1
|
Zhang L, Geng C, Li S, Tang Q, Liu P, Liu W, Qiu G, Li A, Hu A, Chen F. Anterior piriform cortex dysfunction underlies autism spectrum disorders-related olfactory deficits in Fmr1 conditional deletion mice. Neuropsychopharmacology 2024:10.1038/s41386-024-02027-6. [PMID: 39550469 DOI: 10.1038/s41386-024-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Previous studies indicated that ASD-related olfactory dysfunctions are rooted in the piriform cortex. However, the direct evidence supporting a causal link between the dysfunction of the piriform cortex and olfactory disorders in ASD is limited. In the present study, we explored the role of anterior piriform cortex (aPC) in ASD-related olfactory disorders by specifically ablating Fmr1, a leading known monogenic cause for ASD, in the pyramidal neurons. Our data demonstrated that the targeted deletion of Fmr1 in aPC pyramidal neurons was sufficient to induce deficits in olfactory detection. In vivo and in vitro electrophysiological recordings showed that the deletion of Fmr1 increased the activity of pyramidal neurons, exhibiting an enhanced excitatory response and a reduced inhibitory response upon odor stimulation. Furthermore, specific deletion of Fmr1 enhanced the power of beta oscillations during odor stimuli, meanwhile, disturbed excitatory and inhibitory synaptic transmission. The abnormal morphology of pyramidal neurons induced by the deletion of Fmr1 may be responsible for the impaired aPC neuronal function. These findings suggest that dysfunction of the aPC may play a role in olfactory impairments observed in ASD models related to Fmr1 deficiency.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qingnan Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Gaoxue Qiu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
D'Addario SL, Rosina E, Massaro Cenere M, Bagni C, Mercuri NB, Ledonne A. ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome. Mol Psychiatry 2024:10.1038/s41380-024-02831-y. [PMID: 39543371 DOI: 10.1038/s41380-024-02831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Repetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors. Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins. Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment.
Collapse
Affiliation(s)
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.
- Pharmacology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Fink JJ, Delaney-Busch N, Dawes R, Nanou E, Folts C, Harikrishnan K, Hempel C, Upadhyay H, Nguyen T, Shroff H, Stoppel D, Ryan SJ, Jacques J, Grooms J, Berry-Kravis E, Bear MF, Williams LA, Gerber D, Bunnage M, Furey B, Dempsey GT. Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype. Commun Biol 2024; 7:1447. [PMID: 39506078 PMCID: PMC11541539 DOI: 10.1038/s42003-024-07120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function, and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS, but no efficacious treatment has been identified to date, possibly as a consequence of poor translation from pre-clinical animal models to human. Here, we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS.
Collapse
Affiliation(s)
- James J Fink
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - David Stoppel
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Ryan
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jane Jacques
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jennifer Grooms
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis A Williams
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - David Gerber
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | - Graham T Dempsey
- Quiver Bioscience, Cambridge, MA, USA.
- Q-State Biosciences, Cambridge, MA, USA.
| |
Collapse
|
4
|
Reynolds KE, Huang E, Sabbineni M, Wiseman E, Murtaza N, Ahuja D, Napier M, Murphy KM, Singh KK, Scott AL. Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model. Mol Neurobiol 2024; 61:9507-9528. [PMID: 38652351 DOI: 10.1007/s12035-024-04181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Neuronal hyperexcitability within developing cortical circuits is a common characteristic of several heritable neurodevelopmental disorders, including Fragile X Syndrome (FXS), intellectual disability and autism spectrum disorders (ASD). While this aberrant circuitry is typically studied from a neuron-centric perspective, glial cells secrete soluble factors that regulate both neurite extension and synaptogenesis during development. The nucleotide-mediated purinergic signalling system is particularly instrumental in facilitating these effects. We recently reported that within a FXS animal model, the Fmr1 KO mouse, the purinergic signalling system is upregulated in cortical astrocytes leading to altered secretion of synaptogenic and plasticity-related proteins. In this study, we examined whether elevated astrocyte purinergic signalling also impacts neuronal morphology and connectivity of Fmr1 KO cortical neurons. Here, we found that conditioned media from primary Fmr1 KO astrocytes was sufficient to enhance neurite extension and complexity of both wildtype and Fmr1 KO neurons to a similar degree as UTP-mediated outgrowth. Significantly enhanced firing was also observed in Fmr1 KO neuron-astrocyte co-cultures grown on microelectrode arrays but was associated with large deficits in firing synchrony. The selective P2Y2 purinergic receptor antagonist AR-C 118925XX effectively normalized much of the aberrant Fmr1 KO activity, designating P2Y2 as a potential therapeutic target in FXS. These results not only demonstrate the importance of astrocyte soluble factors in the development of neural circuitry, but also show that P2Y purinergic receptors play a distinct role in pathological FXS neuronal activity.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eileen Huang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Monica Sabbineni
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eliza Wiseman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nadeem Murtaza
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Desmond Ahuja
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Matt Napier
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada
| | - Kathryn M Murphy
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | | | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada.
| |
Collapse
|
5
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A-mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A-targeted therapies.
Collapse
|
6
|
Faulkner IE, Pajak RZ, Harte MK, Glazier JD, Hager R. Voltage-gated potassium channels as a potential therapeutic target for the treatment of neurological and psychiatric disorders. Front Cell Neurosci 2024; 18:1449151. [PMID: 39411003 PMCID: PMC11473391 DOI: 10.3389/fncel.2024.1449151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Voltage-gated potassium channels are a widely distributed subgroup of potassium channels responsible for the efflux of potassium in the repolarisation of the cell membrane, and hence contribute to the latency and propagation of action potentials. As they are causal to synaptic transmission, alterations to the structure of these channels can lead to a variety of neurological and psychiatric diseases. The Kv3 subfamily of voltage-gated potassium channels are found on many neurons in the brain, including inhibitory interneurons where they contribute to fast-frequency firing. Changes to the firing ability of these interneurons can lead to an imbalance of inhibitory and excitatory neurotransmission. To date, we have little understanding of the mechanism by which excitatory and inhibitory inputs become imbalanced. This imbalance is associated with cognitive deficits seen across neurological and neuropsychiatric disorders, which are currently difficult to treat. In this review, we collate evidence supporting the hypothesis that voltage-gated potassium channels, specifically the Kv3 subfamily, are central to many neurological and psychiatric disorders, and may thus be considered as an effective drug target. The collective evidence provided by the studies reviewed here demonstrates that Kv3 channels may be amenable to novel treatments that modulate the activity of these channels, with the prospect of improved patient outcome.
Collapse
Affiliation(s)
- Isabel E. Faulkner
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachael Z. Pajak
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael K. Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Lakhani A, Huang W, Rodgers CC, Wenner P. Whisker deprivation triggers a distinct form of cortical homeostatic plasticity that is impaired in the Fmr1 KO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614487. [PMID: 39386532 PMCID: PMC11463509 DOI: 10.1101/2024.09.23.614487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mouse models of Fragile X Syndrome (FXS) have demonstrated impairments in excitatory and inhibitory sensory-evoked neuronal firing. Homeostatic plasticity, which encompasses a set of mechanisms to stabilize baseline activity levels, does not compensate for these changes in activity. Previous work has shown that impairments in homeostatic plasticity are observed in FXS, including deficits in synaptic scaling and intrinsic excitability. Here, we aimed to examine how homeostatic plasticity is altered in vivo in an Fmr1 KO mouse model following unilateral whisker deprivation (WD). We show that WD in the wild type leads to an increase in the proportion of L5/6 somatosensory neurons that are recruited, but this does not occur in the KO. In addition, we observed a change in the threshold of excitatory neurons at a later developmental stage in the KO. Compromised homeostatic plasticity in development could influence sensory processing and long-term cortical organization.
Collapse
|
8
|
Dumontier D, Liebman SA, Le VH, George S, Valdemar D, Van Aelst L, Pouchelon G. Restoring transient connectivity during development improves dysfunctions in fragile X mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611918. [PMID: 39314327 PMCID: PMC11419037 DOI: 10.1101/2024.09.08.611918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Early-generated circuits are critical for the maturation of cortical network activity and the formation of excitation/inhibition (E/I) balance. This process involves the maturation of specific populations of inhibitory neurons. While parvalbumin (PV)-expressing neurons have been associated with E/I impairments observed in neurodevelopmental disorders, somatostatin-expressing (SST) neurons have recently been shown to regulate PV neuron maturation by controlling neural dynamics in the developing cortex. SST neurons receive transient connections from the sensory thalamus, yet the implications of transient connectivity in neurodevelopmental disorders remain unknown. Here, we show that thalamocortical connectivity to SST neurons is persistent rather than transient in a mouse model of Fragile X syndrome. We were able to restore the transient dynamics using chemogenetics, which led to the recovery of fragile X-associated dysfunctions in circuit maturation and sensory-dependent behavior. Overall, our findings unveil the role of early transient dynamics in controlling downstream maturation of sensory functions.
Collapse
Affiliation(s)
| | | | - Viet-Hang Le
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shanu George
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | |
Collapse
|
9
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
10
|
Fletcher EV, Chalif JI, Rotterman TM, Pagiazitis JG, Alstyne MV, Sivakumar N, Rabinowitz JE, Pellizzoni L, Alvarez FJ, Mentis GZ. Synaptic imbalance and increased inhibition impair motor function in SMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610545. [PMID: 39257773 PMCID: PMC11383993 DOI: 10.1101/2024.08.30.610545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used mouse genetics, functional assays, morphological methods, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition neurotransmission in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable motor circuits in the SMA spinal cord fail to respond homeostatically to the reduction of excitatory drive and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment to activate muscle contraction. Importantly, genetic or pharmacological reduction of inhibitory synaptic drive improves neuronal function and provides behavioural benefit in SMA mice. Our findings identify the lack of excitation-inhibition homeostasis as a major maladaptive mechanism in SMA, by which the combined effects of reduced excitation and increased inhibition diminish the capacity of premotor commands to recruit motor neurons and elicit muscle contractions.
Collapse
Affiliation(s)
- Emily V. Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | | | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joseph E. Rabinowitz
- Department of Pharmacology, Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | | | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
11
|
Luque MA, Morcuende S, Torres B, Herrero L. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. J Physiol 2024; 602:3769-3791. [PMID: 38976504 DOI: 10.1113/jp285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 μM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 μM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 μM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 μM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 μM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Collapse
Affiliation(s)
- M Angeles Luque
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Morcuende
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Blas Torres
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Luis Herrero
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Cheng X, Nareddula S, Gao HC, Chen Y, Xiao T, Nadew YY, Xu F, Edens PA, Quinn CJ, Kimbrough A, Huang F, Chubykin AA. Impaired Experience-Dependent Theta Oscillation Synchronization and Inter-Areal Synaptic Connectivity in the Visual Cortex of Fmr1 KO Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.601989. [PMID: 39211264 PMCID: PMC11360911 DOI: 10.1101/2024.07.23.601989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FX) is the most prevalent inheritable form of autism spectrum disorder (ASD), characterized by hypersensitivity, difficulty in habituating to new sensory stimuli, and intellectual disability. Individuals with FX often experience visual perception and learning deficits. Visual experience leads to the emergence of the familiarity-evoked theta band oscillations in the primary visual cortex (V1) and the lateromedial area (LM) of mice. These theta oscillations in V1 and LM are synchronized with each other, providing a mechanism of sensory multi-areal binding. However, how this multi-areal binding and the corresponding theta oscillations are altered in FX is not known. Using iDISCO whole brain clearing with light-sheet microscopy, we quantified immediate early gene Fos expression in V1 and LM, identifying deficits in experience-dependent neural activity in FX mice. We performed simultaneous in vivo recordings with silicon probes in V1 and LM of awake mice and channelrhodopsin-2-assisted circuit mapping (CRACM) in acute brain slices to examine the neural activity and strength of long-range synaptic connections between V1 and LM in both wildtype (WT) and Fmr1 knockout (KO) mice, the model of FX, before and after visual experience. Our findings reveal synchronized familiarity-evoked theta oscillations in V1 and LM, the increased strength of V1→LM functional and synaptic connections, which correlated with the corresponding changes of presynaptic short-term plasticity in WT mice. The LM oscillations were attenuated in FX mice and correlated with impaired functional and synaptic connectivity and short-term plasticity in the feedforward (FF) V1→LM and feedback (FB) LM→V1 pathways. Finally, using 4Pi single-molecule localization microscopy (SMLM) in thick brain tissue, we identified experience-dependent changes in the density and shape of dendritic spines in layer 5 pyramidal cells of WT mice, which correlated with the functional synaptic measurements. Interestingly, there was an increased dendritic spine density and length in naïve FX mice that failed to respond to experience. Our study provides the first comprehensive characterization of the role of visual experience in triggering inter-areal neural synchrony and shaping synaptic connectivity in WT and FX mice.
Collapse
|
13
|
Moppert S, Mercado E. Contributions of dysfunctional plasticity mechanisms to the development of atypical perceptual processing. Dev Psychobiol 2024; 66:e22504. [PMID: 38837411 DOI: 10.1002/dev.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/04/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Experimental studies of sensory plasticity during development in birds and mammals have highlighted the importance of sensory experiences for the construction and refinement of functional neural circuits. We discuss how dysregulation of experience-dependent brain plasticity can lead to abnormal perceptual representations that may contribute to heterogeneous deficits symptomatic of several neurodevelopmental disorders. We focus on alterations of somatosensory processing and the dynamic reorganization of cortical synaptic networks that occurs during early perceptual development. We also discuss the idea that the heterogeneity of strengths and weaknesses observed in children with neurodevelopmental disorders may be a direct consequence of altered plasticity mechanisms during early development. Treating the heterogeneity of perceptual developmental trajectories as a phenomenon worthy of study rather than as an experimental confound that should be overcome may be key to developing interventions that better account for the complex developmental trajectories experienced by modern humans.
Collapse
Affiliation(s)
- Stacy Moppert
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eduardo Mercado
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
14
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Kourdougli N, Nomura T, Wu MW, Heuvelmans A, Dobler Z, Contractor A, Portera-Cailliau C. The NKCC1 Inhibitor Bumetanide Restores Cortical Feedforward Inhibition and Lessens Sensory Hypersensitivity in Early Postnatal Fragile X Mice. Biol Psychiatry 2024:S0006-3223(24)01427-6. [PMID: 38950809 DOI: 10.1016/j.biopsych.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.
Collapse
Affiliation(s)
- Nazim Kourdougli
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michelle W Wu
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Anouk Heuvelmans
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | - Zoë Dobler
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Carlos Portera-Cailliau
- Department of Neurology, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
16
|
Pedapati EV, Ethridge LE, Liu Y, Liu R, Sweeney JA, DeStefano LA, Miyakoshi M, Razak K, Schmitt LM, Moore DR, Gilbert DL, Wu SW, Smith E, Shaffer RC, Dominick KC, Horn PS, Binder D, Erickson CA. Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598957. [PMID: 38915683 PMCID: PMC11195233 DOI: 10.1101/2024.06.13.598957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Marshall AH, Hanson MA, Boyle DJ, Nagarajan D, Bibi N, Fitzgerald J, Gaitten E, Kokiko-Cochran ON, Gu B, Wester JC. Arid1b haploinsufficiency in pyramidal neurons causes cellular and circuit changes in neocortex but is not sufficient to produce behavioral or seizure phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597344. [PMID: 38895205 PMCID: PMC11185765 DOI: 10.1101/2024.06.04.597344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Arid1b is a high confidence risk gene for autism spectrum disorder that encodes a subunit of a chromatin remodeling complex expressed in neuronal progenitors. Haploinsufficiency causes a broad range of social, behavioral, and intellectual disability phenotypes, including Coffin-Siris syndrome. Recent work using transgenic mouse models suggests pathology is due to deficits in proliferation, survival, and synaptic development of cortical neurons. However, there is conflicting evidence regarding the relative roles of excitatory projection neurons and inhibitory interneurons in generating abnormal cognitive and behavioral phenotypes. Here, we conditionally knocked out either one or both copies of Arid1b from excitatory projection neuron progenitors and systematically investigated the effects on intrinsic membrane properties, synaptic physiology, social behavior, and seizure susceptibility. We found that disrupting Arid1b expression in excitatory neurons alters their membrane properties, including hyperpolarizing action potential threshold; however, these changes depend on neuronal subtype. Using paired whole-cell recordings, we found increased synaptic connectivity rate between projection neurons. Furthermore, we found reduced strength of excitatory synapses to parvalbumin (PV)-expression inhibitory interneurons. These data suggest an increase in the ratio of excitation to inhibition. However, the strength of inhibitory synapses from PV interneurons to excitatory neurons was enhanced, which may rebalance this ratio. Indeed, Arid1b haploinsufficiency in projection neurons was insufficient to cause social deficits and seizure phenotypes observed in a preclinical germline haploinsufficient mouse model. Our data suggest that while excitatory projection neurons likely contribute to autistic phenotypes, pathology in these cells is not the primary cause.
Collapse
|
18
|
Jonak CR, Assad SA, Garcia TA, Sandhu MS, Rumschlag JA, Razak KA, Binder DK. Phenotypic analysis of multielectrode array EEG biomarkers in developing and adult male Fmr1 KO mice. Neurobiol Dis 2024; 195:106496. [PMID: 38582333 DOI: 10.1016/j.nbd.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Samantha A Assad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Manbir S Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, CA, United States of America; Department of Psychology, University of California, Riverside, CA, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America; Neuroscience Graduate Program, University of California, Riverside, CA, United States of America.
| |
Collapse
|
19
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
20
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
21
|
Kat R, Linkenkaer-Hansen K, Koopmans MA, Houtman SJ, Bruining H, Kas MJH. Assessment of the excitation-inhibition ratio in the Fmr1 KO2 mouse using neuronal oscillation dynamics. Cereb Cortex 2024; 34:bhae201. [PMID: 38771240 PMCID: PMC11107376 DOI: 10.1093/cercor/bhae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
22
|
Wadle SL, Ritter TC, Wadle TTX, Hirtz JJ. Topography and Ensemble Activity in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. eNeuro 2024; 11:ENEURO.0396-23.2024. [PMID: 38627066 PMCID: PMC11097631 DOI: 10.1523/eneuro.0396-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca2+ imaging in FMR1 (fragile X messenger ribonucleoprotein 1) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals. We additionally analyzed ensemble AC activity in response to various sounds and found subfield-specific differences. In A1, ensemble correlations were lower in general, while in secondary AC (A2), correlations were higher in response to complex sounds, but not to pure tones. Furthermore, sound specificity of ensemble activity was decreased in AAF. Repeating these experiments 1 week later revealed no major differences regarding representational drift. Nevertheless, we found subfield- and genotype-specific changes in ensemble correlation values between the two times points, hinting at alterations in network stability in FMR1 KO mice. These detailed insights into AC network activity and topography in FMR1 KO mice add to the understanding of auditory processing defects in FXS.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tamara C Ritter
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tatjana T X Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
23
|
Herrera CG, Tarokh L. A Thalamocortical Perspective on Sleep Spindle Alterations in Neurodevelopmental Disorders. CURRENT SLEEP MEDICINE REPORTS 2024; 10:103-118. [PMID: 38764858 PMCID: PMC11096120 DOI: 10.1007/s40675-024-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 05/21/2024]
Abstract
Purpose of Review Neurodevelopmental disorders are a group of conditions that affect the development and function of the nervous system, typically arising early in life. These disorders can have various genetic, environmental, and/or neural underpinnings, which can impact the thalamocortical system. Sleep spindles, brief bursts of oscillatory activity that occur during NREM sleep, provide a unique in vivo measure of the thalamocortical system. In this manuscript, we review the development of the thalamocortical system and sleep spindles in rodent models and humans. We then utilize this as a foundation to discuss alterations in sleep spindle activity in four of the most pervasive neurodevelopmental disorders-intellectual disability, attention deficit hyperactivity disorder, autism, and schizophrenia. Recent Findings Recent work in humans has shown alterations in sleep spindles across several neurodevelopmental disorders. Simultaneously, rodent models have elucidated the mechanisms which may underlie these deficits in spindle activity. This review merges recent findings from these two separate lines of research to draw conclusions about the pathogenesis of neurodevelopmental disorders. Summary We speculate that deficits in the thalamocortical system associated with neurodevelopmental disorders are exquisitely reflected in sleep spindle activity. We propose that sleep spindles may represent a promising biomarker for drug discovery, risk stratification, and treatment monitoring.
Collapse
Affiliation(s)
- Carolina Gutierrez Herrera
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Rosenbühlgasse 25, Bern, Switzerland
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Rosenbühlgasse 17, Bern, Switzerland
- Department of Biomedical Research (DBMR), Inselspital University Hospital Bern, University of Bern, Murtenstrasse 24 CH-3008 Bern, Bern, Switzerland
| | - Leila Tarokh
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| |
Collapse
|
24
|
Saraf TS, Chen Y, Tyagi R, Canal CE. Altered brain serotonin 5-HT 1A receptor expression and function in juvenile Fmr1 knockout mice. Neuropharmacology 2024; 245:109774. [PMID: 37923121 PMCID: PMC11426339 DOI: 10.1016/j.neuropharm.2023.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.
Collapse
Affiliation(s)
- Tanishka S Saraf
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Yiming Chen
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Richa Tyagi
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Clinton E Canal
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA, 30341, USA.
| |
Collapse
|
25
|
Plutino S, Laghouati E, Jarre G, Depaulis A, Guillemain I, Bureau I. Barrel cortex development lacks a key stage of hyperconnectivity from deep to superficial layers in a rat model of Absence Epilepsy. Prog Neurobiol 2024; 234:102564. [PMID: 38244975 DOI: 10.1016/j.pneurobio.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.
Collapse
Affiliation(s)
| | - Emel Laghouati
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Guillaume Jarre
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Guillemain
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | |
Collapse
|
26
|
Juarez P, Salcedo-Arellano MJ, Dufour B, Martinez-Cerdeño V. Fragile X cortex is characterized by decreased parvalbumin-expressing interneurons. Cereb Cortex 2024; 34:bhae103. [PMID: 38521994 PMCID: PMC10960956 DOI: 10.1093/cercor/bhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Pablo Juarez
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Brett Dufour
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| |
Collapse
|
27
|
Leontiadis LJ, Felemegkas P, Trompoukis G, Tsotsokou G, Miliou A, Karagianni E, Rigas P, Papatheodoropoulos C. Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat. Dev Neurosci 2024; 46:353-364. [PMID: 38368859 PMCID: PMC11614420 DOI: 10.1159/000537879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. The loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampi are affected similarly or not in FXS. METHOD We used an Fmr1 knockout (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampi of adult rats. RESULTS Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics. CONCLUSIONS These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral, FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampi in individuals with FXS.
Collapse
Affiliation(s)
- Leonidas J Leontiadis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Panagiotis Felemegkas
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Giota Tsotsokou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Athina Miliou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Evangelia Karagianni
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
28
|
Deng PY, Kumar A, Cavalli V, Klyachko VA. Circuit-based intervention corrects excessive dentate gyrus output in the fragile X mouse model. eLife 2024; 12:RP92563. [PMID: 38345852 PMCID: PMC10942577 DOI: 10.7554/elife.92563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Ajeet Kumar
- Department of Neuroscience, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSt LouisUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
29
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Chadwick W, Angulo-Herrera I, Cogram P, Deacon RJM, Mason DJ, Brown D, Roberts I, O’Donovan DJ, Tranfaglia MR, Guilliams T, Thompson NT. A novel combination treatment for fragile X syndrome predicted using computational methods. Brain Commun 2024; 6:fcad353. [PMID: 38226317 PMCID: PMC10789243 DOI: 10.1093/braincomms/fcad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder caused by silencing of the fragile X messenger ribonucleotide gene. Patients display a wide spectrum of symptoms ranging from intellectual and learning disabilities to behavioural challenges including autism spectrum disorder. In addition to this, patients also display a diversity of symptoms due to mosaicism. These factors make fragile X syndrome a difficult syndrome to manage and suggest that a single targeted therapeutic approach cannot address all the symptoms. To this end, we utilized Healx's data-driven drug discovery platform to identify a treatment strategy to address the wide range of diverse symptoms among patients. Computational methods identified the combination of ibudilast and gaboxadol as a treatment for several pathophysiological targets that could potentially reverse multiple symptoms associated with fragile X syndrome. Ibudilast is an approved broad-spectrum phosphodiesterase inhibitor, selective against both phosphodiesterase 4 and phosphodiesterase 10, and has demonstrated to have several beneficial effects in the brain. Gaboxadol is a GABAA receptor agonist, selective against the delta subunit, which has previously displayed encouraging results in a fragile X syndrome clinical trial. Alterations in GABA and cyclic adenosine monophosphate metabolism have long since been associated with the pathophysiology of fragile X syndrome; however, targeting both pathways simultaneously has never been investigated. Both drugs have a good safety and tolerability profile in the clinic making them attractive candidates for repurposing. We set out to explore whether the combination of ibudilast and gaboxadol could demonstrate therapeutic efficacy in a fragile X syndrome mouse model. We found that daily treatment with ibudilast significantly enhanced the ability of fragile X syndrome mice to perform a number of different cognitive assays while gaboxadol treatment improved behaviours such as hyperactivity, aggression, stereotypy and anxiety. Importantly, when ibudilast and gaboxadol were co-administered, the cognitive deficits as well as the aforementioned behaviours were rescued. Moreover, this combination treatment showed no evidence of tolerance, and no adverse effects were reported following chronic dosing. This work demonstrates for the first time that by targeting multiple pathways, with a combination treatment, we were able to rescue more phenotypes in a fragile X syndrome mouse model than either ibudilast or gaboxadol could achieve as monotherapies. This combination treatment approach holds promise for addressing the wide spectrum of diverse symptoms in this heterogeneous patient population and may have therapeutic potential for idiopathic autism.
Collapse
Affiliation(s)
| | | | - Patricia Cogram
- Department of Genetics, Faculty of Science, Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago 7800024, Chile
- Center for Neural Circuit Mapping, UCI, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Robert J M Deacon
- Department of Genetics, Faculty of Science, Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago 7800024, Chile
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gibson JM, Vazquez AH, Yamashiro K, Jakkamsetti V, Ren C, Lei K, Dentel B, Pascual JM, Tsai PT. Cerebellar contribution to autism-relevant behaviors in fragile X syndrome models. Cell Rep 2023; 42:113533. [PMID: 38048226 PMCID: PMC10831814 DOI: 10.1016/j.celrep.2023.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer M Gibson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Hernandez Vazquez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kunihiko Yamashiro
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chongyu Ren
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine Lei
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brianne Dentel
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter T Tsai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Dos Santos AB, Larsen SD, Guo L, Barbagallo P, Montalant A, Verhage M, Sørensen JB, Perrier JF. Microcircuit failure in STXBP1 encephalopathy leads to hyperexcitability. Cell Rep Med 2023; 4:101308. [PMID: 38086378 PMCID: PMC10772346 DOI: 10.1016/j.xcrm.2023.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 12/22/2023]
Abstract
De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.
Collapse
Affiliation(s)
- Altair Brito Dos Santos
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Silas Dalum Larsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Liangchen Guo
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Paola Barbagallo
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Alexia Montalant
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam and Amsterdam University Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam and Amsterdam University Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jakob Balslev Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
33
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
34
|
Bhaskaran AA, Gauvrit T, Vyas Y, Bony G, Ginger M, Frick A. Endogenous noise of neocortical neurons correlates with atypical sensory response variability in the Fmr1 -/y mouse model of autism. Nat Commun 2023; 14:7905. [PMID: 38036566 PMCID: PMC10689491 DOI: 10.1038/s41467-023-43777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Excessive neural variability of sensory responses is a hallmark of atypical sensory processing in autistic individuals with cascading effects on other core autism symptoms but unknown neurobiological substrate. Here, by recording neocortical single neuron activity in a well-established mouse model of Fragile X syndrome and autism, we characterized atypical sensory processing and probed the role of endogenous noise sources in exaggerated response variability in males. The analysis of sensory stimulus evoked activity and spontaneous dynamics, as well as neuronal features, reveals a complex cellular and network phenotype. Neocortical sensory information processing is more variable and temporally imprecise. Increased trial-by-trial and inter-neuronal response variability is strongly related to key endogenous noise features, and may give rise to behavioural sensory responsiveness variability in autism. We provide a novel preclinical framework for understanding the sources of endogenous noise and its contribution to core autism symptoms, and for testing the functional consequences for mechanism-based manipulation of noise.
Collapse
Affiliation(s)
- Arjun A Bhaskaran
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Théo Gauvrit
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Yukti Vyas
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Guillaume Bony
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Melanie Ginger
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Andreas Frick
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France.
- University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
35
|
Leontiadis LJ, Trompoukis G, Felemegkas P, Tsotsokou G, Miliou A, Papatheodoropoulos C. Increased Inhibition May Contribute to Maintaining Normal Network Function in the Ventral Hippocampus of a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome. Brain Sci 2023; 13:1598. [PMID: 38002556 PMCID: PMC10669536 DOI: 10.3390/brainsci13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A common neurobiological mechanism in several neurodevelopmental disorders, including fragile X syndrome (FXS), is alterations in the balance between excitation and inhibition in the brain. It is thought that in the hippocampus, as in other brain regions, FXS is associated with increased excitability and reduced inhibition. However, it is still not known whether these changes apply to both the dorsal and ventral hippocampus, which appear to be differently involved in neurodegenerative disorders. Using a Fmr1 knock-out (KO) rat model of FXS, we found increased neuronal excitability in both the dorsal and ventral KO hippocampus and increased excitatory synaptic transmission in the dorsal hippocampus. Interestingly, synaptic inhibition is significantly increased in the ventral but not the dorsal KO hippocampus. Furthermore, the ventral KO hippocampus displays increased expression of the α1GABAA receptor subtype and a remarkably reduced rate of epileptiform discharges induced by magnesium-free medium. In contrast, the dorsal KO hippocampus displays an increased rate of epileptiform discharges and similar expression of α1GABAA receptors compared with the dorsal WT hippocampus. Blockade of α5GABAA receptors by L-655,708 did not affect epileptiform discharges in any genotype or hippocampal segment, and the expression of α5GABAA receptors did not differ between WT and KO hippocampus. These results suggest that the increased excitability of the dorsal KO hippocampus contributes to its heightened tendency to epileptiform discharges, while the increased phasic inhibition in the Fmr1-KO ventral hippocampus may represent a homeostatic mechanism that compensates for the increased excitability reducing its vulnerability to epileptic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Costas Papatheodoropoulos
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, 26504 Rion, Greece; (L.J.L.); (G.T. (George Trompoukis)); (P.F.); (G.T. (Giota Tsotsokou)); (A.M.)
| |
Collapse
|
36
|
Deng PY, Kumar A, Cavalli V, Klyachko VA. Circuit-based intervention corrects excessive dentate gyrus output in the Fragile X mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559792. [PMID: 37808793 PMCID: PMC10557679 DOI: 10.1101/2023.09.27.559792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Ajeet Kumar
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| |
Collapse
|
37
|
Edwards N, Combrinck C, McCaughey-Chapman A, Connor B. Directly reprogrammed fragile X syndrome dorsal forebrain precursor cells generate cortical neurons exhibiting impaired neuronal maturation. Front Cell Neurosci 2023; 17:1254412. [PMID: 37810261 PMCID: PMC10552551 DOI: 10.3389/fncel.2023.1254412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models. Direct reprogramming also circumvents the protracted culture times and low efficiency of current induced pluripotent stem cell strategies. Methods We have developed a chemically modified mRNA (cmRNA) -based direct reprogramming protocol to generate dorsal forebrain precursors (hiDFPs) from FXS patient-derived fibroblasts, with subsequent differentiation to glutamatergic cortical neurons and astrocytes. Results We observed differential expression of mature neuronal markers suggesting impaired neuronal development and maturation in FXS- hiDFP-derived neurons compared to controls. FXS- hiDFP-derived cortical neurons exhibited dendritic growth and arborization deficits characterized by reduced neurite length and branching consistent with impaired neuronal maturation. Furthermore, FXS- hiDFP-derived neurons exhibited a significant decrease in the density of pre- and post- synaptic proteins and reduced glutamate-induced calcium activity, suggesting impaired excitatory synapse development and functional maturation. We also observed a reduced yield of FXS- hiDFP-derived neurons with a significant increase in FXS-affected astrocytes. Discussion This study represents the first reported derivation of FXS-affected cortical neurons following direct reprogramming of patient fibroblasts to dorsal forebrain precursors and subsequently neurons that recapitulate the key molecular hallmarks of FXS as it occurs in human tissue. We propose that direct to hiDFP reprogramming provides a unique platform for further study into the pathogenesis of FXS as well as the identification and screening of new drug targets for the treatment of FXS.
Collapse
Affiliation(s)
| | | | | | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal MJ, Martínez-Cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-Cailliau C. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron 2023; 111:2863-2880.e6. [PMID: 37451263 PMCID: PMC10529373 DOI: 10.1016/j.neuron.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Collapse
Affiliation(s)
| | - Anand Suresh
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Benjamin Liu
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Pablo Juarez
- Department of Pathology, UC Davis, Davis, CA, USA
| | - Ashley Lin
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Dean V Buonomano
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | - Carlos Portera-Cailliau
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Neurobiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Napier M, Reynolds K, Scott AL. Glial-mediated dysregulation of neurodevelopment in Fragile X Syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:187-215. [PMID: 37993178 DOI: 10.1016/bs.irn.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.
Collapse
Affiliation(s)
- M Napier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - K Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - A L Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
40
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-cage Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557226. [PMID: 37745312 PMCID: PMC10515855 DOI: 10.1101/2023.09.11.557226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
41
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
42
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
43
|
Ruggiero-Ruff RE, Villa PA, Hijleh SA, Avalos B, DiPatrizio NV, Haga-Yamanaka S, Coss D. Increased body weight in mice with fragile X messenger ribonucleoprotein 1 (Fmr1) gene mutation is associated with hypothalamic dysfunction. Sci Rep 2023; 13:12666. [PMID: 37542065 PMCID: PMC10403586 DOI: 10.1038/s41598-023-39643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sarah Abu Hijleh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell, and Systems Biology, College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
44
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
45
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
46
|
Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord 2023; 15:23. [PMID: 37516865 PMCID: PMC10386252 DOI: 10.1186/s11689-023-09496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD. Very little is known about the development of temporal processing in any animal model of ASD. METHODS In the current study, we quantify auditory temporal processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO mice, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm. Mice were recorded at three different ages in a cross sectional design: postnatal (p)21, p30 and p60. Recordings were obtained from both auditory and frontal cortices. The gap-ASSR requires underlying neural generators to synchronize responses to gaps of different widths embedded in noise, providing an objective measure of temporal processing across genotypes and age groups. RESULTS We present evidence that the frontal, but not auditory, cortex shows significant temporal processing deficits at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both genotypes in adult mice. ERP amplitudes were larger in Fmr1 KO mice in both auditory and frontal cortex, consistent with ERP data in humans with FXS. CONCLUSIONS These data indicate cortical region-specific delays in temporal processing development in Fmr1 KO mice. Developmental delays in the ability of frontal cortex to follow rapid changes in sounds may shape language delays in FXS, and more broadly in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, USA
| | | | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, USA
- Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA.
- Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
47
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
48
|
Guo Y, Shen M, Dong Q, Méndez-Albelo NM, Huang SX, Sirois CL, Le J, Li M, Jarzembowski ED, Schoeller KA, Stockton ME, Horner VL, Sousa AMM, Gao Y, Levine JE, Wang D, Chang Q, Zhao X. Elevated levels of FMRP-target MAP1B impair human and mouse neuronal development and mouse social behaviors via autophagy pathway. Nat Commun 2023; 14:3801. [PMID: 37365192 PMCID: PMC10293283 DOI: 10.1038/s41467-023-39337-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Fragile X messenger ribonucleoprotein 1 protein (FMRP) binds many mRNA targets in the brain. The contribution of these targets to fragile X syndrome (FXS) and related autism spectrum disorder (ASD) remains unclear. Here, we show that FMRP deficiency leads to elevated microtubule-associated protein 1B (MAP1B) in developing human and non-human primate cortical neurons. Targeted MAP1B gene activation in healthy human neurons or MAP1B gene triplication in ASD patient-derived neurons inhibit morphological and physiological maturation. Activation of Map1b in adult male mouse prefrontal cortex excitatory neurons impairs social behaviors. We show that elevated MAP1B sequesters components of autophagy and reduces autophagosome formation. Both MAP1B knockdown and autophagy activation rescue deficits of both ASD and FXS patients' neurons and FMRP-deficient neurons in ex vivo human brain tissue. Our study demonstrates conserved FMRP regulation of MAP1B in primate neurons and establishes a causal link between MAP1B elevation and deficits of FXS and ASD.
Collapse
Affiliation(s)
- Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sabrina X Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan Le
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ezra D Jarzembowski
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Keegan A Schoeller
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael E Stockton
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Vanessa L Horner
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jon E Levine
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
49
|
Giua G, Lassalle O, Makrini-Maleville L, Valjent E, Chavis P, Manzoni OJJ. Investigating cell-specific effects of FMRP deficiency on spiny projection neurons in a mouse model of Fragile X syndrome. Front Cell Neurosci 2023; 17:1146647. [PMID: 37323585 PMCID: PMC10264852 DOI: 10.3389/fncel.2023.1146647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes. Methods We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes. Results Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS. Discussion Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Gabriele Giua
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | | | - Emmanuel Valjent
- IGF, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Olivier J. J. Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| |
Collapse
|
50
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|