1
|
Frankowska M, Smaga I, Gawlińska K, Pieniążek R, Filip M. Further proof on the role of accumbal nNOS in cocaine-seeking behavior in rats. Pharmacol Rep 2024; 76:338-347. [PMID: 38480667 DOI: 10.1007/s43440-024-00571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Cocaine use disorder (CUD) remains a severe health problem with no effective pharmacological therapy. One of the potential pharmacological strategies for CUD pharmacotherapy includes manipulations of the brain glutamatergic (Glu) system which is particularly involved in drug withdrawal and relapse. Previous research indicated a pivotal role of ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic receptors' type 5 (mGlu5) receptors in controlling the reinstatement of cocaine. Stimulation of the above molecules results in the activation of the downstream signaling targets such as neuronal nitric oxide synthase (nNOS) and the release of nitric oxide. METHODS In this paper, we investigated the molecular changes in nNOS in the prefrontal cortex and nucleus accumbens following 3 and 10 days of cocaine abstinence as well as the effectiveness of nNOS blockade with the selective enzyme inhibitor N-ω-propyl-L-arginine hydrochloride (L-NPA) on cocaine seeking in male rats. The effect of L-NPA on locomotor activity in drug-naïve animals was investigated. RESULTS Ten-day (but not 3-day) cocaine abstinence from cocaine self-administration increased nNOS gene and protein expression in the nucleus accumbens, but not in the prefrontal cortex. L-NPA (0.5-5 mg/kg) administered peripherally did not change locomotor activity but attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue. CONCLUSIONS Our findings support accumbal nNOS as an important molecular player for cocaine seeking while its inhibitors could be considered as anti-cocaine pharmacological tools in male rats.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Renata Pieniążek
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.
Collapse
|
3
|
Kolpakova J, van der Vinne V, Giménez-Gómez P, Le T, You IJ, Zhao-Shea R, Velazquez-Marrero C, Tapper AR, Martin GE. Binge Alcohol Drinking Alters Synaptic Processing of Executive and Emotional Information in Core Nucleus Accumbens Medium Spiny Neurons. Front Cell Neurosci 2021; 15:742207. [PMID: 34867199 PMCID: PMC8635139 DOI: 10.3389/fncel.2021.742207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.
Collapse
Affiliation(s)
- Jenya Kolpakova
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Pablo Giménez-Gómez
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - In-Jee You
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Rubing Zhao-Shea
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cristina Velazquez-Marrero
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| | - Andrew R Tapper
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gilles E Martin
- Department of Neurobiology, The Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Neonatal maternal separation affects metabotropic glutamate receptor 5 expression and anxiety-related behavior of adult rats. Eur J Neurosci 2021; 54:4550-4564. [PMID: 34137089 DOI: 10.1111/ejn.15358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Exposure to early life stress leads to long-term neurochemical and behavioral alterations. Stress-induced psychiatric disorders, such as depression, have recently been linked to dysregulation of glutamate signaling, mainly via its postsynaptic receptors. The role of metabotropic glutamate receptor 5 (mGluR5) in stress-induced psychopathology has been the target of several studies in humans. In rodents, blockade of mGluR5 produces antidepressant-like actions, whereas mice lacking mGluR5 exhibit altered anxiety-like behaviors and learning. In this study, we used well-known rodent models of early life stress based on mother-infant separation during the first 3 weeks of life in order to examine the effects of neonatal maternal separation on mGluR5 expression and on anxiety-related behavior in adulthood. We observed that brief (15 min) neonatal maternal separation, but not prolonged (3 h), induced increases in mGluR5 mRNA and protein expression levels in medial prefrontal cortex and mGluR5 protein levels in dorsal, but not ventral, hippocampus of adult rat brain. Behavioral testing using the open-field and the elevated-plus maze tasks showed that brief maternal separations resulted in increased exploratory and decreased anxiety-related behavior, whereas prolonged maternal separations resulted in increased anxiety-related behavior in adulthood. The data indicate that the long-lasting effects of neonatal mother-offspring separation on anxiety-like behavior and mGluR5 expression depend on the duration of maternal separation and suggest that the increased mGluR5 receptors in medial prefrontal cortex and hippocampus of adult rats exposed to brief neonatal maternal separations may underlie their heightened ability to cope with stress.
Collapse
Affiliation(s)
- Giota Tsotsokou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Ada Mitsacos
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Yu J, Ishikawa M, Wang J, Schlüter OM, Sesack SR, Dong Y. Ventral Tegmental Area Projection Regulates Glutamatergic Transmission in Nucleus Accumbens. Sci Rep 2019; 9:18451. [PMID: 31804595 PMCID: PMC6895172 DOI: 10.1038/s41598-019-55007-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
The ventral tegmental area (VTA) projection to the nucleus accumbens shell (NAcSh) regulates NAcSh-mediated motivated behaviors in part by modulating the glutamatergic inputs. This modulation is likely to be mediated by multiple substances released from VTA axons, whose phenotypic diversity is illustrated here by ultrastructural examination. Furthermore, we show in mouse brain slices that a brief optogenetic stimulation of VTA-to-NAc projection induced a transient inhibition of excitatory postsynaptic currents (EPSCs) in NAcSh principal medium spiny neurons (MSNs). This inhibition was not accompanied by detectable alterations in presynaptic release properties of electrically-evoked EPSCs, suggesting a postsynaptic mechanism. The VTA projection to the NAcSh releases dopamine, GABA and glutamate, and induces the release of other neuronal substrates that are capable of regulating synaptic transmission. However, pharmacological inhibition of dopamine D1 or D2 receptors, GABAA or GABAB receptors, NMDA receptors, P2Y1 ATP receptors, metabotropic glutamate receptor 5, and TRP channels did not prevent this short-term inhibition. These results suggest that an unknown mechanism mediates this form of short-term plasticity induced by the VTA-to-NAc projection.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Masago Ishikawa
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
6
|
Vatankhah M, Karimi-Haghighi S, Sarihi A, Haghparast A. Intra-accumbal administration of AMN082, a metabotropic glutamate receptor type 7 allosteric agonist, inhibits the acquisition but not the expression of morphine-induced conditioned place preference in rats. Neurosci Lett 2018; 681:56-61. [PMID: 29800675 DOI: 10.1016/j.neulet.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022]
Abstract
The nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate are mediated by the activation of ionotropic and metabotropic glutamate receptors (mGluRs). Previous documents have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as the NAc. In this study, seventy male Wistar rats were used to investigate the role of mGluR7 receptors in the NAc on the acquisition and expression of morphine-induced conditioned place preference (CPP). In Experiment 1, to determine the effect of AMN082, a selective mGluR7 allosteric agonist, on the acquisition of morphine-induced conditioned place preference (CPP), the rats bilaterally received AMN082 (1, 3 and 5 μg/0.5 μL DMSO) during three-day conditioning by morphine (5 mg/kg). In Experiment 2, the rats bilaterally received AMN082 (5 μg/0.5 μL DMSO) 5 min prior to the post-conditioning test to investigate the effect of AMN082 on the expression of morphine-induced CPP. The results showed that the intra-accumbal injection of AMN082 prevents the acquisition of morphine-induced CPP in a dose-dependent manner. However, intra-accumbal injection of AMN082 had no effect on the expression of morphine-induced CPP. The findings propose that the mGluR7 in the NAc inhibits the acquisition of morphine-induced CPP that could be mediated by inhibition of NMDA receptors in the NAc.
Collapse
Affiliation(s)
- Mahsaneh Vatankhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
7
|
Gawel K, Jenda-Wojtanowska M, Gibula-Bruzda E, Kedzierska E, Filarowska J, Marszalek-Grabska M, Wojtanowski KK, Komsta L, Talarek S, Kotlinska JH. The influence of AMN082, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands. Physiol Behav 2017; 185:112-120. [PMID: 29294304 DOI: 10.1016/j.physbeh.2017.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Preclinical data indicated that the metabotropic glutamate receptors 5 (mGlu5) and glutamate receptors 2/3 (mGlu2/3) are involved in modulating morphine antinociception. However, little is known about the role of metabotropic glutamate receptors 7 (mGlu7) in this phenomenon. We compared the effects of AMN082 (0.1, 1 or 5mg/kg, ip), a selective mGlu7 allosteric agonist, LY354740 (0.1, 1 or 5mg/kg, ip), an mGlu2/3 agonist and MTEP (0.1, 1 or 5mg/kg, ip), a selective mGlu5 antagonist, on the acute antinociceptive effect of morphine (5mg/kg, sc) and also on the development and expression of tolerance to morphine analgesia in the tail-immersion test in mice. To determine the role of mGlu7 in morphine tolerance, and the association of the mGlu7 effect with the N-methyl-d-aspartate (NMDA) receptors regulation, we used MMPIP (10mg/kg, ip), a selective mGlu7 antagonist and MK-801, a NMDA antagonist. Herein, the acute administration of AMN082, MTEP or LY354740 alone failed to evoked antinociception, and did not affect morphine (5mg/kg, sc) antinociception. However, these ligands inhibited the development of morphine tolerance, and we indicated that MMPIP reversed the inhibitory effect of AMN082. When given together, the non-effective doses of AMN082 and MK-801 did not alter the tolerance to morphine. Thus, mGlu7, similarly to mGlu2/3 and mGlu5, are involved in the development of tolerance to the antinociceptive effects of morphine, but not in the acute morphine antinociception. Furthermore, while mGlu7 are engaged in the development of morphine tolerance, no interaction exists between mGlu7 and NMDA receptors in this phenomenon.
Collapse
Affiliation(s)
- K Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - M Jenda-Wojtanowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - M Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - K K Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University, Lublin, Poland
| | - L Komsta
- Department of Medicinal Chemistry, Medical University, Lublin, Poland
| | - S Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
8
|
Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend 2017; 180:156-170. [PMID: 28892721 PMCID: PMC5790191 DOI: 10.1016/j.drugalcdep.2017.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The plenary session at the 2016 Behavior, Biology and Chemistry: Translational Research in Addiction Conference focused on glia as potential players in the development, persistence and treatment of substance use disorders. Glia partake in various functions that are important for healthy brain activity. Drugs of abuse alter glial cell activity producing several perturbations in brain function that are thought to contribute to behavioral changes associated with substance use disorders. Consequently, drug-induced changes in glia-driven processes in the brain represent potential targets for pharmacotherapeutics treating substance use disorders. METHODS Four speakers presented preclinical and clinical research illustrating the effects that glial modulators have on abuse-related behavioral effects of psychostimulants and opioids. This review highlights some of these findings and expands its focus to include other research focused on drug-induced glia abnormalities and glia-focused treatment approaches in substance use disorders. RESULTS Preclinical findings show that drugs of abuse induce neuroinflammatory signals and disrupt glutamate homeostasis through their interaction with microglia and astrocytes. Preclinical and clinical studies testing the effects of glial modulators show general effectiveness in reducing behaviors associated with substance use disorders. CONCLUSIONS The contribution of drug-induced glial activity continues to emerge as an intriguing target for substance use disorder treatments. Clinical investigations of glial modulators have yielded promising results on substance use measures and indicate that they are generally safe and well-tolerated. However, results have not been entirely positive and more questions remain for continued exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Ryan K. Bachtell
- Department of Psychology and Neuroscience, and Center for Neuroscience, UCB 345, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Keith G. Heinzerling
- Department of Family Medicine and Center for Behavioral and Addiction Medicine, UCLA, Los Angeles, CA, USA
| | - Patrick M. Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | - Sandra D. Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute and College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
9
|
Group III metabotropic glutamate receptors and drug addiction. Front Med 2014; 7:445-51. [PMID: 24078068 DOI: 10.1007/s11684-013-0291-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates).
Collapse
|
10
|
Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem 2013; 129:4-20. [PMID: 24224472 DOI: 10.1111/jnc.12608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders possess common pathological mechanisms, such as protein aggregation, inflammation, oxidative stress (OS) and excitotoxicity, raising the possibility of shared therapeutic targets. As a result of the selective cellular and regional expression of group III metabotropic glutamate (mGlu) receptors, drugs targeting such receptors have demonstrated both neuroprotective properties and symptomatic improvements in several models of neurodegeneration. In recent years, the discovery and development of subtype-selective ligands for the group III mGlu receptors has gained pace, allowing further research into the functions of these receptors and revealing their roles in health and disease. Activation of this class of receptors results in neuroprotection, with a variety of underlying mechanisms implicated. Group III mGlu receptor stimulation prevents excitotoxicity by inhibiting glutamate release from neurons and microglia and increasing glutamate uptake by astrocytes. It also attenuates the neuroinflammatory response by reducing glial reactivity and encourages neurotrophic phenotypes. This article will review the current literature with regard to the neuroprotective and symptomatic effects of group III mGlu receptor activation and discuss their promise as therapeutic targets in neurodegenerative disease. We review the neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease: Excess extracellular glutamate causes overactivation of NMDA receptors resulting in excitotoxicity. Externalization of phosphatidylserine stimulates phagocytosis of neurons by activated microglia, which contribute to damage through glutamate and pro-inflammatory factor release. Reactive astrocytes produce cytotoxic factors enhancing neuronal cell death. Activation of group III mGlu receptors by glutamate and/or mGlu receptor ligands results in inhibition of glutamate release from presynaptic terminals and microglia, reducing excitotoxicity. Astrocytic glutamate uptake is increased and microglia produce neurotrophic factors.
Collapse
Affiliation(s)
- Claire J Williams
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
11
|
Matsuta Y, Mally AD, Zhang F, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Contribution of opioid and metabotropic glutamate receptor mechanisms to inhibition of bladder overactivity by tibial nerve stimulation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R126-33. [PMID: 23576608 DOI: 10.1152/ajpregu.00572.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The contribution of metabotropic glutamate receptors (mGluR) and opioid receptors to inhibition of bladder overactivity by tibial nerve stimulation (TNS) was investigated in cats under α-chloralose anesthesia using LY341495 (a group II mGluR antagonist) and naloxone (an opioid receptor antagonist). Slow infusion cystometry was used to measure the volume threshold (i.e., bladder capacity) for inducing a large bladder contraction. After measuring the bladder capacity during saline infusion, 0.25% acetic acid (AA) was infused to irritate the bladder, activate the nociceptive C-fiber bladder afferents, and induce bladder overactivity. AA significantly (P < 0.0001) reduced bladder capacity to 26.6 ± 4.7% of saline control capacity. TNS (5 Hz, 0.2 ms) at 2 and 4 times the threshold (T) intensity for inducing an observable toe movement significantly increased bladder capacity to 62.2 ± 8.3% at 2T (P < 0.01) and 80.8 ± 9.2% at 4T (P = 0.0001) of saline control capacity. LY341495 (0.1-5 mg/kg iv) did not change bladder overactivity, but completely suppressed the inhibition induced by TNS at a low stimulus intensity (2T) and partially suppressed the inhibition at high intensity (4T). Following administration of LY341495, naloxone (0.01 mg/kg iv) completely eliminated the high-intensity TNS-induced inhibition. However, without LY341495 treatment a 10 times higher dose (0.1 mg/kg) of naloxone was required to completely block TNS inhibition. These results indicate that interactions between group II mGluR and opioid receptor mechanisms contribute to TNS inhibition of AA-induced bladder overactivity. Understanding neurotransmitter mechanisms underlying TNS inhibition of bladder overactivity is important for the development of new treatments for bladder disorders.
Collapse
Affiliation(s)
- Yosuke Matsuta
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gu Z, Liu W, Wei J, Yan Z. Regulation of N-methyl-D-aspartic acid (NMDA) receptors by metabotropic glutamate receptor 7. J Biol Chem 2012; 287:10265-10275. [PMID: 22287544 DOI: 10.1074/jbc.m111.325175] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Emerging evidence suggests that metabotropic glutamate receptors (mGluRs) are potential novel targets for brain disorders associated with the dysfunction of prefrontal cortex (PFC), a region critical for cognitive and emotional processes. Because N-methyl-D-aspartic acid receptor (NMDAR) dysregulation has been strongly associated with the pathophysiology of mental illnesses, we examined the possibility that mGluRs might be involved in modulating PFC functions by targeting postsynaptic NMDARs. We found that application of prototypical group III mGluR agonists significantly reduced NMDAR-mediated synaptic and ionic currents in PFC pyramidal neurons, which was mediated by mGluR7 localized at postsynaptic neurons and involved the β-arrestin/ERK signaling pathway. The mGluR7 modulation of NMDAR currents was prevented by agents perturbing actin dynamics and by the inhibitor of cofilin, a major actin-depolymerizing factor. Consistently, biochemical and immunocytochemical results demonstrated that mGluR7 activation increased cofilin activity and F-actin depolymerization via an ERK-dependent mechanism. Furthermore, mGluR7 reduced the association of NMDARs with the scaffolding protein PSD-95 and the surface level of NMDARs in an actin-dependent manner. These data suggest that mGluR7, by affecting the cofilin/actin signaling, regulates NMDAR trafficking and function. Because ablation of mGluR7 leads to a variety of behavioral symptoms related to PFC dysfunction, such as impaired working memory and reduced anxiety and depression, our results provide a potential mechanism for understanding the role of mGluR7 in mental health and disorders.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Wenhua Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214.
| |
Collapse
|
13
|
Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. Neuropharmacology 2011; 61:1399-405. [PMID: 21896278 DOI: 10.1016/j.neuropharm.2011.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 08/03/2011] [Accepted: 08/19/2011] [Indexed: 12/13/2022]
Abstract
Systemic administration of the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was previously shown to selectively attenuate nicotine self-administration without affecting food-maintained responding in rats. Glutamatergic neurotransmission in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) shell plays an important role in the reinforcing effects of nicotine. To determine the brain sites that may mediate the systemic effects of MPEP on nicotine self-administration, the present study investigated the effects of MPEP microinfusions into the VTA or the NAcc shell on nicotine and food self-administration in separate groups of rats. Administration of low MPEP doses (0, 0.5, 1, and 2 μg/0.5 μl/side) microinfused into the NAcc shell had no effect on nicotine self-administration, whereas higher MPEP doses (0, 10, 20, and 40 μg/0.5 μl/side) microinfused into the NAcc shell dose-dependently attenuated nicotine self-administration without affecting food-maintained responding. Microinfusions of MPEP into the VTA (0, 10, 20, and 40 μg/0.5 μl/side) significantly decreased both nicotine and food self-administration at 20 μg/0.5 μl/side but did not affect responding for either reinforcer at 40μg/0.5 μl/side. This lack of effect of 40 μg/0.5 μl/side MPEP on either nicotine or food self-administration when administered into the VTA may be attributable either to actions of MPEP at presynaptic mGlu5 receptors or at targets other than mGlu5 receptors. Importantly, anatomical control injections 2mm above the NAcc shell or the VTA using the most effective MPEP dose in the two regions did not result in attenuation of nicotine self-administration. In conclusion, MPEP microinfusions in the VTA or NAcc shell attenuates the reinforcing effects of nicotine possibly via blockade of mGlu5 receptors located in these regions.
Collapse
|
14
|
Fowler SW, Ramsey AK, Walker JM, Serfozo P, Olive MF, Schachtman TR, Simonyi A. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiol Learn Mem 2011; 95:73-9. [PMID: 21093598 PMCID: PMC3038545 DOI: 10.1016/j.nlm.2010.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/23/2010] [Accepted: 11/11/2010] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptor 5 (mGlu5) has been implicated in a variety of learning processes and is important for inhibitory avoidance and conditioned taste aversion learning. MGlu5 receptors are physically connected with NMDA receptors and they interact with, and modulate, the function of one another in several brain regions. The present studies used systemic co-administration of an mGlu5 receptor positive allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and an NMDA receptor antagonist dizocilpine maleate (MK-801) to characterize the interactions of these receptors in two aversive learning tasks. Male Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance or conditioned taste aversion task. CDPPB (3 or 10mg/kg, s.c.), delivered by itself prior to the conditioning trial, did not have any effect on performance in either task 48 h after training. However, CDPPB (at 3mg/kg) attenuated the MK-801 (0.2mg/kg, i.p.) induced learning deficit in both tasks. CDPPB also reduced MK-801-induced hyperactivity. These results underlie the importance of mGlu5 and NMDA receptor interactions in modulating memory processing, and are consistent with findings showing the efficacy of positive allosteric modulators of mGlu5 receptors in reversing the negative effects of NMDA receptor antagonists on other behaviors such as stereotypy, sensorimotor gating, or working, spatial and recognition memory.
Collapse
Affiliation(s)
- S W Fowler
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT. Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. ACTA ACUST UNITED AC 2010; 21:727-35. [PMID: 20705895 DOI: 10.1093/cercor/bhq147] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consolidation of fear extinction involves enhancement of N-methyl D aspartate (NMDA) receptor-dependent bursting in the infralimbic region (IL) of the medial prefrontal cortex (mPFC). Previous studies have shown that systemic blockade of metabotropic glutamate receptor type 5 (mGluR5) reduces bursting in the mPFC and mGluR5 agonists enhance NMDA receptor currents in vitro, suggesting that mGluR5 activation in IL may contribute to fear extinction. In the current study, rats injected with the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) systemically, or intra-IL, prior to extinction exhibited normal within-session extinction, but were impaired in their ability to recall extinction the following day. To directly determine whether mGluR5 stimulation enhances the burst firing of IL neurons, we used patch-clamp electrophysiology in prefrontal slices. The mGluR5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), increased intrinsic bursting in IL neurons. Increased bursting was correlated with a reduction in the slow after hyperpolarizing potential and was prevented by coapplication of MPEP. CHPG did not increase NMDA currents, suggesting that an NMDA receptor-independent enhancement of IL bursting via stimulation of mGluR5 receptors contributes to fear extinction. Therefore, the mGluR5 receptor could be a suitable target for pharmacological adjuncts to extinction-based therapies for anxiety disorders.
Collapse
Affiliation(s)
- Darah E Fontanez-Nuin
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico 00732-7004
| | | | | | | |
Collapse
|
16
|
Mitrano D, Pare JF, Smith Y. Ultrastructural relationships between cortical, thalamic, and amygdala glutamatergic inputs and group I metabotropic glutamate receptors in the rat accumbens. J Comp Neurol 2010; 518:1315-29. [PMID: 20151362 PMCID: PMC3895817 DOI: 10.1002/cne.22277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in glutamatergic transmission in the nucleus accumbens play a key role in mediating reward-related behaviors and addiction to psychostimulants. Glutamatergic inputs to the accumbens originate from multiple sources, including the prefrontal cortex, basolateral amygdala, and midline thalamus. The group I metabotropic glutamate receptors (mGluRs) are found throughout the core and shell of the nucleus accumbens, but their localization and function at specific glutamatergic synapses remain unknown. To further characterize the substrate that underlies group I mGluR functions in the accumbens, we combined anterograde tract tracing method with electron microscopy immunocytochemistry to study the ultrastructural relationships between specific glutamatergic afferents and mGluR1a- or mGluR5-containing neurons in the rat nucleus accumbens. Although cortical, thalamic, and amygdala glutamatergic terminals contact both mGluR1a- and mGluR5-immunoreactive dendrites and spines in the shell and core of the accumbens, they do so to varying degrees. Overall, glutamatergic terminals contact mGluR1a-positive spines about 30% of the time, whereas they form synapses twice as frequently with mGluR5-labeled spines. At the subsynaptic level, mGluR5 is more frequently expressed perisynaptically and closer to the edges of glutamatergic axospinous synapses than mGluR1a, suggesting a differential degree of activation of the two group I mGluRs by transmitter spillover from glutamatergic synapses in the rat accumbens. These results lay the foundation for a deeper understanding of group I mGluR-mediated effects in the ventral striatum, and their potential therapeutic benefits in drug addiction and other neuropsychiatric changes in reward-related behaviors.
Collapse
Affiliation(s)
- D.A. Mitrano
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322
| | - J.-F. Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
| | - Y. Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
17
|
Kolaj M, Renaud LP. Metabotropic glutamate receptors in median preoptic neurons modulate neuronal excitability and glutamatergic and GABAergic inputs from the subfornical organ. J Neurophysiol 2009; 103:1104-13. [PMID: 20018832 DOI: 10.1152/jn.00808.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular and behavioral responses to circulating angiotensin require intact connectivity along the upper lamina terminalis joining the subfornical organ (SFO) with the median preoptic nucleus (MnPO). In the present study on MnPO neurons, we used whole cell patch-clamp recording techniques in brain slice preparations to evaluate the influence of metabotropic glutamate receptor (mGluR) agonists on modulating their intrinsic excitability and SFO-evoked glutamatergic and GABAergic postsynaptic currents. In 22/36 cells, bath application of a mGluR group I agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced a TTX-resistant inward current coupled with decrease in a membrane K(+) conductance but also a possible increase in a nonselective cationic conductance. By contrast, 27/49 cells responded to a mGluR group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) with a TTX-resistant outward current and increase in membrane conductance that reversed around -95 mV, suggesting opening of K(+) channels. None of 19 cells responded to the mGluR group III agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Agonists for all mGluR groups suppressed SFO-evoked excitatory postsynaptic currents and significantly increased paired-pulse ratios, implying a presynaptic mechanism. Only the mGluR group II agonist significantly reduced SFO-evoked inhibitory postsynaptic currents and caused an increase in paired-pulse ratios. These results suggest a complexity of pre- and postsynaptic mGluRs are available to modulate rapid neurotransmission along the upper lamina terminalis from SFO to MnPO.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada.
| | | |
Collapse
|
18
|
Sun MK. The quest for treatment of cognitive impairment: AMPA and mGlu5 receptor modulators. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.9.999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Zhang L, Warren RA. Postnatal development of excitatory postsynaptic currents in nucleus accumbens medium spiny neurons. Neuroscience 2008; 154:1440-9. [PMID: 18554817 DOI: 10.1016/j.neuroscience.2008.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 04/28/2008] [Accepted: 05/03/2008] [Indexed: 11/25/2022]
Abstract
We have recorded excitatory postsynaptic currents (EPSCs) evoked by local electrical stimulation in 243 nucleus accumbens (nAcb) neurons in vitro during postnatal development from the day of birth (postnatal day 0; P0) to P27 and in young adults rats (P59-P71). An EPSC sensitive to glutamatergic antagonists was found in all neurons. In the majority of cases (189/243), the EPSC had two distinct components: an early one sensitive to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and a late one that was sensitive to D-2-amino-5-phosphonovaleric acid (APV) showing that early and late components of the EPSC were mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors respectively. During the first four postnatal days, the amplitudes of both the AMPA/KA and NMDA components of the EPSC were relatively small and then began to increase until the end of the second postnatal week. Whereas the amplitude of the early component appeared to stabilize from that point on, the late component began to decrease and became virtually undetectable in preparations from animals older than 3 weeks unless the AMPA/KA response was blocked with CNQX. In addition, the ratio between the amplitude of the NMDA and AMPA/KA receptor-mediated components of the EPSC followed a developmental pattern parallel to that of the NMDA receptor component showing an increase during the first two postnatal weeks followed by a decrease. Together, these results show that, during postnatal development, there is a period when NMDA receptor-mediated EPSC are preeminent and that time frame might represent a period during which the development of the nAcb might be sensitive to environmental manipulation.
Collapse
Affiliation(s)
- L Zhang
- Centre de recherche Fernand-Seguin, Hôpital Louis-H Lafontaine, Montréal, Québec, Canada
| | | |
Collapse
|
20
|
Chan MH, Chiu PH, Sou JH, Chen HH. Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology (Berl) 2008; 198:141-8. [PMID: 18311557 DOI: 10.1007/s00213-008-1103-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Recent studies have shown that metabotropic glutamate receptor 5 (mGluR5) can modulate N-methyl-D-aspartate receptor function. Our previous findings demonstrated that the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and the antagonist 2-methyl-6-(phenylethynyl)-pyridine can reduce and enhance the ketamine anesthesia, respectively. OBJECTIVE The purpose of this study was to examine whether CHPG and positive allosteric modulator 3,3'-difluorobenzaldazine (DFB) can reverse ketamine-induced behavioral responses including locomotor hyperactivity, motor incoordination, sensorimotor gating deficit, and learning impairment. METHODS Mice were pretreated with CHPG (5-50 nmol,) or DFB (40-100 nmol) followed by ketamine administration. Locomotor activity, rotarod test, prepulse inhibition (PPI) of acoustic startle test, and novel object recognition test were examined. RESULTS CHPG and DFB had no effect on these behaviors when administered alone. Both of them attenuated the locomotor hyperactivity, motor incoordination, and cognitive impairment induced by ketamine. However, the ketamine-induced PPI deficit was reversed by CHPG (50 nmol) but not by DFB (up to 100 nmol). CHPG and DFB have distinct potency and efficacy in attenuating ketamine-induced behavioral response. CONCLUSIONS These behavioral data extend previous findings and further suggest that positive modulation of mGluR5 may provide a novel approach for development of antipsychotic agents.
Collapse
Affiliation(s)
- Ming-Huan Chan
- Institute of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | | | | | | |
Collapse
|
21
|
Li X, Gardner EL, Xi ZX. The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology 2008; 54:542-51. [PMID: 18155073 PMCID: PMC2410088 DOI: 10.1016/j.neuropharm.2007.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/29/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
The group III metabotropic glutamate receptor 7 (mGluR7) has been implicated in many neurological and psychiatric diseases, including drug addiction. However, it is unclear whether and how mGluR7 modulates nucleus accumbens (NAc) dopamine (DA), L-glutamate or gamma-aminobutyric acid (GABA), important neurotransmitters believed to be involved in such neuropsychiatric diseases. In the present study, we found that systemic or intra-NAc administration of the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082) dose-dependently lowered NAc extracellular GABA and increased extracellular glutamate, but had no effect on extracellular DA levels. Such effects were blocked by (R,S)-alpha-methylserine-O-phosphate (MSOP), a group III mGluR antagonist. Intra-NAc perfusion of tetrodotoxin (TTX) blocked the AMN082-induced increases in glutamate, but failed to block the AMN082-induced reduction in GABA, suggesting vesicular glutamate and non-vesicular GABA origins for these effects. In addition, blockade of NAc GABAB receptors by 2-hydroxy-saclofen itself elevated NAc extracellular glutamate. Intra-NAc perfusion of 2-hydroxy-saclofen not only abolished the enhanced extracellular glutamate normally produced by AMN082, but also decreased extracellular glutamate in a TTX-resistant manner. We interpret these findings to suggest that the increase in glutamate is secondary to the decrease in GABA, which overcomes mGluR7 activation-induced inhibition of non-vesicular glutamate release. In contrast to its modulatory effect on GABA and glutamate, the mGluR7 receptor does not appear to modulate NAc DA release.
Collapse
Affiliation(s)
- Xia Li
- Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 21224, USA
| | - Eliot L. Gardner
- Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Folbergrová J, Druga R, Haugvicová R, Mares P, Otáhal J. Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 2007; 54:665-75. [PMID: 18191956 DOI: 10.1016/j.neuropharm.2007.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/15/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
The present study has examined the anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG), a highly selective agonist for subtype 8 of group III metabotropic glutamate receptors (mGluRs), against seizures induced in immature 12-day-old rats by bilateral icv infusion of DL-homocysteic acid (DL-HCA, 600 nmol/side). For biochemical analyses, rat pups were sacrificed during generalized clonic-tonic seizures, approximately 45-50 min after infusion. Comparable time intervals were used for sacrificing the animals which had received (S)-3,4-DCPG (0.25 nmol/each side, 15-20 min prior to infusion of DL-HCA or saline). This agonist provided a pronounced anticonvulsant effect, generalized clonic-tonic seizures were completely suppressed and cortical energy metabolite changes which normally accompany these seizures were either normalized (decrease of glucose and glycogen) or markedly reduced (an accumulation of lactate). Anticonvulsant effect of (S)-3,4-DCPG was also evident from the EEG recordings, nevertheless, it was not complete. In spite of the absence of obvious motor phenomena, sporadic ictal activity could be seen in some animals. Isolated spikes could also be observed in some animals after administration of (S)-3,4-DCPG alone. The neuroprotective effect of (S)-3,4-DCPG was evaluated after 24 h and 6 days of survival following DL-HCA-induced seizures. Massive neuronal degeneration was observed in a number of brain regions following infusion of DL-HCA alone (seizure group), whereas pretreatment with (S)-3,4-DCPG provided substantial neuroprotection. The present findings suggest that receptor subtype 8 of group III mGluRs may be considered a promising target for drug therapy in childhood epilepsies in the future.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
23
|
Semenova S, Markou A. The effects of the mGluR5 antagonist MPEP and the mGluR2/3 antagonist LY341495 on rats' performance in the 5-choice serial reaction time task. Neuropharmacology 2006; 52:863-72. [PMID: 17126859 PMCID: PMC1847349 DOI: 10.1016/j.neuropharm.2006.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/21/2006] [Accepted: 10/09/2006] [Indexed: 11/23/2022]
Abstract
Schizophrenia is characterized by attentional deficits possibly associated with glutamate dysfunction. The role of postsynaptic metabotropic glutamate 5 receptors (mGluR5) or presynaptic inhibitory mGluR2/3 on attention is currently unknown. We investigated the effects of the mGluR5 antagonist MPEP (2-methyl-6[phenylethynyl]-pyridine) and the mGluR2/3 antagonist LY341495 on attention in the 5-choice serial reaction time task (5CSRTT), as well as on food intake to evaluate their effects on food motivation. The effects of pre-feeding and the muscle relaxant curare were examined to characterize the effects of alterations in the motivation or ability to perform the task, respectively. MPEP had no effect on accuracy but overall decreased performance in the 5CSRTT, including decreased speed of responding and decreased premature responses. LY341495 had no significant effect on rats' performance in the 5CSRTT. LY341495 decreased food intake in the home cage to a greater extent than MPEP. Curare decreased the speed of correct responding, reflecting motor impairment. Free feeding decreased overall performance, number of trials completed and number of head entries into the feeder, reflecting decreased motivation to perform the task. Thus, blockade of mGluR5, but not mGluR2/3, decreased overall responding without affecting accuracy in the 5CSRTT.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, M/C 0603, La Jolla, CA 92093-0603, USA
| | | |
Collapse
|
24
|
Sou JH, Chan MH, Chen HH. Ketamine, but not propofol, anaesthesia is regulated by metabotropic glutamate 5 receptors. Br J Anaesth 2006; 96:597-601. [PMID: 16531447 DOI: 10.1093/bja/ael046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Group I metabotropic glutamate receptors (mGluRs) have been reported to regulate N-methyl-d-aspartate (NMDA) receptor function in various brain regions. The selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) can potentiate NMDA antagonists such as PCP and MK-801-induced behavioural responses. In the present study, the role of group I mGluRs on ketamine- and propofol-induced general anaesthesia was examined. METHODS Mice were pretreated with various doses of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) and mGluR5 antagonist MPEP followed by administration of ketamine (120 mg kg(-1)) or propofol (140 mg kg(-1)) to induce anaesthesia. The duration of loss of righting reflex was recorded. RESULTS DHPG and CHPG antagonized and MPEP potentiated ketamine-induced anaesthesia in a dose-dependent manner. CPCCOEt was ineffective. However, propofol-induced anaesthesia was not affected after manipulating mGluR1 and mGluR5 receptors. CONCLUSIONS mGluR5 receptors play an important role in modulation of anaesthesia induced by ketamine, but not propofol.
Collapse
Affiliation(s)
- J-H Sou
- Institute of Pharmacology and Toxicology, Tzu Chi University Hualien, Taiwan, R.O.C
| | | | | |
Collapse
|
25
|
Acuna-Goycolea C, Li Y, Van Den Pol AN. Group III metabotropic glutamate receptors maintain tonic inhibition of excitatory synaptic input to hypocretin/orexin neurons. J Neurosci 2004; 24:3013-22. [PMID: 15044540 PMCID: PMC6729849 DOI: 10.1523/jneurosci.5416-03.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypocretin/orexin neurons play an important role in hypothalamic arousal. Synaptic glutamate input to hypocretin neurons regulates cell firing. We studied the actions of group III metabotropic glutamate receptors (mGluRs) in modulating the activity of hypocretin neurons using whole-cell voltage- and current-clamp recording in mouse whole hypothalamic slices or minislices consisting only of the lateral hypothalamus. Selective green fluorescent protein expression was used to detect live hypocretin neurons. The mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP-4) inhibited synaptic input to hypocretin neurons in a dose-dependent manner; both spontaneous glutamate and GABA-mediated synaptic currents were reduced in frequency. l-AP-4 also reduced the amplitude of postsynaptic potentials evoked by a stimulating electrode placed medial or lateral to the recorded cell. No postsynaptic effect of l-AP-4 was found relative to membrane potential, input resistance, or AMPA-evoked currents. l-AP-4 appeared to act by a presynaptic mechanism and reduced the frequency of both glutamate- and GABA-mediated miniature events recorded in the presence of tetrodotoxin, with no change in amplitude. (RS)-phosphonopentanoic acid (CPPG), a group III mGluR antagonist, suppressed the actions of l-AP-4. Of substantial interest, CPPG by itself increased synaptic activity recorded in hypocretin neurons, suggesting an ongoing inhibitory tone attributable to activation of group III mGluRs. Glutamatergic interneurons have been suggested to play a role in a positive feedback recruitment of hypocretin on hypocretin neurons. l-AP-4 blocked hypocretin-mediated increases in EPSCs and attenuated the hypocretin-mediated increase in spike frequency. Together, these data suggest that tonically active inhibitory mGluRs are expressed on local hypocretin-sensitive glutamate neurons within the lateral hypothalamus that modulate the output of the hypocretin arousal system.
Collapse
Affiliation(s)
- Claudio Acuna-Goycolea
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
26
|
Xi ZX, Shen H, Baker DA, Kalivas PW. Inhibition of non-vesicular glutamate release by group III metabotropic glutamate receptors in the nucleus accumbens. J Neurochem 2003; 87:1204-12. [PMID: 14622100 DOI: 10.1046/j.1471-4159.2003.02093.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | |
Collapse
|
27
|
Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V. Neuroprotective activity of metabotropic glutamate receptor ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:197-223. [PMID: 12575822 DOI: 10.1007/978-1-4615-0123-7_7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metabotropic glutamate receptors form a family of currently eight subtypes (mGluR1-8), subdivided into three groups (I-III). Activation of group-II (mGluR2 and -3) or group-III metabotropic glutamate receptors (mGluR4, -6, -7 and -8) has been established to be neuroprotective in vitro and in vivo. In contrast, group-I mGluRs (mGluR1 and -5) need to be antagonized in order to evoke protection. Initially, all neuroprotective mGluR ligands were analogues of L-glutamate. Those compounds were valuable to demonstrate protection in vitro, but showed limited applicability in animal models, particularly in chronic tests, due to low blood-brain-barrier penetration. Recently, systemically active and more potent and selective ligands became available, e.g., the group-II mGluR agonists LY354740 and LY379268 or group-I antagonists like MPEP (mGluR5-selective) and BAY36-7620 (mGluR1-selective). This new generation of pharmacological agents allows a more stringent assessment of the role of individual mGluR-subtypes or groups of receptors in various nervous system disorders, including ischaemia-induced brain damage, traumatic brain injury, Huntington's and Parkinson's-like pathology or epilepsy. Moreover, the use of genetically modified animals (e.g., knock-out mice) is starting to shed light on specific functions of mGluR-subtypes in experimental neuropathologies.
Collapse
Affiliation(s)
- Peter J Flor
- Novartis PharmaAG, Nervous System Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Taverna S, Pennartz CMA. Postsynaptic modulation of AMPA- and NMDA-receptor currents by Group III metabotropic glutamate receptors in rat nucleus accumbens. Brain Res 2003; 976:60-8. [PMID: 12763622 DOI: 10.1016/s0006-8993(03)02676-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Whole cell patch clamp recordings from rat nucleus accumbens neurons were made in order to study the effect of metabotropic glutamate receptors and dopamine on postsynaptic glutamate receptor mediated currents. AMPA- and NMDA-R currents were evoked by flash photolysis of caged glutamate, while spike-dependent release of neurotransmitters was prevented by adding tetrodotoxin and bicuculline to the bath solution. Spontaneous potentiation of NMDA- but not AMPA-R current was observed in the early phase of stimulation, followed by depotentiation and subsequent stabilization. The Group III metabotropic glutamate receptor antagonist MAP4 induced a transient potentiation of both AMPA- and NMDA-R current amplitudes, without affecting rise times and decay time constants. In contrast, the Group I-II metabotropic glutamate receptor antagonist MCPG and the neurotransmitter dopamine did not exert significant effects on either AMPA- or NMDA-R currents. These data suggest that at least one of the Group III subtypes is located postsynaptically in the nucleus accumbens and is able to dampen the activity of ionotropic glutamatergic receptors. In contrast, our results do not support a modulation of postsynaptic AMPA- and NMDA-R currents by Group I/II metabotropic glutamate receptors or dopamine. Modulation of both AMPA- and NMDA-R currents in the nucleus accumbens is likely to play a major role in setting the cellular excitability in response to behaviourally relevant limbic inputs, and in regulating the plasticity of these responses.
Collapse
Affiliation(s)
- Stefano Taverna
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Folbergrová J, Haugvicová R, Mares P. Seizures induced by homocysteic acid in immature rats are prevented by group III metabotropic glutamate receptoragonist (R,S)-4-phosphonophenylglycine. Exp Neurol 2003; 180:46-54. [PMID: 12668148 DOI: 10.1016/s0014-4886(02)00047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential anticonvulsant effect of group III metabotropic glutamate receptor (mGluR) agonist (R,S)-4-phosphonophenylglycine ((R,S)-PPG) against seizures induced in immature 12-day-old rats by bilateral intracerebroventricular (icv) infusion of DL-homocysteic acid (DL-HCA, 600 nmol/side) was examined in the present study. Rat pups were sacrificed during generalized clonic-tonic seizures, approximately 45 to 50 min after infusion. Comparable time intervals were used for sacrificing the pups which had received (R,S)-PPG. Low doses of (R,S)-PPG (10 nmol, icv) provided a pronounced anticonvulsant effect which was abolished by pretreatment with a selective group III mGluR antagonist (R,S)-alpha-methylserine-O-phosphate. Generalized clonic-tonic seizures were completely suppressed and cortical energy metabolite changes which normally accompany these seizures were either normalized (glucose and glycogen decreases) or markedly ameliorated (an accumulation of lactate). Despite the absence of obvious motor phenomena, EEG recordings revealed sporadic ictal activity, mostly in the dorsal hippocampus. Spreading of this activity into the frontal cortex was rather exceptional. The latency of ictal EEG in pretreated rats was significantly prolonged. Our data suggest that the predominant effect of (R,S)-PPG might concern seizure spread. The administration of (R,S)-PPG alone did not cause any overt behavioral side effects; it did not change the EEG pattern and did not influence cortical metabolite levels, with the exception of increased concentrations of glucose. The present findings suggest that group III mGlu receptor agonists may be of therapeutic significance for treating childhood epilepsies.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
30
|
Popik P, Kozela E, Wróbel M, Wozniak KM, Slusher BS. Morphine tolerance and reward but not expression of morphine dependence are inhibited by the selective glutamate carboxypeptidase II (GCP II, NAALADase) inhibitor, 2-PMPA. Neuropsychopharmacology 2003; 28:457-67. [PMID: 12629525 DOI: 10.1038/sj.npp.1300048] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhibition of glutamate carboxypeptidase II (GCP II; NAALADase) produces a variety of effects on glutamatergic neurotransmission. The aim of this study was to investigate effects of GCP II inhibition with the selective inhibitor, 2-PMPA, on: (a) development of tolerance to the antinociceptive effects, (b) withdrawal, and (c) conditioned reward produced by morphine in C57/Bl mice. The degree of tolerance was assessed using the tail-flick test before and after 6 days of twice daily (b.i.d.) administration of 2-PMPA and 10 mg/kg of morphine. Opioid withdrawal was measured 3 days after twice daily morphine (30 or 10 mg/kg) administration, followed by naloxone challenge. Conditioned morphine reward was investigated using conditioned place preference with a single morphine dose (10 mg/kg). High doses of 2-PMPA inhibited the development of morphine tolerance (resembling the effect of 7.5 mg/kg of the NMDA receptor antagonist, memantine) while not affecting the severity of withdrawal. A high dose of 2-PMPA (100 mg/kg) also significantly potentiated morphine withdrawal, but inhibited both acquisition and expression of morphine-induced conditioned place preference. Memantine inhibited the intensity of morphine withdrawal as well as acquisition and expression of morphine-induced conditioned place preference. In addition, 2-PMPA did not affect learning or memory retrieval in a simple two-trial test, nor did it produce withdrawal symptoms in morphine-dependent, placebo-challenged mice. Results suggest involvement of GCP II (NAALADase) in phenomena related to opioid addiction.
Collapse
Affiliation(s)
- Piotr Popik
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
31
|
Neigh-McCandless G, Kravitz BA, Sarter M, Bruno JP. Stimulation of cortical acetylcholine release following blockade of ionotropic glutamate receptors in nucleus accumbens. Eur J Neurosci 2002; 16:1259-66. [PMID: 12405986 DOI: 10.1046/j.1460-9568.2002.02201.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo microdialysis techniques were used to determine the ability of glutamate receptors within the nucleus accumbens to trans-synaptically modulate the basal forebrain cortical cholinergic system. Rats were implanted with a dialysis probe in the medial prefrontal cortex to measure changes in cortical acetylcholine efflux and in the ipsilateral nucleus accumbens to locally manipulate glutamate receptor activity. Intra-accumbens perfusion of the broad spectrum ionotropic glutamate receptor antagonist kynurentate (1.0, 5.0 mm) led to a dose-dependent increase (maximum of 200%) in cortical acetylcholine efflux. This stimulated efflux was reproduced with the intra-accumbens perfusion of the AMPA/kainate antagonist DNQX (0.1, 0.25, 2.5 mm; maximum increase of 200%) or the NMDA antagonist D-CPP (10.0, 100.0, 200 micro M; maximum increase of 400%). These results reveal a significant glutamatergic tone within the accumbens of awake rats and support the hypothesis that accumbens efferents to basal forebrain modulate the excitability of the basal forebrain cortical cholinergic system.
Collapse
|
32
|
Neugebauer V, Carlton SM. Peripheral metabotropic glutamate receptors as drug targets for pain relief. Expert Opin Ther Targets 2002; 6:349-61. [PMID: 12223072 DOI: 10.1517/14728222.6.3.349] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relatively new family of G-protein-coupled metabotropic glutamate receptors (mGluRs) is comprised of eight cloned subtypes, which are classified into three groups based on their sequence homology, signal transduction mechanisms and receptor pharmacology. It is now well-established that mGluRs in the central nervous system are essential for neuroplasticity associated with normal brain functions but are also critically involved in various neurological and psychiatric disorders. Recent anatomical and behavioural evidence suggests an important role of mGluRs in peripheral tissues in animal models of inflammatory and neuropathic pain. Once the cellular effects of peripheral mGluR activation and inhibition are better understood, certain peripheral mGluR subtypes may become important novel therapeutic targets for the relief of pain associated with peripheral tissue injury. Peripherally acting drugs that modulate nociceptive processing through mGluRs should have the advantage of lacking the central side effects commonly observed with drugs interfering with glutamatergic transmission in the central nervous system.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Axons/drug effects
- Axons/metabolism
- Drug Design
- Drug Evaluation, Preclinical
- Humans
- Inflammation/drug therapy
- Inflammation/physiopathology
- Ion Channels/drug effects
- Mice
- Neuralgia/drug therapy
- Neuralgia/physiopathology
- Pain/drug therapy
- Pain/physiopathology
- Rats
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/classification
- Receptors, Metabotropic Glutamate/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Anatomy & Neurosciences and Marine Biomedical Institute, University of Texas, Medical Branch, Galveston, TX 77555-1069, USA.
| | | |
Collapse
|
33
|
Bandrowski AE, Moore SL, Ashe JH. Activation of metabotropic glutamate receptors by repetitive stimulation in auditory cortex. Synapse 2002; 44:146-57. [PMID: 11954046 DOI: 10.1002/syn.10058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To determine whether metabotropic glutamate receptors (mGluRs) contribute to the responses of neurons to repetitive stimulation in the rat auditory cortex in vitro, five stimulus pulses were delivered at 2-100 Hz which elicited five depolarizing synaptic responses, f-EPSPs: f-EPSPs(1-5). Stimulus pulses 2-5 delivered at low frequencies (2-10 Hz) elicited f-EPSPs(2-5) that were about 15% smaller than the response elicited by the first pulse (f-EPSP(1)). In the presence of the nonspecific mGluR agonist, ACPD, the amplitude of all f-EPSPs was 40% smaller than predrug responses. APV, CNQX, or bicuculline (antagonists of NMDA-, AMPA/kainate-, and GABA(A)-receptors, respectively) did not change this effect of ACPD. The mGluR antagonist, MCPG, had no effect on f-EPSPs but did reduce the effect of ACPD. High-frequency stimulation (50-100 Hz) elicited f-EPSPs that were smaller with each successive stimulus. In ACPD, f-EPSP(1) was 40% smaller than predrug, but f-EPSPs(3-5) were not changed compared to pre-ACPD f-EPSPs(3-5), indicating that ACPD occludes the effect of repetitive stimulation. MCPG increased f-EPSP(5) by 15%, indicating that a portion of the reduction of f-EPSPs during high-frequency stimulation is mediated by mGluRs. MCPG also partially blocked the effect of ACPD. In CNQX, ACPD only decreased EPSPs, but APV or bicuculline did not change the effect of ACPD. These results suggest that the successive reduction of f-EPSPs during a high-frequency train is partially a result of mGluR activation.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Psychology, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
34
|
|
35
|
De Vry J, Horváth E, Schreiber R. Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 2001; 428:203-14. [PMID: 11675037 DOI: 10.1016/s0014-2999(01)01296-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study characterized the neuroprotective and behavioral effects of (3aS,6aS)-6a-naphtalen-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620), a novel, selective and systemically active metabotropic glutamate (mGlu)(1) receptor antagonist. In the rat, neuroprotective effects were obtained in the acute subdural hematoma model (efficacy of 40-50% at 0.01 and 0.03 mg/kg/h, i.v. infusion during the 4 h following surgery); whereas in the middle cerebral artery occlusion model, a trend for a neuroprotective effect was obtained after triple i.v. bolus application of 0.03-3 mg/kg, given immediately, 2 and 4 h after occlusion. Hypothermic effects were mild and only obtained at doses which were considerably higher than those at which maximal neuroprotective efficacy was obtained, indicating that the neuroprotective effects are not a consequence of hypothermia. BAY 36-7620 protected against pentylenetetrazole-induced convulsions in the mouse (MED: 10 mg/kg, i.v.). As assessed in rats, BAY 36-7620 was devoid of the typical side-effects of the ionotropic glutamate (iGlu) receptor antagonists phencyclidine and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801). Thus, BAY 36-7620 did not disrupt sensorimotor gating, induce phencyclidine-like discriminative effects or stereotypical behavior, or facilitate intracranial self-stimulation behavior. Although behavioral stereotypies and disruption of sensorimotor gating induced by amphetamine or apomorphine were not affected by BAY 36-7620, the compound attenuated some behavioral effects of iGlu receptor antagonists, such as excessive grooming or licking, and their facilitation of intracranial self-stimulation behavior. It is concluded that mGlu(1) receptor antagonism results in neuroprotective and anticonvulsive effects in the absence of the typical side-effects resulting from antagonism of iGlu receptors.
Collapse
Affiliation(s)
- J De Vry
- CNS Research, Bayer AG, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| | | | | |
Collapse
|
36
|
Bruno V, Battaglia G, Copani A, D'Onofrio M, Di Iorio P, De Blasi A, Melchiorri D, Flor PJ, Nicoletti F. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 2001; 21:1013-33. [PMID: 11524608 DOI: 10.1097/00004647-200109000-00001] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metabotropic glutamate (mGlu) receptors have been considered as potential targets for neuroprotective drugs, but the lack of specific drugs has limited the development of neuroprotective strategies in experimental models of acute or chronic central nervous system (CNS) disorders. The advent of potent and centrally available subtype-selective ligands has overcome this limitation, leading to an extensive investigation of the role of mGlu receptor subtypes in neurodegeneration during the last 2 years. Examples of these drugs are the noncompetitive mGlu1 receptor antagonists, CPCCOEt and BAY-36-7620; the noncompetitive mGlu5 receptor antagonists, 2-methyl-6-(phenylethynyl)pyridine, SIB-1893, and SIB-1757; and the potent mGlu2/3 receptor agonists, LY354740 and LY379268. Pharmacologic blockade of mGlu1 or mGlu5 receptors or pharmacologic activation of mGlu2/3 or mGlu4/7/8 receptors produces neuroprotection in a variety of in vitro or in vivo models. MGlu1 receptor antagonists are promising drugs for the treatment of brain ischemia or for the prophylaxis of neuronal damage induced by synaptic hyperactivity. MGlu5 receptor antagonists may limit neuronal damage induced by a hyperactivity of N-methyl-d-aspartate (NMDA) receptors, because mGlu5 and NMDA receptors are physically and functionally connected in neuronal membranes. A series of observations suggest a potential application of mGlu5 receptor antagonists in chronic neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer disease. MGlu2/3 receptor agonists inhibit glutamate release, but also promote the synthesis and release of neurotrophic factors in astrocytes. These drugs may therefore have a broad application as neuroprotective agents in a variety of CNS disorders. Finally, mGlu4/7/8 receptor agonists potently inhibit glutamate release and have a potential application in seizure disorders. The advantage of all these drugs with respect to NMDA or AMPA receptor agonists derives from the evidence that mGlu receptors do not "mediate," but rather "modulate" excitatory synaptic transmission. Therefore, it can be expected that mGlu receptor ligands are devoid of the undesirable effects resulting from the inhibition of excitatory synaptic transmission, such as sedation or an impairment of learning and memory.
Collapse
Affiliation(s)
- V Bruno
- I.N.M. Neuromed, Pozzilli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cirone J, Salt TE. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus. J Physiol 2001; 534:169-78. [PMID: 11433000 PMCID: PMC2278679 DOI: 10.1111/j.1469-7793.2001.00169.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1. Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. 2. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. 3. We found that application of the Group III metabotropic glutamate receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABA(B) receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. 4. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli.
Collapse
Affiliation(s)
- J Cirone
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
38
|
Bandrowski AE, Ashe JH, Crawford CA. Tetanic stimulation and metabotropic glutamate receptor agonists modify synaptic responses and protein kinase activity in rat auditory cortex. Brain Res 2001; 894:218-32. [PMID: 11251195 DOI: 10.1016/s0006-8993(01)02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether tetanic-stimulation and activation of metabotropic glutamate receptors (mGluRs) can modify field-synaptic-potentials and protein kinase activity in rat auditory cortex, specifically protein kinase A (PKA) and protein kinase C (PKC). Tetanic stimulation (50 Hz, 1 s) increases PKA and PKC activity only if the CNQX-sensitive field-EPSP (f-EPSP) is also potentiated. If the f-EPSP is unchanged, then PKA and PKC activity remains unchanged. Tetanic stimulation decreases a bicuculline-sensitive field-IPSP (f-IPSP), and this occurs whether the f-EPSP is potentiated or not. Potentiation of the f-EPSP is blocked by antagonists of mGluRs (MCPG) and PKC (calphostin-C, tamoxifen), suggesting that the potentiation of the f-EPSP is dependent on mGluRs and PKC. PKC antagonists block the rise in PKC and PKA activity, which suggests that these may be coupled. In contrast, ACPD (agonist at mGluRs) decreases both the f-EPSP and the f-IPSP, but increases PKC and PKA activity. Quisqualate (group I mGluR agonist), decreases the f-IPSP, and increases PKA activity, suggesting that the increase in PKA activity is a result of activation of group I mGluRs. Additionally, the increase in PKC and PKA activity appears to be independent of the decrease of the f-EPSP and f-IPSP, because PKC antagonists block the increase in PKC and PKA activity levels but do not block ACPD's effect on the f-EPSP or f-IPSP. These data suggest that group I mGluRs are involved in potentiating the f-EPSP by a PKC and possibly PKA dependent mechanism which is separate from the mechanism that decreases the f-EPSP and f-IPSP.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Psychology, University of California-Riverside, 92521, USA
| | | | | |
Collapse
|
39
|
Abstract
Evidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers). Ionotropic receptors include those selectively activated by N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate. Metabotropic glutamate receptors are classified into 3 groups based on sequence homology, signal transduction mechanisms and receptor pharmacology. Glutamate also interacts with the opioid system, and intrathecal or systemic coadministration of glutamate receptor antagonists with opioids may enhance analgesia while reducing the development of opioid tolerance and dependence. The actions of glutamate in the brain seem to be more complex. Activation of glutamate receptors in some brain areas seems to be pronociceptive (e.g. thalamus, trigeminal nucleus), although activation of glutamate receptors in other brain areas seems to be antinociceptive (e.g. periaqueductal grey, ventrolateral medulla). Application of glutamate, or agonists selective for one of the several types of glutamate receptor, to the spinal cord or periphery induces nociceptive behaviours. Inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates both acute and chronic pain in animal models. Similar benefits have been seen in studies involving humans (both patients and volunteers); however, results have been inconsistent. More research is needed to clearly define the role of existing treatment options and explore the possibilities for future drug development.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Fundytus ME, Yashpal K, Chabot JG, Osborne MG, Lefebvre CD, Dray A, Henry JL, Coderre TJ. Knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol 2001; 132:354-67. [PMID: 11156596 PMCID: PMC1572554 DOI: 10.1038/sj.bjp.0703810] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Revised: 10/16/2000] [Accepted: 10/26/2000] [Indexed: 11/08/2022] Open
Abstract
1. Nerve injury often produces long-lasting spontaneous pain, hyperalgesia and allodynia that are refractory to treatment, being only partially relieved by clinical analgesics, and often insensitive to morphine. With the aim of assessing its therapeutic potential, we examined the effect of antisense oligonucleotide knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) in neuropathic rats. 2. We chronically infused rats intrathecally with either vehicle, or 50 microg day(-1) antisense or missense oligonucleotides beginning either 3 days prior to or 5 days after nerve injury. Cold, heat and mechanical sensitivity was assessed prior to any treatment and again every few days after nerve injury. 3. Here we show that knockdown of mGluR(1) significantly reduces cold hyperalgesia, heat hyperalgesia and mechanical allodynia in the ipsilateral (injured) hindpaw of neuropathic rats. 4. Moreover, we show that morphine analgesia is reduced in neuropathic rats, but not in sham-operated rats, and that knockdown of mGluR(1) restores the analgesic efficacy of morphine. 5. We also show that neuropathic rats are more sensitive to the excitatory effects of intrathecally injected N-methyl-D-aspartate (NMDA), and have elevated protein kinase C (PKC) activity in the spinal cord dorsal horn, two effects that are reversed by knockdown of mGluR(1). 6. These results suggest that activity at mGluR(1) contributes to neuropathic pain through interactions with spinal NMDA receptors and PKC, and that knockdown of mGluR(1) may be a useful therapy for neuropathic pain in humans, both to alleviate pain directly, and as an adjunct to opioid analgesic treatment.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sabelhaus CF, Schröder UH, Breder J, Henrich-Noack P, Reymann KG. Neuroprotection against hypoxic/hypoglycaemic injury after the insult by the group III metabotropic glutamate receptor agonist (R, S)-4-phosphonophenylglycine. Br J Pharmacol 2000; 131:655-8. [PMID: 11030711 PMCID: PMC1572399 DOI: 10.1038/sj.bjp.0703646] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of group III metabotropic glutamate receptors (mGluR) in ischaemic neurodegeneration is still unsettled. In order to examine a possible modulatory effect of these receptors on ischaemia-induced damage we tested the novel selective agonist (R, S)-4-phosphonophenylglycine [(R,S)-PPG] after an hypoxic/hypoglycaemic insult in rat hippocampal slices. The recovery of population spike amplitudes in the CA1-region was used as parameter for neuronal viability. (R,S)-PPG significantly improved the recovery of synaptic transmission in the CA1-region even when applied only during the recovery period. The results imply that presynaptic glutamate release after an insult contributes to neurodegeneration. Since agonists of group III mGluR reduce neurotransmitter release - probably via presynaptic autoreceptors - we interpret the results obtained in our in vitro model of hypoxia/hypoglycaemia as support of the hypothesis that group III mGluR agonists might be beneficial drugs against diseases where excitotoxicity is one of the dominant pathological mechanisms.
Collapse
Affiliation(s)
- C F Sabelhaus
- Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestrabetae 6, D-39118 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
42
|
Abstract
We studied the effect of the Type II metabotropic glutamate receptor (mGluR 2,3) agonist APDC on the response of neurons in slices of rat visual cortex. In all cortical layers, APDC attenuated the EPSP produced by stimulation of the predominant excitatory input. This EPSP attenuation was seen in both younger and older rat slices and was present with G-protein blockade in the cell recorded, demonstrating that it was a presynaptic effect. Further, this EPSP attenuation was blocked by the mGluR 2,3 antagonist EGLU. A postsynaptic depressive effect of APDC on the NMDA response was seen in layers 2 and 3, but not in layers 5 and 6. Thus, the predominant action of Type II mGluRs in the visual cortex is a presynaptic reduction of glutamate release which persists through development. This regulation may be important in the setting of excitatory tone in visual cortex and in the extraction/processing of visual information.
Collapse
Affiliation(s)
- H J Flavin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, P.O. Box 20-8061, New Haven, CT 06520-8061, USA
| | | | | |
Collapse
|
43
|
Henrich-Noack P, Flor PJ, Sabelhaus CF, Prass K, Dirnagl U, Gasparini F, Sauter A, Rudin M, Reymann KG. Distinct influence of the group III metabotropic glutamate receptor agonist (R,S)-4-phosphonophenylglycine [(R,S)-PPG] on different forms of neuronal damage. Neuropharmacology 2000; 39:911-7. [PMID: 10699457 DOI: 10.1016/s0028-3908(99)00256-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
With this study we evaluated the influence of (R, S)-4-phosphonophenylglycine [(R,S)-PPG], a selective group III metabotropic glutamate receptor agonist, on excitotoxic, hypoxic/hypoglycaemic and ischaemic cerebral damage in rodents. Consistent with previous data showing neuroprotective and anticonvulsive effects (Gasparini, F., Bruno, V., Battaglia, G., Lukic, S., Leonhardt, T., Inderbitzin, W., et al., 1999. (R, S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. Journal of Pharmacology and Experimental Therapeutics 290, 1678-1687), we found pronounced neuroprotective effects with (R,S)-PPG (300 nmol) in a model of excitotoxicity, i.e. quinolinic acid-induced striatal lesions in rats. However, neither in focal cerebral ischaemia in mice nor in global cerebral ischaemia in gerbils or rats did (R,S)-PPG have any significant influence on the extent of neuronal damage. In a model of hypoxia/hypoglycaemia in acutely isolated hippocampal slices, however, (R,S)-PPG led to an improved recovery of population spike amplitude. As acutely isolated hippocampal slices are only viable for a few hours, these electrophysiological recordings can only be performed in a limited time window after the challenge-when most probably excitotoxicity is still the predominant influence in hypoxic pathophysiology. From this we conclude that group III mGluR agonists might be promising drugs against damage mediated mainly by excitotoxicity, but less likely against development of neuronal death due to ischaemia.
Collapse
Affiliation(s)
- P Henrich-Noack
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cirone J, Salt TE. Physiological role of group III metabotropic glutamate receptors in visually responsive neurons of the rat superficial superior colliculus. Eur J Neurosci 2000; 12:847-55. [PMID: 10762314 DOI: 10.1046/j.1460-9568.2000.00972.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is evidence from immunohistochemical and in situ hybridization studies for the presence of Group I, II and III metabotropic glutamate receptors (mGluRs) in the rat superficial superior colliculus (SSC). The purpose of this study was to investigate if manipulation of Group III mGluRs affects visual responses in the SSC. Drugs were applied by iontophoresis and single neuron activity was recorded extracellularly. L-AP4 (Group III agonist) resulted in a reduction of visual responses in most neurons, but also a potentiation in others. The effect of L-AP4 is drug- and stereospecific in that application of D-AP4 did not significantly affect visual responses. L-AP4 application also resulted in a potentiation of the response to iontophoretically applied NMDA. The effects of MPPG and CPPG (Group III antagonists) were compared with the effect of L-AP4 in the same neuron and were found to produce the opposite effect to L-AP4. Furthermore, the effect of L-AP4 could be blocked by coapplication of MPPG or CPPG. Presynaptic depression of glutamate release is a possible mechanism by which L-AP4 could reduce visual responses in the SSC whereas the potentiation of visual responses by L-AP4 could be due to a reduction of GABAergic inhibition. The finding that MPPG and CPPG, as well as antagonizing the L-AP4 effect, have a direct effect on visual responses suggests that Group III mGluRs are activated by endogenous transmitter released during visual stimulation.
Collapse
Affiliation(s)
- J Cirone
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
45
|
Chronic morphine treatment alters NMDA receptor-mediated synaptic transmission in the nucleus accumbens. J Neurosci 1999. [PMID: 10516325 DOI: 10.1523/jneurosci.19-20-09081.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In a study of a possible substrate underlying morphine addiction, we examined NMDA receptor-mediated synaptic transmission of core nucleus accumbens neurons after chronic morphine treatment, using intracellular recording in a slice preparation of rat. We evoked pharmacologically isolated NMDA EPSCs by local stimulation and elicited inward currents by NMDA superfusion. In control slices, Mg(2+) and phorbol 12,13-diacetate (PDAc), a protein kinase C activator, strongly inhibited and increased, respectively, NMDA EPSC amplitudes. The PDAc effects were likely postsynaptic because PDAc enhanced the currents evoked by superfused NMDA to the same extent that it did the NMDA EPSCs. Chronic morphine treatment significantly decreased NMDA EPSC amplitudes and the sensitivity of NMDA EPSCs to Mg(2+) and PDAc, as well as the kinetics of the decay (inactivation rate) of the EPSCs (from 97 +/- 2.5 msec in untreated rats to 78.7 +/- 1.8 msec in slices from treated rats). One week after withdrawal, the Mg(2+) and PDAc effects were still significantly less than those in control slices. Interestingly, 1 week of withdrawal led to an increased NMDA EPSC inactivation rate compared with controls. These data demonstrate that chronic morphine treatment significantly alters NMDA receptor-mediated synaptic transmission in the accumbens, and these effects persist 1 week after withdrawal. These long-term effects may represent an important neuroadaptation in opiate dependence.
Collapse
|
46
|
Colwell CS, Levine MS. Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Res 1999; 833:234-41. [PMID: 10375699 DOI: 10.1016/s0006-8993(99)01545-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously shown that metabotropic glutamate receptor (mGluR) activation can attenuate N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in the neostriatum both in vivo and in vitro. Our earlier studies made use of the non-subtype selective mGluR agonist 1-amino-cyclopentane-1,3-dicarboxylic acid (tACPD). In the present study, we extended these observations by identifying the subtype of mGluR involved. Using selective mGluR agonists, we provide evidence that the Group II mGluRs are responsible for inhibition of NMDA excitotoxicity in the neostriatum. In addition, we provide evidence that the inhibitory effects of tACPD on excitotoxicity are dependent upon calcium influx as they are blocked by a low calcium solution as well as the broad-spectrum calcium channel blocker cadmium. The tACPD-induced attenuation was also blocked by omega-conotoxin GVIA suggesting participation of N-type calcium channels. Whole cell voltage clamp recordings were made to directly determine the effects of mGluRs on voltage-gated calcium channels in neostriatal neurons. As predicted, both tACPD and the Group II agonist 3C4HPG inhibited calcium currents in neostriatal neurons. Again this effect was blocked by omega-conotoxin GVIA. Overall the results suggest that mGluR regulation of voltage-gated calcium channels can limit NMDA toxicity in the neostriatum.
Collapse
Affiliation(s)
- C S Colwell
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | |
Collapse
|
47
|
Wang XF, Daw NW, Jin X. The effect of ACPD on the responses to NMDA and AMPA varies with layer in slices of rat visual cortex. Brain Res 1998; 812:186-92. [PMID: 9813318 DOI: 10.1016/s0006-8993(98)01000-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of 1S,3R-aminocyclopentane dicarboxylic acid (ACPD) was measured on cells from various layers in slices of the rat visual cortex using whole-cell recording techniques. The position of the recorded cell was estimated by distance from pia to the layer VI/white matter boundary, and verified in 34/97 cells by staining with biocytin. Potentiation or depression of the responses to NMDA and AMPA by the metabotropic glutamate agonist ACPD was examined by iontophoresis of the drugs close to the cell body. Iontophoresis of ACPD had different effects in different layers. In layer VI, ACPD produced a substantial depolarization, which augmented the responses to NMDA and AMPA. In layer V, ACPD did not produce a significant depolarization, but potentiated the response to NMDA and AMPA. In layer IV, ACPD produced a small hyperpolarization, and depressed the response to NMDA. In layers II and III, the results were small and variable. Most recordings from stained cells were from pyramidal cells. Where recordings from non-pyramidal cells were obtained (3/34), results were the same as from pyramidal cells in the same layer. The same results were obtained when tetrodotoxin was in the bath solution. We conclude that the potentiation or depression of the response to NMDA and AMPA by ACPD varies with layer in rat visual cortex.
Collapse
Affiliation(s)
- X F Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8061, USA
| | | | | |
Collapse
|
48
|
Berton F, Francesconi WG, Madamba SG, Zieglgansberger W, Siggins GR. Acamprosate Enhances N-Methyl-D-Apartate Receptor-Mediated Neurotransmission But Inhibits Presynaptic GABAB Receptors in Nucleus Accumbens Neurons. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03636.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|