Tukey's test. On the 1(st) day, memantine treated group did not show statistical significant anxiolytic effect in both the behavioural paradigms when compared to control group. On the 8(th) day, the animals showed significant decrease p<0.001 in step down latency period in shock free zone (185.4±3.87 Vs 278.3±5.49), significant increase p<0.001 in step down errors (6.8±0.78 Vs 1.4±0.19) and significant increase p<0.001 in total time spent in shock zone (32.1±2.22 Vs 5.6±0.6). In open field test, on 8(th) day the animals treated with memantine when compared to control group, showed significant increase p<0.001 in number of squares crossed (112.7± 2.69 Vs 83.2±2.96), time spent in central square (11.5±1.26 Vs 3.4±0.65), no. of rearings (32.4±2.61 Vs 17±1.81) and significant decrease p<0.001 in freezing time (15.2±1.12 Vs 20.2±2.29). Memantine showed synergistic antianxiety effect when combined with lorazepam. CONCLUSION Memantine showed significant anxiolytic effect in open field and passive avoidance response tests which are commonly used experimental models to assess anxiety states in animals.
Collapse
Affiliation(s)
- Harish G Bagewadi
- Assistant Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Afzal Khan Ak
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Rekha M Shivaramegowda
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| |
Collapse
|
6
|
Izumi Y, Zorumski CF. Metaplastic effects of subanesthetic ketamine on CA1 hippocampal function. Neuropharmacology 2014; 86:273-81. [PMID: 25128848 DOI: 10.1016/j.neuropharm.2014.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022]
Abstract
Ketamine is a non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonist of interest in neuropsychiatry. In the present studies, we examined the effects of subanesthetic, low micromolar ketamine on excitatory postsynaptic potentials (EPSPs), population spikes (PSs) and synaptic plasticity in the CA1 region of rat hippocampal slices. Ketamine acutely inhibited NMDAR-mediated synaptic responses with half-maximal effects near 10 μM. When administered for 15-30 min at 1-10 μM, ketamine had no effect on baseline dendritic AMPA receptor-mediated EPSPs, but persistently enhanced somatic EPSPs in the pyramidal cell body layer and augmented PS firing. Acute low micromolar ketamine also had no effect on the induction of long-term potentiation (LTP) but blocked long-term depression (LTD). Following 30 min administration of 1-10 μM ketamine, however, a slowly developing and persistent form of LTP inhibition was observed that took two hours following ketamine washout to become manifest. This LTP inhibition did not result from prolonged or enhanced NMDAR inhibition during drug washout. Effects of low ketamine on somatic EPSPs and LTP were not mimicked by a high ketamine concentration that completely inhibited NMDARs, and both of these effects were blocked by co-administration of low ketamine with a low concentration of the competitive NMDAR antagonist, 2-amino-5-phosphonovalerate or inhibitors of nitric oxide synthase. These results indicate that concentrations of ketamine relevant to psychotropic and psychotomimetic effects have complex metaplastic effects on hippocampal function that involve activation of unblocked NMDARs during ketamine exposure.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Myint AM, Kim YK. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:304-13. [PMID: 24184687 DOI: 10.1016/j.pnpbp.2013.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 12/16/2022]
Abstract
The involvement of immune system activation in the pathophysiology of certain psychiatric disorders is well documented. Inflammatory molecules such as pro-inflammatory cytokines could enhance the activity of the indoleamine 2,3-dioxygenase (IDO) enzyme which is the first rate-limiting enzyme of the tryptophan degradation pathway, the kynurenine pathway. The increased tryptophan degradation could induce serotonin depletion and depressive mood. On the other hand, the downstream metabolites from this pathway, such as 3-hydroxykynurenine, quinolinic acid and kynurenic acid, are neuroactive metabolites which can modulate several neurotransmissions, such as glutamatergic, GABAergic, dopaminergic and noradrenergic neurotransmissions, which in turn induce changes in neuronal-glial network and neuropsychiatric consequences. In this issue, we have revised the previous 'neurodegeneration hypothesis,' which explained the involvement of cytokines and IDO pathway interaction in depression, with a further extended view related to the network beyond IDO, the network between immune molecules, tryptophan metabolites and different neurotransmitters, in depression and other major psychiatric disorders such as schizophrenia, bipolar disorder and childhood psychiatric disorders.
Collapse
Affiliation(s)
- Aye-Mu Myint
- Psychiatric Hospital, Ludwig Maximilian University, Nussbaumstrasse 7; D-80336 Munich, Germany; School for Mental Health and Neuroscience, Maastricht University, The Netherlands.
| | | |
Collapse
|