1
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
2
|
Petroccione MA, D'Brant LY, Affinnih N, Wehrle PH, Todd GC, Zahid S, Chesbro HE, Tschang IL, Scimemi A. Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. eLife 2023; 12:e81830. [PMID: 37435808 PMCID: PMC10411972 DOI: 10.7554/elife.81830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
Understanding the function of glutamate transporters has broad implications for explaining how neurons integrate information and relay it through complex neuronal circuits. Most of what is currently known about glutamate transporters, specifically their ability to maintain glutamate homeostasis and limit glutamate diffusion away from the synaptic cleft, is based on studies of glial glutamate transporters. By contrast, little is known about the functional implications of neuronal glutamate transporters. The neuronal glutamate transporter EAAC1 is widely expressed throughout the brain, particularly in the striatum, the primary input nucleus of the basal ganglia, a region implicated with movement execution and reward. Here, we show that EAAC1 limits synaptic excitation onto a population of striatal medium spiny neurons identified for their expression of D1 dopamine receptors (D1-MSNs). In these cells, EAAC1 also contributes to strengthen lateral inhibition from other D1-MSNs. Together, these effects contribute to reduce the gain of the input-output relationship and increase the offset at increasing levels of synaptic inhibition in D1-MSNs. By reducing the sensitivity and dynamic range of action potential firing in D1-MSNs, EAAC1 limits the propensity of mice to rapidly switch between behaviors associated with different reward probabilities. Together, these findings shed light on some important molecular and cellular mechanisms implicated with behavior flexibility in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Shergil Zahid
- SUNY Albany, Department of BiologyAlbanyUnited States
| | | | - Ian L Tschang
- SUNY Albany, Department of BiologyAlbanyUnited States
| | | |
Collapse
|
3
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
4
|
Tan SY, Jiang JX, Huang HX, Mo XP, Feng JR, Chen Y, Yang L, Long C. Neural mechanism underlies CYLD modulation of morphology and synaptic function of medium spiny neurons in dorsolateral striatum. Front Mol Neurosci 2023; 16:1107355. [PMID: 36846565 PMCID: PMC9945542 DOI: 10.3389/fnmol.2023.1107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Although the deubiquitinase cylindromatosis (CYLD), an abundant protein in the postsynaptic density fraction, plays a crucial role in mediating the synaptic activity of the striatum, the precise molecular mechanism remains largely unclear. Here, using a Cyld-knockout mouse model, we demonstrate that CYLD regulates dorsolateral striatum (DLS) neuronal morphology, firing activity, excitatory synaptic transmission, and plasticity of striatal medium spiny neurons via, likely, interaction with glutamate receptor 1 (GluA1) and glutamate receptor 2 (GluA2), two key subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). CYLD deficiency reduces levels of GluA1 and GluA2 surface protein and increases K63-linked ubiquitination, resulting in functional impairments both in AMPAR-mediated excitatory postsynaptic currents and in AMPAR-dependent long-term depression. The results demonstrate a functional association of CYLD with AMPAR activity, which strengthens our understanding of the role of CYLD in striatal neuronal activity.
Collapse
Affiliation(s)
- Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Xiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Xian Huang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiu-Ping Mo
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing-Ru Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
5
|
Megagiannis P, Suresh R, Rouleau GA, Zhou Y. Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Adv Drug Deliv Rev 2022; 191:114562. [PMID: 36183904 DOI: 10.1016/j.addr.2022.114562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of conditions resulting from atypical brain development. Over the past decades, we have had the fortune to witness enormous progress in diagnosis, etiology discovery, modeling, and mechanistic understanding of NDDs from both fundamental and clinical research. Here, we review recent neurobiological advances from experimental models of NDDs. We introduce several examples and highlight breakthroughs in reversal studies of phenotypes using genetically engineered models of NDDs. The in-depth understanding of brain pathophysiology underlying NDDs and evaluations of reversibility in animal models paves the foundation for discovering novel treatment options. We discuss how the expanding property of cutting-edge technologies, such as gene editing and AAV-mediated gene delivery, are leveraged in animal models for the therapeutic development of NDDs. We envision opportunities and challenges toward faithful modeling and fruitful clinical translation.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
6
|
Liput DJ, Puhl HL, Dong A, He K, Li Y, Lovinger DM. 2-Arachidonoylglycerol mobilization following brief synaptic stimulation in the dorsal lateral striatum requires glutamatergic and cholinergic neurotransmission. Neuropharmacology 2022; 205:108916. [PMID: 34896118 PMCID: PMC8843864 DOI: 10.1016/j.neuropharm.2021.108916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 01/29/2023]
Abstract
Several forms of endocannabinoid (eCB) signaling have been described in the dorsal lateral striatum (DLS), however most experimental protocols used to generate eCBs do not recapitulate the firing patterns of striatal-projecting pyramidal neurons in the cortex or firing patterns of striatal medium spiny neurons. Therefore, it is unclear if current models of eCB signaling in the DLS provide a reliable description of mechanisms engaged under physiological conditions. To address this uncertainty, we investigated mechanisms of eCB mobilization following brief synaptic stimulation that mimics in vivo patterns of neural activity in the DLS. To monitor eCB mobilization, the novel genetically encoded fluorescent eCB biosensor, GRABeCB2.0, was expressed presynaptically in corticostriatal afferents of C57BL6J mice and evoked eCB transients were measured in the DLS using a brain slice photometry technique. We found that brief bouts of synaptic stimulation induce long lasting eCB transients that were generated predominantly by 2-arachidonoylglycerol (2-AG) mobilization. Efficient 2-AG mobilization required coactivation of AMPA and NMDA ionotropic glutamate receptors and muscarinic M1 receptors. Dopamine D2 receptors expressed on cholinergic interneurons inhibited 2-AG mobilization by inhibiting acetylcholine release. Collectively, these data uncover unrecognized mechanisms underlying 2-AG mobilization in the DLS.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA,Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA
| | - Henry L. Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Kaikai He
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Chinese Institute for Brain Research, Beijing 100871, China
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA,Correspondence:
| |
Collapse
|
7
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
8
|
Vicente AM, Martins GJ, Costa RM. Cortico-basal ganglia circuits underlying dysfunctional control of motor behaviors in neuropsychiatric disorders. Curr Opin Genet Dev 2020; 65:151-159. [PMID: 32688249 PMCID: PMC7749078 DOI: 10.1016/j.gde.2020.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 11/26/2022]
Abstract
Neuropsychiatric disorders often manifest with abnormal control of motor behavior. Common symptoms include restricted and repetitive patterns of behavior (RRBs). Cortico-basal ganglia circuits have been implicated in the etiology of RBBs. However, there is a vast range of behaviors encompassed in RRBs, from simple explosive motor tics to rather complex ritualized compulsions. In this review, we highlight how recent findings about the function of specific basal ganglia circuits can begin to shed light into defined motor symptoms associated with neuropsychiatric disorders. We discuss recent studies using genetic animal models that advocate that different aspects of motor repetition in neurodevelopmental disorders, like obsessive-compulsive disorder and autism spectrum disorder, emerge from particular dysregulations in distinct cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Ana Mafalda Vicente
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Institute, Columbia University 3227 Broadway, New York, NY, 10027, United States
| | - Gabriela J Martins
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Institute, Columbia University 3227 Broadway, New York, NY, 10027, United States
| | - Rui M Costa
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Institute, Columbia University 3227 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
9
|
Platholi J, Hemmings HC. Modulation of dendritic spines by protein phosphatase-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:117-144. [PMID: 33706930 DOI: 10.1016/bs.apha.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein phosphatase-1 (PP-1), a highly conserved multifunctional serine/threonine phosphatase, is enriched in dendritic spines where it plays a major role in modulating excitatory synaptic activity. In addition to established functions in spine maturation and development, multi-subunit holoenzyme forms of PP-1 modulate higher-order cognitive functions such learning and memory. Mechanisms involved in regulating PP-1 activity and localization in spines include interactions with neurabin and spinophilin, structurally related synaptic scaffolding proteins associated with the actin cytoskeleton. Since PP-1 is a critical element in synaptic development, signaling, and plasticity, alterations in PP-1 signaling in dendritic spines are implicated in various neurological and psychiatric disorders. The effects of PP-1 depend on its isoform-specific association with regulatory proteins and activation of downstream signaling pathways. Here we review the role of PP-1 and its binding proteins neurabin and spinophilin in both developing and established dendritic spines, as well as some of the disorders that result from its dysregulation.
Collapse
Affiliation(s)
- Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
10
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
11
|
Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway. J Neurosci 2020; 40:5757-5768. [PMID: 32541069 DOI: 10.1523/jneurosci.2369-19.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Despite extensive research into understanding synaptic mechanisms of striatal plasticity, the functional role played by astrocytes in this region remains to be fully elucidated. It was recently demonstrated that high-frequency stimulation (HFS) of cortical inputs induced long-term depression (LTD) mediated by adenosine A1 receptor (A1R) activation at corticostriatal synapses of the direct pathway [cortico-striatal projection neuron (dSPN)] in the dorsolateral striatum (DLS). Because astrocyte-derived adenosine has been shown to regulate synaptic transmission in several brain areas, we investigated whether this form of neuron-astrocyte signaling contributes to synaptic plasticity in the DLS of male and female mice. We found that cortical HFS increases calcium (Ca2+) levels in striatal astrocytes through activation of metabotropic glutamate receptor type 5 (mGluR5) signaling and that this astrocyte-mediated response is necessary for A1R-mediated LTD. Consistent with this, astrocyte activation with Gq designer receptors exclusively activated by designer drugs (DREADDs) induced A1R-mediated synaptic depression at cortico-dSPN synapses. Together, these results indicate that astrocytes are integral elements of striatal A1R-mediated LTD.SIGNIFICANCE STATEMENT Abnormal striatal circuit function is implicated in several disorders such as Parkinson's disease and Huntington's disease. Thus, there is a need to better understand the mechanisms supporting proper striatal activity. While extensive work has revealed the many important contributions from neurons in striatal function, far less is known about the role of astrocytes in this brain area. We show that long-term depression (LTD) at corticostriatal synapses of the direct pathway is not strictly a neuronal phenomenon; astrocytes respond to corticostriatal stimulation and this astrocyte response is necessary for LTD. This research adds to the accumulating evidence that astrocytes are active and integral players in synaptic communication, and that neuron-astrocyte interactions are key cellular processes involved in brain function.
Collapse
|
12
|
Wu CS, Jew CP, Sun H, Ballester Rosado CJ, Lu HC. mGlu5 in GABAergic neurons modulates spontaneous and psychostimulant-induced locomotor activity. Psychopharmacology (Berl) 2020; 237:345-361. [PMID: 31646346 PMCID: PMC7024012 DOI: 10.1007/s00213-019-05367-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE A role of group I metabotropic glutamate receptor 5 (mGlu5) in regulating spontaneous locomotion and psychostimulant-induced hyperactivity has been proposed. OBJECTIVES This study aims to determine if mGlu5 in GABAergic neurons regulates spontaneous or psychostimulant-induced locomotion. METHODS We generated mice specifically lacking mGlu5 in forebrain GABAergic neuron by crossing DLX-Cre mice with mGlu5flox/flox mice to generate DLX-mGlu5 KO mice. The locomotion of adult mice was examined in the open-field assay (OFA) and home cage setting. The effects of the mGlu5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP), cocaine, and methylphenidate on acute motor behaviors in DLX-mGlu5 KO and littermate control mice were assessed in OFA. Striatal synaptic plasticity of these mice was examined with field potential electrophysiological recordings. RESULTS Deleting mGlu5 from forebrain GABAergic neurons results in failure to induce long-term depression (LTD) in the dorsal striatum and absence of habituated locomotion in both novel and familiar settings. In a familiar environment (home cage), DLX-mGlu5 KO mice were hyperactive. In the OFA, DLX-mGlu5 KO mice exhibited initial hypo-activity, and then gradually increased their locomotion with time, resulting in no habituation response. DLX-mGlu5 KO mice exhibited almost no locomotor response to MPEP (40 mg/kg), while the same dose elicited hyperlocomotion in control mice. The DLX-mGlu5 KO mice also showed reduced hyperactivity response to cocaine, while they retained normal hyperactivity response to methylphenidate, albeit with delayed onset. CONCLUSION mGlu5 in forebrain GABAergic neurons is critical to trigger habituation upon the initiation of locomotion as well as to mediate MPEP-induced hyperlocomotion and modulate psychostimulant-induced hyperactivity.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, 123 Cater-Mattil, 2253 TAMU, College Station, TX, 77843, USA.
| | - Christopher P Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
| | - Carlos J Ballester Rosado
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
15
|
Bariselli S, Fobbs WC, Creed MC, Kravitz AV. A competitive model for striatal action selection. Brain Res 2018; 1713:70-79. [PMID: 30300636 DOI: 10.1016/j.brainres.2018.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
The direct and indirect pathway striatal medium spiny neurons (dMSNs and iMSNs) have long been linked to action selection, but the precise roles of these neurons in this process remain unclear. Here, we review different models of striatal pathway function, focusing on the classic "go/no-go" model which posits that dMSNs facilitate movement while iMSNs inhibit movement, and the "complementary" model, which argues that dMSNs facilitate the selection of specific actions while iMSNs inhibit potentially conflicting actions. We discuss the merits and shortcomings of these models and propose a "competitive" model to explain the contribution of these two pathways to behavior. The "competitive" model argues that rather than inhibiting conflicting actions, iMSNs are tuned to the same actions that dMSNs facilitate, and the two populations "compete" to determine the animal's behavioral response. This model provides a theoretical explanation for how these pathways work together to select actions. In addition, it provides a link between action selection and behavioral reinforcement, via modulating synaptic strength at inputs onto dMSNs and iMSNs. Finally, this model makes predictions about how imbalances in the activity of these pathways may underlie behavioral traits associated with psychiatric disorders. Understanding the roles of these striatal pathways in action selection may help to clarify the neuronal mechanisms of decision-making under normal and pathological conditions.
Collapse
Affiliation(s)
- S Bariselli
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - W C Fobbs
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M C Creed
- Washington University in St Louis, Department of Anesthesiology, St Louis, MO, United States
| | - A V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States; National Institute on Drug Abuse, Baltimore, MD, United States.
| |
Collapse
|
16
|
Augustin SM, Chancey JH, Lovinger DM. Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons. Cell Rep 2018; 24:2883-2893. [PMID: 30208314 PMCID: PMC6182771 DOI: 10.1016/j.celrep.2018.08.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023] Open
Abstract
Endocannabinoid (eCB)-mediated long-term depression (LTD) requires dopamine (DA) D2 receptors (D2Rs) for eCB mobilization. The cellular locus of the D2Rs involved in LTD induction remains highly debated. We directly examined the role in LTD induction of D2Rs expressed by striatal cholinergic interneurons (Chls) and indirect pathway medium spiny neurons (iMSNs) using neuron-specific targeted deletion of D2Rs. Deletion of Chl-D2Rs (Chl-Drd2KO) impaired LTD induction in both subtypes of MSNs. LTD induction was restored in the Chl-Drd2KO mice by an M1-selective muscarinic acetylcholine receptor antagonist. In contrast, after the deletion of iMSN-D2Rs (iMSN-Drd2KO), LTD induction was intact in MSNs. Separate interrogation of direct pathway and iMSNs revealed a deficit in LTD induction only at synapses onto iMSNs that lack D2Rs. LTD induction in iMSNs was restored by D2R agonist application. Our findings suggest that Chl D2Rs strongly modulate LTD induction in MSNs, with iMSN-D2Rs having a weaker, iMSN-specific, modulatory effect.
Collapse
Affiliation(s)
- Shana M Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA
| | - Jessica H Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
17
|
Gorodetski L, Zeira R, Lavian H, Korngreen A. Long-term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus. Eur J Neurosci 2018; 48:2139-2151. [PMID: 30103273 DOI: 10.1111/ejn.14105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/26/2022]
Abstract
The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long-term changes to the STN->EP synapse. To test this hypothesis, we recorded in the whole-cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre-synaptic stimulation generated modest long-term depression (LTD) in the STN->EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre-before post-as well as for post- before pre-synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post-synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back-propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post-synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de-correlation of STN and EP firing.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Reut Zeira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
18
|
Morris CW, Watkins DS, Salek AB, Edler MC, Baucum AJ. The association of spinophilin with disks large-associated protein 3 (SAPAP3) is regulated by metabotropic glutamate receptor (mGluR) 5. Mol Cell Neurosci 2018; 90:60-69. [PMID: 29908232 PMCID: PMC6294707 DOI: 10.1016/j.mcn.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Spinophilin is the most abundant protein phosphatase 1 targeting protein in the postsynaptic density of dendritic spines. Spinophilin associates with myriad synaptic proteins to regulate normal synaptic communication; however, the full complement of spinophilin interacting proteins and mechanisms regulating spinophilin interactions are unclear. Here we validate an association between spinophilin and the scaffolding protein, disks large-associated protein 3 (SAP90/PSD-95 associated protein 3; SAPAP3). Loss of SAPAP3 leads to obsessive-compulsive disorder (OCD)-like behaviors due to alterations in metabotropic glutamate receptor (mGluR) signaling. Here we report that spinophilin associates with SAPAP3 in the brain and in a heterologous cell system. Moreover, we have found that expression or activation of group I mGluRs along with activation of the mGluR-dependent kinase, protein kinase C β, enhances this interaction. Functionally, global loss of spinophilin attenuates amphetamine-induced hyperlocomotion, a striatal behavior associated with dopamine dysregulation and OCD. Together, these data delineate a novel link between mGluR signaling, spinophilin, and SAPAP3 in striatal pathophysiology.
Collapse
Affiliation(s)
- Cameron W Morris
- Undergraduate Neuroscience program, Indiana University-Purdue University Indianapolis, School of Science, USA
| | | | - Asma B Salek
- Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA
| | - Anthony J Baucum
- Undergraduate Neuroscience program, Indiana University-Purdue University Indianapolis, School of Science, USA; Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA; Stark Neurosciences Research, USA; Department of Pharmacology and Toxicology, Institute Indiana University School of Medicine, USA.
| |
Collapse
|
19
|
Region- and Activity-Dependent Regulation of Extracellular Glutamate. J Neurosci 2018; 38:5351-5366. [PMID: 29760178 DOI: 10.1523/jneurosci.3213-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Transporter-mediated glutamate uptake plays an essential role in shaping synaptic neurotransmission. The rapid removal of synaptically released glutamate ensures the high temporal dynamics characteristic of fast excitatory chemical neurotransmission and prevents the overexcitation of extrasynaptic NMDA receptors that have been implicated in synaptic plasticity impairments and cell death. Despite clear regional differences in plasticity and excitotoxic thresholds, few studies have compared extracellular glutamate dynamics across different brain regions and in response to a range of neural activity including plasticity-inducing stimuli. Here, we used the rapid extracellular fluorescent glutamate sensor iGluSnFR (intensity-based glutamate-sensing fluorescent reporter) and high-speed imaging (205 frames per second) to quantify relative differences in glutamate clearance rates over a wide range of presynaptic activity in situ in the hippocampus, cortex, and striatum of male C57/BL6NCrl mice. We found that the hippocampus was significantly more efficient than the cortex and striatum at clearing synaptically released glutamate and that this efficiency could be attributed, at least in part, to faster glutamate diffusion away from the release site. In addition, we found that pharmacological inhibition of GLT-1, the brain's most abundant glutamate transporter, slowed clearance rates to only a fraction (∼20-25%) of the effect induced by nonselective transporter blockade, regardless of the brain region and the duration of presynaptic activity. In all, our data reveal clear regional differences in glutamate dynamics after neural activity and suggest that non-GLT-1 transporters can make a large contribution to the rate of glutamate clearance in the hippocampus, cortex, and striatum.SIGNIFICANCE STATEMENT Glutamate is the brain's most abundant neurotransmitter, and although essential for rapid cell-cell communication, too much glutamate can negatively impact cellular health. Extracellular glutamate levels are tightly regulated by membrane-bound transporters that rapidly remove the glutamate that is released during neural activity, thereby shaping both the spatial and temporal dynamics of excitatory neurotransmission. Using high-speed imaging of an optical sensor of extracellular glutamate, we show that glutamate dynamics vary widely from one brain region to the next and are highly dependent on the duration of synaptic activity. Our data demonstrate the heterogeneous nature of glutamate regulation in the brain and suggest that such regional differences can dramatically affect both the localization and duration of postsynaptic receptor activation during synaptic neurotransmission.
Collapse
|
20
|
Li X, Peng XQ, Jordan CJ, Li J, Bi GH, He Y, Yang HJ, Zhang HY, Gardner EL, Xi ZX. mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism. Sci Rep 2018; 8:3686. [PMID: 29487381 PMCID: PMC5829076 DOI: 10.1038/s41598-018-22087-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/02/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. .,Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| | - Xiao-Qing Peng
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.,Psychiatry Residency Training Program, Department of Behavioral Health, Saint Elizabeths Hospital, 1100 Alabama Ave. SE, Washington, DC, 20032, USA
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Jie Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Yi He
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hong-Ju Yang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Ma J, Chen H, Liu X, Zhang L, Qiao D. Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity. Front Cell Neurosci 2018; 12:14. [PMID: 29422839 PMCID: PMC5788965 DOI: 10.3389/fncel.2018.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022] Open
Abstract
Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes’ motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitatory postsynaptic potential recording, we found that the corticostriatal long-term potentiation (LTP) and long-term depression (LTD) were both impaired in EF mice. To further investigate the cellular mechanisms underlying the impaired synaptic plasticity in corticostriatal pathway, whole-cell patch clamp recordings were carried out on striatal medium spiny neurons (MSNs). MSNs in EF mice exhibited increased spontaneous excitatory postsynaptic current (sEPSC) frequency and decreased paired-pulse ratio (PPR), while with normal basic electrophysiological properties and normal sEPSC amplitude. Furthermore, the N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) ratio of MSNs was reduced in EF mice. These results suggest that the enhanced presynaptic glutamate (Glu) release and downregulated postsynaptic NMDA receptor function lead to the impaired corticostriatal plasticity in EF mice. Taken together, our findings for the first time show that the bidirectional corticostriatal synaptic plasticity is impaired after EF, and suggest that the aberrant corticostriatal synaptic plasticity may be involved in the production and/or maintenance of EF.
Collapse
Affiliation(s)
- Jing Ma
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Huimin Chen
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Xiaoli Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lingtao Zhang
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14:e1007169. [PMID: 29364887 PMCID: PMC5798844 DOI: 10.1371/journal.pgen.1007169] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/05/2018] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. Dystonia is a brain disorder that causes disabling involuntary muscle contractions and abnormal postures. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. In this study, we sought to determine the effects of Thap1C54Y and ΔExon2 alleles on the gene transcription signatures at postnatal day 1 (P1) in the mouse striatum and cerebellum in order to correlate function with specific genes or pathways. Our unbiased transcriptomics approach showed that Thap1 mutants revealed multiple signaling pathways involved in neuronal plasticity, axonal guidance, and oxidative stress response, which are also present in other forms of dystonia, particularly DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Collapse
|
23
|
Padovan-Neto FE, West AR. Regulation of Striatal Neuron Activity by Cyclic Nucleotide Signaling and Phosphodiesterase Inhibition: Implications for the Treatment of Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2018; 17:257-283. [PMID: 28956336 DOI: 10.1007/978-3-319-58811-7_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of cyclic nucleotides (cAMP/cGMP) in the brain. Several classes of PDE enzymes with distinct tissue distributions, cyclic nucleotide selectivity, and regulatory factors are highly expressed in brain regions subserving cognitive and motor processes known to be disrupted in neurodegenerative diseases such as Parkinson's disease (PD). Furthermore, small-molecule inhibitors of several different PDE family members alter cyclic nucleotide levels and favorably enhance motor performance and cognition in animal disease models. This chapter will explore the roles and therapeutic potential of non-selective and selective PDE inhibitors on neural processing in fronto-striatal circuits in normal animals and models of DOPA-induced dyskinesias (LIDs) associated with PD. The impact of selective PDE inhibitors and augmentation of cAMP and cGMP signaling on the membrane excitability of striatal medium-sized spiny projection neurons (MSNs) will be discussed. The effects of cyclic nucleotide signaling and PDE inhibitors on synaptic plasticity of striatonigral and striatopallidal MSNs will be also be reviewed. New data on the efficacy of PDE10A inhibitors for reversing behavioral and electrophysiological correlates of L-DOPA-induced dyskinesias in a rat model of PD will also be presented. Together, these data will highlight the potential of novel PDE inhibitors for treatment of movement disorders such as PD which are associated with abnormal corticostriatal transmission.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
24
|
Neuronal Glutamate Transporters Control Dopaminergic Signaling and Compulsive Behaviors. J Neurosci 2017; 38:937-961. [PMID: 29229708 DOI: 10.1523/jneurosci.1906-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution.SIGNIFICANCE STATEMENT Genetic studies implicate Slc1a1, a gene encoding the neuronal glutamate transporter EAAC1, with obsessive-compulsive disorder (OCD). EAAC1 is abundantly expressed in the striatum, a brain region that is hyperactive in OCD. What remains unknown is how EAAC1 shapes synaptic function in the striatum. Our findings show that EAAC1 limits activation of metabotropic glutamate receptors (mGluRIs) in the striatum and, by doing so, promotes D1 dopamine receptor (D1R) expression. Targeted activation of signaling cascades coupled to mGluRIs in mice expressing EAAC1 reduces D1R expression and triggers repeated motor behaviors. These findings provide new information on the molecular basis of OCD and suggest new avenues for its treatment.
Collapse
|
25
|
Wang W, Li C, Chen Q, van der Goes MS, Hawrot J, Yao AY, Gao X, Lu C, Zang Y, Zhang Q, Lyman K, Wang D, Guo B, Wu S, Gerfen CR, Fu Z, Feng G. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. J Clin Invest 2017; 127:1978-1990. [PMID: 28414301 DOI: 10.1172/jci87997] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.
Collapse
|
26
|
Chen A, Hu WW, Jiang XL, Potegal M, Li H. Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology (Berl) 2017; 234:681-694. [PMID: 28028604 DOI: 10.1007/s00213-016-4503-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
The roles of group I metabotropic glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) and mGluR5, in regulating synaptic plasticity and metaplasticity in the basolateral amygdala (BLA) remain unclear. The present study examined mGluR1- and mGluR5-mediated synaptic plasticity in the BLA and their respective signaling mechanisms. Bath application of the group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG) (20 μM), directly suppressed basal fEPSPs (84.5 ± 6.3% of the baseline). The suppressive effect persisted for at least 30 min after washout; it was abolished by the mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) but was unaffected by the mGluR5 antagonist 2-methyl-6- (phenylethynyl)-pyridine (MPEP). Interestingly, application of DHPG (at both 2 and 20 μM), regardless of the presence of CPCCOEt, could transform single theta burst stimulation (TBS)-induced short-term synaptic potentiation into a long-term potentiation (LTP). Such a facilitating effect could be blocked by the mGluR5 antagonist MPEP. Blockade of phospholipase C (PLC), the downstream enzyme of group I mGluR, with U73122, prevented both mGluR1- and mGluR5-mediated effects on synaptic plasticity. Nevertheless, blockade of protein kinase C (PKC), the downstream enzyme of PLC, with chelerythrine (5 μM) only prevented the transforming effect of DHPG on TBS-induced LTP and did not affect DHPG-induced long-term depression (LTD). These results suggest that mGluR1 activation induced LTD via a PLC-dependent and PKC-independent mechanism, while the priming action of mGluR5 receptor on the BLA LTP is both PLC and PKC dependent. The BLA metaplasticity mediated by mGluR1 and mGluR5 may provide signal switching mechanisms mediating learning and memory with emotional significance.
Collapse
Affiliation(s)
- A Chen
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - W W Hu
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - X L Jiang
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA
| | - M Potegal
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - H Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA.
| |
Collapse
|
27
|
Johnson KA, Mateo Y, Lovinger DM. Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology 2017; 117:114-123. [PMID: 28159646 DOI: 10.1016/j.neuropharm.2017.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 11/26/2022]
Abstract
The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutamatergic inputs to striatal neurons originate in the thalamus, most electrophysiological studies assessing GPCR modulation do not differentiate between effects on corticostriatal and thalamostriatal transmission, and synaptic inhibition is frequently assumed to be mediated by activation of GPCRs on corticostriatal terminals. We used optogenetic techniques and recently-discovered pharmacological tools to dissect the effects of a prominent presynaptic GPCR, metabotropic glutamate receptor 2 (mGlu2), on corticostriatal vs. thalamostriatal transmission. We found that an agonist of mGlu2 and mGlu3 induces long-term depression (LTD) at synapses onto MSNs from both the cortex and the thalamus. Thalamostriatal LTD is selectively blocked by an mGlu2-selective negative allosteric modulator and reversed by application of an antagonist following LTD induction. Activation of mGlu2/3 also induces LTD of thalamostriatal transmission in striatal cholinergic interneurons (CINs), and pharmacological activation of mGlu2/3 or selective activation of mGlu2 inhibits CIN-mediated dopamine release evoked by selective stimulation of thalamostriatal inputs. Thus, mGlu2 activation exerts effects on striatal physiology that extend beyond modulation of corticostriatal synapses, and has the potential to influence cognition and striatum-related disorders via inhibition of thalamus-derived glutamate and dopamine release.
Collapse
Affiliation(s)
- Kari A Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD 20852, USA
| | - Yolanda Mateo
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD 20852, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD 20852, USA.
| |
Collapse
|
28
|
Olmo IG, Ferreira-Vieira TH, Ribeiro FM. Dissecting the Signaling Pathways Involved in the Crosstalk between Metabotropic Glutamate 5 and Cannabinoid Type 1 Receptors. Mol Pharmacol 2016; 90:609-619. [PMID: 27338080 DOI: 10.1124/mol.116.104372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The metabotropic glutamate 5 receptor and the cannabinoid type 1 receptor are G protein-coupled receptors that are widely expressed in the central nervous system. Metabotropic glutamate 5 receptors, present at the postsynaptic site, are coupled to Gαq/11 proteins and display an excitatory response upon activation, whereas the cannabinoid type 1 receptor, mainly present at presynaptic terminals, is coupled to the Gi/o protein and triggers an inhibitory response. Recent studies suggest that the glutamatergic and endocannabinoid systems exhibit a functional interaction to modulate several neural processes. In this review, we discuss possible mechanisms involved in this crosstalk and its relationship with physiologic and pathologic conditions, including nociception, addiction, and fragile X syndrome.
Collapse
Affiliation(s)
- Isabella G Olmo
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Talita H Ferreira-Vieira
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Hoffmann HM, Crouzin N, Moreno E, Raivio N, Fuentes S, McCormick PJ, Ortiz J, Vignes M. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration. Int J Neuropsychopharmacol 2016; 20:72-82. [PMID: 27744406 PMCID: PMC5412585 DOI: 10.1093/ijnp/pyw086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/22/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. METHODS We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. RESULTS We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. CONCLUSIONS Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor responses in the striatum. In addition, specifically in the accumbens, group I metabotropic glutamate receptor signaling to cAMP responsive-element binding protein shifts from an agonist-induced to an antagonist-induced cAMP responsive-element binding protein phosphorylation.
Collapse
Affiliation(s)
- Hanne Mette Hoffmann
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Nadine Crouzin
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Estefanía Moreno
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Noora Raivio
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Silvia Fuentes
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Peter J. McCormick
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Jordi Ortiz
- Present address (H.M.H.): Department of Reproductive Medicine, 349 Leichtag Biomedical Research Building, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | | |
Collapse
|
30
|
Ade KK, Wan Y, Hamann HC, O’Hare JK, Guo W, Quian A, Kumar S, Bhagat S, Rodriguiz RM, Wetsel WC, Conn PJ, Dzirasa K, Huber KM, Calakos N. Increased Metabotropic Glutamate Receptor 5 Signaling Underlies Obsessive-Compulsive Disorder-like Behavioral and Striatal Circuit Abnormalities in Mice. Biol Psychiatry 2016; 80:522-33. [PMID: 27436084 PMCID: PMC5536332 DOI: 10.1016/j.biopsych.2016.04.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Development of treatments for obsessive-compulsive disorder (OCD) is hampered by a lack of mechanistic understanding about this prevalent neuropsychiatric condition. Although circuit changes such as elevated frontostriatal activity are linked to OCD, the underlying molecular signaling that drives OCD-related behaviors remains largely unknown. Here, we examine the significance of type 5 metabotropic glutamate receptors (mGluR5s) for behavioral and circuit abnormalities relevant to OCD. METHODS Sapap3 knockout (KO) mice treated acutely with an mGluR5 antagonist were evaluated for OCD-relevant phenotypes of self-grooming, anxiety-like behaviors, and increased striatal activity. The role of mGluR5 in the striatal circuit abnormalities of Sapap3 KO mice was further explored using two-photon calcium imaging to monitor striatal output from the direct and indirect pathways. A contribution of constitutive signaling to increased striatal mGluR5 activity in Sapap3 KO mice was investigated using pharmacologic and biochemical approaches. Finally, sufficiency of mGluR5 to drive OCD-like behavior in wild-type mice was tested by potentiating mGluR5 with a positive allosteric modulator. RESULTS Excessive mGluR5 signaling underlies OCD-like behaviors and striatal circuit abnormalities in Sapap3 KO mice. Accordingly, enhancing mGluR5 activity acutely recapitulates these behavioral phenotypes in wild-type mice. In Sapap3 KO mice, elevated mGluR5 signaling is associated with constitutively active receptors and increased and imbalanced striatal output that is acutely corrected by antagonizing striatal mGluR5. CONCLUSIONS These findings demonstrate a causal role for increased mGluR5 signaling in driving striatal output abnormalities and behaviors with relevance to OCD and show the tractability of acute mGluR5 inhibition to remedy circuit and behavioral abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nicole Calakos
- Departments of Neurology, Duke University Medical Center, Durham, North Carolina; Neurobiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
31
|
Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S, Mague SD, Hulbert SW, Dutta N, Hayrapetyan V, Yu C, Gaidis E, Zhao S, Ding JD, Xu Q, Chung L, Rodriguiz RM, Wang F, Weinberg RJ, Wetsel WC, Dzirasa K, Yin H, Jiang YH. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 2016; 7:11459. [PMID: 27161151 PMCID: PMC4866051 DOI: 10.1038/ncomms11459] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. SHANK3 mutations have been linked to autism spectrum disorders, although the underlying mechanisms remain unclear. Here, the authors generate a complete knockout Shank3 mouse model, identifying ASD-like behaviours associated with impaired mGluR5-Homer scaffolding and abnormal brain connectivity.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Brittany M Katz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Alexandra Badea
- Department of Radiology, Duke University, Durham, North Carolina 27710, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Lisa K David
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Sunil Kumar
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Stephen D Mague
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Samuel W Hulbert
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Nisha Dutta
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Volodya Hayrapetyan
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Chunxiu Yu
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Qiong Xu
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Child Health Care, The Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Kafui Dzirasa
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA.,University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
32
|
Sanderson TM, Hogg EL, Collingridge GL, Corrêa SAL. Hippocampal metabotropic glutamate receptor long-term depression in health and disease: focus on mitogen-activated protein kinase pathways. J Neurochem 2016; 139 Suppl 2:200-214. [PMID: 26923875 DOI: 10.1111/jnc.13592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD) is a major form of synaptic plasticity underlying learning and memory. The molecular mechanisms involved in mGluR-LTD have been investigated intensively for the last two decades. In this 60th anniversary special issue article, we review the recent advances in determining the mechanisms that regulate the induction, transduction and expression of mGluR-LTD in the hippocampus, with a focus on the mitogen-activated protein kinase (MAPK) pathways. In particular we discuss the requirement of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. The recent advances in understanding the signaling cascades regulating mGluR-LTD are then related to the cognitive impairments observed in neurological disorders, such as fragile X syndrome and Alzheimer's disease. mGluR-LTD is a form of synaptic plasticity that impacts on memory formation. In the hippocampus mitogen-activated protein kinases (MAPKs) have been found to be important in mGluR-LTD. In this 60th anniversary special issue article, we review the independent and complementary roles of two classes of MAPK, p38 and ERK1/2 and link this to the aberrant mGluR-LTD that has an important role in diseases. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Ellen L Hogg
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Sonia A L Corrêa
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
33
|
Dupuis JP, Bioulac BH, Baufreton J. Long-term depression at distinct glutamatergic synapses in the basal ganglia. Rev Neurosci 2015; 25:741-54. [PMID: 25046307 DOI: 10.1515/revneuro-2014-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/20/2014] [Indexed: 11/15/2022]
Abstract
Long-term adaptations of synaptic transmission are believed to be the cellular basis of information storage in the brain. In particular, long-term depression of excitatory neurotransmission has been under intense investigation since convergent lines of evidence support a crucial role for this process in learning and memory. Within the basal ganglia, a network of subcortical nuclei forming a key part of the extrapyramidal motor system, plasticity at excitatory synapses is essential to the regulation of motor, cognitive, and reward functions. The striatum, the main gateway of the basal ganglia, receives convergent excitatory inputs from cortical areas and transmits information to the network output structures and is a major site of activity-dependent plasticity. Indeed, long-term depression at cortico-striatal synapses modulates the transfer of information to basal ganglia output structures and affects voluntary movement execution. Cortico-striatal plasticity is thus considered as a cellular substrate for adaptive motor control. Downstream in this network, the subthalamic nucleus and substantia nigra nuclei also receive glutamatergic innervation from the cortex and the subthalamic nucleus, respectively. Although these connections have been less investigated, recent studies have started to unravel the molecular mechanisms that contribute to adjustments in the strength of cortico-subthalamic and subthalamo-nigral transmissions, revealing that adaptations at these synapses governing the output of the network could also contribute to motor planning and execution. Here, we review our current understanding of long-term depression mechanisms at basal ganglia glutamatergic synapses and emphasize the common and unique plastic features observed at successive levels of the network in healthy and pathological conditions.
Collapse
|
34
|
Sgobio C, Kupferschmidt DA, Cui G, Sun L, Li Z, Cai H, Lovinger DM. Optogenetic measurement of presynaptic calcium transients using conditional genetically encoded calcium indicator expression in dopaminergic neurons. PLoS One 2014; 9:e111749. [PMID: 25360513 PMCID: PMC4216119 DOI: 10.1371/journal.pone.0111749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
Calcium triggers dopamine release from presynaptic terminals of midbrain dopaminergic (mDA) neurons in the striatum. However, calcium transients within mDA axons and axon terminals are difficult to study and little is known about how they are regulated. Here we use a newly-developed method to measure presynaptic calcium transients (PreCaTs) in axons and terminals of mDA neurons with a genetically encoded calcium indicator (GECI) GCaMP3 expressed in transgenic mice. Using a photomultiplier tube-based system, we measured electrical stimulation-induced PreCaTs of mDA neurons in dorsolateral striatum slices from these mice. Single-pulse stimulation produced a transient increase in fluorescence that was completely blocked by a combination of N- and P/Q-type calcium channel blockers. DA and cholinergic, but not serotoninergic, signaling pathways modulated the PreCaTs in mDA fibers. These findings reveal heretofore unexplored dynamic modulation of presynaptic calcium in nigrostriatal terminals.
Collapse
Affiliation(s)
- Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Kupferschmidt
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Guohong Cui
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (HC); (DML)
| | - David M. Lovinger
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (HC); (DML)
| |
Collapse
|
35
|
Cyclic AMP and afferent activity govern bidirectional synaptic plasticity in striatopallidal neurons. J Neurosci 2014; 34:6692-9. [PMID: 24806695 DOI: 10.1523/jneurosci.3906-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent experimental evidence suggests that the low dopamine conditions in Parkinson's disease (PD) cause motor impairment through aberrant motor learning. Those data, along with computational models, suggest that this aberrant learning results from maladaptive corticostriatal plasticity and learned motor inhibition. Dopaminergic modulation of both corticostriatal long-term depression (LTD) and long-term potentiation (LTP) is proposed to be critical for these processes; however, the regulatory mechanisms underlying bidirectional corticostriatal plasticity are not fully understood. Previously, we demonstrated a key role for cAMP signaling in corticostriatal LTD. In this study, mouse brain slices were used to perform a parametric experiment that tested the impact of varying both intracellular cAMP levels and the strength of excitatory inputs on corticostriatal plasticity. Using slice electrophysiology in the dorsolateral striatum, we demonstrate that both LTP and LTD can be sequentially induced in the same D2-expressing neuron and that LTP was strongest with high intracellular cAMP and LFS, whereas LTD required low intracellular cAMP and high-frequency stimulation. Our results provide a molecular and cellular basis for regulating bidirectional corticostriatal synaptic plasticity and may help to identify novel therapeutic targets for blocking or reversing the aberrant synaptic plasticity that likely contributes to motor deficits in PD.
Collapse
|
36
|
Partridge JG, Lewin AE, Yasko JR, Vicini S. Contrasting actions of group I metabotropic glutamate receptors in distinct mouse striatal neurones. J Physiol 2014; 592:2721-33. [PMID: 24710062 DOI: 10.1113/jphysiol.2014.272773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In mouse striatum, metabotropic glutamate receptor (mGluR) activation leads to several modulatory effects in synaptic transmission. These effects range from dampening of glutamate release from excitatory terminals to depolarization of divergent classes of interneurones. We compared the action of group I mGluR activation on several populations of striatal neurones using a combination of genetic identification, electrophysiology, and Ca(2+) imaging techniques. Patch-clamp recordings from spiny projection neurones (SPNs) and various interneurone populations demonstrated that the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) robustly depolarizes several interneurone classes that form GABAergic synapses onto SPNs. We further utilized the genetic reporter mouse strain Ai38, which expresses the calcium indicator protein GCaMP3 in a Cre-dependent manner. Breeding Ai38 mice with various neurone selective, promoter-driven Cre recombinase mice resulted in GCaMP3 expression in defined cell populations in striatum. Consistent with our electrophysiological findings, group I agonist applications increased intracellular levels of calcium ([Ca(2+)]i) in all interneurone populations tested. We also found that acute DHPG application evoked a transient, rapid increase in [Ca(2+)]i from only a small percentage of identifiable SPNs. Surprisingly, this fast [Ca(2+)]i response exhibited a robust enhancement or sensitization, in a calcium-dependent fashion. Following several procedures to increase [Ca(2+)]i, the vast majority of SPNs responded with rapid changes in [Ca(2+)]i to mGluR agonists in a time-dependent fashion. These findings extend our understanding on group I mGluR influence of striatal output via powerful, local GABAergic connections in addition to [Ca(2+)]i dynamics that impact on activity or spike-timing-dependent forms of synaptic plasticity.
Collapse
Affiliation(s)
- John G Partridge
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, 20007, USA Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC, 20007, USA
| | - Amanda E Lewin
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, 20007, USA
| | - Jessica R Yasko
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, 20007, USA Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC, 20007, USA
| |
Collapse
|
37
|
Adaptive gene regulation in the Striatum of RGS9-deficient mice. PLoS One 2014; 9:e92605. [PMID: 24663062 PMCID: PMC3963927 DOI: 10.1371/journal.pone.0092605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.
Collapse
|
38
|
Picconi B, Calabresi P. Targeting metabotropic glutamate receptors as a new strategy against levodopa-induced dyskinesia in Parkinson's disease? Mov Disord 2014; 29:715-9. [PMID: 24591264 DOI: 10.1002/mds.25851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Accepted: 02/06/2014] [Indexed: 11/10/2022] Open
Abstract
Levodopa-induced dyskinesias (LIDs) represent one major motor disability of Parkinson's disease (PD) therapy. Thus, research effort is still devoted to finding agents that may improve parkinsonism and concomitantly reduce or avoid dyskinesia. Rodent and nonhuman primate models provide useful tools to study the molecular and neuronal bases of LIDs. Among the various strategies investigated recently, the use of drugs targeting metabotropic glutamate receptors has received large attention. In particular, use of antagonists of the subtype 5 of metabotropic glutamate receptors revealed promising preclinical and clinical results.
Collapse
|
39
|
Knackstedt LA, Trantham-Davidson HL, Schwendt M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict Biol 2014; 19:87-101. [PMID: 23710649 DOI: 10.1111/adb.12061] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cocaine addiction is a chronic, relapsing disease characterized by an inability to regulate drug-seeking behavior. Here we investigated the role of mGluR5 in the ventral and dorsal striatum in regulating cocaine-seeking following both abstinence and extinction. Animals underwent 2 weeks of cocaine self-administration followed by 3 weeks of home-cage abstinence. Animals were then reintroduced to the operant chamber for a context-induced relapse test, followed by 7-10 days of extinction training. Once responding was extinguished, cue-primed reinstatement test was conducted. Both drug-seeking tests were conducted in the presence of either mGluR5 negative allosteric modulator, MTEP or vehicle infused into either the nucleus accumbens (NA) core or dorsolateral striatum (dSTR). We found that MTEP infused in the NA core attenuated both context-induced relapse following abstinence and cue-primed reinstatement following extinction training. Blocking dSTR mGluR5 had no effect on context- or cue-induced cocaine-seeking. However, the intra-dSTR MTEP infusion on the context-induced relapse test day attenuated extinction learning for 4 days after the infusion. Furthermore, mGluR5 surface expression was reduced and LTD was absent in dSTR slices of animals undergoing 3 weeks of abstinence from cocaine but not sucrose self-administration. LTD was restored by bath application of VU-29, a positive allosteric modulator of mGluR5. Bath application of MTEP prevented the induction of LTD in dSTR slices from sucrose animals. Taken together, this data indicates that dSTR mGluR5 plays an essential role in extinction learning but not cocaine relapse, while NA core mGluR5 modulates drug-seeking following both extinction and abstinence from cocaine self-administration.
Collapse
Affiliation(s)
- Lori A. Knackstedt
- Department of Neurosciences; Medical University of South Carolina; Charleston SC USA
| | | | - Marek Schwendt
- Department of Neurosciences; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
40
|
Zhou R, Chen F, Chang F, Bai Y, Chen L. Persistent overexpression of DNA methyltransferase 1 attenuating GABAergic inhibition in basolateral amygdala accounts for anxiety in rat offspring exposed perinatally to low-dose bisphenol A. J Psychiatr Res 2013; 47:1535-44. [PMID: 23791455 DOI: 10.1016/j.jpsychires.2013.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022]
Abstract
Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. We have shown that perinatal exposure to bisphenol A (BPA) at environmental dose level causes long-term anxiety-like behaviors in rats. The aim of this study was to examine epigenetic reprogramming effect of BPA on anxiety-related neurobehavior in the rat offspring. The results of real-time RT-PCR displayed that the overexpression of DNA methyltransferase 1 (DNMT1) mRNA was accompanied by the reduction of glutamic acid decarboxylase 67 (GAD67) mRNA level in the basolateral amygdala (BLA) of postnatal day 45 BPA-exposed female rats. Chronic intro-BLA injection with 5-ada-CdR could rectify the GAD67 mRNA expression. Behavioral data showed that the anxiety-like behaviors in BPA-exposed rats were reversed by intro-BLA treatment with 5-ada-CdR which could be further blocked by PTX. Electrophysiological study revealed behavioral alterations were associated with the increase of postsynaptic neuronal excitability in the cortical-BLA pathway which appeared as multispike responses, paired-pulse facilitation instead of paired-pulse inhibition and long-term potentiation and 5-aza-CdR treatment restored the increased synaptic transmission in the BLA via improving GABAergic system. The above results suggest that the overexpression of DNMT1 in the BLA is responsible for the etiology of anxiety associated with BPA exposure via GABAergic disinhibition. In addition, we also find these long-term neurobehavioral effects of developmental BPA exposure are reversible in adolescent period.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
41
|
Plotkin JL, Shen W, Rafalovich I, Sebel LE, Day M, Chan CS, Surmeier DJ. Regulation of dendritic calcium release in striatal spiny projection neurons. J Neurophysiol 2013; 110:2325-36. [PMID: 23966676 DOI: 10.1152/jn.00422.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
42
|
Baca M, Allan AM, Partridge LD, Wilson MC. Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice. Brain Res 2013; 1532:85-98. [PMID: 23939223 DOI: 10.1016/j.brainres.2013.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/25/2013] [Accepted: 08/02/2013] [Indexed: 01/15/2023]
Abstract
Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is a candidate environmental risk factor for ADHD. We utilized mice heterozygous for a Snap25 null allele and deficient in SNAP-25 expression to model genetic effects in combination with prenatal exposure to nicotine to explore genetic and environmental interactions in synaptic plasticity and behavior. We show that SNAP-25 deficient mice exposed to prenatal nicotine exhibit hyperactivity and deficits in social interaction. Using a high frequency stimulus electrophysiological paradigm for long-term depression (LTD) induction, we examined the roles of dopaminergic D2 receptors (D2Rs) and cannabinoid CB1 receptors (CB1Rs), both critical for LTD induction in the striatum. We found that prenatal exposure to nicotine in Snap25 heterozygote null mice produced a deficit in the D2R-dependent induction of LTD, although CB1R regulation of plasticity was not impaired. We also show that prenatal nicotine exposure altered the affinity and/or receptor coupling of D2Rs, but not the number of these receptors in heterozygote null Snap25 mutants. These results refine the observations made in the coloboma mouse mutant, a proposed mouse model of ADHD, and illustrate how gene×environmental influences can interact to perturb neural functions that regulate behavior.
Collapse
Affiliation(s)
- Michael Baca
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA; Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA
| | | | | | | |
Collapse
|
43
|
De Pasquale R, Sherman SM. A modulatory effect of the feedback from higher visual areas to V1 in the mouse. J Neurophysiol 2013; 109:2618-31. [PMID: 23446698 PMCID: PMC3653048 DOI: 10.1152/jn.01083.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 11/22/2022] Open
Abstract
Using a mouse brain slice preparation, we studied the modulatory effects of a feedback projection from higher visual cortical areas, mostly or exclusively area LM (or V2), on two inputs to layer 4 cells in the first visual area (V1). The two inputs to these cells were geniculocortical and an unspecified intracortical input, possibly involving layer 6 cells. We found that activation of metabotropic glutamate receptors (mGluRs) from stimulation of the feedback projection reduced the evoked excitatory postsynaptic currents of both of these inputs to layer 4 but that this modulation acts in an input-specific way. Reducing the strength of the geniculocortical input in adults involved both presynaptic and postsynaptic group I mGluRs (although in younger animals presynaptic group II mGluRs were also involved), whereas modulation of the intracortical input acted entirely via postsynaptic group II mGluRs. These results demonstrate that one of the effects of this feedback pathway is to control the gain of geniculocortical transmission.
Collapse
Affiliation(s)
- Roberto De Pasquale
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
44
|
Gaonkar KS, Gulati G, Balu K, Purohit R. Computational evaluation of small molecule inhibitors of RGS4 to regulate the dopaminergic control of striatal LTD. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
45
|
Zhou R, Wang S, Zhu X. Prenatal ethanol exposure alters synaptic plasticity in the dorsolateral striatum of rat offspring via changing the reactivity of dopamine receptor. PLoS One 2012; 7:e42443. [PMID: 22916128 PMCID: PMC3420902 DOI: 10.1371/journal.pone.0042443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022] Open
Abstract
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | |
Collapse
|
46
|
Baumgärtel K, Mansuy IM. Neural functions of calcineurin in synaptic plasticity and memory. Learn Mem 2012; 19:375-84. [PMID: 22904368 DOI: 10.1101/lm.027201.112] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major brain functions depend on neuronal processes that favor the plasticity of neuronal circuits while at the same time maintaining their stability. The mechanisms that regulate brain plasticity are complex and engage multiple cascades of molecular components that modulate synaptic efficacy. Protein kinases (PKs) and phosphatases (PPs) are among the most important of these components that act as positive and negative regulators of neuronal signaling and plasticity, respectively. In these cascades, the PP protein phosphatase 2B or calcineurin (CaN) is of particular interest because it is the only Ca(2+)-activated PP in the brain and a major regulator of key proteins essential for synaptic transmission and neuronal excitability. This review describes the primary properties of CaN and illustrates its functions and modes of action by focusing on several representative targets, in particular glutamate receptors, striatal enriched protein phosphatase (STEP), and neuromodulin (GAP43), and their functional significance for synaptic plasticity and memory.
Collapse
Affiliation(s)
- Karsten Baumgärtel
- Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037-1000, USA
| | | |
Collapse
|
47
|
Lerner TN, Kreitzer AC. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 2012; 73:347-59. [PMID: 22284188 DOI: 10.1016/j.neuron.2011.11.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Plasticity of excitatory synapses onto striatal projection neurons (MSNs) has the potential to regulate motor function by setting the gain on signals driving both direct- and indirect-pathway basal ganglia circuits. Endocannabinoid-dependent long-term depression (eCB-LTD) is the best characterized form of striatal plasticity, but the mechanisms governing its normal regulation and pathological dysregulation are not well understood. We characterized two distinct signaling pathways mediating eCB production in striatal indirect-pathway MSNs and found that both pathways were modulated by dopamine D2 and adenosine A2A receptors, acting through cAMP/PKA. We identified regulator of G protein signaling 4 (RGS4) as a key link between D2/A2A signaling and eCB mobilization pathways. In contrast to wild-type mice, RGS4⁻/⁻ mice exhibited normal eCB-LTD after dopamine depletion and were significantly less impaired in the 6-OHDA model of Parkinson's disease. Taken together, these results suggest that inhibition of RGS4 may be an effective nondopaminergic strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Talia N Lerner
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
48
|
Brown RM, Mustafa S, Ayoub MA, Dodd PR, Pfleger KDG, Lawrence AJ. mGlu5 Receptor Functional Interactions and Addiction. Front Pharmacol 2012; 3:84. [PMID: 22586398 PMCID: PMC3345582 DOI: 10.3389/fphar.2012.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
The idea of “receptor mosaics” is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes have been reported in the striatum, a brain region critical for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-containing complexes and/or downstream interactions between divergent receptors may play roles in addiction–relevant behaviors. Interactions between mGlu5 receptors and other GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking behaviors. mGlu5 complexes may influence striatal function, including GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing complexes may minimize off-target effects and thus provide a novel avenue for drug discovery. The therapeutic targeting of receptor–receptor functional interactions and/or receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a “pathological state”) might reduce detrimental side effects that may otherwise impair vital brain functions.
Collapse
Affiliation(s)
- Robyn M Brown
- Addiction Neuroscience, Behavioural Neuroscience, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Karlsson RM, Adermark L, Molander A, Perreau-Lenz S, Singley E, Solomon M, Holmes A, Tanaka K, Lovinger DM, Spanagel R, Heilig M. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST. Neuropharmacology 2012; 63:181-9. [PMID: 22342743 DOI: 10.1016/j.neuropharm.2012.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 12/01/2022]
Abstract
A hyperglutamatergic state has been hypothesized to drive escalation of alcohol intake. This hypothesis predicts that an impairment of glutamate clearance through inactivation of the astrocytic glutamate transporter, GLAST (EAAT1), will result in escalation of alcohol consumption. Here, we used mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating rotarod, alcohol-induced hypothermia, and loss of righting reflex. Extracellular glutamate was measured using microdialysis, and striatal slice electrophysiology was carried out to examine plasticity of the cortico-striatal pathway as a model system in which adaptations to the constitutive GLAST deletion can be studied. Contrary to our hypothesis, GLAST KO mice showed markedly decreased alcohol consumption, and lacked CPP for alcohol, despite a higher locomotor response to this drug. Alcohol-induced ataxia, hypothermia, and sedation were unaffected. In striatal slices from GLAST KO mice, long-term depression (LTD) induced by high frequency stimulation, or by post-synaptic depolarization combined with the l-type calcium channel activator FPL 64176 was absent. In contrast, normal synaptic depression was observed after application of the cannabinoid 1 (CB1) receptor agonist WIN55,212-2. Constitutive deletion of GLAST unexpectedly results in markedly reduced alcohol consumption and preference, associated with markedly reduced alcohol reward. Endocannabinoid signaling appears to be down-regulated upstream of the CB1 receptor as a result of the GLAST deletion, and is a candidate mechanism behind the reduction of alcohol reward observed.
Collapse
Affiliation(s)
- Rose-Marie Karlsson
- Laboratory of Clinical and Translational Studies, National Institute on Alcoholism and Alcohol Abuse, NIH, 10 Center Drive, 1-5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|