1
|
Li Y, Lu L, Levy JL, Anthony TG, Androulakis IP. Computational modeling of the synergistic role of GCN2 and the HPA axis in regulating the integrated stress response in the central circadian timing system. Physiol Genomics 2024; 56:531-543. [PMID: 38881429 DOI: 10.1152/physiolgenomics.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
The circadian timing system and integrated stress response (ISR) systems are fundamental regulatory mechanisms that maintain body homeostasis. The central circadian pacemaker in the suprachiasmatic nucleus (SCN) governs daily rhythms through interactions with peripheral oscillators via the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, ISR signaling is pivotal for preserving cellular homeostasis in response to physiological changes. Notably, disrupted circadian rhythms are observed in cases of impaired ISR signaling. In this work, we examine the potential interplay between the central circadian system and the ISR, mainly through the SCN and HPA axis. We introduce a semimechanistic mathematical model to delineate SCN's capacity for indirectly perceiving physiological stress through glucocorticoid-mediated feedback from the HPA axis and orchestrating a cellular response via the ISR mechanism. Key components of our investigation include evaluating general control nonderepressible 2 (GCN2) expression in the SCN, the effect of physiological stress stimuli on the HPA axis, and the interconnected feedback between the HPA and SCN. Simulation revealed a critical role for GCN2 in linking ISR with circadian rhythms. Experimental findings have demonstrated that a Gcn2 deletion in mice leads to rapid re-entrainment of the circadian clock following jetlag as well as to an elongation of the circadian period. These phenomena are well replicated by our model, which suggests that both the swift re-entrainment and prolonged period can be ascribed to a reduced robustness in neuronal oscillators. Our model also offers insights into phase shifts induced by acute physiological stress and the alignment/misalignment of physiological stress with external light-dark cues. Such understanding aids in strategizing responses to stressful events, such as nutritional status changes and jetlag.NEW & NOTEWORTHY This study is the first theoretical work to investigate the complex interaction between integrated stress response (ISR) sensing and central circadian rhythm regulation, encompassing the suprachiasmatic nucleus (SCN) and hypothalamus-pituitary-adrenal (HPA) axis. The findings carry implications for the development of dietary or pharmacological interventions aimed at facilitating recovery from stressful events, such as jetlag. Moreover, they provide promising prospects for potential therapeutic interventions that target circadian rhythm disruption and various stress-related disorders.
Collapse
Affiliation(s)
- Yannuo Li
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Lingjun Lu
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Jordan L Levy
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States
- Department of Surgery, Rutgers-Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| |
Collapse
|
2
|
Sailike B, Onzhanova Z, Akbay B, Tokay T, Molnár F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int J Mol Sci 2024; 25:7809. [PMID: 39063051 PMCID: PMC11277055 DOI: 10.3390/ijms25147809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, obtained from diet or synthesized internally as cholecalciferol and ergocalciferol, influences bodily functions through its most active metabolite and the vitamin D receptor. Recent research has uncovered multiple roles for vitamin D in the central nervous system, impacting neural development and maturation, regulating the dopaminergic system, and controlling the synthesis of neural growth factors. This review thoroughly examines these connections and investigates the consequences of vitamin D deficiency in neurological disorders, particularly neurodegenerative diseases. The potential benefits of vitamin D supplementation in alleviating symptoms of these diseases are evaluated alongside a discussion of the controversial findings from previous intervention studies. The importance of interpreting these results cautiously is emphasised. Furthermore, the article proposes that additional randomised and well-designed trials are essential for gaining a deeper understanding of the potential therapeutic advantages of vitamin D supplementation for neurological disorders. Ultimately, this review highlights the critical role of vitamin D in neurological well-being and highlights the need for further research to enhance our understanding of its function in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinand Molnár
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.S.); (Z.O.); (B.A.); (T.T.)
| |
Collapse
|
3
|
Li Y, Lu L, Androulakis IP. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. J Pharm Sci 2024; 113:33-46. [PMID: 37597751 PMCID: PMC10840710 DOI: 10.1016/j.xphs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Lingjun Lu
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08540, USA.
| |
Collapse
|
4
|
Chamat-Hedemand S, Dahl A, Østergaard L, Arpi M, Fosbøl E, Boel J, Kaur KP, Oestergaard LB, Lauridsen TK, Gislason G, Torp-Pedersen C, Bruun NE. Streptococcal species as a prognostic factor for mortality in patients with streptococcal bloodstream infections. Infection 2023; 51:1513-1522. [PMID: 36959526 DOI: 10.1007/s15010-023-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE Streptococcal bloodstream infections (BSIs) are common, yet prognostic factors are poorly investigated. We aimed to investigate the mortality according to streptococcal species and seasonal variation. METHODS Patients with streptococcal BSIs from 2008 to 2017 in the Capital Region of Denmark were investigated, and data were crosslinked with nationwide registers for the identification of comorbidities. A multivariable logistic regression analysis was performed to assess mortality according to streptococcal species and season of infection. RESULTS Among 6095 patients with a streptococcal BSI (mean age 68.1 years), the 30-day mortality was 16.1% and the one-year mortality was 31.5%. With S. pneumoniae as a reference, S. vestibularis was associated with a higher adjusted mortality both within 30 days (odds ratio (OR) 2.89 [95% confidence interval (CI) 1.20-6.95]) and one year (OR 4.09 [95% CI 1.70-9.48]). One-year mortality was also higher in S. thermophilus, S. constellatus, S. parasanguinis, S. salivarius, S. anginosus, and S. mitis/oralis. However, S. mutans was associated with a lower one-year mortality OR 0.44 [95% CI 0.20-0.97], while S. gallolyticus was associated with both a lower 30-day (OR 0.42 [95% CI 0.26-0.67]) and one-year mortality (OR 0.66 [95% CI 0.48-0.93]). Furthermore, with infection in the summer as a reference, patients infected in the winter and autumn had a higher association with 30-day mortality. CONCLUSIONS The mortality in patients with streptococcal BSI was associated with streptococcal species. Further, patients with streptococcal BSIs infected in the autumn and winter had a higher risk of death within 30 days, compared with patients infected in the summer.
Collapse
Affiliation(s)
- Sandra Chamat-Hedemand
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark.
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark.
| | - Anders Dahl
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Lauge Østergaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Magnus Arpi
- Department of Clinical Microbiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Emil Fosbøl
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jonas Boel
- Department of Clinical Microbiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Kamal Preet Kaur
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine K Lauridsen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjaellands Hospital, Hillerød, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Eske Bruun
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
6
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
7
|
Gregory S, Denham SG, Lee P, Simpson JP, Homer NZM. Using LC-MS/MS to Determine Salivary Steroid Reference Intervals in a European Older Adult Population. Metabolites 2023; 13:265. [PMID: 36837884 PMCID: PMC9963097 DOI: 10.3390/metabo13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
A number of steroids, including glucocorticoids and sex hormones, have been associated with neurodegenerative and cardiovascular conditions common in aging populations. The application of liquid chromatography tandem mass spectrometry (LC-MS/MS) steroid analysis offers an opportunity to conduct simultaneous multiplex steroid analysis within a given sample. In this paper, we describe the application of an LC-MS/MS steroid analysis method for the assessment of reference ranges of steroids in human saliva samples (200 µL) collected from older adults (age 50 years and above) enrolled in a European cohort investigating the risk for Alzheimer's dementia. Saliva samples were prepared using supported liquid extraction (SLE) along with a calibration curve and analysed using a Waters I-Class UPLC (Ultra Performance Liquid Chromatography) and a Sciex QTrap 6500+ mass spectrometer. Mass spectrometry parameters of steroids were optimised for each steroid and a method for the chromatographic separation of 19 steroids was developed. Lower limits of quantitation (LLOQs), linearity and other method criteria were assessed. In total, data from 125 participants (500 samples) were analysed and assessed for reference ranges (64 male, 61 female). A total of 19 steroids were detected in saliva within the range of the method. There were clear diurnal patterns in most of the steroid hormones detected. Sex differences were observed for androstenedione (A4), testosterone (T), cortisone (E) and aldosterone (Aldo). In the first sample of the day, dehydroepiandrosterone (DHEA) was significantly higher in healthy volunteers compared to those with Alzheimer's disease biomarkers. This LC-MS/MS method is suitable for the analysis of 19 steroids in saliva in adults.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Scott G. Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Patricia Lee
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Joanna P. Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- BHF/Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
Choi JJ, Martins JS, Hwang S, Sinha R, Seo D. Neural correlates linking trauma and physical symptoms. Psychiatry Res Neuroimaging 2022; 327:111560. [PMID: 36327865 PMCID: PMC9757618 DOI: 10.1016/j.pscychresns.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Trauma and chronic pain frequently co-occur, but the underlying neurological mechanisms are poorly understood. The current study investigated the neural correlates of stress and physical symptoms in trauma patients using functional magnetic resonance imaging (fMRI) and follow-up smartphone surveys. Participants were 10 patients diagnosed with Trauma- and Stressor-Related Disorders and 18 demographically-matched healthy controls who completed a fMRI stress provocation task in which they viewed stressful and neutral-relaxing images. Subsequently, participants completed daily smartphone surveys which prospectively monitored their stress and physical symptoms for 30 days. The trauma group experienced a significantly higher frequency of physical symptoms than controls during the follow-up period. During stress, trauma patients exhibited increased activity in the hippocampus, insula, and sensorimotor areas, but decreased activity in the ventromedial prefrontal cortex (vmPFC), lateral prefrontal cortex (LPFC), and dorsal striatum relative to controls. In all participants, higher physical symptom frequency was significantly associated with a hyperactive left hippocampal response to stress. The current study reports that trauma is characterized by greater physical symptoms and decreased prefrontal but increased limbic responses to stress. Our findings suggest that trauma may increase physical health symptoms by compromising hippocampal function, which could also increase vulnerability to stress- and pain-related disorders.
Collapse
Affiliation(s)
- Justin J Choi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Jorge S Martins
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America; William James Center for Research, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Seungju Hwang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
9
|
Schlesinger N, Brunetti L, Androulakis I. Does seasonality of the microbiota contribute to the seasonality of acute gout flare? Clin Exp Rheumatol 2022; 40:1793-1800. [PMID: 35383564 PMCID: PMC9869072 DOI: 10.55563/clinexprheumatol/hdtge7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 01/26/2023]
Abstract
Gout, the most common inflammatory arthritis worldwide, is an auto-inflammatory metabolic disease that leads to monosodium urate crystal deposition. Hyperuricaemia is a significant risk factor for the development of gout; however, hyperuricaemia alone is not sufficient to induce gout.Gout flares have circadian rhythms. Gout flares vary during the day and have strong seasonality, with flares being more common in the spring. The reasons for the predominance of flares in the spring are unclear since serum urate (SU) levels show seasonal variation; however, SU levels are highest in the summer.Immune function varies significantly throughout the year, with enhanced immune responses increasing during the winter. In addition, chronic disruption of circadian rhythms is associated with metabolic syndrome and diseases driven by metabolism. The most telling example relates to Xanthine oxidase (XOD/XDH). The analysis of XOD/XDH established its circadian regulation and demonstrated that inhibition of the activity of XOD is characterised by distinct, crossregulating diurnal/seasonal patterns of activity.The gastrointestinal microbiota of gout patients is highly distinct from healthy individuals. In a small series of gout patients, Bacteroides caccae and Bacteroides xylanisolvens were found to be enriched. Bacteroidales levels were highest during the spring and summer, and loading values were highest in the spring.Our review discusses gout's circadian rhythm and seasonality, possible influences of the microbiome on gout due to our new knowledge that Bacteroidales levels were highest during spring when gout is most common, and potential opportunities for treatment based on our current understanding of this interaction.
Collapse
Affiliation(s)
- N. Schlesinger
- Division of Rheumatology and Gout Center, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - L. Brunetti
- Ernest Mario School of Pharmacy, Piscataway, NJ
| | - I.P. Androulakis
- Biomedical Engineering Department, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Li Y, Androulakis IP. Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis. Front Endocrinol (Lausanne) 2022; 13:960351. [PMID: 36387856 PMCID: PMC9648564 DOI: 10.3389/fendo.2022.960351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) synchronizes the physiological rhythms to the external light-dark cycle and tunes the dynamics of circadian rhythms to photoperiod fluctuations. Changes in the neuronal network topologies are suggested to cause adaptation of the SCN in different photoperiods, resulting in the broader phase distribution of neuron activities in long photoperiods (LP) compared to short photoperiods (SP). Regulated by the SCN output, the level of glucocorticoids is elevated in short photoperiod, which is associated with peak disease incidence. The underlying coupling mechanisms of the SCN and the interplay between the SCN and the HPA axis have yet to be fully elucidated. In this work, we propose a mathematical model including a multiple-cellular SCN compartment and the HPA axis to investigate the properties of the circadian timing system under photoperiod changes. Our model predicts that the probability-dependent network is more energy-efficient than the distance-dependent network. Coupling the SCN network by intra-subpopulation and inter-subpopulation forces, we identified the negative correlation between robustness and plasticity of the oscillatory network. The HPA rhythms were predicted to be strongly entrained to the SCN rhythms with a pro-inflammatory high-amplitude glucocorticoid profile under SP. The fast temporal topology switch of the SCN network was predicted to enhance synchronization when the synchronization is not complete. These synchronization and circadian dynamics alterations might govern the seasonal variation of disease incidence and its symptom severity.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
| | - Ioannis P. Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Ioannis P. Androulakis,
| |
Collapse
|
11
|
Modeling the Influence of Chronic Sleep Restriction on Cortisol Circadian Rhythms, with Implications for Metabolic Disorders. Metabolites 2021; 11:metabo11080483. [PMID: 34436424 PMCID: PMC8400645 DOI: 10.3390/metabo11080483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic sleep deficiency is prevalent in modern society and is associated with increased risk of metabolic and other diseases. While the mechanisms by which chronic sleep deficiency induces pathophysiological changes are yet to be elucidated, the hypothalamic–pituitary–adrenal (HPA) axis may be an important mediator of these effects. Cortisol, the primary hormone of the HPA axis, exhibits robust circadian rhythmicity and is moderately influenced by sleep and wake states and other physiology. Several studies have explored the effects of acute or chronic sleep deficiency (i.e., usually from self-selected chronic sleep restriction, CSR) on the HPA axis. Quantifying long-term changes in the circadian rhythm of cortisol under CSR in controlled conditions is inadequately studied due to practical limitations. We use a semi-mechanistic mathematical model of the HPA axis and the sleep/wake cycle to explore the influence of CSR on cortisol circadian rhythmicity. In qualitative agreement with experimental findings, model simulations predict that CSR results in physiologically relevant disruptions in the phase and amplitude of the cortisol rhythm. The mathematical model presented in this work provides a mechanistic framework to further explore how CSR might lead to HPA axis disruption and subsequent development of chronic metabolic complications.
Collapse
|
12
|
Androulakis IP. Circadian rhythms and the HPA axis: A systems view. WIREs Mech Dis 2021; 13:e1518. [PMID: 33438348 DOI: 10.1002/wsbm.1518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
The circadian timing system comprises a network of time-keeping clocks distributed across a living host whose responsibility is to allocate resources and distribute functions temporally to optimize fitness. The molecular structures generating these rhythms have evolved to accommodate the rotation of the earth in an attempt to primarily match the light/dark periods during the 24-hr day. To maintain synchrony of timing across and within tissues, information from the central clock, located in the suprachiasmatic nucleus, is conveyed using systemic signals. Leading among those signals are endocrine hormones, and while the hypothalamic-pituitary-adrenal axis through the release of glucocorticoids is a major pacesetter. Interestingly, the fundamental units at the molecular and physiological scales that generate local and systemic signals share critical structural properties. These properties enable time-keeping systems to generate rhythmic signals and allow them to adopt specific properties as they interact with each other and the external environment. The purpose of this review is to provide a broad overview of these structures, discuss their functional characteristics, and describe some of their fundamental properties as these related to health and disease. This article is categorized under: Immune System Diseases > Computational Models Immune System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Biomedical Engineering Department, Chemical & Biochemical Engineering Department, Rutgers University, New Brunswick, New Jersey.,Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
13
|
Korf HW, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:227-251. [PMID: 34225932 DOI: 10.1016/b978-0-12-820107-7.00015-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Center for Anatomy and Brain Research, Institute for Anatomy, Düsseldorf, Germany.
| | - Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Sur S, Sharma A, Bhardwaj SK, Kumar V. Involvement of steroid and antioxidant pathways in spleen-mediated immunity in migratory birds. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110790. [PMID: 32800933 DOI: 10.1016/j.cbpa.2020.110790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The molecular underpinnings of the spleen-mediated immune functions during the period of heightened energetic needs in the year are not known in avian migrants. We investigated this, in Palearctic-Indian migratory male redheaded buntings, which exhibited vernal (spring) premigratory / early testicular maturation states under artificial long days. This was evidenced by increased dio2 and decreased dio3 mRNA expression in the hypothalamus, elevated levels of circulating corticosterone and testosterone, and enlarged testes in long-day-photostimulated birds, as compared to unstimulated controls under short days. The concomitant decrease in both mass and volume of the spleen, and increase in the heterophil/ lymphocyte ratio suggested the parallel innate immunity effects in photostimulated buntings. Importantly, we found increased mRNA expression of genes coding for the cytokines (il15 and il34), steroid receptors (nr3c2) and oxidative stress marker enzymes (gpx1 and sod1) in the spleen, suggesting the activation of both immune and antioxidant molecular pathways during the early photostimulated state. However, the splenic expressions of il1β, il6, tgfβ, ar and nos2 genes were not significantly different between long-day stimulated and short-day unstimulated birds. The negative correlation of plasma corticosterone levels with spleen mass further indicated a role of corticosterone in the modulation of the spleen function, probably via nr3c2 gene encoded mineralocorticoid receptors. These results suggest the activation of the spleen-mediated innate immunity in anticipation of the heightened energetic stress state of the photostimulated spring migratory/breeding period in migratory songbirds.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
15
|
Kaviani M, Nikooyeh B, Zand H, Yaghmaei P, Neyestani TR. Effects of vitamin D supplementation on depression and some involved neurotransmitters. J Affect Disord 2020; 269:28-35. [PMID: 32217340 DOI: 10.1016/j.jad.2020.03.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low vitamin D levels are associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis and depression but a causal relationship has not been established. This study aimed to evaluate the effects of vitamin D supplementation on depression severity, serum 25(OH)D, and some neurotransmitters in patients with mild to moderate depression. METHODS An 8-week double-blind randomized clinical trial was conducted on 56 subjects with mild to moderate depression, aged 43.0 ± 1.15yrs. The patients were randomly allocated into two groups: intervention (50,000 IU cholecalciferol/2wks) and control (placebo). Biochemical parameters (serum 25(OH)D, iPTH, oxytocin and platelet serotonin), and depression severity (Beck Depression Inventory-II (BDI-II1)) were initially and finally assessed. RESULTS Following intervention, significant changes were observed in the intervention group compared to the controls: 25(OH)D concentrations increased (+40.83±28.57 vs. +5.14±23.44 nmol/L, P<0.001) and BDI scores decreased (-11.75±6.40 vs. -3.61±10.40, P = 0.003). Oxytocin concentrations were significantly reduced in controls (-6.49±13.69 ng/mL, P = 0.01), but between -group differences were insignificant. Within- and between-group differences of platelet serotonin concentrations were not significant; however, the increment in controls was higher (+0.86±10.82 vs. +0.26±9.38 ng/mL, P = 0.83). LIMITATIONS Study duration may not reflect the long-term effects of vitamin D on depression. It seems necessary to assess tryptophan-hydroxylasetypes1&2 in relation to vitamin D in serotonin pathways. CONCLUSIONS Eight-week supplementation with 50,000 IU/2wks vitamin D, elevated 25(OH)D concentration of subjects with mild to moderate depression and significantly improved their depression severity. However, there was no evidence that the anti-depressive effect of vitamin D supplementation is mediated by the measured neurotransmitters.
Collapse
Affiliation(s)
- Mina Kaviani
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nikooyeh
- Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tirang R Neyestani
- Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Cao Y, Shi H, Ma Y, Ma L, Zhai J. Effect and Relationship of Seasons on the High Risk of Ovarian Hyperstimulation Syndrome After Oocyte Retrieval in Patients With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2020; 11:610828. [PMID: 33574799 PMCID: PMC7870698 DOI: 10.3389/fendo.2020.610828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the effect of seasons on the incidence of high risk of ovarian hyperstimulation syndrome (OHSS) after in oocyte retrieval in patients with polycystic ovarian syndrome (PCOS) and to establish a nomogram to predict the risk of OHSS. DESIGN Single-center, retrospective study. SETTING University-affiliated reproductive medicine center. PATIENTS A total of 2,030 infertility patients with PCOS underwent the follicular phase long-acting long protocol IVF/ICSI in the reproductive medicine center from January 2017 to December 2019. INTERVENTIONS None. MAIN OUTCOME MEASURES Logistic regression analysis was used to analyze the factors associated with a high risk of OHSS. We established a nomogram to predict the risk of OHSS in infertility patients with PCOS after oocyte retrieval. RESULTS The incidence of patients at high risk of OHSS was significantly different from season-to-season and was especially higher in the summer and winter. Multivariate logistic analysis showed that gonadotropin dosage, number of retrieved oocytes, estradiol level, average bilateral ovarian diameter on the day human chorionic gonadotropin was administered, type of infertility, and average temperature were independent risk factors for OHSS after oocyte retrieval in PCOS patients. Based on the above independent risk factors, we constructed a prediction model for OHSS risk. To evaluate the efficiency of the prediction model, we calculated the C-index (0.849), area under the receiver operating characteristic curve (0.849), and internal validation C-index (0.846). Decision curve analysis suggested that the prediction model exhibited significant net benefits. CONCLUSIONS The incidence of PCOS patients at high risk for OHSS after oocyte retrieval fluctuated with seasonal temperature changes, and was significantly higher in extreme climates. The prediction model had favorable predictive performance and clinical application value.
Collapse
Affiliation(s)
- Yurong Cao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linna Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jun Zhai,
| |
Collapse
|
17
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
18
|
Bae SA, Fang MZ, Rustgi V, Zarbl H, Androulakis IP. At the Interface of Lifestyle, Behavior, and Circadian Rhythms: Metabolic Implications. Front Nutr 2019; 6:132. [PMID: 31555652 PMCID: PMC6722208 DOI: 10.3389/fnut.2019.00132] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Nutrient metabolism is under circadian regulation. Disruption of circadian rhythms by lifestyle and behavioral choices such as work schedules, eating patterns, and social jetlag, seriously impacts metabolic homeostasis. Metabolic dysfunction due to chronic misalignment of an organism's endogenous rhythms is detrimental to health, increasing the risk of obesity, metabolic and cardiovascular disease, diabetes, and cancer. In this paper, we review literature on recent findings on the mechanisms that communicate metabolic signals to circadian clocks and vice versa, and how human behavioral changes imposed by societal and occupational demands affect the physiological networks integrating peripheral clocks and metabolism. Finally, we discuss factors possibly contributing to inter-individual variability in response to circadian changes in the context of metabolic (dys)function.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
| | - Ming Zhu Fang
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Piscataway, NJ, United States.,National Institute for Environmental Health Sciences (NIEHS) Center for Environmental Exposures and Disease, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Helmut Zarbl
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Piscataway, NJ, United States.,National Institute for Environmental Health Sciences (NIEHS) Center for Environmental Exposures and Disease, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States.,Biomedical Engineering Department, Rutgers University, Piscataway, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Bae SA, Androulakis IP. Mathematical modeling informs the impact of changes in circadian rhythms and meal patterns on insulin secretion. Am J Physiol Regul Integr Comp Physiol 2019; 317:R98-R107. [PMID: 31042416 DOI: 10.1152/ajpregu.00230.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Disruption of circadian rhythms has been associated with metabolic syndromes, including obesity and diabetes. A variety of metabolic activities are under circadian modulation, as local and global clock gene knockouts result in glucose imbalance and increased risk of metabolic diseases. Insulin release from the pancreatic β cells exhibits daily variation, and recent studies have found that insulin secretion, not production, is under circadian modulation. As consideration of daily variation in insulin secretion is necessary to accurately describe glucose-stimulated insulin secretion, we describe a mathematical model that incorporates the circadian modulation via insulin granule trafficking. We use this model to understand the effect of oscillatory characteristics on insulin secretion at different times of the day. Furthermore, we integrate the dynamics of clock genes under the influence of competing environmental signals (light/dark cycle and feeding/fasting cycle) and demonstrate how circadian disruption and meal size distribution change the insulin secretion pattern over a 24-h day.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey.,Biomedical Engineering Department, Rutgers University , Piscataway, New Jersey.,Department of Surgery, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| |
Collapse
|
20
|
Rao RT, Scherholz ML, Androulakis IP. Modeling the influence of chronopharmacological administration of synthetic glucocorticoids on the hypothalamic-pituitary-adrenal axis. Chronobiol Int 2018; 35:1619-1636. [PMID: 30059634 PMCID: PMC6292202 DOI: 10.1080/07420528.2018.1498098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023]
Abstract
Natural glucocorticoids, a class of cholesterol-derived hormones, modulate an array of metabolic, anti-inflammatory, immunosuppressive and cognitive signaling. The synthesis of natural glucocorticoids, largely cortisol in humans, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and exhibits pronounced circadian variation. Considering the central regulatory function of endogenous glucocorticoids, maintenance of the circadian activity of the HPA axis is essential to host survival and chronic disruption of such activity leads to systemic complications. There is a great deal of interest in synthetic glucocorticoids due to the immunosuppressive and anti-inflammatory properties and the development of novel dosing regimens that can minimize the disruption of endogenous activity, while still maintaining the pharmacological benefits of long-term synthetic glucocorticoid therapy. Synthetic glucocorticoids are associated with an increased risk of developing the pathological disorders related to chronic suppression of cortisol rhythmicity as a result of the potent negative feedback by synthetic glucocorticoids on the HPA axis precursors. In this study, a mathematical model was developed to explore the influence of chronopharmacological dosing of exogenous glucocorticoids on the endogenous cortisol rhythm considering intra-venous and oral dosing. Chronic daily dosing resulted in modification of the circadian rhythmicity of endogenous cortisol with the amplitude and acrophase of the altered rhythm dependent on the administration time. Simulations revealed that the circadian features of the endogenous cortisol rhythm can be preserved by proper timing of administration. The response following a single dose was not indicative of the response following long-term, repeated chronopharmacological dosing of synthetic glucocorticoids. Furthermore, simulations revealed the inductive influence of long-term treatment was only associated with low to moderate doses, while high doses generally led to suppression of endogenous activity regardless of the chronopharmacological dose. Finally, chronic daily dosing was found to alter the responsiveness of the HPA axis, such that a decrease in the amplitude of the cortisol rhythm resulted in a partial loss in the time-of-day dependent response to CRH stimulation, while an increase in the amplitude was associated with a more pronounced time-of-day dependence of the response.
Collapse
Affiliation(s)
- Rohit T. Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L. Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P. Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
- Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
- Correspondence: I.P. Androulakis, 599 Taylor Road, Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, , tel: 848-445-6561, fax: 732-445-3753
| |
Collapse
|
21
|
Stanojević A, Marković VM, Čupić Ž, Kolar-Anić L, Vukojević V. Advances in mathematical modelling of the hypothalamic–pituitary–adrenal (HPA) axis dynamics and the neuroendocrine response to stress. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Hadlow N, Brown S, Wardrop R, Conradie J, Henley D. Where in the world? Latitude, longitude and season contribute to the complex co-ordinates determining cortisol levels. Clin Endocrinol (Oxf) 2018; 89:299-307. [PMID: 29846966 DOI: 10.1111/cen.13754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cortisol is a critical stress hormone with circadian rhythms synchronized by light. There are seasonal differences in expression of pro-inflammatory genes and in some diseases moderated by glucocorticoids. As light changes with season and with latitude and longitude, we assessed changes in population cortisol associated with these parameters. DESIGN Retrospective data audit. PATIENTS Populations across 4 states of Australia over 3 years. MEASUREMENTS Serum cortisol levels, age, gender, time of collection, sunrise time, season and location were determined. RESULTS In 4 geographically separate populations (n = 84 937), sunrise time and time of sample collection were the most important factors influencing median cortisol. Over 2 hours in the morning cortisol could decrease by up to 76 nmol/L, and for each hour that sunrise time advanced there was up to 6.9% increase in cortisol. A cyclic seasonal pattern of cortisol was confirmed each year in all populations with autumn/winter cortisol highest compared to spring/summer with differences of up to 44 nmol/L. There was less change in cortisol in latitudes closer to the equator but cortisol progressively increased from 25 to 30°S of the equator. In more southerly latitudes, seasonal cortisol variation also increased, and over the entire latitude range, there was up to 50 nmol/L change in cortisol. Longitude variation within a time zone had a minimal effect on median cortisol. CONCLUSIONS Location, time of year and time of day are important influences on population cortisol levels. Elevated autumn/winter morning cortisol levels are likely due to sampling closer to the circadian peak due to later sunrise time. Understanding how the environment can influence cortisol levels may further our knowledge of physiology and disease.
Collapse
Affiliation(s)
- Narelle Hadlow
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Suzanne Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Robert Wardrop
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Johan Conradie
- Department of Biochemistry, Western Diagnostic Pathology, Myaree, Western Australia, Australia
| | - David Henley
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
23
|
Bae SA, Androulakis IP. Mathematical analysis of circadian disruption and metabolic re-entrainment of hepatic gluconeogenesis: the intertwining entraining roles of light and feeding. Am J Physiol Endocrinol Metab 2018; 314:E531-E542. [PMID: 29351477 PMCID: PMC6032066 DOI: 10.1152/ajpendo.00271.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian rhythms influence the metabolic activity from molecular level to tissue, organ, and host level. Disruption of the circadian rhythms manifests to the host's health as metabolic syndromes, including obesity, diabetes, and elevated plasma glucose, eventually leading to cardiovascular diseases. Therefore, it is imperative to understand the mechanism behind the relationship between circadian rhythms and metabolism. To start answering this question, we propose a semimechanistic mathematical model to study the effect of circadian disruption on hepatic gluconeogenesis in humans. Our model takes the light-dark cycle and feeding-fasting cycle as two environmental inputs that entrain the metabolic activity in the liver. The model was validated by comparison with data from mice and rat experimental studies. Formal sensitivity and uncertainty analyses were conducted to elaborate on the driving forces for hepatic gluconeogenesis. Furthermore, simulating the impact of Clock gene knockout suggests that modification to the local pathways tied most closely to the feeding-fasting rhythms may be the most efficient way to restore the disrupted glucose metabolism in liver.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey
- Biomedical Engineering Department, Rutgers University , Piscataway, New Jersey
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| |
Collapse
|
24
|
Pierre K, Rao RT, Hartmanshenn C, Androulakis IP. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle. Endocrinology 2018; 159:1808-1826. [PMID: 29444258 PMCID: PMC6044315 DOI: 10.1210/en.2017-03226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Synchronization of biological functions to environmental signals enables organisms to anticipate and appropriately respond to daily external fluctuations and is critical to the maintenance of homeostasis. Misalignment of circadian rhythms with environmental cues is associated with adverse health outcomes. Cortisol, the downstream effector of hypothalamic-pituitary-adrenal (HPA) activity, facilitates synchronization of peripheral biological processes to the environment. Cortisol levels exhibit substantial seasonal rhythmicity, with peak levels occurring during the short-photoperiod winter months and reduced levels occurring in the long-photoperiod summer season. Seasonal changes in cortisol secretion could therefore alter its entraining capabilities, resulting in a season-dependent modification in the alignment of biological activities with the environment. We develop a mathematical model to investigate the influence of photoperiod-induced seasonal differences in the circadian rhythmicity of the HPA axis on the synchronization of the peripheral circadian clock and cell cycle in a heterogeneous cell population. Model simulations predict that the high-amplitude cortisol rhythms in winter result in the greatest entrainment of peripheral oscillators. Furthermore, simulations predict a circadian gating of the cell cycle with respect to the expression of peripheral clock genes. Seasonal differences in cortisol rhythmicity are also predicted to influence mitotic synchrony, with a high-amplitude winter rhythm resulting in the greatest synchrony and a shift in timing of the cell cycle phases, relative to summer. Our results highlight the primary interactions among the HPA axis, the peripheral circadian clock, and the cell cycle and thereby provide an improved understanding of the implications of circadian misalignment on the synchronization of peripheral regulatory processes.
Collapse
Affiliation(s)
- Kamau Pierre
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
25
|
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258:236-243. [PMID: 28511899 DOI: 10.1016/j.ygcen.2017.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Bae SA, Acevedo A, Androulakis IP. Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems. Crit Rev Biomed Eng 2017; 44:193-211. [PMID: 28605352 DOI: 10.1615/critrevbiomedeng.2017019658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Alison Acevedo
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
27
|
Rao RT, Scherholz ML, Hartmanshenn C, Bae SA, Androulakis IP. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology. Comput Chem Eng 2017; 107:100-110. [PMID: 29353945 DOI: 10.1016/j.compchemeng.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.
Collapse
Affiliation(s)
- Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854.,Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
28
|
Pierre K, Schlesinger N, Androulakis IP. The Hepato-Hypothalamic-Pituitary-Adrenal-Renal Axis: Mathematical Modeling of Cortisol’s Production, Metabolism, and Seasonal Variation. J Biol Rhythms 2017; 32:469-484. [DOI: 10.1177/0748730417729929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cortisol dynamics are governed by the integration of influences from the suprachiasmatic nucleus (SCN), the hypothalamic-pituitary-adrenal (HPA) axis, and metabolic enzymes, such as the 11β–hydroxysteroid dehydrogenase (HSD) family, which are highly expressed in hepatic and renal tissue. The coordinated regulation of cortisol dynamics is essential for the maintenance of a healthy state, and aberrant cortisol circadian rhythms are associated with various pathophysiological conditions. The duration of the light-dark cycle, or photoperiod, which regulates SCN activity, varies seasonally, and the shorter photoperiod winter season is associated with elevated cortisol levels, peak inflammatory disease incidence, and symptom exacerbation. Elevated expression and activity of 11β-HSD1 protein, assumed to also occur during the winter, have been allied with numerous inflammatory conditions. A comprehensive understanding of the communication between the underlying regulatory mechanisms of cortisol as well as how changes in their activity could lead to the development of disease is yet to be elucidated. In this work, we propose the use of a semimechanistic mathematical model to explore the impact of the hepato-hypothalamic-pituitary-adrenal-renal axis in modulating neuroendocrine-immune system dynamics. Our model predicts the predominance of a winter proinflammatory state and that genetic variations could alter 11β-HSD enzyme functionality, rendering certain subpopulations more susceptible to disease as a consequence of HPA axis dysregulation.
Collapse
Affiliation(s)
- Kamau Pierre
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Naomi Schlesinger
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ioannis P. Androulakis
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
29
|
Bae SA, Androulakis IP. The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017702393. [PMID: 28469414 PMCID: PMC5404903 DOI: 10.1177/1177625017702393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.
Collapse
Affiliation(s)
- Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
30
|
Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP. Understanding Physiology in the Continuum: Integration of Information from Multiple - Omics Levels. Front Pharmacol 2017; 8:91. [PMID: 28289389 PMCID: PMC5327699 DOI: 10.3389/fphar.2017.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
In this paper, we discuss approaches for integrating biological information reflecting diverse physiologic levels. In particular, we explore statistical and model-based methods for integrating transcriptomic, proteomic and metabolomics data. Our case studies reflect responses to a systemic inflammatory stimulus and in response to an anti-inflammatory treatment. Our paper serves partly as a review of existing methods and partly as a means to demonstrate, using case studies related to human endotoxemia and response to methylprednisolone (MPL) treatment, how specific questions may require specific methods, thus emphasizing the non-uniqueness of the approaches. Finally, we explore novel ways for integrating -omics information with PKPD models, toward the development of more integrated pharmacology models.
Collapse
Affiliation(s)
- Kubra Kamisoglu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ, USA
| | - Richard R Almon
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Susette Coyle
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Siobhan Corbett
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Debra C Dubois
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway NJ, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, PiscatawayNJ, USA; Department of Chemical Engineering, Rutgers University, PiscatawayNJ, USA
| |
Collapse
|
31
|
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 2016; 43:481-504. [PMID: 27647273 DOI: 10.1007/s10928-016-9492-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry.
Collapse
Affiliation(s)
- Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Megerle Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA. .,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|