1
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg C, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.539065. [PMID: 37293040 PMCID: PMC10245571 DOI: 10.1101/2023.05.15.539065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J. McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Laurence O. Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV. An Anatomical and Physiological Basis for Flexible Coincidence Detection in the Auditory System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582808. [PMID: 38464181 PMCID: PMC10925315 DOI: 10.1101/2024.02.29.582808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Suraj Honnuraiah
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sydney Maeker
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Siobhan Shea
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lisa V Goodrich
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| |
Collapse
|
3
|
Haragopal H, Winters BD. Principal neuron diversity in the murine lateral superior olive supports multiple sound localization strategies and segregation of information in higher processing centers. Commun Biol 2023; 6:432. [PMID: 37076594 PMCID: PMC10115857 DOI: 10.1038/s42003-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Principal neurons (PNs) of the lateral superior olive nucleus (LSO) in the brainstem of mammals compare information between the two ears and enable sound localization on the horizontal plane. The classical view of the LSO is that it extracts ongoing interaural level differences (ILDs). Although it has been known for some time that LSO PNs have intrinsic relative timing sensitivity, recent reports further challenge conventional thinking, suggesting the major function of the LSO is detection of interaural time differences (ITDs). LSO PNs include inhibitory (glycinergic) and excitatory (glutamatergic) neurons which differ in their projection patterns to higher processing centers. Despite these distinctions, intrinsic property differences between LSO PN types have not been explored. The intrinsic cellular properties of LSO PNs are fundamental to how they process and encode information, and ILD/ITD extraction places disparate demands on neuronal properties. Here we examine the ex vivo electrophysiology and cell morphology of inhibitory and excitatory LSO PNs in mice. Although overlapping, properties of inhibitory LSO PNs favor time coding functions while those of excitatory LSO PNs favor integrative level coding. Inhibitory and excitatory LSO PNs exhibit different activation thresholds, potentially providing further means to segregate information in higher processing centers. Near activation threshold, which may be physiologically similar to the sensitive transition point in sound source location for LSO, all LSO PNs exhibit single-spike onset responses that can provide optimal time encoding ability. As stimulus intensity increases, LSO PN firing patterns diverge into onset-burst cells, which can continue to encode timing effectively regardless of stimulus duration, and multi-spiking cells, which can provide robust individually integrable level information. This bimodal response pattern may produce a multi-functional LSO which can encode timing with maximum sensitivity and respond effectively to a wide range of sound durations and relative levels.
Collapse
Affiliation(s)
- Hariprakash Haragopal
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Bradley D Winters
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proc Natl Acad Sci U S A 2022; 119:e2203748119. [PMID: 36279465 PMCID: PMC9636937 DOI: 10.1073/pnas.2203748119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Octopus cells are remarkable projection neurons of the mammalian cochlear nucleus, with extremely fast membranes and wide-frequency tuning. They are considered prime examples of coincidence detectors but are poorly characterized in vivo. We discover that octopus cells are selective to frequency sweep direction, a feature that is absent in their auditory nerve inputs. In vivo intracellular recordings reveal that direction selectivity does not derive from across-frequency coincidence detection but hinges on the amplitudes and activation sequence of auditory nerve inputs tuned to clusters of hot spot frequencies. A simple biophysical octopus cell model excited with real nerve spike trains recreates direction selectivity through interaction of intrinsic membrane conductances with the activation sequence of clustered excitatory inputs. We conclude that octopus cells are sequence detectors, sensitive to temporal patterns across cochlear frequency channels. The detection of sequences rather than coincidences is a much simpler but powerful operation to extract temporal information.
Collapse
|
6
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
7
|
Yildirim C, Özkaya B, Bal R. KATP and TRPM2-like channels couple metabolic status to resting membrane potential of octopus neurons in the mouse ventral cochlear nucleus. Brain Res Bull 2021; 170:115-128. [PMID: 33581312 DOI: 10.1016/j.brainresbull.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels and transient receptor potential melastatin 2 (TRPM2) channels are commonly expressed both pre- and postsynaptically in the central nervous system (CNS). We hypothesized that KATP and TRPM2 may couple metabolic status to the resting membrane potential of octopus neurons of the mouse ventral cochlear nucleus (VCN). Therefore, we studied the expression of KATP channels and TRPM2 channels in octopus cells by immunohistochemical techniques and their contribution to neuronal electrical properties by the electrophysiological patch clamp technique. In immunohistochemical staining of octopus cells, labelling with Kir6.2 and SUR1 antibodies was strong, and labelling with the SUR2 antibody was moderate, but labelling with Kir6.1 was very weak. Octopus cells had intense staining with TRPM2 antibodies. In patch clamp recordings, bath application of KATP channel agonists H2O2 (880 μM), ATZ (1 mM), cromakalim (50 μM), diazoxide (200 μM), NNC 55-0118 and NN 414 separately resulted in hyperpolarizations of resting potential to different extents. Application of 8-Bro-cADPR (50 μM), a specific antagonist of TRPM2 channels, in the presence of H2O2 (880 μM) resulted in further hyperpolarization by approximately 1 mV. The amplitudes of H2O2-induced outward KATP currents and ADPR-induced inward currents were 206.1 ± 31.5 pA (n = 4) and 136.8 ± 22.4 pA, respectively, at rest. Their respective reversal potentials were -77 ± 2.6 mV (n = 3) and -6.3 ± 2.9 (n = 3) and -6.3 ± 2.9 (n = 3). In conclusion, octopus cells appear to possess both KATP channels and TRPM2-like channels. KATP might largely be constituted by SUR1-Kir6.2 subunits and SUR2-Kir6.2 subunits. Both KATP and TRPM2-like channels might have a modulatory action in setting the membrane potential.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Beytullah Özkaya
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
8
|
Bal R, Ozturk G, Etem EO, Eraslan E, Ozaydin S. Modulation of the excitability of stellate neurons in the ventral cochlear nucleus of mice by TRPM2 channels. Eur J Pharmacol 2020; 882:173163. [PMID: 32485244 DOI: 10.1016/j.ejphar.2020.173163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/14/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Oxidative stress-induced Ca2+ permeable transient receptor potential melastatin 2 (TRPM2) channels are expressed at high levels in the brain, appear to link neuronal excitability to cellular metabolism, and are involved in the pathogenesis of neurodegenerative disorders. We aimed to study the electrophysiological properties of TRPM2 channels in stellate cells of the mouse ventral cochlear nucleus (VCN) using molecular, immunohistochemical and electrophysiological approaches. In the present study, the real time PCR analysis revealed the presence of the TRPM2 mRNA in the mouse VCN tissue. Cell bodies of stellate cells were moderately labeled with TRPM2 antibodies using immunohistochemical staining. Stellate cells were sensitive to intracellular ADP-ribose (ADPR), a TRPM2 agonist. Upon the application of ADPR, the resting membrane potential of the stellate cells was significantly depolarized, shifting from -61.2 ± 0.9 mV to -57.0 ± 0.8 mV (P < 0.001; n = 21), and the firing rate significantly increased (P < 0.001, n = 6). When the pipette solution contained ADPR (300 μM) and the TRPM2 antagonists flufenamic acid (FFA) (100 μM), N-(p-amylcinnamoyl) anthranilic acid (ACA) (50 μM) and 8-bromo-cADP-Ribose (8-Br-cADPR) (50 μM), the membrane potential shifted in a hyperpolarizing direction. ADPR did not significantly change the resting membrane potential and action potential firing rate of stellate cells from TRPM2-/- mice. In conclusion, the results obtained using these molecular, immunohistochemical and electrophysiological approaches reveal the expression of functional TRPM2 channels in stellate neurons of the mouse VCN. TRPM2 might exert a significant modulatory effect on setting the level of resting excitability.
Collapse
Affiliation(s)
- Ramazan Bal
- Dept. of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Gurkan Ozturk
- Department of Physiology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Ebru Onalan Etem
- Dept. of Medical Biology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| | - Ersen Eraslan
- Dept. of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Seda Ozaydin
- Dept. of Medical Biology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
9
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Cakir Z, Yildirim C, Buran I, Önalan EE, Bal R. Acid-sensing ion channels (ASICs) influence excitability of stellate neurons in the mouse cochlear nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:769-781. [PMID: 31451914 DOI: 10.1007/s00359-019-01365-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent and proton-gated channels. In this study, we aimed to test the hypothesis whether ASICs might be involved in modifying the excitability of stellate cells in the cochlear nucleus (CN). We determined gene expressions of ASIC1, ASIC2 and ASIC3 in the CN of BALB/mice. ASIC currents in stellate cells were characterized by using whole-cell patch-clamp technique. In the voltage-clamp experiments, inward currents were recorded upon application of 2-[N-Morpholino ethanesulfonic acid]-normal artificial cerebrospinal fluid (MES-aCSF), whose pH 50 was 5.84. Amiloride inhibited the acid-induced currents in a dose-dependent manner. Inhibition of the ASIC currents by extracellular Ca2+ and Pb2+ (10 μM) was significant evidence for the existence of homomeric ASIC1a subunits. ASIC currents were increased by 20% upon extracellular application of Zn2+ (300 μM) (p < 0.05, n = 13). In current-clamp experiments, application of MES-aCSF resulted in the depolarization of stellate cells. The results show that the ASIC currents in stellate cells of the cochlear nucleus are carried largely by the ASIC1a and ASIC2a channels. ASIC channels affect the excitability of the stellate cells and therefore they appear to have a role in the processing of auditory information.
Collapse
Affiliation(s)
- Ziya Cakir
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Caner Yildirim
- Department of Physiology, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Ilay Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
11
|
Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus. J Neurosci 2019; 39:7037-7048. [PMID: 31217330 DOI: 10.1523/jneurosci.2536-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.
Collapse
|
12
|
Nitric Oxide-Mediated Plasticity of Interconnections Between T-Stellate cells of the Ventral Cochlear Nucleus Generate Positive Feedback and Constitute a Central Gain Control in the Auditory System. J Neurosci 2019; 39:6095-6107. [PMID: 31160538 DOI: 10.1523/jneurosci.0177-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
T-stellate cells in the ventral cochlear nucleus (VCN) form an ascending pathway that conveys spectral information from the cochlea to brainstem nuclei, the inferior colliculi, and the thalamus. The tonotopic array of T-stellate cells enhances the encoding of spectral peaks relative to their auditory nerve fiber inputs. The alignment of local collaterals and T-stellate cell dendrites within the isofrequency lamina suggests that the cells make connections within the isofrequency lamina in which they reside. Recordings from pairs of T-stellate cells in mice of both sexes revealed that firing in the presynaptic cell evoked responses in the postsynaptic cell when presynaptic firing was paired with depolarization of the postsynaptic cell. After such experimental coactivation, presynaptic firing evoked EPSCs of uniform amplitude whose frequency depended on the duration of depolarization and diminished over minutes. Nitric oxide (NO) donors evoked EPSCs in T-stellate cells but not in the other types of principal cells. Blockers of neuronal nitric oxide synthase (nNOS) and of NMDA receptors blocked potentiation, indicating that NO mediates potentiation. nNOS and its receptor, guanylate cyclase (NO-GC), are expressed in somata of T-stellate cells. Excitatory interconnections were bidirectional and polysynaptic, indicating that T-stellate cells connect in networks. Positive feedback provided by temporarily potentiated interconnections between T-stellate cells could enhance the gain of auditory nerve excitation in proportion to the excitation, generating a form of short-term central gain control that could account for the ability of T-stellate cells to enhance the encoding of spectral peaks.SIGNIFICANCE STATEMENT T-stellate cells are interconnected through synapses that have a previously undescribed form of temporary, nitric oxide-mediated plasticity. Coactivation of neighboring cells enhances the activation of an excitatory network that feeds back on itself by enhancing the probability of EPSCs. Although there remain gaps in our understanding of how the interconnections revealed in slices contribute to hearing, our findings have interesting implications. Positive feedback through a network of interconnections could account for how T-stellate cells are able to encode spectral peaks over a wider range of intensities than many of their auditory nerve inputs (Blackburn and Sachs, 1990; May et al., 1998). The magnitude of the gain may itself be plastic because neuronal nitric oxide synthase increases when animals have tinnitus (Coomber et al., 2015).
Collapse
|
13
|
Cost of auditory sharpness: Model-Based estimate of energy use by auditory brainstem "octopus" neurons. J Theor Biol 2019; 469:137-147. [PMID: 30831173 DOI: 10.1016/j.jtbi.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 11/21/2022]
Abstract
Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.
Collapse
|
14
|
Naumov V, Heyd J, de Arnal F, Koch U. Analysis of excitatory and inhibitory neuron types in the inferior colliculus based on Ih properties. J Neurophysiol 2019; 121:2126-2139. [PMID: 30943094 DOI: 10.1152/jn.00594.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inferior colliculus (IC) is a large midbrain nucleus that integrates inputs from many auditory brainstem and cortical structures. Despite its prominent role in auditory processing, the various cell types and their connections within the IC are not well characterized. To further separate GABAergic and non-GABAergic neuron types according to their physiological properties, we used a mouse model that expresses channelrhodopsin and enhanced yellow fluorescent protein in all GABAergic neurons and allows identification of GABAergic cells by light stimulation. Neuron types were classified upon electrophysiological measurements of the hyperpolarizing-activated current (Ih) in acute brain slices of young adult mice. All GABAergic neurons from our sample displayed slow-activating Ih with moderate amplitudes, whereas a subset of excitatory neurons showed fast-activating Ih with large amplitudes. This is in agreement with our finding that immunoreactivity against the fast-gating hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) channel was present around excitatory neurons, whereas the slow-gating HCN4 channel was found perisomatically around most inhibitory neurons. Ih properties and neurotransmitter types were correlated with firing patterns to depolarizing current pulses. All GABAergic neurons displayed adapting firing patterns very similar to the majority of glutamatergic neurons. About 15% of the glutamatergic neurons showed an onset spiking pattern, always in combination with large and fast Ih. We conclude that HCN channel subtypes are differentially distributed in IC neuron types and correlate with neurotransmitter type and firing pattern. In contrast to many other brain regions, membrane properties and firing patterns were similar in GABAergic neurons and about one-third of the excitatory neurons. NEW & NOTEWORTHY Neuron types in the central nucleus of the auditory midbrain are not well characterized regarding their transmitter type, ion channel composition, and firing pattern. The present study shows that GABAergic neurons have slowly activating hyperpolarizing-activated current (Ih) and an adaptive firing pattern whereas at least four types of glutamatergic neurons exist regarding their Ih properties and firing patterns. Many of the glutamatergic neurons were almost indistinguishable from the GABAergic neurons regarding Ih properties and firing pattern.
Collapse
Affiliation(s)
- Victor Naumov
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Julia Heyd
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Fauve de Arnal
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin , Germany
| |
Collapse
|
15
|
Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons. J Neurosci 2019; 39:2860-2876. [PMID: 30696730 DOI: 10.1523/jneurosci.1811-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/21/2022] Open
Abstract
Vestibular ganglion neurons (VGNs) transmit information along parallel neuronal pathways whose signature distinction is variability in spike-timing; some fire at regular intervals while others fire at irregular intervals. The mechanisms driving timing differences are not fully understood but two opposing (but not mutually exclusive) hypotheses have emerged. In the first, regular-spiking is inversely correlated to the density of low-voltage-gated potassium currents (I KL). In the second, regular spiking is directly correlated to the density of hyperpolarization-activated cyclic nucleotide-sensitive currents (I H). Supporting the idea that variations in ion channel composition shape spike-timing, VGNs from the first postnatal week respond to synaptic-noise-like current injections with irregular-firing patterns if they have I KL and with more regular firing patterns if they do not. However, in vitro firing patterns are not as regular as those in vivo Here we considered whether highly-regular spiking requires I H currents and whether this dependence emerges later in development after channel expression matures. We recorded from rat VGN somata of either sex aged postnatal day (P)9-P21. Counter to expectation, in vitro firing patterns were less diverse, more transient-spiking, and more irregular at older ages than at younger ages. Resting potentials hyperpolarized and resting conductance increased, consistent with developmental upregulation of I KL Activation of I H (by increasing intracellular cAMP) increased spike rates but not spike-timing regularity. In a model, we found that activating I H counter-intuitively suppressed regularity by recruiting I KL Developmental upregulation in I KL appears to overwhelm I H These results counter previous hypotheses about how I H shapes vestibular afferent responses.SIGNIFICANCE STATEMENT Vestibular sensory information is conveyed on parallel neuronal pathways with irregularly-firing neurons encoding information using a temporal code and regularly-firing neurons using a rate code. This is a striking example of spike-timing statistics influencing information coding. Previous studies from immature vestibular ganglion neurons (VGNs) identified hyperpolarization-activated mixed cationic currents (I H) as driving highly-regular spiking and proposed that this influence grows with the current during maturation. We found that I H becomes less influential, likely because maturing VGNs also acquire low-voltage-gated potassium currents (I KL), whose inhibitory influence opposes I H Because efferent activity can partly close I KL, VGN firing patterns may become more receptive to extrinsic control. Spike-timing regularity likely relies on dynamic ion channel properties and complementary specializations in synaptic connectivity.
Collapse
|
16
|
Brown DH, Hyson RL. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. J Neurophysiol 2019; 121:908-927. [PMID: 30649984 DOI: 10.1152/jn.00459.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K+ current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K+ conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K+ current, play a major role in regulating the diversity of auditory responses.
Collapse
Affiliation(s)
- David H Brown
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
17
|
The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Hear Res 2018; 376:33-46. [PMID: 30606624 DOI: 10.1016/j.heares.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.
Collapse
|
18
|
ERG Channels Regulate Excitability in Stellate and Bushy Cells of Mice Ventral Cochlear Nucleus. J Membr Biol 2018; 251:711-722. [DOI: 10.1007/s00232-018-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
19
|
Alvarez-Baron CP, Klenchin VA, Chanda B. Minimal molecular determinants of isoform-specific differences in efficacy in the HCN channel family. J Gen Physiol 2018; 150:1203-1213. [PMID: 29980633 PMCID: PMC6080897 DOI: 10.1085/jgp.201812031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate rhythmic activity in the heart and brain. Isoform-specific functional differences reflect the specializations required for the various roles that they play. Despite a high sequence and structural similarity, HCN isoforms differ greatly in their response to cyclic nucleotides. Cyclic AMP (cAMP) enhances the activity of HCN2 and HCN4 isoforms by shifting the voltage dependence of activation to more depolarized potentials, whereas HCN1 and HCN3 isoforms are practically insensitive to this ligand. Here, to determine the molecular basis for increased cAMP efficacy in HCN2 channels, we progressively mutate residues in the C-linker and cyclic nucleotide-binding domain (CNBD) of the mouse HCN2 to their equivalents in HCN1. We identify two clusters of mutations that determine the differences in voltage-dependent activation between these two isoforms. One maps to the C-linker region, whereas the other is in proximity to the cAMP-binding site in the CNBD. A mutant channel containing just five mutations (M485I, G497D, S514T, V562A, and S563G) switches cAMP sensitivity of full-length HCN2 to that of HCN1 channels. These findings, combined with a detailed analysis of various allosteric models for voltage- and ligand-dependent gating, indicate that these residues alter the ability of the C-linker to transduce signals from the CNBD to the pore gates of the HCN channel.
Collapse
Affiliation(s)
| | - Vadim A Klenchin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI .,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
20
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Modulation of Excitability of Stellate Neurons in the Ventral Cochlear Nucleus of Mice by ATP-Sensitive Potassium Channels. J Membr Biol 2018; 251:163-178. [PMID: 29379989 DOI: 10.1007/s00232-017-0011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Major voltage-activated ionic channels of stellate cells in the ventral part of cochlear nucleus (CN) were largely characterized previously. However, it is not known if these cells are equipped with other ion channels apart from the voltage-sensitive ones. In the current study, it was aimed to study subunit composition and function of ATP-sensitive potassium channels (KATP) in stellate cells of the ventral cochlear nucleus. Subunits of KATP channels, Kir6.1, Kir6.2, SUR1, and SUR2, were expressed at the mRNA level and at the protein level in the mouse VCN tissue. The specific and clearly visible bands for all subunits but that for Kir6.1 were seen in Western blot. Using immunohistochemical staining technique, stellate cells were strongly labeled with SUR1 and Kir6.2 antibodies and moderately labeled with SUR2 antibody, whereas the labeling signals for Kir6.1 were too weak. In patch clamp recordings, KATP agonists including cromakalim (50 µM), diazoxide (0.2 mM), 3-Amino-1,2,4-triazole (ATZ) (1 mM), 2,2-Dithiobis (5-nitro pyridine) (DTNP) (330 µM), 6-Chloro-3-isopropylamino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC 55-0118) (1 µM), 6-chloro-3-(methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NN414) (1 µM), and H2O2 (0.88 mM) induced marked responses in stellate cells, characterized by membrane hyperpolarization which were blocked by KATP antagonists. Blockers of KATP channels, glibenclamide (0.2 mM), tolbutamide (0.1 mM) as well as 5-hydroxydecanoic acid (1 mM), and catalase (500 IU/ml) caused depolarization of stellate cells, increasing spontaneous action potential firing. In conclusion, KATP channels seemed to be composed dominantly of Kir 6.2 subunit and SUR1 and SUR2 and activation or inhibition of KATP channels regulates firing properties of stellate cells by means of influencing resting membrane potential and input resistance.
Collapse
|
22
|
Manis PB, Campagnola L. A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hear Res 2017; 360:76-91. [PMID: 29331233 DOI: 10.1016/j.heares.2017.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/27/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Models of the auditory brainstem have been an invaluable tool for testing hypotheses about auditory information processing and for highlighting the most important gaps in the experimental literature. Due to the complexity of the auditory brainstem, and indeed most brain circuits, the dynamic behavior of the system may be difficult to predict without a detailed, biologically realistic computational model. Despite the sensitivity of models to their exact construction and parameters, most prior models of the cochlear nucleus have incorporated only a small subset of the known biological properties. This confounds the interpretation of modelling results and also limits the potential future uses of these models, which require a large effort to develop. To address these issues, we have developed a general purpose, biophysically detailed model of the cochlear nucleus for use both in testing hypotheses about cochlear nucleus function and also as an input to models of downstream auditory nuclei. The model implements conductance-based Hodgkin-Huxley representations of cells using a Python-based interface to the NEURON simulator. Our model incorporates most of the quantitatively characterized intrinsic cell properties, synaptic properties, and connectivity available in the literature, and also aims to reproduce the known response properties of the canonical cochlear nucleus cell types. Although we currently lack the empirical data to completely constrain this model, our intent is for the model to continue to incorporate new experimental results as they become available.
Collapse
Affiliation(s)
- Paul B Manis
- Dept. of Otolaryngology/Head and Neck Surgery, B027 Marsico Hall, 125 Mason Farm Road, UNC Chapel Hill, Chapel Hill, NC 27599-7070, USA.
| | - Luke Campagnola
- Dept. of Otolaryngology/Head and Neck Surgery, B027 Marsico Hall, 125 Mason Farm Road, UNC Chapel Hill, Chapel Hill, NC 27599-7070, USA
| |
Collapse
|
23
|
Tetteh H, Lee M, Lau CG, Yang S, Yang S. Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist 2017; 24:353-367. [PMID: 29283017 DOI: 10.1177/1073858417733415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Collapse
Affiliation(s)
- Hannah Tetteh
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - C Geoffrey Lau
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sunggu Yang
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
24
|
Oertel D, Cao XJ, Ison JR, Allen PD. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources. Trends Neurosci 2017; 40:613-624. [PMID: 28867348 DOI: 10.1016/j.tins.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
| | - Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA
| | - James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Cao XJ, Oertel D. Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus. Hear Res 2017; 345:57-68. [PMID: 28065805 DOI: 10.1016/j.heares.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh.
Collapse
Affiliation(s)
- Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Deleting the HCN1 Subunit of Hyperpolarization-Activated Ion Channels in Mice Impairs Acoustic Startle Reflexes, Gap Detection, and Spatial Localization. J Assoc Res Otolaryngol 2017; 18:427-440. [PMID: 28050647 DOI: 10.1007/s10162-016-0610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
It has been proposed that the high temporal and spatial acuities of human listeners and animals tested in the hearing laboratory depend in part on the short time constants of auditory neurons that are able to preserve or sharpen the information conveyed in the timing of firing of auditory nerve fibers. We tested this hypothesis in a series of in vivo experiments, based on previous in vitro experiments showing that neuronal time constants are raised in brainstem slices when HCN1 channels are blocked or in slices obtained from Hcn1 -/- null mutant mice. We compared Hcn1 -/- and Hcn1 +/+ mice on auditory brainstem responses (ABRs) and behavioral measures. Those measures included temporal integration for acoustic startle responses (ASRs), ASR depression by noise offset, and ASR inhibition by gaps in noise and by shifts of a noise source along the azimuth as measures of temporal and spatial acuity. Hcn1 -/- mice had less sensitive ABR thresholds at 32 and 48 kHz. Their wavelet P1b was delayed, and wave 2 was absent in the 16 kHz/90 SPL waveform, indicating that groups of neurons early in the auditory pathways were delayed and fired asynchronously. Baseline ASR levels were lower in Hcn1 -/- mice, temporal integration was delayed, time constants for ASR depression by noise offset were higher, and their sensitivity to brief gaps and spatial acuity was diminished. HCN1 channels are also present in vestibular, cutaneous, digestive, and cardiac neurons that variously may contribute to the deficits in spatial acuity and possibly in ASR levels.
Collapse
|
27
|
Felix RA, Elde CJ, Nevue AA, Portfors CV. Serotonin modulates response properties of neurons in the dorsal cochlear nucleus of the mouse. Hear Res 2016; 344:13-23. [PMID: 27838373 DOI: 10.1016/j.heares.2016.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023]
Abstract
The neurochemical serotonin (5-hydroxytryptamine, 5-HT) is involved in a variety of behavioral functions including arousal, reward, and attention, and has a role in several complex disorders of the brain. In the auditory system, 5-HT fibers innervate a number of subcortical nuclei, yet the modulatory role of 5-HT in nearly all of these areas remains poorly understood. In this study, we examined spiking activity of neurons in the dorsal cochlear nucleus (DCN) following iontophoretic application of 5-HT. The DCN is an early site in the auditory pathway that receives dense 5-HT fiber input from the raphe nuclei and has been implicated in the generation of auditory disorders marked by neuronal hyperexcitability. Recordings from the DCN in awake mice demonstrated that iontophoretic application of 5-HT had heterogeneous effects on spiking rate, spike timing, and evoked spiking threshold. We found that 56% of neurons exhibited increases in spiking rate during 5-HT delivery, while 22% had decreases in rate and the remaining neurons had no change. These changes were similar for spontaneous and evoked spiking and were typically accompanied by changes in spike timing. Spiking increases were associated with lower first spike latencies and jitter, while decreases in spiking generally had opposing effects on spike timing. Cases in which 5-HT application resulted in increased spiking also exhibited lower thresholds compared to the control condition, while cases of decreased spiking had no threshold change. We also found that the 5-HT2 receptor subtype likely has a role in mediating increased excitability. Our results demonstrate that 5-HT can modulate activity in the DCN of awake animals and that it primarily acts to increase neuronal excitability, in contrast to other auditory regions where it largely has a suppressive role. Modulation of DCN function by 5-HT has implications for auditory processing in both normal hearing and disordered states.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| | - Cameron J Elde
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Alexander A Nevue
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| |
Collapse
|
28
|
Ceballos CC, Li S, Roque AC, Tzounopoulos T, Leão RM. Ih Equalizes Membrane Input Resistance in a Heterogeneous Population of Fusiform Neurons in the Dorsal Cochlear Nucleus. Front Cell Neurosci 2016; 10:249. [PMID: 27833532 PMCID: PMC5081345 DOI: 10.3389/fncel.2016.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022] Open
Abstract
In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir). In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Department of Physiology, Ribeirão Preto Medical School, School of Medicine, University of São PauloRibeirão Preto, Brazil; Department of Physics, School of Philosophy, Sciences and Letters, University of São PauloRibeirão Preto, Brazil
| | - Shuang Li
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Antonio C Roque
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo Ribeirão Preto, Brazil
| | - Thanos Tzounopoulos
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, PittsburghPA, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, PittsburghPA, USA
| | - Ricardo M Leão
- Department of Physiology, Ribeirão Preto Medical School, School of Medicine, University of São PauloRibeirão Preto, Brazil; Department of Otolaryngology, School of Medicine, University of Pittsburgh, PittsburghPA, USA
| |
Collapse
|
29
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
30
|
Perineuronal nets in the auditory system. Hear Res 2015; 329:21-32. [DOI: 10.1016/j.heares.2014.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/03/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022]
|
31
|
Negm MH, Bruce IC. The Effects of HCN and KLT Ion Channels on Adaptation and Refractoriness in a Stochastic Auditory Nerve Model. IEEE Trans Biomed Eng 2014; 61:2749-59. [DOI: 10.1109/tbme.2014.2327055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Kim YH, Holt JR. Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. ACTA ACUST UNITED AC 2014; 142:207-23. [PMID: 23980193 PMCID: PMC3753603 DOI: 10.1085/jgp.201311019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hyperpolarization-activated current, Ih, is carried by members of the Hcn channel family and contributes to resting potential and firing properties in excitable cells of various systems, including the auditory system. Ih has been identified in spiral ganglion neurons (SGNs); however, its molecular correlates and their functional contributions have not been well characterized. To investigate the molecular composition of the channels that carry Ih in SGNs, we examined Hcn mRNA harvested from spiral ganglia of neonatal and adult mice using quantitative RT-PCR. The data indicate expression of Hcn1, Hcn2, and Hcn4 subunits in SGNs, with Hcn1 being the most highly expressed at both stages. To investigate the functional contributions of HCN subunits, we used the whole-cell, tight-seal technique to record from wild-type SGNs and those deficient in Hcn1, Hcn2, or both. We found that HCN1 is the most prominent subunit contributing to Ih in SGNs. Deletion of Hcn1 resulted in reduced conductance (Gh), slower activation kinetics (τfast), and hyperpolarized half-activation (V1/2) potentials. We demonstrate that Ih contributes to SGN function with depolarized resting potentials, depolarized sag and rebound potentials, accelerated rebound spikes after hyperpolarization, and minimized jitter in spike latency for small depolarizing stimuli. Auditory brainstem responses of Hcn1-deficient mice showed longer latencies, suggesting that HCN1-mediated Ih is critical for synchronized spike timing in SGNs. Together, our data indicate that Ih contributes to SGN membrane properties and plays a role in temporal aspects of signal transmission between the cochlea and the brain, which are critical for normal auditory function.
Collapse
Affiliation(s)
- Ye-Hyun Kim
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Liu Q, Manis PB, Davis RL. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model. J Assoc Res Otolaryngol 2014; 15:585-99. [PMID: 24558054 DOI: 10.1007/s10162-014-0446-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.
Collapse
Affiliation(s)
- Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors in Genes, Cognition and Psychosis Program, National Institute of Mental Health/NIH, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
34
|
Nogueira J, Caputi AA. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off. ACTA ACUST UNITED AC 2014; 216:2380-92. [PMID: 23761463 DOI: 10.1242/jeb.082651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa. First, we refer to the one-spike neuron intrinsic properties, their foundation on a low-threshold K(+) conductance, and the potential roles of this phenotype in different circuits within a comparative framework. Second, we present a brief description of the active electric sense of weakly electric fish and the particularities of spherical one-spike-onset neurons in the electrosensory lobe of G. omarorum. Third, we introduce one of the specific tasks in which these neurons are involved: the trade-off between self- and allo-generated signals. Fourth, we discuss recent evidence indicating a still-undescribed role for the one-spike phenotype. This role deals with the blockage of the pathway after being activated by the self-generated electric organ discharge and how this blockage favors self-generated electrosensory information in the context of allo-generated interference. Based on comparative analysis we conclude that one-spike-onset neurons may play several functional roles in animal sensory behavior. There are specific adaptations of the neuron's 'response function' to the circuit and task. Conversely, the way in which a task is accomplished depends on the intrinsic properties of the neurons involved. In short, the role of a neuron within a circuit depends on the neuron and its functional context.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avenida General Flores, 2125 Montevideo, Uruguay
| | | |
Collapse
|
35
|
Nogueira J, Caputi AA. Pharmacological study of the one spike spherical neuron phenotype in Gymnotus omarorum. Neuroscience 2013; 258:347-54. [PMID: 24269939 DOI: 10.1016/j.neuroscience.2013.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/03/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
The intrinsic properties of spherical neurons play a fundamental role in the sensory processing of self-generated signals along a fast electrosensory pathway in electric fish. Previous results indicate that the spherical neuron's intrinsic properties depend mainly on the presence of two resonant currents that tend to clamp the voltage near the resting potential. Here we show that these are: a low-threshold potassium current blocked by 4-aminopyridine and a mixed cationic current blocked by cesium chloride. We also show that the low-threshold potassium current also causes the long refractory period, explaining the necessary properties that implement the dynamic filtering of the self-generated signals previously described. Comparative data from other fish and from the auditory system indicate that other single spiking onset neurons might differ in the channel repertoire observed in the spherical neurons of Gymnotus omarorum.
Collapse
Affiliation(s)
- J Nogueira
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Avenue Italia 3318, Montevideo, Uruguay; Department of Histology and Embriology, Facultad de Medicina, Universidad de la República, Gral. Flores 2515, Montevideo, Uruguay
| | - A A Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Avenue Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
36
|
Rusznák Z, Pál B, Kőszeghy A, Fu Y, Szücs G, Paxinos G. The hyperpolarization-activated non-specific cation current (In ) adjusts the membrane properties, excitability, and activity pattern of the giant cells in the rat dorsal cochlear nucleus. Eur J Neurosci 2013; 37:876-90. [PMID: 23301797 DOI: 10.1111/ejn.12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 12/16/2022]
Abstract
Giant cells of the cochlear nucleus are thought to integrate multimodal sensory inputs and participate in monaural sound source localization. Our aim was to explore the significance of a hyperpolarization-activated current in determining the activity of giant neurones in slices prepared from 10 to 14-day-old rats. When subjected to hyperpolarizing stimuli, giant cells produced a 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (ZD7288)-sensitive inward current with a reversal potential and half-activation voltage of -36 and -88 mV, respectively. Consequently, the current was identified as the hyperpolarization-activated non-specific cationic current (Ih ). At the resting membrane potential, 3.5% of the maximum Ih conductance was available. Immunohistochemistry experiments suggested that hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective (HCN)1, HCN2, and HCN4 subunits contribute to the assembly of the functional channels. Inhibition of Ih hyperpolarized the membrane by 6 mV and impeded spontaneous firing. The frequencies of spontaneous inhibitory and excitatory postsynaptic currents reaching the giant cell bodies were reduced but no significant change was observed when evoked postsynaptic currents were recorded. Giant cells are affected by biphasic postsynaptic currents consisting of an excitatory and a subsequent inhibitory component. Inhibition of Ih reduced the frequency of these biphasic events by 65% and increased the decay time constants of the inhibitory component. We conclude that Ih adjusts the resting membrane potential, contributes to spontaneous action potential firing, and may participate in the dendritic integration of the synaptic inputs of the giant neurones. Because its amplitude was higher in young than in adult rats, Ih of the giant cells may be especially important during the postnatal maturation of the auditory system.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Spencer MJ, Grayden DB, Bruce IC, Meffin H, Burkitt AN. An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus. Front Comput Neurosci 2012; 6:83. [PMID: 23125831 PMCID: PMC3486622 DOI: 10.3389/fncom.2012.00083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 09/24/2012] [Indexed: 12/04/2022] Open
Abstract
Octopus cells, located in the mammalian auditory brainstem, receive their excitatory synaptic input exclusively from auditory nerve fibers (ANFs). They respond with accurately timed spikes but are broadly tuned for sound frequency. Since the representation of information in the auditory nerve is well understood, it is possible to pose a number of questions about the relationship between the intrinsic electrophysiology, dendritic morphology, synaptic connectivity, and the ultimate functional role of octopus cells in the brainstem. This study employed a multi-compartmental Hodgkin-Huxley model to determine whether dendritic delay in octopus cells improves synaptic input coincidence detection in octopus cells by compensating for the cochlear traveling wave delay. The propagation time of post-synaptic potentials from synapse to soma was investigated. We found that the total dendritic delay was approximately 0.275 ms. It was observed that low-threshold potassium channels in the dendrites reduce the amplitude dependence of the dendritic delay of post-synaptic potentials. As our hypothesis predicted, the model was most sensitive to acoustic onset events, such as the glottal pulses in speech when the synaptic inputs were arranged such that the model's dendritic delay compensated for the cochlear traveling wave delay across the ANFs. The range of sound frequency input from ANFs was also investigated. The results suggested that input to octopus cells is dominated by high frequency ANFs.
Collapse
Affiliation(s)
- Martin J Spencer
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne Melbourne, VIC, Australia ; National ICT Australia Melbourne, VIC, Australia ; Centre for Neural Engineering, University of Melbourne VIC, Australia
| | | | | | | | | |
Collapse
|
38
|
Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons. J Neurosci 2012; 32:9301-11. [PMID: 22764237 DOI: 10.1523/jneurosci.0272-12.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across approximately one-third of the tonotopic axis, a click evokes a soma-directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic EPSPs. A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds.
Collapse
|
39
|
Abstract
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (g(KL)) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s(-1). Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites.
Collapse
Affiliation(s)
- Nace L Golding
- Section of Neurobiology and Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
40
|
Almanza A, Luis E, Mercado F, Vega R, Soto E. Molecular identity, ontogeny, and cAMP modulation of the hyperpolarization-activated current in vestibular ganglion neurons. J Neurophysiol 2012; 108:2264-75. [PMID: 22832570 DOI: 10.1152/jn.00337.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Properties, developmental regulation, and cAMP modulation of the hyperpolarization-activated current (I(h)) were investigated by the whole cell patch-clamp technique in vestibular ganglion neurons of the rat at two postnatal stages (P7-10 and P25-28). In addition, by RT-PCR and immunohistochemistry the identity and distribution of hyperpolarization-activated and cyclic nucleotide-gated channel (HCN) isoforms that generate I(h) were investigated. I(h) current density was larger in P25-28 than P7-10 rats, increasing 410% for small cells (<30 pF) and 200% for larger cells (>30 pF). The half-maximum activation voltage (V(1/2)) of I(h) was -102 mV in P7-10 rats and in P25-28 rats shifted 7 mV toward positive voltages. At both ages, intracellular cAMP increased I(h) current density, decreased its activation time constant (τ), and resulted in a rightward shift of V(1/2) by 9 mV. Perfusion of 8-BrcAMP increased I(h) amplitude and speed up its activation kinetics. I(h) was blocked by Cs(+), zatebradine, and ZD7288. As expected, these drugs also reduced the voltage sag caused with hyperpolarizing pulses and prevented the postpulse action potential generation without changes in the resting potential. RT-PCR analysis showed that HCN1 and HCN2 subunits were predominantly amplified in vestibular ganglia and end organs and HCN3 and HCN4 to a lesser extent. Immunohistochemistry showed that the four HCN subunits were differentially expressed (HCN1 > HCN2 > HCN3 ≥ HCN4) in ganglion slices and in cultured neurons at both P7-10 and P25-28 stages. Developmental changes shifted V(1/2) of I(h) closer to the resting membrane potential, increasing its functional role. Modulation of I(h) by cAMP-mediated signaling pathway constitutes a potentially relevant control mechanism for the modulation of afferent neuron discharge.
Collapse
Affiliation(s)
- Angélica Almanza
- Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | |
Collapse
|
41
|
Meredith FL, Benke TA, Rennie KJ. Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: characterization and role in shaping postsynaptic events. J Assoc Res Otolaryngol 2012; 13:745-58. [PMID: 22825486 DOI: 10.1007/s10162-012-0342-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/25/2012] [Indexed: 01/11/2023] Open
Abstract
Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.
Collapse
Affiliation(s)
- Frances L Meredith
- Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
42
|
Needham K, Nayagam BA, Minter RL, O'Leary SJ. Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Hear Res 2012; 291:1-14. [PMID: 22796476 DOI: 10.1016/j.heares.2012.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023]
Abstract
Neurotrophins provide an effective tool for the rescue and regeneration of spiral ganglion neurons (SGNs) following sensorineural hearing loss. However, these nerve growth factors are also potent modulators of ion channel activity and expression, and in the peripheral auditory system brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) have previously been shown to alter the firing properties of auditory neurons and differentially regulate the expression of some potassium channels in vitro. In this study we examined the activity of the hyperpolarization-mediated mixed-cation current (I(h)) in early post-natal cultured rat SGNs following exposure to combined BDNF and NT3. Whole-cell patch-clamp recordings made after 1 or 2 days in vitro revealed no change in the firing adaptation of neurons in the presence of BDNF and NT3. Resting membrane potentials were also maintained, but spike latency and firing threshold was subject to regulation by both neurotrophins and time in vitro. Current clamp recordings revealed an activity profile consistent with activation of the hyperpolarization-activated current. Rapid membrane hyperpolarization was followed by a voltage- and time-dependent depolarizing voltage sag. In voltage clamp, membrane hyperpolarization evoked a slowly-activating inward current that was reversibly blocked with cesium and inhibited by ZD7288. The amplitude and current density of I(h) was significantly larger in BDNF and NT3 supplemented cultures, but this did not translate to a significant alteration in voltage sag magnitude. Neurotrophins provided at 50 ng/ml produced a hyperpolarizing shift in the voltage-dependence and slower time course of I(h) activation compared to SGNs in control groups or cultured with 10 ng/ml BDNF and NT3. Our results indicate that combined BDNF and NT3 increase the activity of hyperpolarization-activated currents and that the voltage-dependence and activation kinetics of I(h) in SGNs are sensitive to changes in neurotrophin concentration. In addition, BDNF and NT3 applied together induce a decrease in firing threshold, but does not generate a shift in firing adaptation.
Collapse
Affiliation(s)
- Karina Needham
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye & Ear Hospital, Level 2, 32 Gisborne St., East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
43
|
An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J Neurosci 2012; 32:2814-23. [PMID: 22357864 DOI: 10.1523/jneurosci.3882-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In sensory circuits of the brain, developmental changes in the expression and modulation of voltage-gated ion channels are a common occurrence, but such changes are often difficult to assign to clear functional roles. We have explored this issue in the binaural neurons of the medial superior olive (MSO), whose temporal precision in detecting the coincidence of binaural inputs dictates the resolution of azimuthal sound localization. We show that in MSO principal neurons of gerbils during the first week of hearing, a hyperpolarization-activated current (I(h)) progressively undergoes a 13-fold increase in maximal conductance, a >10-fold acceleration of kinetics, and, most surprisingly, a 30 mV depolarizing shift in the voltage dependence of activation. This period is associated with an upregulation of the hyperpolarization-activated and cyclic nucleotide-gated (HCN) channel subunits HCN1, HCN2, and HCN4 in the MSO, but only HCN1 and HCN4 were expressed strongly in principal neurons. I(h) recorded in nucleated patches from electrophysiologically mature MSO neurons (>P18) exhibited kinetics and an activation range nearly identical to the I(h) found in whole-cell recordings before hearing onset. These results indicate that the developmental changes in I(h) in MSO neurons can be explained predominantly by modulation from diffusible intracellular factors, and not changes in channel subunit composition. The exceptionally large modulatory changes in I(h), together with refinements in synaptic properties transform the coding strategy from one of summation and integration to the submillisecond coincidence detection known to be required for transmission of sound localization cues.
Collapse
|
44
|
Bal R, Türk G, Tuzcu M, Yilmaz O, Kuloglu T, Gundogdu R, Gür S, Agca A, Ulas M, Cambay Z, Tuzcu Z, Gencoglu H, Guvenc M, Ozsahin AD, Kocaman N, Aslan A, Etem E. Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:434-444. [PMID: 22424069 DOI: 10.1080/03601234.2012.663311] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the current study it was aimed to investigate the toxicity of low doses of imidacloprid (IMI) on the reproductive organ systems of adult male rats. The treatment groups received 0.5 (IMI-0.5), 2 (IMI-2) or 8 mg IMI/kg body weight by oral gavage (IMI-8) for three months. The deterioration in sperm motility in IMI-8 group and epidydimal sperm concentration in IMI-2 and IMI-8 groups and abnormality in sperm morphology in IMI-8 were significant. The levels of testosterone (T) and GSH decreased significantly in group IMI-8 compared to the control group. Upon treatment with IMI, apoptotic index increased significantly only in germ cells of the seminiferous tubules of IMI-8 group when compared to control. Fragmentation was striking in the seminal DNA from the IMI-8 group, but it was much less obvious in the IMI-2 one. IMI exposure resulted in elevation of all fatty acids analyzed, but the increases were significant only in stearic, oleic, linoleic and arachidonic acids. The ratios of 20:4/20:3 and 20:4/18:2 were decreased and 16:1n-9/16:0 ratio was increased. In conclusion, the present animal experiments revealed that the treatment with IMI at NOAEL dose-levels caused deterioration in sperm parameters, decreased T level, increased apoptosis of germ cells, seminal DNA fragmentation, the depletion of antioxidants and change in disturbance of fatty acid composition. All these changes indicate the suppression of testicular function.
Collapse
Affiliation(s)
- Ramazan Bal
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kopp-Scheinpflug C, Tozer AJB, Robinson SW, Tempel BL, Hennig MH, Forsythe ID. The sound of silence: ionic mechanisms encoding sound termination. Neuron 2011; 71:911-25. [PMID: 21903083 DOI: 10.1016/j.neuron.2011.06.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2011] [Indexed: 11/30/2022]
Abstract
Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (E(Cl)), combined with a large hyperpolarization-activated nonspecific cationic current (I(H)), with a secondary contribution from a T-type calcium conductance (I(TCa)). On activation by the IPSP, I(H) potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy.
Collapse
|
46
|
Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive. J Neurosci 2011; 31:8936-47. [PMID: 21677177 DOI: 10.1523/jneurosci.1079-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neurons of the medial superior olive (MSO), voltage-gated ion channels control the submillisecond time resolution of binaural coincidence detection, but little is known about their interplay during trains of synaptic activity that would be experienced during auditory stimuli. Here, using modeling and patch-clamp recordings from MSO principal neurons in gerbil brainstem slices, we examined interactions between two major currents controlling subthreshold synaptic integration: a low-voltage-activated potassium current (I(K-LVA)) and a hyperpolarization-activated cation current (I(h)). Both I(h) and I(K-LVA) contributed strongly to the resting membrane conductance and, during trains of simulated EPSPs, exhibited cumulative deactivation and inactivation, respectively. In current-clamp recordings, regular and irregular trains of simulated EPSCs increased input resistance up to 60%, effects that accumulated and decayed (after train) over hundreds of milliseconds. Surprisingly, the mean voltage and peaks of EPSPs increased by only a few millivolts during trains. Using a model of an MSO cell, we demonstrated that the nearly uniform response during modest depolarizing stimuli relied on changes in I(h) and I(K-LVA), such that their sum remained nearly constant over time. Experiments and modeling showed that, for simplified binaural stimuli (EPSC pairs in a noisy background), spike probability gradually increased in parallel with the increasing input resistance. Nevertheless, the interplay between I(h) and I(K-LVA) helps to maintain a nearly uniform shape of individual synaptic responses, and we show that the time resolution of synaptic coincidence detection can be maintained during trains if EPSC size gradually decreases (as in synaptic depression), counteracting slow increases in excitability.
Collapse
|
47
|
Bidirectional plasticity in the primate inferior olive induced by chronic ethanol intoxication and sustained abstinence. Proc Natl Acad Sci U S A 2011; 108:10314-9. [PMID: 21642533 DOI: 10.1073/pnas.1017079108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain adapts to chronic ethanol intoxication by altering synaptic and ion-channel function to increase excitability, a homeostatic counterbalance to inhibition by alcohol. Delirium tremens occurs when those adaptations are unmasked during withdrawal, but little is known about whether the primate brain returns to normal with repeated bouts of ethanol abuse and abstinence. Here, we show a form of bidirectional plasticity of pacemaking currents induced by chronic heavy drinking within the inferior olive of cynomolgus monkeys. Intracellular recordings of inferior olive neurons demonstrated that ethanol inhibited the tail current triggered by release from hyperpolarization (I(tail)). Both the slow deactivation of hyperpolarization-activated cyclic nucleotide-gated channels conducting the hyperpolarization-activated inward current and the activation of Ca(v)3.1 channels conducting the T-type calcium current (I(T)) contributed to I(tail), but ethanol inhibited only the I(T) component of I(tail). Recordings of inferior olive neurons obtained from chronically intoxicated monkeys revealed a significant up-regulation in I(tail) that was induced by 1 y of daily ethanol self-administration. The up-regulation was caused by a specific increase in I(T) which (i) greatly increased neurons' susceptibility for rebound excitation following hyperpolarization and (ii) may have accounted for intention tremors observed during ethanol withdrawal. In another set of monkeys, sustained abstinence produced the opposite effects: (i) a reduction in rebound excitability and (ii) a down-regulation of I(tail) caused by the down-regulation of both the hyperpolarization-activated inward current and I(T). Bidirectional plasticity of two hyperpolarization-sensitive currents following chronic ethanol abuse and abstinence may underlie persistent brain dysfunction in primates and be a target for therapy.
Collapse
|
48
|
Cao XJ, Oertel D. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus. J Neurophysiol 2011; 106:630-40. [PMID: 21562186 DOI: 10.1152/jn.00015.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.
Collapse
Affiliation(s)
- Xiao-Jie Cao
- Department of Neuroscience, School of Neuroscience Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
49
|
Leão KE, Leão RN, Walmsley B. Modulation of dendritic synaptic processing in the lateral superior olive by hyperpolarization-activated currents. Eur J Neurosci 2011; 33:1462-70. [PMID: 21366727 DOI: 10.1111/j.1460-9568.2011.07627.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that mice lateral superior olive (LSO) neurons exhibit a large hyperpolarization-activated current (I(h) ), and that hyperpolarization-activated cyclic-nucleotide-gated type 1 channels are present in both the soma and dendrites of these cells. Here we show that the dendritic I(h) in LSO neurons modulates the integration of multiple synaptic inputs. We tested the LSO neuron's ability to integrate synaptic inputs by evoking excitatory post-synaptic potentials (EPSPs) in conjunction with brief depolarizing current pulses (to simulate a second excitatory input) at different time delays. We compared LSO neurons with the native I(h) present in both the soma and dendrites (control) with LSO neurons without I(h) (blocked with ZD7288) and with LSO neurons with I(h) only present peri-somatically (ZD7288+ computer-simulated I(h) using a dynamic clamp). LSO neurons without I(h) had a wider time window for firing in response to inputs with short time separations. Simulated somatic I(h) (dynamic clamp) could not reverse this effect. Blocking I(h) also increased the summation of EPSPs elicited at both proximal and distal dendritic regions, and dramatically altered the integration of EPSPs and inhibitory post-synaptic potentials. The addition of simulated peri-somatic I(h) could not abolish a ZD7288-induced increase of responsiveness to widely separated excitatory inputs. Using a compartmental LSO model, we show that dendritic I(h) can reduce EPSP integration by locally decreasing the input resistance. Our results suggest a significant role for dendritic I(h) in LSO neurons, where the activation/deactivation of I(h) can alter the LSO response to synaptic inputs.
Collapse
Affiliation(s)
- Katarina E Leão
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
50
|
Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons. Hear Res 2010; 270:119-26. [DOI: 10.1016/j.heares.2010.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/15/2022]
|