1
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
2
|
Evidence for Multilevel Chemopreventive Activities of Natural Phenols from Functional Genomic Studies of Curcumin, Resveratrol, Genistein, Quercetin, and Luteolin. Int J Mol Sci 2022; 23:ijms232314957. [PMID: 36499286 PMCID: PMC9737263 DOI: 10.3390/ijms232314957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Herein, I present an updated and contextualized literature review of functional genomic studies of natural phenols in the context of cancer. I suggest multilevel chemopreventive and anticancer mechanisms of action, which are shared by multiple dietary natural phenols. Specifically, I cite evidence that curcumin and resveratrol have multilevel anti-cancer effects through: (1) inducing either p53-dependent or p53-independent apoptosis in cancer cell lines, (2) acting as potent regulators of expression of oncogenic and anti-oncogenic microRNAs, and (3) inducing complex epigenetic changes that can switch off oncogenes/switch on anti-oncogenes. There is no simple reductionist explanation for anti-cancer effects of curcumin and resveratrol. More generally, multilevel models of chemoprevention are suggested for related natural phenols and flavonoids such as genistein, quercetin, or luteolin.
Collapse
|
3
|
Modulation of Notch Signaling Pathway by Bioactive Dietary Agents. Int J Mol Sci 2022; 23:ijms23073532. [PMID: 35408894 PMCID: PMC8998406 DOI: 10.3390/ijms23073532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Notch signaling is often aberrantly activated in solid and hematological cancers and regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression of Notch pathway components is clinically associated with poorer prognosis in several types of cancer. Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease incidence and improved survival. While therapeutic agents are currently in development to achieve this goal, several researchers have turned their attention to dietary and natural agents for targeting Notch signaling. Given their natural abundance from food sources, the use of diet-derived agents to target Notch signaling offers the potential advantage of low toxicity to normal tissue. In this review, we discuss several dietary agents including curcumin, EGCG, resveratrol, and isothiocyanates, which modulate Notch pathway components in a context-dependent manner. Dietary agents modulate Notch signaling in several types of cancer and concurrently decrease in vitro cell viability and in vivo tumor growth, suggesting a potential role for their clinical use to target Notch pathway components, either alone or in combination with current therapeutic agents.
Collapse
|
4
|
Lu Y, Ding Y, Wei J, He S, Liu X, Pan H, Yuan B, Liu Q, Zhang J. Anticancer effects of Traditional Chinese Medicine on epithelial-mesenchymal transition(EMT) in breast cancer: Cellular and molecular targets. Eur J Pharmacol 2021; 907:174275. [PMID: 34214582 DOI: 10.1016/j.ejphar.2021.174275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is a malignant epithelial tumor of ductal or lobular origin. Breast cancer remains the most frequently diagnosed invasive cancer in women and is the leading cause of cancer-associated mortality worldwide. Epithelial-mesenchymal transition (EMT), a phenotypic process of conversion from epithelial to mesenchymal cells, allows tumor cells to acquire infiltration and metastasization properties. Therapies directed at pathways, which are primarily involved in malignant transformation, can lead to clinical implications. In recent years, EMT has gained increasing attention as a potential therapeutic target in cancer therapy. Moreover, for the past few decades, increasing numbers of studies have suggested that Traditional Chinese Medicine(TCM) compounds can significantly inhibit the growth and development of breast cancer cells through the inhibition of EMT in breast cancer cells. This review discusses some essential signaling pathways associated with EMT and summarizes the effects and mechanism of TCM components on that inhibit EMT in breast cancer therapy.
Collapse
Affiliation(s)
- Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Xinmiao Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Huihao Pan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
5
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
6
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
7
|
Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring. Nutrients 2020; 12:nu12020571. [PMID: 32098370 PMCID: PMC7071430 DOI: 10.3390/nu12020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
It has been reported that maternal nutrition determines the offspring's susceptibility to chronic diseases including cancer. Here, we investigated the effects of maternal diets differing in protein source on diethylnitrosamine (DEN)-induced hepatocarcinogenesis in adult rat offspring. Dams were fed a casein (CAS) diet or a low-isoflavone soy protein isolate (SPI) diet for two weeks before mating and throughout pregnancy and lactation. Offspring were weaned to and fed a chow diet throughout the study. From four weeks of age, hepatocellular carcinomas (HCC) were induced by intraperitoneal injection of DEN once a week for 14 weeks. The SPI/DEN group exhibited higher mortality rate, tumor multiplicity, and HCC incidence compared with the CAS/DEN group. Accordingly, altered cholesterol metabolism and increases in liver damage and angiogenesis were observed in the SPI/DEN group. The SPI/DEN group had a significant induction of the nuclear factor-κB-mediated anti-apoptotic pathway, as measured by increased phosphorylation of IκB kinase β, which may lead to the survival of precancerous hepatocytes. In conclusion, maternal consumption of a low-isoflavone soy protein isolate diet accelerated chemically induced hepatocarcinogenesis in male rat offspring in the present study, suggesting that maternal dietary protein source may be involved in DEN-induced hepatocarcinogenesis in adult offspring.
Collapse
|
8
|
Farahmand L, Darvishi B, Majidzadeh‐A K, Madjid Ansari A. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways. Cell Prolif 2017; 50:e12299. [PMID: 27669681 PMCID: PMC6529111 DOI: 10.1111/cpr.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.
Collapse
Affiliation(s)
- L. Farahmand
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
| | - B. Darvishi
- Recombinant Proteins DepartmentBreast Cancer Research CenterACECRTehranIran
| | - K. Majidzadeh‐A
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
- Tasnim Biotechnology Research Center (TBRC)school of medicineAJA University of Medical SciencesTehranIran
| | - A. Madjid Ansari
- Cancer Alternative and Complementary Medicine DepartmentBreast Cancer Research CenterACECRTehranIran
| |
Collapse
|
9
|
Won SB, Han A, Kwon YH. Maternal consumption of low-isoflavone soy protein isolate alters hepatic gene expression and liver development in rat offspring. J Nutr Biochem 2017; 42:51-61. [PMID: 28126648 DOI: 10.1016/j.jnutbio.2016.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/05/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
In utero environment is known to affect fetal development. Especially, the distinct fetal programming of carcinogenesis was reported in offspring exposed to maternal diets containing soy protein isolate (SPI) or genistein. Therefore, we investigated whether maternal consumption of low-isoflavone SPI or genistein alters hepatic gene expression and liver development in rat offspring. Female Sprague-Dawley rats were fed a casein diet, a low-isoflavone SPI diet or a casein diet supplemented with genistein (250 mg/kg diet) for 2 weeks before mating and throughout pregnancy and lactation. Male offspring were studied on postnatal day 21 (CAS, SPI and GEN groups). Among 965 differentially expressed hepatic genes related to maternal diet (P<.05), the expression of 590 was significantly different between CAS and SPI groups. Conversely, the expression of 88 genes was significantly different between CAS and GEN groups. Especially, genes involved in drug metabolism were significantly affected by the maternal diet. SPI group showed increased cell proliferation, reduced apoptosis and activation of the mTOR pathway, which may contribute to a higher relative liver weight compared to other groups. We observed higher serum homocysteine levels and lower global and CpG site-specific DNA methylation of Gadd45b, a gene involved in cell proliferation and apoptosis, in SPI group compared to CAS group. Maternal SPI diet also reduced histone H3-Lysine 9 (H3K9) trimethylation and increased H3K9 acetylation in offspring. These results demonstrate that maternal consumption of a low-isoflavone SPI diet alters the hepatic gene expression profile and liver development in offspring possibly by epigenetic processes.
Collapse
Affiliation(s)
- Sae Bom Won
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Anna Han
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
LIU YANCHEN, ZOU TIANBIAO, WANG SHUHUAI, CHEN HONG, SU DONGJU, FU XIAONA, ZHANG QINGYUAN, KANG XINMEI. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. Int J Oncol 2016; 48:1063-72. [DOI: 10.3892/ijo.2016.3351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
|
11
|
Cojocneanu Petric R, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 2015; 8:2053-66. [PMID: 26273208 PMCID: PMC4532173 DOI: 10.2147/ott.s83597] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy.
Collapse
Affiliation(s)
- Roxana Cojocneanu Petric
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Dragos
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania ; Department of Taxonomy and Ecology, Institute of Biological Research, Cluj-Napoca, Romania
| | - Paloma Monroig
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania ; Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Greiner AK, Papineni RVL, Umar S. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1-15. [PMID: 24789206 PMCID: PMC4080166 DOI: 10.1152/ajpgi.00044.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human intestinal tract harbors a complex ecosystem of commensal bacteria that play a fundamental role in the well-being of their host. There is a general consensus that diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared with Bacteroides, whereas the reverse is associated with a diet that contains a low proportion of plant-based foods. In a philosophical term, our consumption of processed foods, widespread use of antibiotics and disinfectants, and our modern lifestyle may have forever altered our ancient gut microbiome. We may never be able to identify or restore our microbiomes to their ancestral state, but dietary modulation to manipulate specific gut microbial species or groups of species may offer new therapeutic approaches to conditions that are prevalent in modern society, such as functional gastrointestinal disorders, obesity, and age-related nutritional deficiency. We believe that this will become an increasingly important area of health research.
Collapse
Affiliation(s)
- Allen K. Greiner
- 1Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas;
| | - Rao V. L. Papineni
- 1Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas; ,2PACT and Health, Branford, Connecticut; and ,3Precision X-Ray Inc., North Branford, Connecticut
| | - Shahid Umar
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
15
|
Kirsch S, Schrezenmeier E, Klare S, Zaade D, Seidel K, Schmitz J, Bernhard S, Lauer D, Slack M, Goldin-Lang P, Unger T, Zollmann FS, Funke-Kaiser H. The (pro)renin receptor mediates constitutive PLZF-independent pro-proliferative effects which are inhibited by bafilomycin but not genistein. Int J Mol Med 2014; 33:795-808. [PMID: 24424509 PMCID: PMC3976126 DOI: 10.3892/ijmm.2014.1624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor [(P)RR] is crucial for cardio-renal pathophysiology. The distinct molecular mechanisms of this receptor are still incompletely understood. The (P)RR is able to interact with different signalling proteins such as promyelocytic leukemia zinc finger protein (PLZF) and Wnt receptors. Moreover, domains of the (P)RR are essential for V-ATPase activity. V-ATPase- and Wnt-mediated effects imply constitutive, i.e., (pro)renin-independent functions of the (P)RR. Regarding ligand-dependent (P)RR signalling, the role of prorenin glycosylation is currently unknown. Therefore, the aim of this study was to analyse the contribution of constitutive (P)RR activity to its cellular effects and the relevance of prorenin glycosylation on its ligand activity. We were able to demonstrate that high glucose induces (P)RR signal transduction whereas deglycosylation of prorenin abolishes its intrinsic activity in neuronal and epithelial cells. By using siRNA against (P)RR or PLZF as well as the PLZF translocation blocker genistein and the specific V-ATPase inhibitor bafilomycin, we were able to dissect three distinct sub-pathways downstream of the (P)RR. The V-ATPase function is ligand-independently associated with strong pro-proliferative effects whereas prorenin causes moderate proliferation in vitro. In contrast, PLZF per se [i.e., in the absence of (pro)renin] does not interfere with cell number.
Collapse
Affiliation(s)
- Sebastian Kirsch
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Klare
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Zaade
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Seidel
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Schmitz
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Bernhard
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilyara Lauer
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Petra Goldin-Lang
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Unger
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frank S Zollmann
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Funke-Kaiser
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 2014; 9:22-35. [PMID: 23957937 PMCID: PMC4493722 DOI: 10.2174/1574888x113089990053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as critical cellular signaling molecules involving in various biological processes such as cell growth, differentiation, proliferation, apoptosis, and angiogenesis. The homeostasis of ROS is critical to maintain normal biological processes. Increased production of ROS, namely oxidative stress, due to either endogenous or exogenous sources causes irreversible damage of bio-molecules such as DNA, proteins, lipids, and sugars, leading to genomic instability, genetic mutation, and altered gene expression, eventually contributing to tumorigenesis. A great amount of experimental studies in vitro and in vivo have produced solid evidence supporting that oxidative stress is strongly associated with increased tumor cell growth, treatment resistance, and metastasis, and all of which contribute to tumor aggressiveness. More recently, the data have indicated that altered production of ROS is also associated with cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and hypoxia, the most common features or phenomena in tumorigenesis and tumor progression. However, the exact mechanism by which ROS is involved in the regulation of CSC and EMT characteristics as well as hypoxia- and, especially, HIF-mediated pathways is not well known. Emerging evidence suggests the role of miRNAs in tumorigenesis and progression of human tumors. Recently, the data have indicated that altered productions of ROS are associated with deregulated expression of miRNAs, suggesting their potential roles in the regulation of ROS production. Therefore, targeting ROS mediated through the deregulation of miRNAs by novel approaches or by naturally occurring anti-oxidant agents such as genistein could provide a new therapeutic approach for the prevention and/or treatment of human malignancies. In this article, we will discuss the potential role of miRNAs in the regulation of ROS production during tumorigenesis. Finally, we will discuss the role of genistein, as a potent anti-tumor agent in the regulation of ROS production during tumorigenesis and tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fazlul H Sarkar
- Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Bilir B, Kucuk O, Moreno CS. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med 2013; 11:280. [PMID: 24188694 PMCID: PMC4228255 DOI: 10.1186/1479-5876-11-280] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive clinical subtype of breast cancer that is characterized by the lack of estrogen receptor (ER) and progesterone receptor (PR) expression as well as human epidermal growth factor receptor 2 (HER2) overexpression. The TNBC subtype constitutes approximately 10%-20% of all breast cancers, but has no effective molecular targeted therapies. Previous meta-analysis of gene expression profiles of 587 TNBC cases from 21 studies demonstrated high expression of Wnt signaling pathway-associated genes in basal-like 2 and mesenchymal subtypes of TNBC. In this study, we investigated the potential of Wnt pathway inhibitors in effective treatment of TNBC. METHODS Activation of Wnt pathway was assessed in four TNBC cell lines (BT-549, MDA-MB-231, HCC-1143 and HCC-1937), and the ER+ cell line MCF-7 using confocal microscopy and Western blot analysis of pathway components. Effectiveness of five different Wnt pathway inhibitors (iCRT-3, iCRT-5, iCRT-14, IWP-4 and XAV-939) on cell proliferation and apoptosis were tested in vitro. The inhibitory effects of iCRT-3 on canonical Wnt signaling in TNBC was evaluated by quantitative real-time RT-PCR analysis of Axin2 and dual-luciferase reporter assays. The effects of shRNA knockdown of SOX4 in combination with iCRT-3 and/or genistein treatments on cell proliferation, migration and invasion on BT-549 cells were also evaluated. RESULTS Immunofluorescence staining of β-catenin in TNBC cell lines showed both nuclear and cytoplasmic localization, indicating activation of Wnt pathway in TNBC cells. iCRT-3 was the most effective compound for inhibiting proliferation and antagonizing Wnt signaling in TNBC cells. In addition, treatment with iCRT-3 resulted in increased apoptosis in vitro. Knockdown of the Wnt pathway transcription factor, SOX4 in triple negative BT-549 cells resulted in decreased cell proliferation and migration, and combination treatment of iCRT-3 with SOX4 knockdown had a synergistic effect on inhibition of cell proliferation and induction of apoptosis. CONCLUSIONS These data suggest that targeting SOX4 and/or the Wnt pathway could have therapeutic benefit for TNBC patients.
Collapse
Affiliation(s)
| | | | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
18
|
Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 2013; 13:1858-68. [PMID: 23140295 DOI: 10.2174/138945012804545515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 11/03/2012] [Indexed: 12/22/2022]
Abstract
The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs.
Collapse
Affiliation(s)
- Bin Bao
- Departments of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miousse IR, Gomez-Acevedo H, Sharma N, Vantrease J, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJ. Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol. Exp Biol Med (Maywood) 2013; 238:1033-46. [PMID: 23925648 DOI: 10.1177/1535370213497322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to characterize the actions of xenoestrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. We assessed effects of three doses of exogenous estradiol (E2) (0.1, 1.0 and 10 µg/kg/day) given between postnatal days 21 and 33 on the mammary gland morphology and gene expression profiles of male and female rats compared to vehicle-treated controls. The male mammary gland was more responsive to E2 treatment than in females, with 509 genes regulated >2-fold in a dose-dependent manner in males and only 174 in females. In males, E2 treatment significantly (P < 0.01) increased the number of terminal end buds (TEBs) and the expression of proliferating cell nuclear antigen (PCNA) protein (P < 0.05), both of which are indicators of proliferation. This change was linked to a significant increase (P < 0.05) in the expression of the gene encoding amphiregulin, which is known to induce TEB formation. There was also a dose-dependent increase (P < 0.001) in the estrogen-regulated gene encoding the progesterone receptor. In intact females, despite lack of changes in mammary morphology, we observed a dose-dependent increase (P < 0.05) in the expression of genes encoding three milk proteins: whey acidic protein, casein beta and casein kappa. There was a significant (P < 0.05) downregulation of both estrogen receptors in response to E2 treatment. These results suggest that mammary glands of male rats are very sensitive to exogenous E2 during development post-weaning. The dose-dependent increase observed in amphiregulin and progesterone receptor gene expression was linked to morphological changes and represents a reliable and sensitive tool to evaluate estrogenicity. In contrast, intact weanling female rats were less responsive.
Collapse
|
20
|
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Antioxidant function of isoflavone and 3,3'-diindolylmethane: are they important for cancer prevention and therapy? Antioxid Redox Signal 2013; 19:139-50. [PMID: 23391445 PMCID: PMC3689155 DOI: 10.1089/ars.2013.5233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Oxidative stress has been mechanistically linked with aging and chronic diseases, including cancer. In fact, oxidative stress status, chronic disease-related inflammation, and cancer occurred in the aging population are tightly correlated. It is well known that the activation of nuclear factor kappa B (NF-κB) plays important roles in oxidative stress, inflammation, and carcinogenesis. Therefore, targeting NF-κB is an important preventive or therapeutic strategy against oxidative stress, inflammation, and cancer. RECENT ADVANCES A variety of natural compounds has been found to reduce oxidative stress through their antioxidant activity. Among them, isoflavone, indole-3-carbinol (I3C), and its in vivo dimeric compound 3,3'-diindolylmethane (DIM) have shown their promising effects on the inhibition of NF-κB with corresponding reduction of oxidative stress. CRITICAL ISSUES It has been found that isoflavone, I3C, and DIM could inhibit cancer development and progression by regulating multiple cellular signaling pathways that are related to oxidative stress and significantly deregulated in cancer. FUTURE DIRECTIONS The antioxidative and anticancer effects of these natural agents make them strong candidates for chemoprevention and/or therapy against human malignancies. However, more clinical trials are needed to evaluate the effects of isoflavone and DIM for the prevention of cancer development and also for the treatment of cancer either alone or in combination with conventional cancer therapeutics.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
21
|
Montales MTE, Rahal OM, Nakatani H, Matsuda T, Simmen RCM. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. J Endocrinol 2013; 218:135-49. [PMID: 23645249 DOI: 10.1530/joe-12-0520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and in rodent breast cancer models. Despite the suggested linkage between obesity and breast cancer, the local influence of bioactive dietary components on mammary adiposity for antitumor effects remains unknown. Herein, we report that post-weaning dietary exposure to soy protein isolate and its bioactive isoflavone genistein (GEN) lowered mammary adiposity and increased mammary tumor suppressor PTEN and E-cadherin expression in female mice, relative to control casein diet. To ascertain GEN's role in mammary adipose deposition that may affect underlying epithelial cell phenotype, we evaluated GEN's effects on SV40-immortalized mouse mammary stromal fibroblast-like (MSF) cells during differentiation into adipocytes. MSF cells cultured in a differentiation medium with 40 nM GEN showed reductions in mature adipocyte numbers, triglyceride accumulation, and Pparγ (Pparg) and fatty acid synthase transcript levels. GEN inhibition of adipose differentiation was accompanied by increased estrogen receptor β (Erβ (Esr2)) gene expression and was modestly recapitulated by ERβ-selective agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN). Reduction of Erβ expression by siRNA targeting increased Pparγ transcript levels and stromal fibroblast differentiation into mature adipocytes; the latter was reversed by GEN but not by DPN. Conditioned medium from GEN-treated adipocytes diminished anchorage-independent mammosphere formation of human MCF-7 breast cancer cells. Our results suggest a mechanistic pathway to support direct regulation of mammary adiposity by GEN for breast cancer prevention.
Collapse
Affiliation(s)
- Maria Theresa E Montales
- Arkansas Children's Nutrition Center, Departments of Pediatrics, Physiology and Biophysics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, Arkansas 72202, USA
| | | | | | | | | |
Collapse
|
22
|
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 2013; 167:279-97. [PMID: 22536923 DOI: 10.1111/j.1476-5381.2012.02002.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy.
Collapse
Affiliation(s)
- B Stefanska
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
23
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2012; 34:277-86. [PMID: 23129580 DOI: 10.1093/carcin/bgs351] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that quinacrine (QC) has anticancer activity against breast cancer cells. Here, we examine the mechanism of action of QC and its ability to inhibit Wnt-TCF signaling in two independent breast cancer cell lines. QC altered Wnt-TCF signaling components by increasing the levels of adenomatous polyposis coli (APC), DAB2, GSK-3β and axin and decreasing the levels of β-catenin, p-GSK3β (ser 9) and CK1. QC also reduced the activity of the Wnt transcription factor TCF/LEF and its downstream targets cyclin D1 and c-MYC. Using a luciferase-based Wnt-TCF transcription factor assay, it was shown that APC levels were inversely associated with TCF/LEF activity. Induction of apoptosis and DNA damage was observed after treatment with QC, which was associated with increased expression of APC. The effects induced by QC depend on APC because the inhibition of Wnt-TCF signaling by QC is lost in APC-knockdown cells, and consequently, the extent of apoptosis and DNA damage caused by QC is reduced compared with parental cells. Because we previously showed that QC inhibits topoisomerase, we examined the effect of another topoisomerase inhibitor, etoposide, on Wnt signaling. Interestingly, etoposide treatment also reduced TCF/LEF activity, β-catenin and cyclin D1 levels commensurate with induction of DNA damage and apoptosis. Lycopene, a plant-derived antioxidant, synergistically increased QC activity and inhibited Wnt-TCF signaling in cancer cells without affecting the MCF-10A normal breast cell line. Collectively, the data suggest that QC-mediated Wnt-TCF signal inhibition depends on APC and that the addition of lycopene synergistically increases QC anticancer activity.
Collapse
Affiliation(s)
- Ranjan Preet
- Cancer Biology Laboratory, Department of KIIT School of Biotechnology, Campus-11, KIIT University, Patia, Bhubaneswar, Orissa 751024, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 2012; 23:691-8. [PMID: 22704055 DOI: 10.1016/j.jnutbio.2012.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/21/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.
Collapse
|
26
|
Daimiel L, Vargas T, Ramírez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012; 33:2266-89. [PMID: 22887150 DOI: 10.1002/elps.201200084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease and cancer are the main causes of morbidity and mortality worldwide. Thus, investigators have focused their efforts on gaining insight into understanding the mechanisms involved in the development and evolution of these diseases. In the past decade, and with the contribution of the -omics technologies, strong evidence has supported an essential role of gene-nutrient interactions in these processes, pointing at natural bioactive molecules as promising complementary agents that are useful in preventing or mitigating these diseases. In addition, alterations in lipid metabolism have recently gained strong interest since they have been described as a common event required for the progression of both diseases. In the present review, we give an overview of lipid metabolism, mainly focusing on lipoprotein metabolism and the mechanisms controlling lipid homeostasis. In addition, we review the modulation of lipid metabolism by bioactive molecules, highlighting their potential use as therapeutic agents in preventing, and treating chronic diseases such as cardiovascular disease and cancer. Finally, we report the usefulness of the -omics technologies in nutritional research, focusing on recent findings, within nutritional genomics, in the interaction of bioactive components from foods with several genes that are involved in the development and progression of these diseases.
Collapse
|
27
|
Nakamura A, Aizawa J, Sakayama K, Kidani T, Takata T, Norimatsu Y, Miura H, Masuno H. Genistein inhibits cell invasion and motility by inducing cell differentiation in murine osteosarcoma cell line LM8. BMC Cell Biol 2012; 13:24. [PMID: 23013480 PMCID: PMC3515800 DOI: 10.1186/1471-2121-13-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/20/2012] [Indexed: 01/25/2023] Open
Abstract
Background One of the problems associated with osteosarcoma is the frequent formation of micrometastases in the lung prior to diagnosis because the development of metastatic lesions often causes a fatal outcome. Therefore, the prevention of pulmonary metastases during the early stage of tumor development is critical for the improvement of the prognosis of osteosarcoma patients. In Japan, soy is consumed in a wide variety of forms, such as miso soup and soy sauce. The purpose of this study is to investigate the effect of genistein, an isoflavone found in soy, on the invasive and motile potential of osteosarcoma cells. Methods LM8 cells were treated for 3 days with various concentrations of genistein. The effect of genistein on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2’-deoxyuridine (BrdU) incorporation study. The assays of cell invasion and motility were performed using the cell culture inserts with either matrigel-coated membranes or uncoated membranes in the invasion chambers. The expression and secretion of MMP-2 were determined by immunohistochemistry and gelatin zymography. The subcellular localization and cellular level of β-catenin were determined by immunofluorescence and Western blot. For examining cell morphology, the ethanol-fixed cells were stained with hematoxylin-eosin (H&E). The expression of osteocalcin mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR). Results Genistein dose-dependently inhibits cell proliferation. Genistein-treated cells were less invasive and less motile than untreated cells. The expression and secretion of MMP-2 were lower in the genistein-treated cultures than in the untreated cultures. β-Catenin in untreated cells was located in the cytoplasm and/or nucleus, while in genistein-treated cells it was translocated near to the plasma membrane. The level of β-catenin was higher in genistein-treated cells than in untreated cells. Treatment of LM8 cells with genistein induced morphological changes, markedly decreased the formation of multilayer masses of cells, and markedly increased the expression of osteocalcin mRNA. Conclusions Genistein decreased invasive and motile potential by inducing cell differentiation in LM8 cells. Genistein may be useful as an anti-metastatic drug for osteosarcoma through its differentiation-inducing effects.
Collapse
Affiliation(s)
- Atsushi Nakamura
- Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences, Takooda, Tobe-cho, Iyo-gun, Ehime, 791-2101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Naeem A, Zhong K, Moisá SJ, Drackley JK, Moyes KM, Loor JJ. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 2012; 95:6397-408. [PMID: 22959936 DOI: 10.3168/jds.2011-5173] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/25/2012] [Indexed: 01/23/2023]
Abstract
MicroRNA (miRNA) are small single-stranded noncoding RNA with important roles in regulating innate immunity in nonruminants via transcriptional and posttranscriptional mechanisms. Mastitis causes significant losses in the dairy industry and a wealth of large-scale mRNA expression data from mammary tissue have provided fundamental insights into the tissue adaptations to pathogens. We studied the expression of 14 miRNA (miR-10a, -15b, -16a, -17, -21, -31, -145, -146a, -146b, -155, -181a, -205, -221, and -223) associated with regulation of innate immunity and mammary epithelial cell function in tissue challenged with Streptococcus uberis. Those data, along with microarray expression of 2,102 differentially expressed genes, were used for bioinformatics analysis to uncover putative target genes and the most affected biological pathways and functions. Three miRNA (181a, 16, and 31) were downregulated approximately 3- to 5-fold and miR-223 was upregulated approximately 2.5-fold in infected versus healthy tissue. Among differentially expressed genes due to infection, bioinformatics analysis revealed that the studied miRNA share in the regulation of a large number of metabolic (SCD, CD36, GPAM, and FASN), immune/oxidative stress (TNF, IL6, IL10, SOD2, LYZ, and TLR4), and cellular proliferation/differentiation (FOS and CASP4) target genes. This level of complex regulation was underscored by the coordinate effect revealed by bioinformatics on various cellular pathways within the Kyoto Encyclopedia of Genes and Genomes database. Most pathways associated with "cellular processes," "organismal systems," and "diseases" were activated by putative target genes of miR-31 and miR-16a, with an overlapping activation of "immune system" and "signal transduction." A pronounced effect and activation of miR-31 target genes was observed within "folding, sorting, and degradation," "cell growth and death," and "cell communication" pathways, whereas a marked inhibition of "lipid metabolism" occurred. Putative targets of miR-181a had a strong effect on FcγR-mediated phagocytosis, toll-like receptor signaling, and antigen processing and presentation, which were activated during intramammary infections. The targets of both miR-31 and miR-223 had an inhibitory effect on "lipid metabolism." Overall, the combined analyses indicated that changes in mammary tissue immune, metabolic, and cell growth-related signaling pathways during infection might have been mediated in part through effects of miRNA on gene transcription. Differential expression of miRNA supports the view from nonruminant cells/tissues that certain miRNA might be essential for the tissue's adaptive response to infection.
Collapse
Affiliation(s)
- A Naeem
- Mammalian NutriPhysioGenomics, and Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kim MH, Kang KS. Isoflavones as a smart curer for non-alcoholic fatty liver disease and pathological adiposity via ChREBP and Wnt signaling. Prev Med 2012; 54 Suppl:S57-63. [PMID: 22227283 DOI: 10.1016/j.ypmed.2011.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) and pathological adiposity has emerged as an important modern disease. Along with this, the requirement for alternative and natural medicine for preventing NAFLD and adiposity has been increasing rapidly and considerably. In this report, we will review the biological effect and mechanisms of soy isoflavones on NAFLD and pathologic adiposity mainly through the novel pathways, de novo lipogenic carbohydrate responsive element binding protein (ChREBP) and anti-adipogenic Wnt signaling. METHODS This paper reviews in vitro and in vivo isoflavone studies published in 2002 to 2011 in North America and East Asia. RESULTS Collectively, the data support a beneficial relation of isoflavones and NAFLD and/or adiposity. Isoflavones suppress ChREBP signaling via protein kinase A (PKA) and/or 5'-AMP activated protein kinase (AMPK)-dependent phosphorylation, which prevents ChREBP from binding to the promoter regions of lipogenic enzyme. Furthermore, isoflavones directly stimulate Wnt signaling via estrogen receptors-dependent pathway, which inactivates glycogen synthase kinase-3 beta (GSK-3β), transactivate T-cell factor/lymphoid-enhancer factor (TCF/LEF), the effector of Wnt signaling, degrade adipogenic peroxisome proliferator-activated receptor γ (PPARγ), augment p300/CBP, the transcriptional co-activators of TCF/LEF. CONCLUSIONS Natural compound isoflavones may be useful alternative medicines in preventing NAFLD and pathological adiposity and this action may be partially associated with ChREBP and Wnt signaling.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 599 Gwanakno, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
30
|
Montales MTE, Rahal OM, Kang J, Rogers TJ, Prior RL, Wu X, Simmen RCM. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis 2012; 33:652-60. [PMID: 22219179 DOI: 10.1093/carcin/bgr317] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammary stem cells are undifferentiated epithelial cells, which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we addressed whether dietary factors selectively target mammary epithelial cells that display stem-like/progenitor subpopulations with previously recognized tumor-initiating potential. Using estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 human breast cancer cell lines and freshly isolated epithelial cells from MMTV-Wnt-1 transgenic mouse mammary tumors, we demonstrate that sera of adult mice consuming soy isoflavone genistein (GEN) or blueberry (BB) polyphenol-containing diets alter the population of stem-like/progenitor cells, as measured by their functional ability to self-renew and form anchorage-independent spheroid cultures in vitro at low frequency (1-2%). Serum effects on mammosphere formation were dose-dependently replicated by GEN (40 nM >2 μM) and targeted the basal stem-like CD44+/CD24-/ESA+ and the luminal progenitor CD24+ subpopulations in MDA-MB-231 and MCF-7 cells. GEN inhibition of mammosphere formation was mimicked by the Akt inhibitor perifosine and was associated with enhanced tumor suppressor phosphatase and tensin homologue deleted on chromosome ten (PTEN) expression. In contrast, a selected mixture of BB phenolic acids was only active in MDA-MD-231 cells and its CD44+/CD24-/ESA+ subpopulation, and this activity was independent of induction of PTEN expression. These findings delineate a novel and selective function of distinct dietary factors in targeting stem/progenitor cell populations in estrogen receptor-dependent and -independent breast cancers.
Collapse
|
31
|
Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis 2011; 33:483-91. [PMID: 22198211 DOI: 10.1093/carcin/bgr305] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling pathway, one of the most conserved intercellular signaling cascade, is a known regulator of cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival and adhesion. Because aberrant Wnt/β-catenin signaling has been observed in a variety of human cancers including a majority of colorectal cancers, about half of prostate cancers and a third of melanomas, inhibitors of its complex signaling pathways are being investigated for therapy as well as chemoprevention of these cancers. During the last decade, several naturally occurring dietary agents have been shown to target intermediates in the Wnt/β-catenin signaling pathway. In this review, we highlight the current understanding of the Wnt/β-catenin signaling pathway and present an analysis of the key findings from laboratory studies on the effects of a panel of dietary agents against a variety of cancers. Promise of these agents for treating and preventing human cancer is then discussed.
Collapse
Affiliation(s)
- Rohinton S Tarapore
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Medical Sciences Center, #B-25, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
32
|
Li Y, Kong D, Bao B, Ahmad A, Sarkar FH. Induction of cancer cell death by isoflavone: the role of multiple signaling pathways. Nutrients 2011; 3:877-96. [PMID: 22200028 PMCID: PMC3244210 DOI: 10.3390/nu3100877] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/29/2011] [Accepted: 10/09/2011] [Indexed: 12/31/2022] Open
Abstract
Soy isoflavones have been documented as dietary nutrients broadly classified as "natural agents" which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR), p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s) by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
33
|
Adams LS, Kanaya N, Phung S, Liu Z, Chen S. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J Nutr 2011; 141:1805-12. [PMID: 21880954 PMCID: PMC3174855 DOI: 10.3945/jn.111.140178] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/14/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022] Open
Abstract
Previous studies in our laboratory demonstrated that blueberry (BB) extract exhibited antitumor activity against MDA-MB-231 triple negative breast cancer (TNBC) cells and decreased metastatic potential in vitro. The current study tested 2 doses of whole BB powder, 5 and 10% (wt:wt) in the diet, against MDA-MB-231 tumor growth in female nude mice. In this study, tumor volume was 75% lower in mice fed the 5% BB diet and 60% lower in mice fed the 10% BB diet than in control mice (P ≤ 0.05). Tumor cell proliferation (Ki-67) was lower in the 5 and 10% BB-fed mice and cell death (Caspase 3) was greater in the 10% BB-fed mice compared to control mice (P ≤ 0.05). Gene analysis of tumor tissues from the 5% BB-fed mice revealed significantly altered expression of genes important to inflammation, cancer, and metastasis, specifically, Wnt signaling, thrombospondin-2, IL-13, and IFNγ. To confirm effects on Wnt signaling, analysis of tumor tissues from 5% BB-fed mice revealed lower β-catenin expression and glycogen synthase kinase-3β phosphorylation with greater expression of the β-catenin inhibitory protein adenomatous polyposis coli compared to controls. A second study tested the ability of the 5% BB diet to inhibit MDA-MB-231-luc-D3H2LN metastasis in vivo. In this study, 5% BB-fed mice developed 70% fewer liver metastases (P = 0.04) and 25% fewer lymph node metastases (P = 0.09) compared to control mice. This study demonstrates the oral antitumor and metastasis activity of whole BB powder against TNBC in mice.
Collapse
Affiliation(s)
- Lynn S. Adams
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Noriko Kanaya
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Sheryl Phung
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Zheng Liu
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Shiuan Chen
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA
| |
Collapse
|
34
|
Rahal OM, Simmen RCM. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor β signaling. Endocrinology 2011; 152:3409-21. [PMID: 21712365 DOI: 10.1210/en.2011-1085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine, adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between "local," mammary tissue-derived APN and breast cancer risk is poorly understood. Here, we identify a novel mechanism of APN-mediated signaling that influences mammary epithelial cell proliferation, differentiation, and apoptosis to modify breast cancer risk. We demonstrate that early dietary exposure to soy protein isolate induced mammary tissue APN production without corresponding effects on systemic APN levels. In estrogen receptor (ER)-negative MCF-10A cells, recombinant APN promoted lobuloalveolar differentiation by inhibiting oncogenic signal transducer and activator of transcription 3 activity. In ER-positive HC11 cells, recombinant APN increased ERβ expression, inhibited cell proliferation, and induced apoptosis. Using the estrogen-responsive 4X-estrogen response element promoter-reporter construct to assess ER transactivation and small interfering RNA targeting of ERα and ERβ, we show that APN synergized with the soy phytoestrogen genistein to promote ERβ signaling in the presence of estrogen (17β-estradiol) and ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and to oppose ERα signaling in the presence of the ERα-specific agonist 4,4',4'-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol. The enhancement of ERβ signaling with APN + genistein cotreatments was associated with induction of apoptosis, increased expression of proapoptotic/prodifferentiation genes (Bad, p53, and Pten), and decreased antiapoptotic (Bcl2 and survivin) transcript levels. Our results suggest that mammary-derived APN can influence adjacent epithelial function by ER-dependent and ER-independent mechanisms that are consistent with reduction of breast cancer risk and suggest local APN induction by dietary factors as a targeted approach for promotion of breast health.
Collapse
Affiliation(s)
- Omar M Rahal
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | |
Collapse
|
35
|
Wang J, Siegmund K, Tseng CC, Lee AS, Wu AH. Soy food supplementation, dietary fat reduction and peripheral blood gene expression in postmenopausal women--a randomized, controlled trial. Mol Nutr Food Res 2011; 55 Suppl 2:S264-77. [PMID: 21823222 DOI: 10.1002/mnfr.201100242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
SCOPE The effect of soy food supplementation or dietary fat reduction on gene expression is not well studied. METHODS AND RESULTS We evaluated the potential of gene expression profiling in peripheral blood mononuclear cells (PBMCs) collected at baseline and at the completion of an 8-wk controlled dietary intervention. Healthy postmenopausal women were randomized to a very-low-fat diet (VLFD; 11% of energy as fat) (n=21), a Step 1 diet (25% energy as fat) supplemented with soy food (SFD; 50 mg isoflavones per day) (n=20), or a control Step 1 diet (CD; 27% energy as fat) with no SFD (n=18). All diets were prepared at the General Clinical Research Center of the University of Southern California. We did not observe any gene that showed variable response across the three dietary interventions. However, there were notable changes in gene expression associated with the intervention in the VLFD and SFD groups. Our findings suggest that the expression of nicotinamide phosphoribosyltransferase (NAMPT) and genes related to Fc γ R-mediated phagocytosis and cytokine interactions may be significantly altered in association with dietary fat reduction and soy supplementation. Gene expression changes in NAMPT were somewhat dampened with adjustment for weight but changes related to Fc γ R-mediated phagocytosis and cytokine interactions remained largely unchanged. CONCLUSION PBMCs can reveal novel gene expression changes in association with controlled dietary intervention.
Collapse
Affiliation(s)
- Jun Wang
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 2011; 1:1643-70. [PMID: 21425984 DOI: 10.4155/fmc.09.121] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade(®)) and deferiprone (Ferriprox(®)), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry.
Collapse
|
37
|
Amado NG, Fonseca BF, Cerqueira DM, Neto VM, Abreu JG. Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci 2011; 89:545-54. [PMID: 21635906 DOI: 10.1016/j.lfs.2011.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 02/06/2023]
Abstract
Flavonoids are polyphenolic compounds found throughout the plant kingdom. They occur in every organ but are usually concentrated in leaves and flowers. During the last two decades, in vitro and in vivo studies demonstrated that flavonoids have inhibitory effects on human diseases through targeting of multiple cellular signaling components. Wnt/β-catenin signaling regulates proliferation, differentiation and fate specification in developmental stages and controls tissue homeostasis in adult life. For these reasons, this pathway has received great attention in the last years as potential pathway involved in distinct Human pathologies. In this review we discuss the emerging potential mechanisms for flavonoids on Wnt/β-catenin signaling in cancer and possible investigation strategies to understand flavonoids mode of action on this signaling pathway.
Collapse
Affiliation(s)
- Nathália G Amado
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
38
|
Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22:799-806. [PMID: 21295962 DOI: 10.1016/j.jnutbio.2010.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/09/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
39
|
Su Y, Shankar K, Rahal O, Simmen RCM. Bidirectional signaling of mammary epithelium and stroma: implications for breast cancer--preventive actions of dietary factors. J Nutr Biochem 2011; 22:605-11. [PMID: 21292471 DOI: 10.1016/j.jnutbio.2010.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/18/2010] [Indexed: 12/28/2022]
Abstract
The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial 'niche' and the increasing appreciation for adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial-stromal bidirectional signaling to provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.
Collapse
Affiliation(s)
- Ying Su
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
40
|
Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, Kim HB. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, chungkookjang. Nutr Cancer 2011; 63:645-52. [PMID: 21547849 DOI: 10.1080/01635581.2011.551987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chungkookjang is a Korean fermented soybean containing microorganisms, proteinase, and diverse bioactive compounds, including a high concentration of isoflavones and peptides. Growth of breast cancer MCF7 cells decreased dependent on the concentration of fermented soybean extracts. The effect of fermented soybean on cellular gene expression was determined in a systematic manner comprehensively. DNA microarray analysis was performed using 25,804 probes. Ninety one genes whose expression levels were significantly changed were selected. TGFβI and Smad3 were upregulated. Downregulation of inflammation-related CSF2, CSF2RA, and CSF3 was found. Differential expression of chemokines CCL2, CCL3, CCL3L3, CXCL1, and CXCL2 were observed. Network analysis identified ERβ in the network. Based on the experimental results, taking fermented soybean might be helpful for preventing breast cancer by a mechanism activating TGFβ pathway and depressing inflammation.
Collapse
Affiliation(s)
- Jae Sung Hwang
- Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University, Asan, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3'-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
|
42
|
Abstract
Genistein in soy activates estrogen receptor (ER)-α and ERβ and acts as an estradiol in multiple target tissues. Because estrogens increase breast cancer risk and genistein promotes the growth of ER-positive human breast cancer cells, it has remained unclear whether this isoflavone or soy is safe. Results reviewed here suggest that women consuming moderate amounts of soy throughout their life have lower breast cancer risk than women who do not consume soy; however, this protective effect may originate from soy intake early in life. We also review the literature regarding potential risks genistein poses for breast cancer survivors. Findings obtained in 2 recent human studies show that a moderate consumption of diet containing this isoflavone does not increase the risk of breast cancer recurrence in Western women, and Asian breast cancer survivors exhibit better prognosis if they continue consuming a soy diet. The mechanisms explaining the breast cancer risk-reducing effect of early soy intake or the protective effect in Asian breast cancer survivors remain to be established. We propose that the reduction in risk involves epigenetic changes that result in alterations in the expression of genes that regulate mammary epithelial cell fate, i.e. cell proliferation and differentiation. Lifetime soy consumption at a moderate level may prevent breast cancer recurrence through mechanisms that change the biology of tumors; e.g. women who consumed soy during childhood develop breast cancers that express significantly reduced Human epidermal growth factor receptor 2 levels. More research is needed to understand why soy intake during early life may both reduce breast cancer risk and risk of recurrence.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
43
|
Dave B, Wynne R, Su Y, Korourian S, Chang JC, Simmen RCM. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats. Nutr Cancer 2010; 62:774-82. [PMID: 20661826 DOI: 10.1080/01635581.2010.494334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-methyl-N-nitrosourea, dietary intake of soy protein isolate (SPI) reduced mammary tumor occurrence but increased incidence of more invasive tumors in tumored rats, relative to the control diet casein. Here we evaluated whether mammary tumor progression in tumor-bearing rats lifetime exposed to SPI is associated with deregulated progesterone receptor (PR) isoform expression. In histologically normal mammary glands of rats with invasive ductal carcinoma lesions, PR-A protein levels were higher for SPI- than casein-fed rats, whereas PR-B was undetectable for both groups. Increased mammary PR-A expression was associated with higher transforming growth factor-beta1, stanniocalcin-1, and CD44 transcript levels; lower E-cadherin and estrogen receptor-alpha expression; and reduced apoptotic status in ductal epithelium. Serum progesterone (ng/ml) (CAS: 25.94 +/- 3.81; SPI: 13.19 +/- 2.32) and estradiol (pg/ml) (CAS: 27.9 +/- 4.49; SPI: 68.48 +/- 23.87) levels differed with diet. However, sera from rats of both diet groups displayed comparable mammosphere-forming efficiency in human MCF-7 cells. Thus, soy-rich diets may influence the development of more aggressive tumors by enhancing PR-A-dependent signaling in premalignant breast tissues.
Collapse
Affiliation(s)
- Bhuvanesh Dave
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, and Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Environmental stressors such as chemicals and physical agents induce various oxidative stresses and affect human health. To elucidate their underlying mechanisms, etiology and risk, analyses of gene expression signatures in environmental stress-induced human diseases, including neuronal disorders, cancer and diabetes, are crucially important. Recent studies have clarified oxidative stress-induced signaling pathways in human and experimental animals. These pathways are classifiable into several categories: reactive oxygen species (ROS) metabolism and antioxidant defenses, p53 pathway signaling, nitric oxide (NO) signaling pathway, hypoxia signaling, transforming growth factor (TGF)-beta bone morphogenetic protein (BMP) signaling, tumor necrosis factor (TNF) ligand-receptor signaling, and mitochondrial function. This review describes the gene expression signatures through which environmental stressors induce oxidative stress and regulate signal transduction pathways in rodent and human tissues.
Collapse
Affiliation(s)
- H Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
45
|
Martínez-Montemayor MM, Otero-Franqui E, Martinez J, De La Mota-Peynado A, Cubano LA, Dharmawardhane S. Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clin Exp Metastasis 2010; 27:465-80. [PMID: 20517637 PMCID: PMC2944964 DOI: 10.1007/s10585-010-9336-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/12/2010] [Indexed: 01/04/2023]
Abstract
To investigate the effects soy isoflavones in established cancers, the role of genistein, daidzein, and combined soy isoflavones was studied on progression of subcutaneous tumors in nude mice created from green fluorescent protein (GFP) tagged-MDA-MB-435 cells. Following tumor establishment, mice were gavaged with vehicle or genistein or daidzein at 10 mg/kg body weight (BW) or a combination of genistein (10 mg/kg BW), daidzein (9 mg/kg BW), and glycitein (1 mg/kg BW) three times per week. Tumor progression was quantified by whole body fluorescence image analysis followed by microscopic image analysis of excised organs for metastases. Results show that daidzein increased while genistein decreased mammary tumor growth by 38 and 33% respectively, compared to vehicle. Daidzein increased lung and heart metastases while genistein decreased bone and liver metastases. Combined soy isoflavones did not affect primary tumor growth but increased metastasis to all organs tested, which include lung, liver, heart, kidney, and bones. Phosphoinositide-3-kinase (PI3-K) pathway real time PCR array analysis and western blotting of excised tumors demonstrate that genistein significantly downregulated 10/84 genes, including the Rho GTPases RHOA, RAC1, and CDC42 and their effector PAK1. Daidzein significantly upregulated 9/84 genes that regulate proliferation and protein synthesis including EIF4G1, eIF4E, and survivin protein levels. Combined soy treatment significantly increased gene and protein levels of EIF4E and decreased TIRAP gene expression. Differential regulation of Rho GTPases, initiation factors, and survivin may account for the disparate responses of breast cancers to genistein and daidzein diets. This study indicates that consumption of soy foods may increase metastasis.
Collapse
Affiliation(s)
| | - Elisa Otero-Franqui
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00969 USA
- Department of Biochemistry and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR USA
| | - Joel Martinez
- Department of Biochemistry and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR USA
| | - Alina De La Mota-Peynado
- Department of Biochemistry and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR USA
| | - Luis A. Cubano
- Department of Biochemistry and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR USA
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00969 USA
- Department of Biochemistry and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR USA
| |
Collapse
|
46
|
Abstract
Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-kappaB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R Street, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
47
|
Rahal OM, Simmen RCM. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 2010; 31:1491-500. [PMID: 20554748 DOI: 10.1093/carcin/bgq123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressors phosphatase and tensin homologue deleted on chromosome ten (PTEN) and p53 are closely related to the pathogenesis of breast cancer, yet pathway-specific mechanisms underlying their participation in mediating the protective actions of dietary bioactive components on breast cancer risk are poorly understood. We recently showed that dietary exposure to the soy isoflavone genistein (GEN) induced PTEN expression in mammary epithelial cells in vivo and in vitro, consistent with the breast cancer preventive effects of soy food consumption. Here, we evaluated PTEN and p53 functional interactions in the nuclear compartment of mammary epithelial cells as a mechanism for mammary tumor protection by GEN. Using the non-tumorigenic human mammary epithelial cells MCF10-A, we demonstrate that GEN increased PTEN expression and nuclear localization. We show that increased nuclear PTEN levels initiated an autoregulatory loop involving PTEN-dependent increases in p53 nuclear localization, PTEN-p53 physical association, PTEN-p53 co-recruitment to the PTEN promoter region and p53 transactivation of PTEN promoter activity. The PTEN-p53 cross talk induced by GEN resulted in increased cell cycle arrest; decreased pro-proliferative cyclin D1 and pleiotrophin gene expression and the early formation of mammary acini, indicative of GEN promotion of lobuloalveolar differentiation. Our findings provide support to GEN-induced PTEN as both a target and regulator of p53 action and offer a mechanistic basis for PTEN pathway activation to underlie the antitumor properties of dietary factors, with important implications for reducing breast cancer risk.
Collapse
Affiliation(s)
- Omar M Rahal
- University of Arkansas for Medical Sciences, USA
| | | |
Collapse
|
48
|
Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RCM. In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res 2010; 29:802-11. [PMID: 19932869 DOI: 10.1016/j.nutres.2009.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 01/18/2023]
Abstract
Early developmental events influence the fine tuning of later susceptibility to adult diseases. Diet is a determinant of breast cancer risk, and our previous studies showed that diet-mediated changes in transcriptional programs promote early mammary gland differentiation. Although consumption of fruits is considered to elicit multiple health benefits, little is known on whether associated bioactive components modify the early differentiation program in developing mammary glands. Here, we evaluated the hypothesis that early exposure (in utero and lactational) to blueberry through maternal diet enhances mammary epithelial differentiation in female offspring. Pregnant Sprague-Dawley rats beginning at gestation day 4 were fed American Institute of Nutrition-based diets containing casein and whole blueberry powders added to casein at 2.5%, 5.0%, and 10% weight/weight. Female pups at weaning were evaluated for growth and mammary tissue parameters. Blueberry at 5% dose increased body and adipose fat weights, relative to the other diets. Mammary branch density and terminal end bud size were highest for the 5% blueberry group, whereas terminal end bud numbers were not affected by all diets. Mammary ductal epithelial cells of the 5% blueberry group had lower nuclear phosphorylated histone 3 and higher nuclear tumor suppressor phosphatase and tensin homolog deleted in chromosome 10 (PTEN) levels than the casein group. Although sera of both diet groups had similar antioxidant capacity, 5% blueberry sera elicited higher nuclear PTEN accumulation in human MCF-10A mammary epithelial cells. Our studies identify developing mammary glands as early targets of blueberry-associated bioactive components, possibly through systemic effects on epithelial PTEN signaling.
Collapse
Affiliation(s)
- Xianli Wu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Rat has been the major model species used in several biomedical fields, notably in drug development and toxicology, including carcinogenicity testing. Rat is also a useful model in basic cancer research. Several rat models of monogenic (Mendelian) human hereditary cancers are available. Some were obtained spontaneously, while others were generated either by mutagenesis of tumor suppressor genes or by transgenesis of activated oncogenes (transgenesis can be performed efficiently in the rat). In addition, among the hundreds of inbred rat strains that have been isolated, some are highly susceptible or resistant to certain types of cancer, and these divergent phenotypes were shown to be polygenic. Numerous quantitative trait loci (QTLs) controlling cancer susceptibility/resistance have been defined in linkage analyses, and several of these QTLs were physically demonstrated in congenic strains. These studies led, in particular, to rapid translation to the human, with the identification of loci controlling susceptibility to a form of multiple endocrine neoplasia (monogenic trait) and to breast cancer (polygenic disease). The biology of cancer resistance has also been analyzed, and in some (but not all) cases, it was linked to regression of preneoplasic lesions. Rat tumors have been the subject of various types of analyses, and these studies led to important conclusions, including that tumors can be classified on the basis of the identity of the inducing agent, thereby suggesting that analyses of human tumors may be valuable in determining retrospectively the role of specific carcinogens in the formation of human cancers, and of human breast cancer in particular.
Collapse
Affiliation(s)
- Claude Szpirer
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Charleroi, Belgium
| |
Collapse
|
50
|
Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal 2009; 21:1541-7. [PMID: 19298854 PMCID: PMC2756420 DOI: 10.1016/j.cellsig.2009.03.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Cancer cells are known to have alterations in multiple cellular signaling pathways and because of the complexities in the communication between multiple signaling networks, the treatment and the cure for most human malignancies is still an open question. Perhaps, this is the reason why specific inhibitors that target only one pathway have been typically failed in cancer treatment. However, the in vitro and in vivo studies have demonstrated that some natural products such as isoflavones, indole-3-carbinol (I3C), 3,3'-diindolylmethane (DIM), curcumin, (-)-epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, etc, have inhibitory effects on human and animal cancers through targeting multiple cellular signaling pathways and thus these "natural agents" could be classified as multi-targeted agents. This is also consistent with the epidemiological studies showing that the consumption of fruits, soybean and vegetables is associated with reduced risk of several types of cancers. By regulating multiple important cellular signaling pathways including NF-kappaB, Akt, MAPK, Wnt, Notch, p53, AR, ER, etc, these natural products are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells. Therefore, non-toxic "natural agents" harvested from the bounties of nature could be useful either alone or in combination with conventional therapeutics for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|