1
|
Varangot A, Lebatard S, Bellemain-Sagnard M, Lebouvier L, Hommet Y, Vivien D. Modulations of the neuronal trafficking of tissue-type plasminogen activator (tPA) influences glutamate release. Cell Death Dis 2023; 14:34. [PMID: 36650132 PMCID: PMC9845363 DOI: 10.1038/s41419-022-05543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The discovery of the neuronal expression of the serine protease tissue-type plasminogen activator (tPA) has opened new avenues of research, with important implications in the physiopathology of the central nervous system. For example, the interaction of tPA with synaptic receptors (NMDAR, LRP1, Annexin II, and EGFR) and its role in the maturation of BDNF have been reported to influence synaptic plasticity and neuronal survival. However, the mechanisms regulating the neuronal trafficking of tPA are unknown. Here, using high-resolution live cell imaging and a panel of innovative genetic approaches, we first unmasked the dynamic characteristics of the dendritic and axonal trafficking of tPA-containing vesicles under different paradigms of neuronal activation or inhibition. We then report a constitutive exocytosis of tPA- and VAMP2-positive vesicles, dramatically increased in conditions of neuronal activation, with a pattern which was mainly dendritic and thus post-synaptic. We also observed that the synaptic release of tPA led to an increase of the exocytosis of VGlut1 positive vesicles containing glutamate. Finally, we described alterations of the trafficking and exocytosis of neuronal tPA in cultured cortical neurons prepared from tau-22 transgenic mice (a preclinical model of Alzheimer's disease (AD)). Altogether, these data provide new insights about the neuronal trafficking of tPA, contributing to a better knowledge of the tPA-dependent brain functions and dysfunctions.
Collapse
Affiliation(s)
- Alexandre Varangot
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Simon Lebatard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Mathys Bellemain-Sagnard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France.
- Department of clinical research, Caen-Normandie University Hospital, CHU, Caen, France.
| |
Collapse
|
2
|
Li YH, Han L, Wu KLK, Chan YS. Activation of 5-HT 7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons. Neuropharmacology 2017; 123:242-248. [PMID: 28483393 DOI: 10.1016/j.neuropharm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control.
Collapse
Affiliation(s)
- Yan-Hai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Research Center of Rehabilitation Science and Technology, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Lei Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China; State Key Laboratory of Brain and Congnitive Sciences, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
3
|
The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology 2013; 74:86-95. [PMID: 23357335 DOI: 10.1016/j.neuropharm.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 01/19/2023]
Abstract
Phosphodiesterases (PDEs) degrade cyclic nucleotides, signalling molecules that play important roles in synaptic plasticity and memory. Inhibition of PDEs may therefore enhance synaptic plasticity and memory as a result of elevated levels of these signalling molecules, and this has led to interest in PDE inhibitors as cognitive enhancers. The development of new mouse models in which PDE subtypes have been selectively knocked out and increasing selectivity of PDE antagonists means that this field is currently expanding. Roles for PDE2, 4, 5 and 9 in synaptic plasticity have so far been demonstrated and we review these studies here in the context of cyclic nucleotide signalling more generally. The role of other PDE families in synaptic plasticity has not yet been investigated, and this area promises to advance our understanding of cyclic nucleotide signalling in synaptic plasticity in the future. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
|
4
|
Upreti C, Zhang XL, Alford S, Stanton PK. Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 2012; 66:31-9. [PMID: 22626985 DOI: 10.1016/j.neuropharm.2012.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/24/2022]
Abstract
While postsynaptic ionotropic and metabotropic glutamate receptors have received the lions share of attention in studies of long-term activity-dependent synaptic plasticity, it is becoming clear that presynaptic metabotropic glutamate receptors play critical roles in both short-term and long-term plasticity of vesicular transmitter release, and that they act both at the level of voltage-dependent calcium channels and directly on proteins of the vesicular release machinery. Activation of G protein-coupled receptors can transiently inhibit vesicular release through the release of Gβγ which binds to both voltage-dependent calcium channels to reduce calcium influx, and directly to the C-terminus region of the SNARE protein SNAP-25. Our recent work has revealed that the binding of Gβγ to SNAP-25 is necessary, but not sufficient, to elicit long-term depression (LTD) of vesicular glutamate release, and that the concomitant release of Gα(i) and the second messenger nitric oxide are also necessary steps in the presynaptic LTD cascade. Here, we review the current state of knowledge of the molecular steps mediating short-term and long-term plasticity of vesicular release at glutamatergic synapses, and the many gaps that remain to be addressed. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
5
|
Gβγ and the C terminus of SNAP-25 are necessary for long-term depression of transmitter release. PLoS One 2011; 6:e20500. [PMID: 21633701 PMCID: PMC3102109 DOI: 10.1371/journal.pone.0020500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/04/2011] [Indexed: 11/19/2022] Open
Abstract
Background Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability. Methodology/Principal Findings This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca2+] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca2+]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca2+ channels, imaging of presynaptic [Ca2+] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca2+ influx, an effect not altered by infusion of Ct-SNAP-25. Conclusions/Significance The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD.
Collapse
|
6
|
Whitaker CM, Cooper NGF. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2009; 165:955-67. [PMID: 19883736 DOI: 10.1016/j.neuroscience.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 12/15/2022]
Abstract
The recently discovered exchange protein directly activated by cAMP (Epac), a guanine exchange factor for the G-protein RAP-1, is directly activated by cAMP independently of protein kinase A (PKA). While cAMP is known to be an important second messenger in the retina, the presence of Epac has not been investigated in this tissue. The goal of the present study was to determine if the Epac1 and Epac2 genes are present and to characterize their location within the retina. Western blot analysis revealed that Epac1 and Epac2 proteins are expressed within the retina, and the presence of mRNA was demonstrated with the aid of reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, we used immunofluorescence and confocal microscopy to demonstrate that Epac1 and Epac2 have overlapping as well as unique distributions within the retina. Both are present within horizontal cells, rod and cone bipolar cells, cholinergic amacrine cells, retrograde labeled retinal ganglion cells, and Müller cells. Uniquely, Epac2 was expressed by cone photoreceptor inner and outer segments, cell bodies, and synaptic terminals. In contrast, Epac1 was expressed in vesicular glutamate transporter 1 (VGlut1) and C-terminal binding protein 2 (CtBP2) positive photoreceptor synaptic terminals. Together, these results provide evidence that Epac1 and Epac2 are differentially expressed within the retina and provide the framework for further functional studies of cAMP pathways within the retina.
Collapse
Affiliation(s)
- C M Whitaker
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
7
|
A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Mol Brain 2009; 2:22. [PMID: 19583853 PMCID: PMC2715398 DOI: 10.1186/1756-6606-2-22] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr) protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons. RESULTS Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen synthase kinase 3 (GSK-3). CONCLUSION The present study is the first to investigate the role of 58 ser/thr protein kinases in LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement of only one, GSK-3, in LTD.
Collapse
|
8
|
Abstract
Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area (VTA) exhibit long-term potentiation (LTP(GABA)) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory GABA(A) receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent (PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTP(GABA). Activation of PKG was required for NO-cGMP signaling and was also essential for the induction of synaptically elicited LTP(GABA), but not for its maintenance. Synapses containing GABA(A) receptors were potentiated by NO-cGMP signaling, whereas synapses containing GABA(B) receptors on the same cells were not potentiated. Moreover, although the cAMP-PKA system potentiated GABA(A) synapses, synaptically induced LTP(GABA) was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses, precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve the presynaptic cAMP-PKA cascade. Taken together, our data suggest a synapse-specific role for NO-cGMP-PKG signaling pathway in opioid-induced plasticity of VTA GABA(A) synapses.
Collapse
|
9
|
Garrido-Sanabria ER, Otalora LFP, Arshadmansab MF, Herrera B, Francisco S, Ermolinsky BS. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats. Brain Res 2008; 1240:165-76. [PMID: 18804094 DOI: 10.1016/j.brainres.2008.08.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 01/16/2023]
Abstract
Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24 h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent "latent" and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Emilio R Garrido-Sanabria
- Department of Biological Sciences, The University of Texas at Brownsville, Texas Southmost College, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Galpha(i2) inhibition of adenylate cyclase regulates presynaptic activity and unmasks cGMP-dependent long-term depression at Schaffer collateral-CA1 hippocampal synapses. Learn Mem 2008; 15:261-70. [PMID: 18391187 DOI: 10.1101/lm.810208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the brain. We showed previously that pairing activation of receptors that inhibit adenylate cyclase (AC) and reduce the concentration of cyclic AMP, with elevation of the concentration of cyclic GMP is sufficient to elicit a presynaptically expressed form of LTD at Schaffer collateral-CA1 synapses in the hippocampus. To directly test the role of AC inhibition and G-protein signaling in LTD at these synapses, we utilized transgenic mice that express a mutant, constitutively active inhibitory G protein, Galpha(i2), in principal neurons of the forebrain. Transgene expression of Galpha(i2) markedly enhanced LTD and impaired late-phase LTP at Schaffer collateral synapses, with no associated differences in input/output relations, paired-pulse facilitation, or NMDA receptor-gated conductances. When paired with application of a type V phosphodiesterase inhibitor to elevate the concentration of intracellular cyclic GMP, constitutively active Galpha(i2) expression converted the transient depression normally caused by this treatment to an LTD that persisted after the drug was washed out. Moreover, this effect could be mimicked in control slices by pairing type V phosphodiesterase inhibitor application with application of a PKA inhibitor. Electrophysiological recordings of spontaneous excitatory postsynaptic currents and two-photon visualization of vesicular release using FM1-43 revealed that constitutively active Galpha(i2) tonically reduced basal release probability from the rapidly recycling vesicle pool of Schaffer collateral terminals. Our findings support the hypothesis that inhibitory G-protein signaling acts presynaptically to regulate release, and, when paired with elevations in the concentration of cyclic GMP, converts a transient cyclic GMP-induced depression into a long-lasting decrease in release.
Collapse
|
11
|
Stricker S, Manahan-Vaughan D. Regulation of long-term depression by increases in [guanosine 3',5'-cyclic monophosphate] in the hippocampal CA1 region of freely behaving rats. Neuroscience 2008; 158:159-66. [PMID: 18472342 DOI: 10.1016/j.neuroscience.2008.03.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
A role for guanosine 3',5'-cyclic monophosphate (cGMP) and the protein kinase G (PKG) pathway in synaptic long-term depression (LTD) in the hippocampal CA1 region has been proposed, based on observations in vitro, where, for example, increases of [cGMP] result in short-term depression (STD) coupled with a reduction in presynaptic glutamate release. To date, no evidence exists to support that LTD in the intact, freely behaving animal involves these mechanisms. We examined the effect of increases of [cGMP] on basal transmission and electrically-induced STD at hippocampal CA1 synapses in vivo. We found that elevating [cGMP] dose-dependently caused a chemically-induced STD which occluded electrically-induced STD. Repeated administration of Zaprinast, an inhibitor of cGMP-degrading phosphodiesterase, resulted in persistent LTD (>24 h). Paired-pulse analysis supported a presynaptic mechanism of action. Application of an inhibitor of soluble guanylate cyclase prevented LTD induced by low-frequency stimulation (LFS), and impaired LFS-STD elicited in the presence of Zaprinast. These data suggest the involvement of cGMP in LTD in the CA1 region of freely behaving adult rats.
Collapse
Affiliation(s)
- S Stricker
- Institute for Physiology of the Charité, Synaptic Plasticity Research Group, Humboldt University, Berlin, Germany
| | | |
Collapse
|
12
|
Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ. Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007; 148:5088-94. [PMID: 17627999 DOI: 10.1210/en.2007-0701] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nesfatin-1 is a recently identified satiety molecule detectable in neurons of the hypothalamus and nucleus of solitary tract (NTS). Immunohistochemical studies revealed nesfatin-1-immunoreactive (irNEF) cells in the Edinger-Westphal nucleus, dorsal motor nucleus of vagus, and caudal raphe nuclei of the rats, in addition to the hypothalamus and NTS reported in the initial study. Double-labeling immunohistochemistry showed that irNEF cells were vasopressin or oxytocin positive in the paraventricular and supraoptic nucleus; cocaine-amphetamine-regulated transcript or tyrosine hydroxylase positive in arcuate nucleus; cocaine-amphetamine-regulated transcript or melanin concentrating hormone positive in the lateral hypothalamus. In the brainstem, irNEF neurons were choline acetyltransferase positive in the Edinger-Westphal nucleus and dorsal motor nucleus of vagus; tyrosine hydroxylase positive in the NTS; and 5-hydroxytryptamine positive in the caudal raphe nucleus. The biological activity of rat nesfatin-1 (1-82) (100 nm) was assessed by the Ca(2+) microfluorometric method. Nesfatin-1 elevated intracellular Ca(2+) concentrations [Ca(2+)](i) in dissociated and cultured hypothalamic neurons. The response was prevented by pretreating the cells with pertussis toxin (100 nm) or Ca(2+)-free solution and by a combination of the L-type and P/Q-type calcium channel blocker verapamil (1 microm) and omega-conotoxin MVIIC (100 nm). The protein kinase A inhibitor KT 5720 (1 microm) suppressed nesfatin-1-induced rise in [Ca(2+)](i). The result shows that irNEF is distributed to several discrete nuclei in the brainstem, in addition to the hypothalamus and NTS reported earlier, and that the peptide interacts with a G protein-coupled receptor, leading to an increase of [Ca(2+)](i), which is linked to protein kinase A activation in cultured rat hypothalamic neurons.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kurosu T, Hernández AI, Schwartz JH. Serotonin induces selective cleavage of the PKA RI subunit but not RII subunit in Aplysia neurons. Biochem Biophys Res Commun 2007; 359:563-7. [PMID: 17548057 DOI: 10.1016/j.bbrc.2007.05.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 05/18/2007] [Indexed: 11/15/2022]
Abstract
PKA type I and type II are activated in Aplysia neurons by stimulation with serotonin (5-HT), which causes long-term facilitation (LTF). The proteolysis of the regulatory subunit (R) is thought important for the persistent activation of PKA, which is necessary to produce LTF. In this study, we report that the type I regulatory subunit (RI) and type II regulatory subunit (RII) are differentially regulated by proteolytic cleavage. RI, but not RII, was selectively cleaved after 5-HT treatment for 2h in Aplysia neurons. Interestingly, the proteasome inhibitor MG132 inhibited the cleavage of RI caused by 5-HT treatment in Aplysia neuron. Besides extracts from Aplysia ganglia treated with 5-HT cleaved (35)S-labeled RI synthesized in vitro, but not (35)S-labeled RII. This suggests that 5-HT induces the activation state of RI-specific proteolytic cleavage.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | |
Collapse
|
14
|
Xu L, Mabuchi T, Katano T, Matsumura S, Okuda-Ashitaka E, Sakimura K, Mishina M, Ito S. Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide 2007; 17:18-24. [PMID: 17548218 DOI: 10.1016/j.niox.2007.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/07/2007] [Accepted: 04/29/2007] [Indexed: 11/28/2022]
Abstract
We have recently demonstrated that nitric oxide (NO) produced by neuronal NO synthase (nNOS) in the spinal cord is involved in the maintenance of neuropathic pain. To clarify whether NO itself affected nNOS activity in the spinal cord as a retrograde messenger, we examined the involvement of the NO/cGMP signaling pathway in the regulation of nNOS activity by NADPH-diaphorase histochemistry. NO-generating agents NOR3 (t(1/2)=30min) and SNAP (t(1/2)=5h), but not NOR1 (t(1/2)=1.8min), significantly enhanced NADPH-diaphorase staining in the spinal cord. 8-Br-cGMP also enhanced it similar to that by NOR3, and 8-Br-cAMP and forskolin, an activator of adenylate cyclase, enhanced it moderately. NOR1 and NOR3 markedly increased the cGMP level in the spinal cord. The enhancement of NADPH-diaphorase staining by NOR3 was significantly inhibited by CPTIO, an NO scavenger, ODQ, a soluble guanylate cyclase inhibitor, and KT5823, an inhibitor of cGMP-dependent protein kinase. Additionally, the NOR3-enhanced nNOS activity was completely inhibited by NMDA antagonists MK-801 and d-AP5, partially by the GluRepsilon2-selective antagonist CP-101,606, and was attenuated in GluRepsilon1(-/-) and GluRepsilon1(-/-)/epsilon4(-/-) mice. These results suggest that NO may regulate nNOS activity as a retrograde messenger in the spinal cord via activation of NMDA receptor containing GluRepsilon1 and GluRepsilon2 subunits.
Collapse
Affiliation(s)
- Li Xu
- Department of Medical Chemistry, Kansai Medical University, 10-15 Fumizono, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pöschel B, Stanton PK. Comparison of cellular mechanisms of long-term depression of synaptic strength at perforant path-granule cell and Schaffer collateral-CA1 synapses. PROGRESS IN BRAIN RESEARCH 2007; 163:473-500. [PMID: 17765734 DOI: 10.1016/s0079-6123(07)63026-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter compares the cellular mechanisms that have been implicated in the induction and expression of long-term depression (LTD) at Schaffer collateral-CA1 synapses to perforant path-dentate gyrus (DG) synapses. In general, Schaffer collateral LTD and long-term potentiation (LTP) both appear to be a complex combination of many alterations in synaptic transmission that occur at both presynaptic and postsynaptic sites, while at perforant path synapses, most evidence has focused on postsynaptic long-term alterations. Within the DG, the medial perforant path is far more studied than lateral perforant path synapses, where most evidence relates to the induction of heterosynaptic LTD at lateral perforant path synapses when LTP is induced in the medial perforant path. Of course, there remain many other classes of synapses in the DG where synaptic plasticity, including LTD, have been largely neglected. It is clear that a better understanding of the range of DG loci where long-lasting activity-dependent plasticity, both LTD and LTP, are expressed will be essential to improve our understanding of the cognitive roles of such DG plasticity.
Collapse
Affiliation(s)
- Beatrice Pöschel
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
16
|
Zhang XL, Zhou ZY, Winterer J, Müller W, Stanton PK. NMDA-dependent, but not group I metabotropic glutamate receptor-dependent, long-term depression at Schaffer collateral-CA1 synapses is associated with long-term reduction of release from the rapidly recycling presynaptic vesicle pool. J Neurosci 2006; 26:10270-80. [PMID: 17021182 PMCID: PMC6674623 DOI: 10.1523/jneurosci.3091-06.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by NMDA-LTD but not by mGluR1-LTD. Variance-mean analyses of Schaffer collateral release probability (P(r)) at varying extracellular calcium concentrations confirmed that NMDA-LTD was associated with reduced P(r), whereas mGluR1-LTD was not. Pharmacological isolation of NMDAR-dependent and mGluR-dependent forms of stimulus-evoked LTD revealed that both are composed of a combination of presynaptic and postsynaptic alterations. However, when group I mGluR-dependent LTD was isolated by combining an NMDAR blocker with a group II mGluR antagonist, this form of LTD was purely postsynaptic. The nitric oxide synthase inhibitor N omega-nitro-L-arginine blocked the induction of NMDA-LTD but did not alter mGluR-LTD, consistent with a selective role for nitric oxide as a retrograde messenger mediating NMDA-LTD. These data demonstrate that single synapses can express multiple forms of LTD with different sites of expression, that NMDA-LTD is a combination of presynaptic and postsynaptic alterations, but that group I mGluR-LTD appears to be expressed entirely postsynaptically.
Collapse
Affiliation(s)
| | | | - Jochen Winterer
- Neuroscience Research Institute and
- Department of Psychiatry, Charité, Humboldt University, D-10117 Berlin, Germany, and
| | - Wolfgang Müller
- Departments of Neurosurgery, Neurology, and Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - Patric K. Stanton
- Departments of Cell Biology and Anatomy and
- Neurology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
17
|
Santschi LA, Zhang XL, Stanton PK. Activation of receptors negatively coupled to adenylate cyclase is required for induction of long-term synaptic depression at Schaffer collateral-CA1 synapses. ACTA ACUST UNITED AC 2006; 66:205-19. [PMID: 16329119 DOI: 10.1002/neu.20213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2'R,3'R)-2-(2',3'-dicarboxy-cyclopropyl) glycine (DCGIV; 5 microM), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 microM), resulted in a long-lasting depression of synaptic strength. When zaprinast (20 microM) was combined with a cell-permeant PKA inhibitor H-89 (10 microM), the need for mGluR IIs was bypassed. DCGIV, when combined with a "submaximal" low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)-alpha-ethylglutamic acid (EGLU; 5 microM), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)-a-Cyclopropyl-[3- 3H]-4-phosphonophenylglycine (CPPG; 10 microM), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 microM), was sufficient to elicit CLTD. Inhibition of PKA with H-89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity.
Collapse
Affiliation(s)
- Linda A Santschi
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
18
|
Nicholls RE, Zhang XL, Bailey CP, Conklin BR, Kandel ER, Stanton PK. mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A 2006; 103:6380-5. [PMID: 16606834 PMCID: PMC1458886 DOI: 10.1073/pnas.0601267103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic inhibitory G protein-coupled receptors play a critical role in regulating transmission at a number of synapses in the central and peripheral nervous system. We generated transgenic mice that express a constitutively active form of an inhibitory Galpha subunit to examine the molecular mechanisms underlying the actions of one such receptor, metabotropic glutamate receptor (mGluR) 2, at mossy fiber-CA3 synapses in the hippocampus. mGluR2 participates in at least three types of mossy fiber synaptic plasticity, (i) transient suppression of synaptic transmission, (ii) long-term depression (LTD), and (iii) inhibition of long-term potentiation (LTP), and we find that inhibitory Galpha signaling is sufficient to account for the actions of mGluR2 in each. The fact that constitutively active Galphai2 occludes the transient suppression of synaptic transmission by mGluR2, while enhancing LTD, suggests further that these two forms of plasticity are expressed via different mechanisms. In addition, the LTP deficit observed in constitutively active Galphai2-expressing mice suggests that mGluR2 activation may serve as a metaplastic switch to permit the induction of LTD by inhibiting LTP.
Collapse
Affiliation(s)
| | | | - Christopher P. Bailey
- Department of Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - Bruce R. Conklin
- The J. David Gladstone Institute of Cardiovascular Disease, Departments of Medicine and Pharmacology, University of California, San Francisco, CA 94158
| | - Eric R. Kandel
- *Center for Neurobiology and Behavior
- Howard Hughes Medical Institute, and
- **Kavli Institute for Brain Sciences, Columbia University, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| | - Patric K. Stanton
- Departments of Cell Biology and Anatomy and
- Neurology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
19
|
MAKHINSON M, OPAZO P, CARLISLE HJ, GODSIL B, GRANT SGN, O’DELL TJ. A novel role for cyclic guanosine 3',5'monophosphate signaling in synaptic plasticity: a selective suppressor of protein kinase A-dependent forms of long-term potentiation. Neuroscience 2006; 140:415-31. [PMID: 16549271 PMCID: PMC1832102 DOI: 10.1016/j.neuroscience.2006.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
At excitatory synapses onto hippocampal CA1 pyramidal cells, activation of cyclic AMP-dependent protein kinase and subsequent down-regulation of protein phosphatases has a crucial role in the induction of long-term potentiation by low-frequency patterns of synaptic stimulation. Because the second messenger cyclic guanosine 3',5'monophosphate can regulate the activity of different forms of the cyclic AMP degrading enzyme phosphodiesterase, we examined whether increases in cyclic guanosine 3',5'monophosphate can modulate long-term potentiation induction in the mouse hippocampal CA1 region through effects on cyclic AMP signaling. Using the cyclic guanosine 3',5'monophosphate-specific phosphodiesterase inhibitor zaprinast or the nitric oxide donor S-nitroso-D,L-penicillamine to elevate cyclic guanosine 3',5'monophosphate levels we found that increases in cyclic guanosine 3',5'monophosphate strongly inhibit the induction of long-term potentiation by low-frequency patterns of synaptic stimulation where protein kinase A activation is required for long-term potentiation induction. In contrast, zaprinast and S-nitroso-D,L-penicillamine had no effect on the induction of long-term potentiation by high-frequency patterns of synaptic stimulation that induce long-term potentiation in a protein kinase A-independent manner. Directly activating protein kinase A with the phosphodiesterase-resistant cyclic AMP analog 8-Br-cAMP, blocking all phosphodiesterases with 3-isobutyl-1-methylxanthine, or inhibiting protein phosphatases rescued long-term potentiation induction in zaprinast-treated slices. Together, these results suggest that increases in cyclic guanosine 3',5'monophosphate inhibit long-term potentiation by activating phosphodiesterases that interfere with the protein kinase A-mediated suppression of protein phosphatases needed for long-term potentiation induction. Consistent with the notion that this cyclic guanosine 3',5'monophosphate-mediated inhibitory pathway is recruited by some patterns of synaptic activity, blocking cyclic guanosine 3',5'monophosphate production strongly facilitated the induction of long-term potentiation by long trains of theta-frequency synaptic stimulation. Together, our results indicate that increases in cyclic guanosine 3',5'monophosphate can act as a long-term potentiation suppressor mechanism that selectively constrains the induction of protein kinase A-dependent forms of long-term potentiation induced by low-frequency patterns of synaptic stimulation.
Collapse
Affiliation(s)
- M. MAKHINSON
- Department of Physiology, David Geffen School of Medicine at UCLA, 53-231 Center for Health Sciences, Box 951751, Los Angeles, CA 90095, USA
- Department Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - P. OPAZO
- Department of Physiology, David Geffen School of Medicine at UCLA, 53-231 Center for Health Sciences, Box 951751, Los Angeles, CA 90095, USA
| | - H. J. CARLISLE
- Interdepartmental Ph.D. Program for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - B. GODSIL
- Department Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - S. G. N. GRANT
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - T. J. O’DELL
- Department of Physiology, David Geffen School of Medicine at UCLA, 53-231 Center for Health Sciences, Box 951751, Los Angeles, CA 90095, USA
- *Corresponding author. Tel: +1-310-206-4654; fax: +1-310-206-5661. E-mail address: (T. J. O’Dell)
| |
Collapse
|
20
|
Stanton PK, Winterer J, Zhang XL, Müller W. Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci 2006; 22:2451-61. [PMID: 16307588 DOI: 10.1111/j.1460-9568.2005.04437.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies using the styryl dye FM1-43 and two-photon microscopy to directly visualize transmitter release at CA3-CA1 excitatory synapses in the hippocampus have demonstrated that activity-dependent long-term potentiation (LTP) and long-term depression are associated with alterations in vesicular release. It is not known whether particular vesicle pools preferentially express these alterations or what second messenger cascades are involved. To address these questions, we selectively loaded FM1-43 into the rapidly recycling pool (RRP) of vesicles by use of a brief hypertonic shock to release and load the RRP. We demonstrate here that the induction of LTP can lead to a selective long-lasting enhancement in presynaptic release from the RRP, while reserve pool kinetics remain unchanged. LTP of RRP release was N-methyl-d-aspartate receptor-dependent and also required production of the intercellular messenger NO and activation of receptor tyrosine kinase. Measurement of FM1-43 stimulus-evoked uptake rates following induction of LTP confirmed that LTP produces more rapid recycling of vesicles released by electrical stimulation, consistent with an enhanced release probability from the RRP.
Collapse
Affiliation(s)
- Patric K Stanton
- Departments of Cell Biology & Anatomy and Neurology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
21
|
Pöschel B, Manahan-Vaughan D. Group II mGluR-induced long term depression in the dentate gyrus in vivo is NMDA receptor-independent and does not require protein synthesis. Neuropharmacology 2005; 49 Suppl 1:1-12. [PMID: 16084931 DOI: 10.1016/j.neuropharm.2005.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/24/2005] [Accepted: 06/27/2005] [Indexed: 11/26/2022]
Abstract
Long term depression (LTD) can be induced by low frequency stimulation (LFS) as well as by agonist activation of neurotransmitter receptors. Group II metabotropic glutamate receptors (mGluRs) play an essential role in the regulation of electrically-induced LTD in the hippocampus in vivo: LTD is inhibited by antagonists, and enhanced by agonists of group II mGluRs. Here we investigated induction of LTD by activation of group II mGluRs as well as the cellular mechanisms which might mediate group II mGluR-induced LTD. Rats were implanted with electrodes to enable chronic measurement of evoked potentials from medial perforant path-dentate gyrus synapses. Drug application was made through a cannula implanted into the ipsilateral cerebral ventricle. LTD could be induced by agonist activation of either group II mGluRs, or the group II mGluR subtype, mGluR3. Both, group II mGluR-induced LTD and mGluR3-induced LTD were not abolished by mRNA/protein synthesis inhibition. Furthermore, mGluR3-induced LTD was not inhibited by NMDA receptor antagonists or altered by L-type voltage-gated calcium channel blockers. Our data suggest that sole activation of group II mGluRs can mediate LTD in vivo. Intriguingly, this form of LTD is not dependent on protein synthesis or activation of NMDA receptors.
Collapse
Affiliation(s)
- Beatrice Pöschel
- Learning and Memory Research, Medical Faculty, Ruhr University Bochum, Germany
| | | |
Collapse
|
22
|
Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003; 71:401-37. [PMID: 15013227 DOI: 10.1016/j.pneurobio.2003.12.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in activity-dependent forms of hippocampal synaptic plasticity by highlighting particular themes that have emerged in ongoing research. These include the participation of distinct isoforms of PKA in specific types of synaptic plasticity, modification of the PKA-dependence of LTP by multiple factors such as distinct patterns of imposed activity, environmental enrichment, and genetic manipulation of signalling molecules, and presynaptic versus postsynaptic mechanisms for PKA-dependent LTP. We also discuss many of the substrates that have been implicated as targets for PKA's actions in hippocampal synaptic plasticity, including CREB, protein phosphatases, and glutamatergic receptors. Future prospects for shedding light on the roles of PKA are also described from the perspective of specific aspects of synaptic physiology and brain function that are ripe for investigation using incisive genetic, cell biological, and electrophysiological approaches.
Collapse
Affiliation(s)
- P V Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alta., Canada T6G 2H7.
| | | |
Collapse
|
23
|
Kiryushko D, Kofoed T, Skladchikova G, Holm A, Berezin V, Bock E. A synthetic peptide ligand of neural cell adhesion molecule (NCAM), C3d, promotes neuritogenesis and synaptogenesis and modulates presynaptic function in primary cultures of rat hippocampal neurons. J Biol Chem 2003; 278:12325-34. [PMID: 12502709 DOI: 10.1074/jbc.m211628200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a key role in morphogenesis of the nervous system and in remodeling of neuronal connections accompanying regenerative and cognitive processes. Recently, a new synthetic ligand of NCAM, the C3-peptide, which binds to the NCAM IgI module, has been identified by means of combinatorial chemistry (Rønn, L. C. B, Olsen, M., Ostergaard, S., Kiselyov, V., Berezin, V., Mortensen, M. T., Lerche, M. H., Jensen, P. H., Soroka, V., Saffell, J. L., Doherty, P., Poulsen, F. M., Bock, E., Holm, A., and Saffells, J. L. (1999) Nat. Biotechnol. 17, 1000-1005). In vitro, the dendrimeric form of C3, termed C3d, disrupts NCAM-mediated cell adhesion, induces neurite outgrowth, and triggers intracellular signaling cascades similar to those activated by homophilic NCAM binding. The peptide may therefore be expected to regulate regeneration and synaptic plasticity. Here we demonstrate that in primary cultures of hippocampal neurons: 1) C3d induces a sustained neuritogenic response, the neuritogenic activity of the compound being dependent on the dose, starting time, and duration of peptide application; 2) the peptide triggers the neuritogenic response by forming an adhesive substratum necessary for NCAM-mediated neurite formation and elongation; 3) C3d promotes synapse formation; and 4) C3d modulates the presynaptic function, causing a transient increase of the function at low (2 and 5 microm) doses and a reduction when applied at a higher concentration (10 microm). The effect of the peptide is dependent on the activation of the fibroblast growth factor receptor. We suggest that C3d may constitute a useful lead for the development of compounds for treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bldg. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Schmidtko A, Ruth P, Geisslinger G, Tegeder I. Inhibition of cyclic guanosine 5'-monophosphate-dependent protein kinase I (PKG-I) in lumbar spinal cord reduces formalin-induced hyperalgesia and PKG upregulation. Nitric Oxide 2003; 8:89-94. [PMID: 12620371 DOI: 10.1016/s1089-8603(02)00165-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide-mediated nociception has been suggested to involve formation of cyclic guanosine 5'-monophosphate (cGMP) and activation of cGMP-dependent protein kinase (PKG). To further evaluate this pathway we assessed the effects of the PKG-inhibiting cGMP analog Rp-8-Br-cGMPS in the rat formalin assay and analyzed the regulation of PKG expression in rat lumbar spinal cord. Spinally delivered Rp-8-Br-cGMPS (0.1-0.5 micro mol i.t.) reduced the nociceptive behavior in a dose-dependent manner. Similar effects were achieved with Rp-8-Br-PET-cGMPS (0.5 micro mol i.t.), another PKG-inhibitory cGMP analog. In contrast, Rp-8-Br-cAMPS (0.5 micro mol i.t.), an inhibitor of protein kinase A, had no effect in this model. Formalin treatment resulted in a rapid (within 1h), long-lasting (up to 96h) upregulation of PKG-I protein expression. This increase was prevented in animals pretreated with Rp-8-Br-cGMPS (0.5 micro mol i.t.) or morphine (2.5-5mg/kg i.p.) 10min prior to formalin injection. Spinal delivery of 8-Br-cGMP, a PKG-activating cGMP analog, without subsequent formalin treatment also caused an increase of PKG-I protein expression. Hence, the upregulation of PKG-I might possibly be mediated by cGMP itself. Our data suggest that PKG-I activation is involved in the synaptic transmission of nociceptive stimuli in the spinal cord and that PKG-I inhibitors might be interesting novel drugs for pain treatment.
Collapse
Affiliation(s)
- Achim Schmidtko
- pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Theodor Stern Kai 7, Frankfurt am Main, 60590, Germany
| | | | | | | |
Collapse
|
25
|
Santschi LA, Stanton PK. A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Res 2003; 962:78-91. [PMID: 12543458 DOI: 10.1016/s0006-8993(02)03846-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Paired-pulse facilitation (PPF) is a form of short-term, activity-dependent synaptic plasticity common to most chemically transmitting synapses, manifested as an enhancement in the amplitude of the second of two rapidly evoked excitatory postsynaptic potentials (EPSPs). The generally accepted explanation of PPF posits that residual intraterminal free [Ca(2+)] from the first action potential facilitates the probability of transmitter release evoked by the second stimulus. A common extension of this hypothesis postulates that any plastic change which alters the probability of transmitter release, should also alter the magnitude of PPF. In the present study, we examined the relationship between PPF and both stimulus- and chemically-evoked long-term depression of synaptic strength (LTD) at Schaffer collateral-CA1, commissural/associational-CA3 and mossy fiber-CA3 synapses in rat hippocampal slices. We observed no significant change in mean PPF associated with either electrically- or chemically-induced LTD at any of these synapses. However, a correlation analysis revealed a complex pattern of PPF changes with LTD, such that low initial PPF was correlated with increases in PPF, while high initial PPF was associated with decreases. Combined with previous findings supporting a presynaptic site for chemical and stimulus-evoked LTD, our current data suggests a complex set of neurosecretory modifications downstream of presynaptic Ca(2+) influx, may, at least in part, underlie the expression of LTD.
Collapse
Affiliation(s)
- Linda A Santschi
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1602, USA
| | | |
Collapse
|
26
|
Bailey CP, Trejos JA, Schanne FAX, Stanton PK. Pairing elevation of [cyclic GMP] with inhibition of PKA produces long-term depression of glutamate release from isolated rat hippocampal presynaptic terminals. Eur J Neurosci 2003; 17:903-8. [PMID: 12603282 DOI: 10.1046/j.1460-9568.2003.02507.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Data suggest both presynaptic and postsynaptic changes contribute to activity-dependent long-term synaptic plasticity. We have shown that pairing elevation of intracellular [cyclic GMP], using the type V phosphodiesterase inhibitor zaprinast, with inhibition of cyclic AMP-dependent protein kinase (PKA), is sufficient to elicit chemical long-term depression (CLTD) of synaptic transmission at Schaffer collateral-CA1 and mossy fibre-CA3 synapses in rat hippocampus. CLTD does not require synaptic activity, and selective postsynaptic drug injections do not affect it, suggesting it is presynaptically induced and expressed. To directly evaluate this hypothesis, we tested whether CLTD of transmitter release can be expressed in isolated presynaptic nerve terminals. Presynaptic nerve terminals (synaptosomes) were isolated from rat hippocampi by Percoll density gradient centrifugation. Synaptosomes were loaded with [3H]glutamate, and basal and depolarisation-induced release of [3H]glutamate measured in control medium versus medium containing zaprinast (20 microm) plus or minus the PKA inhibitor H-89 (10 microm). Zaprinast produced a significant decrease in basal [3H]glutamate release. However, only combining zaprinast with H-89 significantly depressed K+-evoked [3H]glutamate release. After a 20-min drug washout, basal release returned to normal in all conditions, but K+-evoked [3H]glutamate release was persistently reduced only by the combination of zaprinast plus H-89. Long-term reduction of [3H]glutamate release from synaptosomes was completely prevented by the PKG inhibitor KT5823 (5 microm). These data demonstrate the existence of a presynaptic, cyclic GMP-PKG dependent cascade capable of expressing LTD of glutamate release from isolated hippocampal nerve terminals.
Collapse
Affiliation(s)
- Christopher P Bailey
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
27
|
Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase. J Neurosci 2002. [PMID: 12451112 DOI: 10.1523/jneurosci.22-23-10116.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies indicate that cGMP is involved in long-term potentiation (LTP). However, the effects of application of tetanus to induce LTP on cGMP content and the mechanisms by which cGMP may modulate LTP have not been reported. The aim of this work was to study the time course of the changes in cGMP content and of the activity of soluble guanylate cyclase (sGC) (the enzyme that synthesizes cGMP) during LTP. Moreover, we also studied how the changes in cGMP affect cGMP-dependent protein kinase (PKG) and cGMP-degrading phosphodiesterase and the possible role of these changes in LTP. Application of tetanus induced a rise in cGMP, reaching a maximum 10 sec after tetanus. cGMP content decreased below basal levels 5 min after tetanus and remained decreased after 60 min. Activity of sGC increased 5 min after tetanus and returned to basal at 60 min. Tetanus increased the activity of cGMP-degrading phosphodiesterase at 5 and 60 min. GMP, the product of degradation, was increased at 5 and 60 min. Activation of phosphodiesterase and a decrease in cGMP were prevented by inhibiting PKG with Rp-8-bromoguanosine-cGMPS (Rp-8-Br-cGMPS). Inhibition of sGC [with ODQ (oxadiazolo quinoxalin-1-one) or NS 2028 (4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one)], of PKG (with Rp-8-Br-cGMPS), or of cGMP-degrading phosphodiesterase [with zaprinast or MBAM (4-[[3',4'-(methylenedioxy)benzyl]amino]-6-methoxyquinazoline) ] impairs LTP. The results indicate that induction of LTP involves transient activation of sGC and an increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content.
Collapse
|
28
|
Filipeanu CM, Brailoiu E, Le Dun S, Dun NJ. Urotensin-II regulates intracellular calcium in dissociated rat spinal cord neurons. J Neurochem 2002; 83:879-84. [PMID: 12421360 DOI: 10.1046/j.1471-4159.2002.01196.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Urotensin-II (U-II), a peptide with multiple vascular effects, is detected in cholinergic neurons of the rat brainstem and spinal cord. Here, the effects of U-II on [Ca2+]i was examined in dissociated rat spinal cord neurons by fura 2 microfluorimetry. The neurons investigated were choline acetyltransferase-positive and had morphological features of motoneurons. U-II induced [Ca2+]i increases in these neurons with a threshold of 10-9 m, and a maximal effect at 10-6 m with an estimated EC50 of 6.2 x 10-9 m. The [Ca2+]i increase induced by U-II was mainly caused by Ca2+ influx from extracellular space, as the response was markedly attenuated in a Ca2+-free medium. Omega-conotoxin GVIA (10-7 m), a N-type Ca2+ channel blocker, largely inhibited these increases, whereas the P/Q Ca2+ channel blocker, omega-conotoxin GVIIC (10-7 m) and the l-type Ca2+ channel blocker, verapamil (10-5 m) had minimal effects. Down-regulation of protein kinase C by 4-alpha-phorbol 12-myristate 13-acetate (10-6 m) or enzyme inhibition using the specific inhibitor bisindolylmaleimide I (10-6 m) did not inhibit the observed effects. Similarly, inhibition of protein kinase G with KT5823 (10-6 m) or Rp-8-pCPT-cGMPS (3 x 10-5 m) did not modify U-II-induced [Ca2+]i increases. In contrast, protein kinase A inhibitors KT5720 (10-6 m) and Rp-cAMPS (3 x 10-5 m) reduced the response to 25 +/- 3% and 42 +/- 8%, respectively. Present results demonstrate that U-II modulates [Ca2+]i in rat spinal cord neurons via protein kinase A cascade.
Collapse
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | |
Collapse
|
29
|
Lu YF, Hawkins RD. Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 2002; 88:1270-8. [PMID: 12205148 DOI: 10.1152/jn.2002.88.3.1270] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously found that the nitric oxide (NO)-cGMP-cGMP-dependent protein kinase (PKG) signaling pathway acts in parallel with the cAMP-cAMP-dependent protein kinase (PKA) pathway to produce protein and RNA synthesis-dependent late-phase long-term potentiation (L-LTP) and cAMP response element-binding protein (CREB) phosphorylation in the CA1 region of mouse hippocampus. We have now investigated the possible involvement of a downstream target of PKG, ryanodine receptors. L-LTP can be induced by either multiple-train tetanization, NO or 8-Br-cGMP paired with one-train tetanization, or the cAMP activator forskolin, and all three types of potentiation are accompanied by an increase in phospho-CREB immunofluorescence in the CA1 cell body area. Both the potentiation and the increase in phospho-CREB immunofluorescence induced by multiple-train tetanization or 8-Br-cGMP paired with one-train tetanization are reduced by prolonged perfusion with ryanodine, which blocks Ca(2+) release from ryanodine-sensitive Ca(2+) stores. By contrast, neither the potentiation nor the increase in immunofluorescence induced by forskolin are reduced by depletion of ryanodine and inositol-1,4,5-triphosphate (IP3)-sensitive Ca(2+) stores. These results suggest that NO, cGMP, and PKG cause release of Ca(2+) from ryanodine-sensitive stores, which in turn causes phosphorylation of CREB in parallel with PKA during the induction of L-LTP.
Collapse
Affiliation(s)
- Yun-Fei Lu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
30
|
Flaherty DB, Soria JP, Tomasiewicz HG, Wood JG. Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J Neurosci Res 2000; 62:463-72. [PMID: 11054815 DOI: 10.1002/1097-4547(20001101)62:3<463::aid-jnr16>3.0.co;2-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microtubules (MTs), primarily composed of alpha and beta tubulin polymers, must often work in concert with microtubule-associated proteins (MAPs) in order to modulate their functional demands. In a mature brain neuron, one of the key MAPs that resides primarily in the axonal compartment is the tau protein. Tau, in the adult human brain, is a set of six protein isoforms, whose binding affinity to MTs can be modulated by phosphorylation. In addition to the role that phosphorylation of tau plays in the "normal" physiology of neurons, hyperphosphorylated tau is the primary component of the fibrillary pathology in Alzheimer's disease (AD). Although many protein kinases are known to phosphorylate tau in vitro, the in vivo players contributing to the hyperphosphorylation of tau remain elusive. The experiments in this study attempt to define which protein kinases and protein phosphatases reside in the associated network of microtubules, thereby being strategically positioned to influence the phosphorylation of tau. Microtubule fractions are utilized to determine which of the microtubule-associated kinases most readily impacts the phosphorylation of tau at "AD-like" sites. Results from this study indicate that PKA, CK1, GSK3beta, and cdk5 associate with microtubules. Among the MT-associated kinases, GSK3beta and cdk5 most readily contribute to the ATP-induced "AD-like" phosphorylation of tau.
Collapse
Affiliation(s)
- D B Flaherty
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
31
|
Ovarian hormone dependence of alpha(1)-adrenoceptor activation of the nitric oxide-cGMP pathway: relevance for hormonal facilitation of lordosis behavior. J Neurosci 1999. [PMID: 10436072 DOI: 10.1523/jneurosci.19-16-07191.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ovarian hormones estradiol (E(2)) and progesterone (P) facilitate rat lordosis behavior in part by regulating the expression of and signal transduction by adrenoceptors in the hypothalamus (HYP) and preoptic area (POA). The major adrenoceptor subtype mediating E(2) and P facilitation of lordosis is the alpha(1)-adrenoceptor. In the present studies, we tested the hypotheses that (1) alpha(1)-adrenoceptors in the HYP enhance lordosis responses by activating the nitric oxide (NO)-cGMP signaling pathway, and (2) coupling of alpha(1)-adrenoceptors to this signal transduction pathway is hormone-dependent. Basal levels of cGMP were significantly higher in HYP and POA slices from animals treated with E(2) and P when compared with slices from ovariectomized controls or females treated with only E(2) or P. When slices of HYP and POA from ovariectomized female rats were incubated with norepinephrine or the selective alpha(1)-adrenoceptor agonist phenylephrine, cGMP accumulation was observed only if slices had been derived from females treated with both E(2) and P before experimentation. Moreover, alpha(1)-adrenoceptor stimulation of cGMP synthesis was blocked by an inhibitor of NO synthase, confirming that these receptors act by NO-mediated stimulation of soluble guanylyl cyclase. Behavioral studies demonstrated further that the cell-permeable cGMP analog 8-bromoadenosine-cGMP reverses the inhibitory effects of the alpha(1)-adrenoceptor antagonist prazosin on lordosis behavior in E(2)- and P-treated female rats. Thus, the NO-cGMP pathway mediates the facilitatory effects of alpha(1)-adrenoceptors on lordosis behavior in female rats, and previous exposure of the HYP and POA to both E(2) and P are required to link alpha(1)-adrenoceptors to this pathway.
Collapse
|