1
|
Civil R, Brook MS, Santos L, Varley I, Elliott-Sale KJ, Lensu S, Ahtiainen JP, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Atherton PJ, Sale C. The effects of endurance trainability phenotype, sex, and interval running training on bone collagen synthesis in adult rats. Bone 2024; 189:117257. [PMID: 39299627 DOI: 10.1016/j.bone.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training. Bone collagen proteins were isolated and hydrolysed, and fractional synthetic rates (FSRs) were determined by the incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. There was a significant large main effect of phenotype at the femur site (p < 0.001; η2g = 0.473) with HRT rats showing greater bone collagen FSRs than LRT rats. There was a significant large main effect of phenotype (p = 0.008; η2g = 0.178) and a significant large main effect of sex (p = 0.005; η2g = 0.196) at the proximal site of the tibia with HRT rats showing greater bone collagen FSRs than LRT rats, and male rats showing greater bone collagen FSRs compared to female rats. There was a significant large main effect of training at the mid-shaft site of the tibia (p = 0.012; η2g = 0.159), with rats that underwent interval running training having greater bone collagen FSRs than control rats. Similarly, there was a significant large main effect of training at the distal site of the tibia (p = 0.050; η2g = 0.156), with rats in the interval running training group having greater bone collagen FSRs compared to rats in the control group. Collectively, this evidence highlights that bone responses to physiological effects are site-specific, indicating that interval running training has positive effects on bone collagen synthesis at the tibial mid-shaft and distal sites, whilst genetic factors affect bone collagen synthesis at the femur diaphysis (phenotype) and proximal tibia (phenotype and sex) in rats.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew S Brook
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK.; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences at the University of Nottingham, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
2
|
Renwick JRM, Preobrazenski N, Wu Z, Khansari A, LeBouedec MA, Nuttall JMG, Bancroft KR, Simpson-Stairs N, Swinton PA, Gurd BJ. Standard Deviation of Individual Response for VO 2max Following Exercise Interventions: A Systematic Review and Meta-analysis. Sports Med 2024:10.1007/s40279-024-02089-y. [PMID: 39160296 DOI: 10.1007/s40279-024-02089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Although numerous attempts to demonstrate inter-individual differences in trainability across various outcomes have been unsuccessful, the investigation of maximal oxygen consumption (VO2max) trainability warrants further study. OBJECTIVE Our objective was to conduct the first systematic review and meta-analysis to evaluate inter-individual differences in VO2max trainability across aerobic exercise training protocols utilizing non-exercising comparator groups. METHODS We conducted a literature search across three databases: EMBASE, PubMed and SCOPUS. The search strategy incorporated two main concepts: aerobic exercise training and VO2max. Studies were included if they used human participants, employed standardized and supervised exercise training, reported absolute or relative VO2max, included a non-exercise comparator group, reported VO2max change scores for non-exercise and exercise groups and provided the standard deviation (SD) of change for all groups. We calculated the SD of individual response (SDIR) to estimate the presence of inter-individual differences in trainability across all studies. RESULTS The literature search generated 32,968 studies, 24 of which were included in the final analysis. Our findings indicated that (1) the majority of variation in observed change scores following an intervention is due to measurement error, (2) calculating SDIR within a single study would not yield sufficient accuracy of SDIR due to generally small sample sizes and (3) meta-analysis of SD IR 2 across studies does not provide strong evidence for a positive value. CONCLUSION Overall, our meta-analysis demonstrated that there is not strong evidence supporting the existence of VO2max trainability across single interventions. As such, it appears unlikely that clinically relevant predictors of VO2max response will be discovered. Registration can be found online ( https://doi.org/10.17605/OSF.IO/X9VU3 ).
Collapse
Affiliation(s)
- John R M Renwick
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zeyu Wu
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ava Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matisse A LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jared M G Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kyra R Bancroft
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nia Simpson-Stairs
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QE, UK
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Soares RN, Lessard SJ. Low Response to Aerobic Training in Metabolic Disease: Role of Skeletal Muscle. Exerc Sport Sci Rev 2024; 52:47-53. [PMID: 38112622 PMCID: PMC10963145 DOI: 10.1249/jes.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aerobic exercise is established to increase cardiorespiratory fitness (CRF), which is linked to reduced morbidity and mortality. However, people with metabolic diseases such as type 1 and type 2 diabetes may be more likely to display blunted improvements in CRF with training. Here, we present evidence supporting the hypothesis that altered skeletal muscle signaling and remodeling may contribute to low CRF with metabolic disease.
Collapse
|
4
|
MacDonald TL, Pattamaprapanont P, Cooney EM, Nava RC, Mitri J, Hafida S, Lessard SJ. Canagliflozin Prevents Hyperglycemia-Associated Muscle Extracellular Matrix Accumulation and Improves the Adaptive Response to Aerobic Exercise. Diabetes 2022; 71:881-893. [PMID: 35108373 PMCID: PMC9044131 DOI: 10.2337/db21-0934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 02/03/2023]
Abstract
Chronic hyperglycemia is associated with low response to aerobic exercise training in rodent models and humans, including reduced aerobic exercise capacity and impaired oxidative remodeling in skeletal muscle. Here, we investigated whether glucose lowering with the sodium-glucose cotransporter 2 inhibitor (SGLT2i), canagliflozin (Cana; 30 mg/kg/day), could restore exercise training response in a model of hyperglycemia (low-dose streptozotocin [STZ]). Cana effectively prevented increased blood glucose in STZ-treated mice. After 6 weeks of voluntary wheel running, Cana-treated mice displayed improvements in aerobic exercise capacity, higher capillary density in striated muscle, and a more oxidative fiber-type in skeletal muscle. In contrast, these responses were blunted or absent in STZ-treated mice. Recent work implicates glucose-induced accumulation of skeletal muscle extracellular matrix (ECM) and hyperactivation of c-Jun N-terminal kinase (JNK)/SMAD2 mechanical signaling as potential mechanisms underlying poor exercise response. In line with this, muscle ECM accretion was prevented by Cana in STZ-treated mice. JNK/SMAD2 signaling with acute exercise was twofold higher in STZ compared with control but was normalized by Cana. In human participants, ECM accumulation was associated with increased JNK signaling, low VO2peak, and impaired metabolic health (oral glucose tolerance test-derived insulin sensitivity). These data demonstrate that hyperglycemia-associated impairments in exercise adaptation can be ameliorated by cotherapy with SGLT2i.
Collapse
Affiliation(s)
- Tara L. MacDonald
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | - Roberto C. Nava
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Joanna Mitri
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Samar Hafida
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sarah J. Lessard
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
- Corresponding author: Sarah J. Lessard,
| |
Collapse
|
5
|
Abstract
Trainability is an adaptive response to given exercise loads and must be localized to the targeted physiological function since exercise-induced acute and chronic adaptations are systemic. Lack of adaptation or moderate level of adaptation in one organ or one physiological function would not mean that other organs or functions would not benefit from exercise training. The most beneficial training load could easily be different for skeletal muscle, brain, the gastro-intestinal track, or the immune systems. Hence, the term of non-responders should be used with caution and just referred to a given organ, cell type, molecular signaling, or function. The present paper aims to highlight some, certainly not all, issues on trainability especially related to muscle and cardiovascular system. The specificity of trainability and the systemic nature of exercise-induced adaptation are discussed, and the paper aims to provide suggestions on how to improve performance when faced with non-responders.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- *Correspondence: Zsolt Radak,
| | - Albert W. Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Effect of short-term hindlimb immobilization on skeletal muscle atrophy and the transcriptome in a low compared with high responder to endurance training model. PLoS One 2022; 17:e0261723. [PMID: 35025912 PMCID: PMC8757917 DOI: 10.1371/journal.pone.0261723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.
Collapse
|
7
|
Civil R, Brook MS, Elliott-Sale KJ, Santos L, Varley I, Lensu S, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Sale C, Atherton PJ. A collagen extraction and deuterium oxide stable isotope tracer method for the quantification of bone collagen synthesis rates in vivo. Physiol Rep 2021; 9:e14799. [PMID: 34042295 PMCID: PMC8157767 DOI: 10.14814/phy2.14799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Abstract
The development of safe and practical strategies to prevent weakening of bone tissue is vital, yet attempts to achieve this have been hindered by a lack of understanding of the short-term (days-weeks) physiology of bone collagen turnover. To address this, we have developed a method to quantify bone collagen synthesis in vivo, using deuterium oxide (D2 O) tracer incorporation techniques combined with gas chromatography pyrolysis isotope-ratio mass spectrometry (GC-pyrolysis-IRMS). Forty-six male and female rats from a selectively bred model ingested D2 O for 3 weeks. Femur diaphyses (FEM), tibia proximal (T-PRO), and distal (T-DIS) epiphyses-metaphyses and tibia mid-shaft diaphyses (T-MID) were obtained from all rats after necropsy. After demineralisation, collagen proteins were isolated and hydrolysed and collagen fractional synthetic rates (FSRs) determined by incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. The collagen FSR for the FEM (0.131 ± 0.078%/day; 95% CI [0.106-0.156]) was greater than the FSR at T-MID (0.055 ± 0.049%/day; 95% CI [0.040-0.070]; p < 0.001). The T-PRO site had the highest FSR (0.203 ± 0.123%/day; 95% CI [0.166-0.241]) and T-DIS the lowest (0.027 ± 0.015%/day; 95% CI [0.022-0.031]). The three tibial sites exhibited different FSRs (p < 0.001). Herein, we have developed a sensitive method to quantify in vivo bone collagen synthesis and identified site-specific rates of synthesis, which could be applicable to studies of human bone collagen turnover.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Matthew S Brook
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kenneth Smith
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
8
|
Exploring Differences in Cardiorespiratory Fitness Response Rates Across Varying Doses of Exercise Training: A Retrospective Analysis of Eight Randomized Controlled Trials. Sports Med 2021; 51:1785-1797. [PMID: 33704698 DOI: 10.1007/s40279-021-01442-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study tested the hypothesis that greater mean changes in cardiorespiratory fitness (CRF), in either the absence or presence of reduced interindividual variability, explain larger CRF response rates following higher doses of exercise training. METHODS We retrospectively analyzed CRF data from eight randomized controlled trials (RCT; n = 1590 participants) that compared at least two doses of exercise training. CRF response rates were calculated as the proportion of participants with individual confidence intervals (CIs) placed around their observed response that lay above 0.5 metabolic equivalents (MET). CIs were calculated using no-exercise control group-derived typical errors and were placed around each individual's observed CRF response (post minus pre-training CRF). CRF response rates, mean changes, and interindividual variability were compared across exercise groups within each RCT. RESULTS Compared with lower doses, higher doses of exercise training yielded larger CRF response rates in eight comparisons. For most of these comparisons (7/8), the higher dose of exercise training had a larger mean change in CRF but similar interindividual variability. Exercise groups with similar CRF response rates also had similar mean changes. CONCLUSION Our findings demonstrate that larger CRF response rates following higher doses of exercise training are attributable to larger mean changes rather than reduced interindividual variability. Following a given dose of exercise training, the proportion of individuals expected to improve their CRF beyond 0.5 METs is unrelated to the heterogeneity of individual responses.
Collapse
|
9
|
Vanderheyden WM, Kehoe M, Vanini G, Britton SL, Koch LG. Rat models for low and high adaptive response to exercise differ for stress-related memory and anxiety. Physiol Rep 2021; 9:e14716. [PMID: 33619911 PMCID: PMC7900769 DOI: 10.14814/phy2.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Physical exercise and fitness may serve as resilience factors to stress exposure. However, the extreme range in human exercise performance suggests that genetic variation for exercise capacity could be a confounding feature to understanding the connection between exercise and stress exposure. To test this idea, we use laboratory rat models selectively bred for a low and high gain in aerobic running capacity in response to training to examine whether an inherent capacity to respond to physical exercise reflects how stress changes neurobiological functioning and regulates fear-associated memory processing. Utilization of this contrasting rat model system of low and high responders has the potential to guide the interpretation of the reported association with exercise involvement and the reduction of stress-induced anxiety disorders. Our data show that aerobic fitness may be linked to the ability to regulate fear-associated memories. We also show that acquired exercise capacity may play a key role in regulating responses to an acute stressor. Exercise sensitivity plays a significant role in the activation of the plasticity-associated molecule extracellular signal-regulated kinase, changes in stress hormone activity, and anatomical modifications to the noradrenergic locus coeruleus. These data identify a unique operational mechanism that may serve as translational targets for lessening symptoms of stress and anxiety.
Collapse
Affiliation(s)
| | - Michaela Kehoe
- Department of AnesthesiologyUniversity of MichiganAnn ArborMIUSA
| | - Giancarlo Vanini
- Department of AnesthesiologyUniversity of MichiganAnn ArborMIUSA
| | - Steven L. Britton
- Department of AnesthesiologyUniversity of MichiganAnn ArborMIUSA
- Department of Physiology and PharmacologyThe University of Toledo College of Medicine and Life SciencesToledoOHUSA
| | - Lauren Gerard Koch
- Department of Physiology and PharmacologyThe University of Toledo College of Medicine and Life SciencesToledoOHUSA
| |
Collapse
|
10
|
Hesketh SJ, Stansfield BN, Stead CA, Burniston JG. The application of proteomics in muscle exercise physiology. Expert Rev Proteomics 2021; 17:813-825. [PMID: 33470862 DOI: 10.1080/14789450.2020.1879647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. AREAS COVERED 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. EXPERT OPINION Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Ben N Stansfield
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| |
Collapse
|
11
|
West DWD, Doering TM, Thompson JLM, Budiono BP, Lessard SJ, Koch LG, Britton SL, Steck R, Byrne NM, Brown MA, Peake JM, Ashton KJ, Coffey VG. Low responders to endurance training exhibit impaired hypertrophy and divergent biological process responses in rat skeletal muscle. Exp Physiol 2021; 106:714-725. [PMID: 33486778 DOI: 10.1113/ep089301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.
Collapse
Affiliation(s)
- Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Thomas M Doering
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Jamie-Lee M Thompson
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Boris P Budiono
- School of Community Health, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nuala M Byrne
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK
| | - Jonathan M Peake
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Vernon G Coffey
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
Farrash WF, Phillips BE, Britton SL, Qi N, Koch LG, Wilkinson DJ, Smith K, Atherton PJ. Myokine Responses to Exercise in a Rat Model of Low/High Adaptive Potential. Front Endocrinol (Lausanne) 2021; 12:645881. [PMID: 34177798 PMCID: PMC8220071 DOI: 10.3389/fendo.2021.645881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Assuming myokines underlie some of the health benefits of exercise, we hypothesised that 'high responder trainer' (HRT) rats would exhibit distinct myokine profiles to 'low responder trainers' (LRT), reflecting distinct health and adaptive traits. METHODS Blood was collected from LRT and HRT (N=8) rats at baseline (BL), immediately (0h), 1h, and 3h after running; repeated after 3-wks training. Myokines were analysed by ELISA (i.e. BDNF/Fractalkine/SPARC/Irisin/FGF21/Musclin/IL-6). RESULTS At baseline, Musclin (LRT: 84 ± 24 vs HRT: 26 ± 3 pg/ml, P=0.05) and FGF21 (LRT: 133 ± 34 vs HRT: 63.5 ± 13 pg/ml, P=0.08) were higher in LRT than HRT. Training increased Musclin in HRT (26 ± 3 to 54 ± 9 pg/ml, P<0.05) and decreased FGF21 in LRT (133 ± 34 to 60 ± 28 pg/ml, P<0.05). Training increased SPARC (LRT: 0.8 ± 0.1 to 2.1 ± 0.6 ng/ml, P<0.05; HRT: 0.7 ± 0.06 to 1.8 ± 0.3 ng/ml, P=0.06) and Irisin (LRT 0.62 ± 0.1 to 2.6 ± 0.4 ng/ml, P<0.01; HRT 0.53 ± 0.1 to 2.8 ± 0.7 ng/ml, P<0.01) while decreasing BDNF (LRT: 2747 ± 293 to 1081 ± 330 pg/ml, P<0.01; HRT: 1976 ± 328 to 797 ± 160 pg/ml, P<0.05). Acute exercise response of Musclin (AUC) was higher in LRT vs HRT (306 ± 74 vs. 88 ± 12 pg/ml×3h-1, P<0.01) and elevated in HRT after training (221 ± 31 pg/ml×3h-1, P<0.01). Training elevated SPARC (LRT: 2.4 ± 0.1 to 7.7 ± 1.3 ng/ml×3h-1, P<0.05; HRT: 2.5 ± 0.13 to 11.2 ± 2.2 ng/ml×3h-1, P<0.001) and Irisin (LRT: 1.34 ± 0.3 to 9.6 ± 1.7 ng/ml×3h-1, P<0.001; HRT: 1.5 ± 0.5 to 12.1 ± 1.9 ng/ml×3h-1, P<0.0001). CONCLUSION Exercise training alters how myokines are secreted in response to acute exercise. Myokine responses were not robustly linked to adaptive potential in aerobic capacity, making them an unlikely regulator of adaptive traits.
Collapse
Affiliation(s)
- Wesam F. Farrash
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Derby, United Kingdom
- Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bethan E. Phillips
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Derby, United Kingdom
- National Institution for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Nathan Qi
- Department of Molecular and integrative physiology, University of Michigan, Ann Arbor, MI, United States
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Daniel J. Wilkinson
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Derby, United Kingdom
- National Institution for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Ken Smith
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Derby, United Kingdom
- National Institution for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Derby, United Kingdom
- National Institution for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
- *Correspondence: Philip J. Atherton,
| |
Collapse
|
13
|
Smyers ME, Koch LG, Britton SL, Wagner JG, Novak CM. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats. Physiol Behav 2020; 230:113280. [PMID: 33285179 DOI: 10.1016/j.physbeh.2020.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intermittent fasting (IF) strategies have emerged as viable alternatives to traditional calorie-restricted diets. A key predictor of metabolic health and response to diet is cardiometabolic fitness, including intrinsic aerobic capacity. In a contrasting rat model of aerobic capacity-high- and low-capacity runners (HCR, LCR)-we found that the lean and physically active HCR were also more responsive to a standard calorie-restricted diet. Here, we assessed the ability of IF to induce weight loss on a background of high and low aerobic fitness accompanied by different levels of daily physical activity. METHODS Female HCR and LCR (8 per line) were subjected to IF (alternate-day fasting) for 14 weeks. Outcomes included changes in body weight, fat and lean mass, daily physical activity, and food and water intake. After initial measurements, IF was continued, and measurements were repeated after one year of IF. RESULTS All rats lost weight with IF, and LCR lost significantly more weight than HCR. This difference was primarily due to differential fat loss; loss of lean mass, on the other hand, was similar between HCR and LCR. Total food intake decreased with IF, and LCR showed lower intake than HCR only during the first 5 weeks of IF. Physical activity was suppressed by long-term IF. Physical activity increased on fed days compared to fasted days, and this pattern was more pronounced in HCR. The differential effects of IF in HCR and LCR persisted after one year of IF, with IF preventing the marked weight gain seen in ad libitum fed LCR during this time. CONCLUSION Weight and fat loss from IF was more pronounced in obesity-prone, low-aerobic capacity LCR, despite the low activity levels seen in these rats. The possibility that aerobic capacity modulates response to IF in human participants remains unexplored.
Collapse
Affiliation(s)
- Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States.
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614-2598, United States.
| | - Steven L Britton
- Department of Anesthesiology, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, United States.
| | - Jacob G Wagner
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States; Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
14
|
MacDonald TL, Pattamaprapanont P, Pathak P, Fernandez N, Freitas EC, Hafida S, Mitri J, Britton SL, Koch LG, Lessard SJ. Hyperglycaemia is associated with impaired muscle signalling and aerobic adaptation to exercise. Nat Metab 2020; 2:902-917. [PMID: 32694831 PMCID: PMC8278496 DOI: 10.1038/s42255-020-0240-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Increased aerobic exercise capacity, as a result of exercise training, has important health benefits. However, some individuals are resistant to improvements in exercise capacity, probably due to undetermined genetic and environmental factors. Here, we show that exercise-induced improvements in aerobic capacity are blunted and aerobic remodelling of skeletal muscle is impaired in several animal models associated with chronic hyperglycaemia. Our data point to chronic hyperglycaemia as a potential negative regulator of aerobic adaptation, in part, via glucose-mediated modifications of the extracellular matrix, impaired vascularization and aberrant mechanical signalling in muscle. We also observe low exercise capacity and enhanced c-Jun N-terminal kinase activation in response to exercise in humans with impaired glucose tolerance. Our work indicates that current shifts in dietary and metabolic health, associated with increasing incidence of hyperglycaemia, might impair muscular and organismal adaptations to exercise training, including aerobic capacity as one of its key health outcomes.
Collapse
Affiliation(s)
- Tara L MacDonald
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pattarawan Pattamaprapanont
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Prerana Pathak
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | | | - Ellen C Freitas
- School of Physical Education and Sport, University of São Paulo, Ribeirão Preto, Brazil
| | - Samar Hafida
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joanna Mitri
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Bouchard C. DNA Sequence Variations Contribute to Variability in Fitness and Trainability. Med Sci Sports Exerc 2020; 51:1781-1785. [PMID: 31305368 DOI: 10.1249/mss.0000000000001976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
16
|
Kelahmetoglu Y, Jannig PR, Cervenka I, Koch LG, Britton SL, Zhou J, Wang H, Robinson MM, Nair KS, Ruas JL. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats. Front Endocrinol (Lausanne) 2020; 11:591476. [PMID: 33193103 PMCID: PMC7649134 DOI: 10.3389/fendo.2020.591476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Increasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization. Conversely, the low capacity muscle transcriptome indicated immune response and metabolic dysfunction. Low response to training was associated with an inflammatory signature and revealed a potential link to circadian rhythm. Next, we applied bioinformatics tools to predict potential secreted factors (myokines). The predicted secretome profile for exercise capacity highlighted circulatory factors involved in lipid metabolism and the exercise response secretome was associated with extracellular matrix remodelling. Lastly, we utilized human muscle mitochondrial respiration and transcriptomics data to explore molecular mediators of exercise capacity and response across species. Human transcriptome comparison highlighted epigenetic mechanisms linked to exercise capacity and the damage repair for response. Overall, our findings from this cross-species transcriptome analysis of exercise capacity and response establish a foundation for future studies on the mechanisms that link exercise and health.
Collapse
Affiliation(s)
- Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiajia Zhou
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - K Sreekumaran Nair
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
- *Correspondence: Jorge L. Ruas,
| |
Collapse
|
17
|
Kusić D, Connolly J, Kainulainen H, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Ahmetov II, Britton SL, Koch LG, Burniston JG. Striated muscle-specific serine/threonine-protein kinase beta segregates with high versus low responsiveness to endurance exercise training. Physiol Genomics 2019; 52:35-46. [PMID: 31790338 DOI: 10.1152/physiolgenomics.00103.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bidirectional selection for either high or low responsiveness to endurance running has created divergent rat phenotypes of high-response trainers (HRT) and low-response trainers (LRT). We conducted proteome profiling of HRT and LRT gastrocnemius of 10 female rats (body weight 279 ± 35 g; n = 5 LRT and n = 5 HRT) from generation 8 of selection. Differential analysis of soluble proteins from gastrocnemius was conducted by label-free quantitation. Genetic association studies were conducted in 384 Russian international-level athletes (age 23.8 ± 3.4 yr; 202 men and 182 women) stratified to endurance or power disciplines. Proteomic analysis encompassed 1,024 proteins, 76 of which exhibited statistically significant (P < 0.05, false discovery rate <1%) differences between HRT and LRT muscle. There was significant enrichment of enzymes involved in glycolysis/gluconeogenesis in LRT muscle but no enrichment of gene ontology phrases in HRT muscle. Striated muscle-specific serine/threonine-protein kinase-beta (SPEG-β) exhibited the greatest difference in abundance and was 2.64-fold greater (P = 0.0014) in HRT muscle. Coimmunoprecipitation identified 24 potential binding partners of SPEG-β in HRT muscle. The frequency of the G variant of the rs7564856 polymorphism that increases SPEG gene expression was significantly greater (32.9 vs. 23.8%; OR = 1.6, P = 0.009) in international-level endurance athletes (n = 258) compared with power athletes (n = 126) and was significantly associated (β = 8.345, P = 0.0048) with a greater proportion of slow-twitch fibers in vastus lateralis of female endurance athletes. Coimmunoprecipitation of SPEG-β in HRT muscle discovered putative interacting proteins that link with previously reported differences in transforming growth factor-β signaling in exercised muscle.
Collapse
Affiliation(s)
- Denis Kusić
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Steven L Britton
- Department of Anaesthesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, Ohio
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
18
|
Brown LA, Judge JL, Macpherson PC, Koch LG, Qi NR, Britton SL, Brooks SV. Denervation and senescence markers data from old rats with intrinsic differences in responsiveness to aerobic training. Data Brief 2019; 27:104570. [PMID: 31687430 PMCID: PMC6820082 DOI: 10.1016/j.dib.2019.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The data described below is related to the manuscript “Late life maintenance and enhancement of functional exercise capacity in low and high responding rats after low intensity treadmill training” [1]. Rodents exhibit age-related declines in skeletal muscle function that is associated with muscle denervation and cellular senescence. Exercise training is a proven method to delay or even reverse some aging phenotypes, thus improving healthspan in the elderly. The beneficial effects of exercise to preserve muscle may be reliant on an individual's innate ability to adapt to aerobic training. To examine this question, we assessed aged rats that were selectively bred to be either minimally or highly responsive to aerobic exercise training. We specifically asked whether mild treadmill training initiated late in life would be beneficial to preserve muscle function in high response and low response trainer rats. We examined gene expression data on markers of denervation and senescence. We also evaluated measures of aerobic training and neuromuscular muscle function through work capacity, contractile properties, and endplate fragmentation for further analysis of the aging phenotype in older rodents.
Collapse
Affiliation(s)
- Lemuel A Brown
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer L Judge
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
20
|
Investigating the reproducibility of maximal oxygen uptake responses to high-intensity interval training. J Sci Med Sport 2019; 23:94-99. [PMID: 31606316 DOI: 10.1016/j.jsams.2019.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To test the hypothesis that observed maximal oxygen uptake (VO2max) and time to fatigue (TTF) responses to two identical periods of standardized high-intensity interval training are reproducible. DESIGN Fourteen recreationally active and healthy young males completed two identical four-week periods of high-intensity interval training (4×4-min intervals at 90-95% maximum heart rate [HRmax] separated by 3-min periods of active recovery at 70-75% HRmax). Training periods were separated by a three-month washout period. METHODS VO2max and TTF were assessed via incremental tests with supramaximal verification before and after each training period. Pearson correlation coefficients (r), intraclass correlation coefficients (ICC), and within-subjects coefficients of variation (CV) were used to assess reproducibility of observed VO2max and TTF responses. RESULTS VO2max and TTF values before the second training period were not significantly higher than baseline values and there were no significant (p>0.05) interaction effects (period 1: VO2max: +4.04±2.29mL/kg/min, TTF: +70.75±35.87s; period 2: VO2max: +2.83±2.74mL/kg/min, TTF: +83.46±34.55s). We found very weak-to-moderate correlations and poor reproducibility for observed VO2max (mL/kg/min: r=0.40, ICC=0.369, CV=74.4) and TTF (r=0.11. ICC=0.048, CV=45.6) responses to training periods 1 and 2. CONCLUSIONS Our ANOVA results confirmed that the three-month washout period returned VO2max and TTF levels to baseline and prevented carryover effects. Contrary to our hypothesis, our results suggest that individual observed VO2max and TTF responses to identical training stimuli are not reproducible.
Collapse
|
21
|
Brown LA, Macpherson PC, Koch LG, Qi NR, Britton SL, Brooks SV. Late life maintenance and enhancement of functional exercise capacity in low and high responding rats after low intensity treadmill training. Exp Gerontol 2019; 125:110657. [PMID: 31306740 DOI: 10.1016/j.exger.2019.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
Intrinsic exercise capacity is predictive of both lifespan and healthspan but whether adaptive exercise capacity influences the benefits achieved from aerobic training implemented later in life is not known. AIM To determine if exercise late in life provides any functional improvements or underlying beneficial biochemical adaptations in rats bred to have a high response to training (HRT rats) or little to no response to training (LRT rats). METHODS Adult (11 months) and old (22 months) female LRT and HRT rats either remained sedentary (SED) or were exercised (EXER) on a treadmill 2-3 times/week at 60% of their initial maximum running speed and distance for 4 months. At 26 months of age, exercise capacity was re-evaluated and extensor digitorum longus, gastrocnemius (GTN), and tibialis anterior (TA) muscles were excised for histological and biochemical analysis. RESULTS Both SED-HRT and SED-LRT rats showed decreased exercise capacity from 22 to 26 months, but with 4 months of treadmill training, EXER-HRT rats displayed a 50% improvement in exercise capacity while EXER-LRT rats maintained pre-training levels. Protein levels of antioxidant enzymes PRDX3, CuZnSOD, and PRXV were 6-fold greater in TA muscles of aged HRT rats compared to LRT rats. PGC-1α protein levels were ~2-fold greater in GTN and TA muscles of aged HRT than in LRT rats and TFAM protein was similarly elevated in GTN muscles of aged HRT rats compared with LRT rats. BNIP3 protein levels were 5-fold greater in TA muscles of aged HRT than in LRT rats while PINK1 protein content was reduced by 78% in GTN muscles of aged HRT rats compared with LRT rats. CONCLUSION HRT rats retained the ability to improve exercise capacity into late life and that ability was associated with inherent and adaptive changes in antioxidant enzyme levels and markers of and mitochondrial quality related to healthspan benefits in aging. Moreover, low intensity exercise prevented the age-associated decline in functional exercise capacity in LRT rats.
Collapse
Affiliation(s)
- Lemuel A Brown
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, United States of America
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
22
|
Ross R, Goodpaster BH, Koch LG, Sarzynski MA, Kohrt WM, Johannsen NM, Skinner JS, Castro A, Irving BA, Noland RC, Sparks LM, Spielmann G, Day AG, Pitsch W, Hopkins WG, Bouchard C. Precision exercise medicine: understanding exercise response variability. Br J Sports Med 2019; 53:1141-1153. [PMID: 30862704 PMCID: PMC6818669 DOI: 10.1136/bjsports-2018-100328] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/14/2022]
Abstract
There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability. In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels—a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability.
Collapse
Affiliation(s)
- Robert Ross
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neil M Johannsen
- Interventional Resources, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.,School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - James S Skinner
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | - Alex Castro
- Department of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- John S Mcilhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Andrew G Day
- Kingston General Health Research Institute, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Werner Pitsch
- Economics and Sociology of Sport, Saarland University, Saarbrücken, Saarland, Germany
| | - William G Hopkins
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
23
|
Abstract
Variation in exercise capacity is a translationally powerful indicator for overall health and disease. Here we review the basic methods used for development of theoretically based and hypothesis-driven rat models that divide for both exercise capacity and numerous complex disease risks This rat model system was made by selectively breeding genetically heterogeneous rat populations for low and high performance on a speed ramped treadmill running test.
Collapse
Affiliation(s)
- Lauren Gerard Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA.
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Ahtiainen JP, Lensu S, Ruotsalainen I, Schumann M, Ihalainen JK, Fachada V, Mendias CL, Brook MS, Smith K, Atherton PJ, Koch LG, Britton SL, Kainulainen H. Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training. Exp Physiol 2018; 103:1513-1523. [PMID: 30184287 DOI: 10.1113/ep087144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can phenotypic traits associated with low response to one mode of training be extrapolated to other exercise-inducible phenotypes? The present study investigated whether rats that are low responders to endurance training are also low responders to resistance training. What is the main finding and its importance? After resistance training, rats that are high responders to aerobic exercise training improved more in maximal strength compared with low-responder rats. However, the greater gain in strength in high-responder rats was not accompanied by muscle hypertrophy, suggesting that the responses observed could be mainly neural in origin. ABSTRACT The purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co-segregate for differences in muscle adaptations to ladder-climbing resistance training. Five high-responder (HRT) and five low-responder (LRT) rats completed the resistance training, while six HRT and six LRT rats served as sedentary control animals. Before and after the 6 week intervention, body composition was determined by dual energy X-ray absorptiometry. Before tissue harvesting, the right triceps surae muscles were loaded by electrical stimulation. Muscle fibre cross-sectional areas, nuclei per cell, phosphorylation status of selected signalling proteins of mTOR and Smad pathways, and muscle protein, DNA and RNA concentrations were determined for the right gastrocnemius muscle. The daily protein synthesis rate was determined by the deuterium oxide method from the left quadriceps femoris muscle. Tissue weights of fore- and hindlimb muscles were measured. In response to resistance training, maximal carrying capacity was greater in HRT (∼3.3 times body mass) than LRT (∼2.5 times body mass), indicating greater improvements of strength in HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT was not observed. Furthermore, noteworthy changes within the experimental groups or differences between groups were not observed in the present measures. The lack of hypertrophic muscular adaptations despite considerable increases in muscular strength suggest that adaptations to the present ladder-climbing training in HRT and LRT rats were largely induced by neural adaptations.
Collapse
Affiliation(s)
- Juha P Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Moritz Schumann
- German Sport University, Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, Cologne, Germany
| | - Johanna K Ihalainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vasco Fachada
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Matthew S Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Heikki Kainulainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Lessard SJ, MacDonald TL, Pathak P, Han MS, Coffey VG, Edge J, Rivas DA, Hirshman MF, Davis RJ, Goodyear LJ. JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat Commun 2018; 9:3030. [PMID: 30072727 PMCID: PMC6072737 DOI: 10.1038/s41467-018-05439-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/06/2018] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has a remarkable plasticity to adapt and remodel in response to environmental cues, such as physical exercise. Endurance exercise stimulates improvements in muscle oxidative capacity, while resistance exercise induces muscle growth. Here we show that the c-Jun N-terminal kinase (JNK) is a molecular switch that when active, stimulates muscle fibers to grow, resulting in increased muscle mass. Conversely, when muscle JNK activation is suppressed, an alternative remodeling program is initiated, resulting in smaller, more oxidative muscle fibers, and enhanced aerobic fitness. When muscle is exposed to mechanical stress, JNK initiates muscle growth via phosphorylation of the transcription factor, SMAD2, at specific linker region residues leading to inhibition of the growth suppressor, myostatin. In human skeletal muscle, this JNK/SMAD signaling axis is activated by resistance exercise, but not endurance exercise. We conclude that JNK acts as a key mediator of muscle remodeling during exercise via regulation of myostatin/SMAD signaling.
Collapse
Affiliation(s)
- Sarah J Lessard
- Research Division, Joslin Diabetes Center, Boston, 02215, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02215, MA, USA.
| | - Tara L MacDonald
- Research Division, Joslin Diabetes Center, Boston, 02215, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02215, MA, USA
| | - Prerana Pathak
- Research Division, Joslin Diabetes Center, Boston, 02215, MA, USA
| | - Myoung Sook Han
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Vernon G Coffey
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, 4226, QLD, Australia
- School of Medical Science, RMIT University, Melbourne, 3000, Australia
| | - Johann Edge
- Massey University, Palmerston North, 4442, New Zealand
| | - Donato A Rivas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, 02111, MA, USA
| | | | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 01605, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center, Boston, 02215, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02215, MA, USA
| |
Collapse
|
26
|
Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029769. [PMID: 28490537 DOI: 10.1101/cshperspect.a029769] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The capacity for human exercise performance can be enhanced with prolonged exercise training, whether it is endurance- or strength-based. The ability to adapt through exercise training allows individuals to perform at the height of their sporting event and/or maintain peak physical condition throughout the life span. Our continued drive to understand how to prescribe exercise to maximize health and/or performance outcomes means that our knowledge of the adaptations that occur as a result of exercise continues to evolve. This review will focus on current and new insights into endurance and strength-training adaptations and will highlight important questions that remain as far as how we adapt to training.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| | - Stian Ellefsen
- Section of Sports Sciences, Lillehammer University College, 2604 Lillehammer, Norway.,Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| |
Collapse
|
27
|
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29:48-62. [PMID: 29356897 PMCID: PMC5851699 DOI: 10.1007/s00335-017-9732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.
Collapse
Affiliation(s)
- Heather L Vellers
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Koch LG, Britton SL. Theoretical and Biological Evaluation of the Link between Low Exercise Capacity and Disease Risk. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029868. [PMID: 28389512 DOI: 10.1101/cshperspect.a029868] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large-scale epidemiological studies show that low exercise capacity is the highest risk factor for all-cause morbidity and mortality relative to other conditions including diabetes, hypertension, and obesity. This led us to formulate the energy transfer hypothesis (ETH): Variation in capacity for energy transfer is the central mechanistic determinant of the divide between disease and health. As a test of this hypothesis, we predicted that two-way selective breeding of genetically heterogeneous rats for low and high intrinsic treadmill running capacity (a surrogate for energy transfer) would also produce rats that differ for disease risks. The lines are termed low-capacity runners (LCRs) and high-capacity runners (HCRs) and, after 36 generations of selection, they differ by more than eightfold in running capacity. Consistent with the ETH, the LCRs score high for developing disease risks, including metabolic syndrome, neurodegeneration, cognitive impairment, fatty liver disease, susceptibility to cancer, and reduced longevity. The HCRs are resistant to the development of these disease risks. Here we synthesize ideas on nonequilibrium thermodynamics and evolution from Ilya Prigogine, Hans Krebs, and Peter Mitchell to formulate theoretic explanations for the ETH. First, at every moment in time, the atoms and molecules of organisms are reorganizing to pursue avenues for energy transfer. Second, this continuous organization is navigating in a constantly changing environment such that "strategies" are perpetually in flux and do not leave a simple footprint (evolution). Third, as a consequence, human populations demonstrate a wide variation in capacity for energy transfer that mirrors mechanistically the divide between disease and health.
Collapse
Affiliation(s)
- Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| |
Collapse
|
29
|
Brook MS, Wilkinson DJ, Mitchell WK, Lund JL, Phillips BE, Szewczyk NJ, Kainulainen H, Lensu S, Koch LG, Britton SL, Greenhaff PL, Smith K, Atherton PJ. A novel D 2O tracer method to quantify RNA turnover as a biomarker of de novo ribosomal biogenesis, in vitro, in animal models, and in human skeletal muscle. Am J Physiol Endocrinol Metab 2017; 313:E681-E689. [PMID: 28811296 PMCID: PMC5814597 DOI: 10.1152/ajpendo.00157.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
Abstract
Current methods to quantify in vivo RNA dynamics are limited. Here, we developed a novel stable isotope (D2O) methodology to quantify RNA synthesis (i.e., ribosomal biogenesis) in cells, animal models, and humans. First, proliferating C2C12 cells were incubated in D2O-enriched media and myotubes ±50 ng/ml IGF-I. Second, rat quadriceps (untrained, n = 9; 7-wk interval-"like" training, n = 13) were collected after ~3-wk D2O (70 atom %) administration, with body-water enrichment monitored via blood sampling. Finally, 10 (23 ± 1 yr) men consumed 150-ml D2O followed by 50 ml/wk and undertook 6-wk resistance exercise (6 × 8 repetitions, 75% 1-repetition maximum 3/wk) with body-water enrichment monitored by saliva sampling and muscle biopsies (for determination of RNA synthesis) at 0, 3, and 6 wk. Ribose mole percent excess (r-MPE) from purine nucleotides was analyzed via GC-MS/MS. Proliferating C2C12 cell r-MPE exhibited a rise to plateau, whereas IGF-I increased myotube RNA from 76 ± 3 to 123 ± 3 ng/μl and r-MPE by 0.39 ± 0.1% (both P < 0.01). After 3 wk, rat quadriceps r-MPE had increased to 0.25 ± 0.01% (P < 0.01) and was greater with running exercise (0.36 ± 0.02%; P < 0.01). Human muscle r-MPE increased to 0.06 ± 0.01 and 0.13 ± 0.02% at 3/6 wk, respectively, equating to synthesis rates of ~0.8%/day, increasing with resistance exercise to 1.7 ± 0.3%/day (P < 0.01) and 1.2 ± 0.1%/day (P < 0.05) at 3/6 wk, respectively. Therefore, we have developed and physiologically validated a novel technique to explore ribosomal biogenesis in a multimodal fashion.
Collapse
Affiliation(s)
- M S Brook
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - D J Wilkinson
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - W K Mitchell
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - J L Lund
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - B E Phillips
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - N J Szewczyk
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - H Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - S Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - P L Greenhaff
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - K Smith
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - P J Atherton
- Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom;
| |
Collapse
|
30
|
Avila JJ, Kim SK, Massett MP. Differences in Exercise Capacity and Responses to Training in 24 Inbred Mouse Strains. Front Physiol 2017; 8:974. [PMID: 29249981 PMCID: PMC5714923 DOI: 10.3389/fphys.2017.00974] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4–10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21–42 min) and work performed (range = 0.42–3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (−0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.
Collapse
Affiliation(s)
- Joshua J Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Atherton PJ, Smith K. Michael J. Rennie: a perspective on a scientist whose life's work helped sculpt knowledge about the regulation of the musculoskeletal system by nutrition, exercise and inactivity. Exp Physiol 2017; 102:611-613. [PMID: 28382735 DOI: 10.1113/ep086361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip J Atherton
- University of Nottingham, Graduate Entry Medical School, Royal Derby Hospital, Derby, UK
| | - Ken Smith
- University of Nottingham, Graduate Entry Medical School, Royal Derby Hospital, Derby, UK
| |
Collapse
|
32
|
Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol 2017; 595:2931-2939. [PMID: 27234805 PMCID: PMC5407970 DOI: 10.1113/jp272559] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023] Open
Abstract
Predicting the responsiveness to regular exercise is a topic of great relevance due to its potential role in personalized exercise medicine applications. The present review focuses on cardiorespiratory fitness (commonly measured by maximal oxygen uptake, V̇O2 max ), a trait with wide-ranging impact on health and performance indicators. Gains in V̇O2 max demonstrate large inter-individual variation even in response to standardized exercise training programmes. The estimated ΔVO2 max heritability of 47% suggests that genomic-based predictors alone are insufficient to account for the total trainability variance. Candidate gene and genome-wide linkage studies have not significantly contributed to our understanding of the molecular basis of trainability. A genome-wide association study suggested that V̇O2 max trainability is influenced by multiple genes of small effects, but these findings still await rigorous replication. Valuable evidence, however, has been obtained by combining skeletal muscle transcript abundance profiles with common DNA variants for the prediction of the V̇O2 max response to exercise training. Although the physiological determinants of V̇O2 max measured at a given time are largely enunciated, what is poorly understood are the details of tissue-specific molecular mechanisms that limit V̇O2 max and related signalling pathways in response to exercise training. Bioinformatics explorations based on thousands of variants have been used to interrogate pathways and systems instead of single variants and genes, and the main findings, along with those from exercise experimental studies, have been summarized here in a working model of V̇O2 max trainability.
Collapse
Affiliation(s)
- Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program and Centre for Computational BiologyDuke‐NUS Medical SchoolSingapore
| | - Claude Bouchard
- Human Genomics LaboratoryPennington Biomedical Research CentreBaton RougeLAUSA
| |
Collapse
|
33
|
Marton O, Koltai E, Takeda M, Mimura T, Pajk M, Abraham D, Koch LG, Britton SL, Higuchi M, Boldogh I, Radak Z. The rate of training response to aerobic exercise affects brain function of rats. Neurochem Int 2016; 99:16-23. [PMID: 27262284 DOI: 10.1016/j.neuint.2016.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
There is an increasing volume of data connecting capacity to respond to exercise training with quality of life and aging. In this study, we used a rat model in which animals were selectively bred for low and high gain in running distance to test t whether genetic segregation for trainability is associated with brain function and signaling processes in the hippocampus. Rats selected for low response (LRT) and high response training (HRT) were randomly divided into control or exercise group that trained five times a week for 30 min per day for three months at 70% VO2max. All four groups had similar running distance before training. With training, HRT rats showed significantly greater increases in VO2max and running distance than LRT rats (p < 0.05). On the reverse Morris Maze test HRT-trained rats outperformed HRT control ones. Significant difference was noted between LRT and HRT groups in redox milieu as assessed by levels of reactive oxygen species (ROS), carbonylation of proteins, nNOS and S-nitroso-cysteine. Moreover the silent information regulator 1 (SIRT1), brain-derived neurotrophic factor (BDNF), ratio of phospho and total cAMP-response element binding protein (CREB), and apoptotic index, also showed significant differences between LRT and HRT groups. These findings suggest that aerobic training responses are not localized to skeletal muscle, but differently involve signaling processes in the brain of LRT and HRT rats.
Collapse
Affiliation(s)
- Orsolya Marton
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Tatsuya Mimura
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Melitta Pajk
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dora Abraham
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary.
| |
Collapse
|
34
|
Thyfault JP, Wright DC. "Weighing" the effects of exercise and intrinsic aerobic capacity: are there beneficial effects independent of changes in weight? Appl Physiol Nutr Metab 2016; 41:911-6. [PMID: 27512815 DOI: 10.1139/apnm-2016-0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been known for centuries that regularly performed exercise has beneficial effects on metabolic health. Owing to its central role in locomotion and the fact that it accounts for a large majority of whole-body glucose disposal and fatty acid oxidation, the effects of exercise on skeletal muscle has been a central focus in exercise physiology research. With this being said it is becoming increasingly well recognized that both adipose tissue and liver metabolism are robustly modified by exercise, especially in conditions of obesity and insulin resistance. One of the difficult questions to address is if the effects of exercise are direct or occur secondary to exercise-induced weight loss. The purpose of this review is to highlight recent work that has attempted to tease out the protective effects of exercise, or intrinsic aerobic capacity, against metabolic and inflammatory challenges as it relates to the treatment and prevention of obesity and insulin resistance. Recent studies reporting improvements in liver and adipose tissue insulin action following a single bout of exercise will also be discussed. The research highlighted in this review sheds new insight into protective, anti-inflammatory effects of exercise that occur largely independent of changes in adiposity and body weight.
Collapse
Affiliation(s)
- John P Thyfault
- a Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS:3043, 3901 Rainbow Blvd., Kansas, KS 66160, USA.,b Research Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - David C Wright
- c Department of Human Health and Nutritional Sciences, Room 343 Animal Sciences Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
35
|
Nokia MS, Lensu S, Ahtiainen JP, Johansson PP, Koch LG, Britton SL, Kainulainen H. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. J Physiol 2016; 594:1855-73. [PMID: 26844666 DOI: 10.1113/jp271552] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents. Little is known about the effects of high-intensity interval training (HIT) or of purely anaerobic resistance training on AHN. Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats. We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity. Our results confirm that sustained aerobic exercise is key in improving AHN. ABSTRACT Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high-intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low-response trainer (LRT) and high-response trainer (HRT) adult male rats to various forms of physical exercise for 6-8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin-positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non-significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult-born hippocampal neurons in adult male Sprague-Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Finland
| | - Juha P Ahtiainen
- Department of Biology of Physical Activity, University of Jyväskylä, Finland
| | - Petra P Johansson
- Department of Psychology, University of Jyväskylä, Finland.,Department of Biology of Physical Activity, University of Jyväskylä, Finland
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Finland
| |
Collapse
|
36
|
Veskoukis AS, Goutianos G, Paschalis V, Margaritelis NV, Tzioura A, Dipla K, Zafeiridis A, Vrabas IS, Kyparos A, Nikolaidis MG. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration. Eur J Appl Physiol 2016; 116:791-804. [PMID: 26856335 DOI: 10.1007/s00421-016-3336-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. METHODS We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. RESULTS Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. CONCLUSIONS The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.
Collapse
Affiliation(s)
- Aristidis S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Georgios Goutianos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece.,Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Tzioura
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Department of Hematology, Blood Bank, General Hospital of Serres, Serres, Greece
| | - Konstantina Dipla
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Andreas Zafeiridis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.
| |
Collapse
|
37
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
38
|
Blunted cardiomyocyte remodeling response in exercise-resistant rats. J Am Coll Cardiol 2015; 65:1378-1380. [PMID: 25835453 DOI: 10.1016/j.jacc.2015.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 11/21/2022]
|
39
|
Goutianos G, Tzioura A, Kyparos A, Paschalis V, Margaritelis NV, Veskoukis AS, Zafeiridis A, Dipla K, Nikolaidis MG, Vrabas IS. The rat adequately reflects human responses to exercise in blood biochemical profile: a comparative study. Physiol Rep 2015; 3:3/2/e12293. [PMID: 25677548 PMCID: PMC4393201 DOI: 10.14814/phy2.12293] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Animal models are widely used in biology and the findings of animal research are traditionally projected to humans. However, recent publications have raised concerns with regard to what extent animals and humans respond similar to physiological stimuli. Original data on direct in vivo comparison between animals and humans are scarce and no study has addressed this issue after exercise. We aimed to compare side by side in the same experimental setup rat and human responses to an acute exercise bout of matched intensity and duration. Rats and humans ran on a treadmill at 86% of maximal velocity until exhaustion. Pre and post exercise we measured 30 blood chemistry parameters, which evaluate iron status, lipid profile, glucose regulation, protein metabolism, liver, and renal function. ANOVA indicated that almost all biochemical parameters followed a similar alteration pattern post exercise in rats and humans. In fact, there were only 2/30 significant species × exercise interactions (in testosterone and globulins), indicating different responses to exercise between rats and humans. On the contrary, the main effect of exercise was significant in 15/30 parameters and marginally nonsignificant in other two parameters (copper, P = 0.060 and apolipoprotein B, P = 0.058). Our major finding is that the rat adequately mimics human responses to exercise in those basic blood biochemical parameters reported here. The physiological resemblance of rat and human blood responses after exercise to exhaustion on a treadmill indicates that the use of blood chemistry in rats for exercise physiology research is justified.
Collapse
Affiliation(s)
- Georgios Goutianos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aikaterini Tzioura
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece Department of Hematology - Blood Bank, General Hospital of Serres, Serres, Greece
| | - Antonios Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, KariesTrikala, Greece
| | - Nikos V Margaritelis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aristidis S Veskoukis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Ioannis S Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
40
|
Sollanek KJ, Smuder AJ, Wiggs MP, Morton AB, Koch LG, Britton SL, Powers SK. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2015; 118:849-57. [PMID: 25571991 DOI: 10.1152/japplphysiol.00797.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed "ventilator-induced diaphragm dysfunction" (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals.
Collapse
Affiliation(s)
- Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| |
Collapse
|
41
|
Burniston JG, Connolly J, Kainulainen H, Britton SL, Koch LG. Label-free profiling of skeletal muscle using high-definition mass spectrometry. Proteomics 2014; 14:2339-44. [PMID: 25065561 DOI: 10.1002/pmic.201400118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022]
Abstract
We report automated and time-efficient (2 h per sample) profiling of muscle using ultra-performance LC coupled directly with high-definition MS (HDMS(E)). Soluble proteins extracted from rat gastrocnemius (n = 10) were digested with trypsin and analyzed in duplicate using a 90 min RPLC gradient. Protein identification and label-free quantitation were performed from HDMS(E) spectra analyzed using Progenesis QI for Proteomics software. In total 1514 proteins were identified. Of these, 811 had at least three unique peptides and were subsequently used to assess the dynamic range and precision of LC-HDMS(E) label-free profiling. Proteins analyzed by LC-HDMS(E) encompass the entire complement of glycolytic, β-oxidation, and tricarboxylic acid enzymes. In addition, numerous components of the electron transport chain and protein kinases involved in skeletal muscle regulation were detected. The dynamic range of protein abundances spanned four orders of magnitude. The correlation between technical replicates of the ten biological samples was R(2) = 0.9961 ± 0.0036 (95% CI = 0.9940 - 0.9992) and the technical CV averaged 7.3 ± 6.7% (95% CI = 6.87 - 7.79%). This represents the most sophisticated label-free profiling of skeletal muscle to date.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | | | | |
Collapse
|
42
|
Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJA, Boldogh I, Radak Z. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2014. [PMID: 24943897 DOI: 10.1007/s00424-014-1554-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Trainability is important in elite sport and in recreational physical activity, and the wide range for response to training is largely dependent on genotype. In this study, we compare a newly developed rat model system selectively bred for low and high gain in running distance from aerobic training to test whether genetic segregation for trainability associates with differences in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high response trainer (HRT) rats from generation 11 of artificial selection were trained five times a week, 30 min per day for 3 months at 70 % VO2max to study the mitochondrial molecular background of trainability. As expected, we found significant differential for the gain in running distance between LRT and HRT groups as a result of training. However, the changes in VO2max, COX-4, redox homeostasis associated markers (reactive oxygen species (ROS)), silent mating-type information regulation 2 homolog (SIRT1), NAD(+)/NADH ratio, proteasome (R2 subunit), and mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1) and mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in the differences in trainability between LRT and HRT. On the other hand, according to our results, we discovered that differences in basal activity of AMP-activated protein kinase alpha (AMPKα) and differential changes in aerobic exercise-induced responses of citrate synthase, carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and Lon protease limit trainability between these selected lines. From this, we conclude that mitochondrial biogenesis-associated factors adapt differently to aerobic exercise training in training sensitive and training resistant rats.
Collapse
Affiliation(s)
- Orsolya Marton
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Alkotas u. 44.TF, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJA, Boldogh I, Radak Z. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch 2014; 467:779-88. [PMID: 24943897 DOI: 10.1007/s00424-014-1554-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/24/2023]
Abstract
Trainability is important in elite sport and in recreational physical activity, and the wide range for response to training is largely dependent on genotype. In this study, we compare a newly developed rat model system selectively bred for low and high gain in running distance from aerobic training to test whether genetic segregation for trainability associates with differences in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high response trainer (HRT) rats from generation 11 of artificial selection were trained five times a week, 30 min per day for 3 months at 70 % VO2max to study the mitochondrial molecular background of trainability. As expected, we found significant differential for the gain in running distance between LRT and HRT groups as a result of training. However, the changes in VO2max, COX-4, redox homeostasis associated markers (reactive oxygen species (ROS)), silent mating-type information regulation 2 homolog (SIRT1), NAD(+)/NADH ratio, proteasome (R2 subunit), and mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1) and mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in the differences in trainability between LRT and HRT. On the other hand, according to our results, we discovered that differences in basal activity of AMP-activated protein kinase alpha (AMPKα) and differential changes in aerobic exercise-induced responses of citrate synthase, carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and Lon protease limit trainability between these selected lines. From this, we conclude that mitochondrial biogenesis-associated factors adapt differently to aerobic exercise training in training sensitive and training resistant rats.
Collapse
Affiliation(s)
- Orsolya Marton
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Alkotas u. 44.TF, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Humanized animal exercise model for clinical implication. Pflugers Arch 2014; 466:1673-87. [PMID: 24647666 DOI: 10.1007/s00424-014-1496-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023]
Abstract
Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Bok Ji-Ro 75, Busanjin-Gu, Busan, 613-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|