1
|
Buckley A, Guo C, Laycock A, Cui X, Belinga-Desaunay-Nault MF, Valsami-Jones E, Leonard M, Smith R. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses. Toxicol In Vitro 2024; 100:105889. [PMID: 38971396 DOI: 10.1016/j.tiv.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO2 nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.
Collapse
Affiliation(s)
- Alison Buckley
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Chang Guo
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Adam Laycock
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Nanodot Limited, Loughborough LE11 4NT, UK
| | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Rachel Smith
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| |
Collapse
|
2
|
Lee HS, Ryu YJ, Lee MJ. Protective effect of recombinant interleukin-10 on newborn rat lungs exposed to short-term sublethal hyperoxia. Clin Exp Pediatr 2024; 67:540-549. [PMID: 39327683 PMCID: PMC11471917 DOI: 10.3345/cep.2024.01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Lung injury imposed by hyperoxia is the main cause of bronchopulmonary dysplasia in newborns. These injuries are generated from the early stage of hyperoxia through the main biologic effects of cell death and inflammatory response. Interleukin (IL)-10 is a potent anti-inflammatory cytokine that may have the inhibitory effects on these biologic actions induced by hyperoxia. PURPOSE Based on our former in vitro studies investigating the effect of recombinant IL-10 (rIL-10) on protecting cultured alveolar type II cells exposed to short-term hyperoxia, we performed the in vivo study to investigate the effect of rIL-10 in newborn rats aged P4 exposed to hyperoxia. METHODS Rats were classified into 3 groups; the control group exposed to normoxia for 24 hours; the hyperoxia group exposed to 65% hyperoxia for 24 hours; and the IL10 group treated with intratracheal instillation of rIL-10 prior to exposure to 65% hyperoxia for 24 hours. Following each treatment, the rats were euthanized. Individual lobes of the right lung were prepared for hematoxyling and eosin (H&E) staining and immunohistochemical staining for thyroid transcription factor-1 (TTF1). Bronchoalveolar lavage (BAL) was performed in the left lung to analyze cell counts and cytokines. RESULTS The IL10 group showed preserved air spaces similar to the control group, with decreased cellularity compared to the hyperoxia group, whereas the hyperoxia group showed markedly reduced air spaces with increased cellularity compared to the IL10 group. And, the IL10 group showed more TTF1-positive cells, which represented alveolar type II cells, compared to the hyperoxia group. Inflammatory cells, such as neutrophils and lymphocytes and proinflammatory cytokines of tumor necrosis factor-α, IL-1α, IL-8, and macrophage inflammatory protein-1α were significantly lower in BAL fluid of the IL10 group compared to the hyperoxia group. CONCLUSION These results indicate that rIL-10 may be a promising pharmaceutical measure for protecting newborn lungs from injury induced at the early stage of hyper oxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Uijeongbu Eulji Medical Center, Eulji University College of Medicine, Uijeongbu, Korea
| | - Young-Joon Ryu
- Clinical Pathology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Min-Jae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Kimball EE, Rousseau B. Mechanotransduction in the Vocal Fold Microenvironment: A Narrative Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2128-2138. [PMID: 38865255 PMCID: PMC11253793 DOI: 10.1044/2024_jslhr-23-00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE The vocal fold tissues undergo nearly continuous and repeated cycles of injury and repair throughout the course of an individual's lifetime. It is well established that certain individuals are at greater risk of lesion development based on personality and behavioral classification. However, these characteristics alone do not wholly predict or explain lesion development or severity. In this review, we discuss current knowledge of mechanotransduction proteins and their potential relevance to tissue homeostasis in the vocal folds. METHOD A review of literature surrounding mechanotransduction and tissue homeostasis as it relates to the vocal folds was conducted. Review of the literature included searches of PubMed, Google Scholar, and other various online peer-reviewed sources. Search terms pertained to mechanosensation, mechanotransduction, mechanically activated channels, mechanical cellular regulation, and other associated concepts and terms. Additional literature was identified through the reference lists of identified papers. Findings of this literature review were then applied to known physiology and pathophysiology of the vocal folds in order to speculate on the contribution of mechanically mediated mechanisms within the vocal fold. DISCUSSION AND CONCLUSION Because the vocal folds are such mechanically active structures, withstanding nearly constant external forces, there is strong support for the idea that mechanically sensitive molecular pathways within the vocal fold tissue play a major role in tissue homeostasis in the presence of these considerable forces. As such, mechanotransduction within the vocal fold should be considered and targeted in future biological studies of vocal fold physiology.
Collapse
Affiliation(s)
- Emily E. Kimball
- Department of Hearing and Speech Sciences, Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, MO
| |
Collapse
|
4
|
Zhu Y, Meng X, Zhu X, Zhang J, Lv H, Wang F, Wang J, Chen C, Chen M, Wang D, Jin W, Tian R, Wang R. Circular RNA MKLN1 promotes epithelial-mesenchymal transition in pulmonary fibrosis by regulating the miR-26a/b-5p/CDK8 axis in human alveolar epithelial cells and mice models. Arch Toxicol 2024; 98:1399-1413. [PMID: 38460002 PMCID: PMC10965569 DOI: 10.1007/s00204-024-03700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xian Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Hui Lv
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Feiyao Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Cheng Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Mengting Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Dapeng Wang
- Department of Intensive Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214021, Jiangsu, China
| | - Wei Jin
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Rui Tian
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| |
Collapse
|
5
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Chen LK, Hsieh CC, Huang YC, Huang YJ, Lung CF, Hsu WE, Yao CL, Tseng TY, Wang CC, Hsu YC. Mechanical Stretch Promotes Invasion of Lung Cancer Cells via Activation of Tumor Necrosis Factor-alpha. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Zemskov EA, Gross CM, Aggarwal S, Zemskova MA, Wu X, Gu C, Wang T, Tang H, Black SM. NF-κB-dependent repression of Sox18 transcription factor requires the epigenetic regulators histone deacetylases 1 and 2 in acute lung injury. Front Physiol 2022; 13:947537. [PMID: 35991176 PMCID: PMC9386230 DOI: 10.3389/fphys.2022.947537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
In acute lung injury (ALI), the NF-κB-mediated downregulation of Sox18 gene expression leads to the disruption of the pulmonary endothelial barrier. Previous studies have suggested that the action of NF-κB as a transcriptional repressor also requires the action of class I histone deacetylases (HDACs). Thus, the purpose of this study was to investigate and further delineate the mechanism of Sox18 repression during lipopolysaccharide (LPS) induced ALI. Using selective inhibitors and specific siRNA-driven depletion of HDACs 1-3 in human lung microvascular endothelial cells (HLMVEC) we were able to demonstrate a critical role for HDACs 1 and 2 in the LPS-mediated repression of Sox18 gene expression and the loss of endothelial monolayer integrity. Moreover, our data demonstrate that HDAC1 associates with a transcription-repressive complex within the NF-κB-binding site of Sox18 promoter. Further, we were able to show that the selective inhibitor of HDAC1, tacedinaline, significantly reduced the endothelial permeability and injury associated with LPS challenge in the mouse lung. Taken together, our data demonstrate, for the first time, that transcription repressors HDACs 1 and 2 are involved in pathological mechanism of ALI and can be considered as therapeutic targets.
Collapse
Affiliation(s)
- Evgeny A. Zemskov
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Christine M. Gross
- Department of Medicine at Broward Health Medical Center, Fort Lauderdale, FL, United States
| | - Saurabh Aggarwal
- Department of Anesthesiology, The University of Alabama, Birmingham, AL, United States
| | - Marina A. Zemskova
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - Chenxin Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Haiyang Tang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| |
Collapse
|
8
|
Gao FY, Zhou X, Lu MX, Wang M, Liu ZG, Cao JM, Ke XL, Yi MM. Nile tilapia TRIM39 recruits I3K413 and I3KL45 as adaptors and is involved in the NF-κB pathway. JOURNAL OF FISH BIOLOGY 2022; 101:144-153. [PMID: 35514248 DOI: 10.1111/jfb.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Tripartite motif (TRIM) proteins play a regulatory function in cancer, cell apoptosis and innate immunity. To understand the role of TRIM39 in Nile tilapia (Oreochromis niloticus), TRIM39 cDNA was isolated. The total length of TRIM39 cDNA was 5025 bp. The deduced OnTRIM39 protein contains 549 amino acids and has conserved domains of the TRIM family, which are the RING, B-box, coiled-coil and PRY-SPRY domains. OnTRIM39 mRNA was widely expressed in various tissues. After challenge with Streptococcus agalactiae and stimulation with polyinosinic polycytidylic acid [poly (I:C)] and lipopolysaccharides (LPS), the amount of OnTRIM39 transcript was changed in various tested tissues. OnTRIM39 overexpression increased NF-κB activity. OnTRIM39 was present in the cytoplasm. Mass spectrometry of proteins pulled down with recombinant OnTRIM39 showed that 250 proteins potentially interact with OnTRIM39. The authors selected I3K4I3 from the 250 candidate proteins to verify its interaction with TRIM39. They also selected I3KL45, a member of the same 14-3-3 protein family, to verify its interaction with TRIM39. The results of pull-down assays showed that OnTRIM39 interacted with both I3K413 and I3KL45. These results contribute to further study of the innate immune mechanism of tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xin Zhou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Mai-Xin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zhi-Gang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Jiang-Meng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiao-Li Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Meng-Meng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture/Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
9
|
Dos Santos CC, Amatullah H, Vaswani CM, Maron-Gutierrez T, Kim M, Mei SHJ, Szaszi K, Monteiro APT, Varkouhi AK, Herreroz R, Lorente JA, Tsoporis JN, Gupta S, Ektesabi A, Kavantzas N, Salpeas V, Marshall JC, Rocco PRM, Marsden PA, Weiss DJ, Stewart DJ, Hu P, Liles WC. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J 2022; 59:2004216. [PMID: 34112731 DOI: 10.1183/13993003.04216-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/24/2021] [Indexed: 11/05/2022]
Abstract
Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.
Collapse
Affiliation(s)
- Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hajera Amatullah
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Chirag M Vaswani
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Michael Kim
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ana Paula T Monteiro
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Raquel Herreroz
- University Hospital of Getafe, Critical Care Dept, Madrid, Spain
| | - Jose Angel Lorente
- University Hospital of Getafe, Critical Care Dept, Madrid, Spain
- Centros de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - James N Tsoporis
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amin Ektesabi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikolaos Kavantzas
- 1st Dept of Pathology, School of Medicine, National and Kapodistrian, University of Athens, Greece
| | - Vasileios Salpeas
- 1st Dept of Pathology, School of Medicine, National and Kapodistrian, University of Athens, Greece
| | - John C Marshall
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip A Marsden
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Daniel J Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pingzhao Hu
- Dept of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - W Conrad Liles
- Dept of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
López-Alonso I, López-Martínez C, Martín-Vicente P, Amado-Rodríguez L, González-López A, Mayordomo-Colunga J, Del Busto C, Bernal M, Crespo I, Astudillo A, Arias-Guillén M, Fueyo A, Almendros I, Otero J, Sanz-Fraile H, Farré R, Albaiceta GM. Mechanical ventilation promotes lung tumor spread by modulation of cholesterol cell content. Eur Respir J 2021; 60:13993003.01470-2021. [PMID: 34887328 DOI: 10.1183/13993003.01470-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022]
Abstract
Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumors have not been explored. To characterize the influence of mechanical ventilation on the behavior of lung tumors, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechano-dependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of non-ventilated patients. Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in PCSK9 and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harboring melanoma implants increased brain and kidney metastases two weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo In patients, mechanical ventilation increased PCSK9 abundance in lung tumors and the incidence of metastasis, thus decreasing survival. Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.
Collapse
Affiliation(s)
- Inés López-Alonso
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain .,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,These authors contributed equally
| | - Cecilia López-Martínez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,These authors contributed equally
| | - Paula Martín-Vicente
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Adrián González-López
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, Germany
| | - Juan Mayordomo-Colunga
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Pediátricos. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cecilia Del Busto
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Polivalente. Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marina Bernal
- Servicio de Medicina Interna. Fundación Jiménez Díaz, Madrid, Spain
| | - Irene Crespo
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Miguel Arias-Guillén
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Servicio de Neumología. Hospital Unviersitario Central de Asturias. Oviedo, Spain
| | - Antonio Fueyo
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Jorge Otero
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ramón Farré
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Guillermo M Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, Soussi-Gounni A, de Oliveira CI, Uzonna JE. The Long Pentraxin 3 (PTX3) Suppresses Immunity to Cutaneous Leishmaniasis by Regulating CD4 + T Helper Cell Response. Cell Rep 2020; 33:108513. [PMID: 33326783 DOI: 10.1016/j.celrep.2020.108513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; NIIT University, Rajasthan, India
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rohit Sharma
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Romaniya Zayats
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aldina Barral
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | | | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdel Soussi-Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells. Int J Mol Sci 2020; 21:ijms21114074. [PMID: 32517296 PMCID: PMC7312583 DOI: 10.3390/ijms21114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of death. Most previous studies have been based on traditional cell-culturing methods. However, lung cells are periodically subjected to mechanical forces during breathing. Understanding the mechanisms underlying the cyclic stretching induced in lung cells may be important for lung cancer therapy. Here, we applied cyclic stretching to stimulate the continual contraction that is present under physiological conditions in lung cells. We first uncovered the stretching-induced phosphoproteome in lung cancer cell line A549 and fibroblast cell line IMR-90. We identified 2048 and 2604 phosphosites corresponding to 837 and 1008 phosphoproteins in A549 and IMR-90, respectively. Furthermore, we combined our phosphoproteomics and public gene expression data to identify the biological functions in response to cyclic stretching. Interestingly, cytoskeletal and mitochondrial reorganization were enriched. We further used cell imaging analysis to validate the profiling results and found that this physical force changed cell alignment and mitochondrial length. This study not only reveals the molecular mechanism of cyclic stretching but also provides evidence that cell stretching causes cellular rearrangement and mitochondrial length change.
Collapse
|
13
|
Correger E, Marcos J, Laguens G, Stringa P, Cardinal-Fernández P, Blanch L. Pretreatment with adalimumab reduces ventilator-induced lung injury in an experimental model. Rev Bras Ter Intensiva 2020; 32:58-65. [PMID: 32401991 PMCID: PMC7206963 DOI: 10.5935/0103-507x.20200010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/29/2019] [Indexed: 02/05/2023] Open
Abstract
Objective To determine whether adalimumab administration before mechanical ventilation reduces ventilator-induced lung injury (VILI). Methods Eighteen rats randomized into 3 groups underwent mechanical ventilation for 3 hours with a fraction of inspired oxygen = 0.40% including a low tidal volume group (n = 6), where tidal volume = 8mL/kg and positive end-expiratory pressure = 5cmH2O; a high tidal volume group (n = 6), where tidal volume = 35mL/kg and positive end-expiratory pressure = 0; and a pretreated + high tidal volume group (n = 6) where adalimumab (100ug/kg) was administered intraperitoneally 24 hours before mechanical ventilation + tidal volume = 35mL/kg and positive end-expiratory pressure = 0. ANOVA was used to compare histological damage (ATS 2010 Lung Injury Scoring System), pulmonary edema, lung compliance, arterial partial pressure of oxygen, and mean arterial pressure among the groups. Results After 3 hours of ventilation, the mean histological lung injury score was higher in the high tidal volume group than in the low tidal volume group (0.030 versus 0.0051, respectively, p = 0.003). The high tidal volume group showed diminished lung compliance at 3 hours (p = 0.04) and hypoxemia (p = 0,018 versus control). Pretreated HVt group had an improved histological score, mainly due to a significant reduction in leukocyte infiltration (p = 0.003). Conclusion Histological examination after 3 hours of injurious ventilation revealed ventilator-induced lung injury in the absence of measurable changes in lung mechanics or oxygenation; administering adalimumab before mechanical ventilation reduced lung edema and histological damage.
Collapse
Affiliation(s)
- Enrique Correger
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Josefina Marcos
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Graciela Laguens
- Cadeira de Patologia, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Stringa
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Lluis Blanch
- Centro de Cuidados Intensivos, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| |
Collapse
|
14
|
Schmitz C, Welck J, Tavernaro I, Grinberg M, Rahnenführer J, Kiemer AK, van Thriel C, Hengstler JG, Kraegeloh A. Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO 2 NPs in lung epithelial cells. Nanotoxicology 2019; 13:1227-1243. [PMID: 31418614 DOI: 10.1080/17435390.2019.1650971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of engineered nanomaterials on human health are still intensively studied in order to facilitate their safe application. However, relatively little is known how mechanical strain as induced in alveolar epithelial cells by breathing movements modifies biological responses to nanoparticles (NPs). In this study, A549 cells as a model for alveolar epithelial cells were exposed to 25 nm amorphous colloidal silica NPs under dynamic and static culture conditions. Gene array data, qPCR, and ELISA revealed an amplified effect of NPs when cells were mechanically stretched in order to model the physiological mechanical deformation during breathing. In contrast, treatment of cells with either strain or NPs alone only led to minor changes in gene expression or interleukin-8 (IL-8) secretion. Confocal microscopy revealed that stretching does not lead to an increased internalization of NPs, indicating that elevated intracellular NP accumulation is not responsible for the observed effect. Gene expression alterations induced by combined exposure to NPs and mechanical strain showed a high similarity to those known to be induced by TNF-α. This study suggests that the inclusion of mechanical strain into in vitro models of the human lung may have a strong influence on the test results.
Collapse
Affiliation(s)
- Carmen Schmitz
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany.,Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Jennifer Welck
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany
| | | | - Marianna Grinberg
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Christoph van Thriel
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | | |
Collapse
|
15
|
Dromparis P, Aboelnazar NS, Wagner S, Himmat S, White CW, Hatami S, Luc JGY, Rotich S, Freed DH, Nagendran J, Mengel M, Adam BA. Ex vivo perfusion induces a time- and perfusate-dependent molecular repair response in explanted porcine lungs. Am J Transplant 2019; 19:1024-1036. [PMID: 30230229 DOI: 10.1111/ajt.15123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023]
Abstract
Ex vivo lung perfusion (EVLP) shows promise in ameliorating pretransplant acute lung injury (ALI) and expanding the donor organ pool, but the mechanisms of ex vivo repair remain poorly understood. We aimed to assess the utility of gene expression for characterizing ALI during EVLP. One hundred sixty-nine porcine lung samples were collected in vivo (n = 25), after 0 (n = 11) and 12 (n = 11) hours of cold static preservation (CSP), and after 0 (n = 57), 6 (n = 8), and 12 (n = 57) hours of EVLP, utilizing various ventilation and perfusate strategies. The expression of 53 previously described ALI-related genes was measured and correlated with function and histology. Twenty-eight genes were significantly upregulated and 6 genes downregulated after 12 hours of EVLP. Aggregate gene sets demonstrated differential expression with EVLP (P < .001) but not CSP. Upregulated 28-gene set expression peaked after 6 hours of EVLP, whereas downregulated 6-gene set expression continued to decline after 12 hours. Cellular perfusates demonstrated a greater reduction in downregulated 6-gene set expression vs acellular perfusate (P < .038). Gene set expression correlated with relevant functional and histologic parameters, including P/F ratio (P < .001) and interstitial inflammation (P < .005). Further studies with posttransplant results are warranted to evaluate the clinical significance of this novel molecular approach for assessing organ quality during EVLP.
Collapse
Affiliation(s)
- Peter Dromparis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nader S Aboelnazar
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Siegfried Wagner
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sayed Himmat
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher W White
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sanaz Hatami
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica G Y Luc
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Silas Rotich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Burgess JK, Heijink IH. The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121814 DOI: 10.1007/978-3-030-29403-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
17
|
SOCS-1 ameliorates smoke inhalation-induced acute lung injury through inhibition of ASK-1 activity and DISC formation. Clin Immunol 2017; 191:94-99. [PMID: 29108854 DOI: 10.1016/j.clim.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/20/2023]
Abstract
Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of apoptosis and pro-inflammatory cytokine signaling, two major contributors to the pathogenesis of ALI. We have found that SOCS-1 protects lung epithelial cells from smoke-induced apoptosis through two mechanisms. One is that SOCS-1 enhances degradation of ASK-1 and diminishes cleavage of pro-caspase-3 to repress smoke-triggered apoptosis in lung epithelial cells. The other is that SOCS-1 represses smoke-triggered DISC formation through altering TRADD-caspase-8 interaction rather than TNFR-1-TRADD interaction or TNFR-1-TRAF-2 interaction. In conclusion, SOCS-1 relieves smoke inhalation-induced lung injury by repressing ASK-1 and DISC-mediated epithelium apoptosis.
Collapse
|
18
|
Fukuda SP, Matsui TS, Ichikawa T, Furukawa T, Kioka N, Fukushima S, Deguchi S. Cellular force assay detects altered contractility caused by a nephritis-associated mutation in nonmuscle myosin IIA. Dev Growth Differ 2017; 59:423-433. [PMID: 28714588 DOI: 10.1111/dgd.12379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022]
Abstract
Recent progress in understanding the essential roles of mechanical forces in regulating various cellular processes expands the field of biology to one where interdisciplinary approaches with engineering techniques become indispensable. Contractile forces or contractility-inherently present in proliferative cells due to the activity of ubiquitous nonmuscle myosin II (NMII)-are one of such mechano-regulators, but because NMII works downstream of diverse signaling pathways, it is often difficult to predict how the inherent cellular forces change upon perturbations to particular molecules. Here, we determine whether the contractility of individual cells is upregulated or downregulated based on an assay analyzing specific deformations of silicone gel substrates. We focus on the effect of mutations in the human MYH9 gene that encodes NMIIA, which have been implicated in the pathogenesis of various diseases including nephritis. Our assay equipped with a high-throughput data analysis capability reveals that a point mutation of E1841K but not I1816V significantly reduces the magnitude of the endogenous forces of human embryonic kidney (HEK293) cells. Given the increasingly recognized roles of the endogenous forces as a critical mechano-regulator as well as that no apparent morphological changes were induced to cells even by introducing the mutations, our findings suggest a possibility that the detected reduction in the force magnitude at the individual cellular level may underlie the pathogenesis of the kidney disease.
Collapse
Affiliation(s)
- Shota P Fukuda
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8507, Japan
| | - Taichi Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan.,Institute for NanoScience Design, Osaka University, Toyonaka, 560-8531
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8507, Japan
| | - Shuichiro Fukushima
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531, Japan
| |
Collapse
|
19
|
Biotrauma and Ventilator-Induced Lung Injury: Clinical Implications. Chest 2016; 150:1109-1117. [PMID: 27477213 DOI: 10.1016/j.chest.2016.07.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
The pathophysiological mechanisms by which mechanical ventilation can contribute to lung injury, termed "ventilator-induced lung injury" (VILI), is increasingly well understood. "Biotrauma" describes the release of mediators by injurious ventilatory strategies, which can lead to lung and distal organ injury. Insights from preclinical models demonstrating that traditional high tidal volumes drove the inflammatory response helped lead to clinical trials demonstrating lower mortality in patients who underwent ventilation with a lower-tidal-volume strategy. Other approaches that minimize VILI, such as higher positive end-expiratory pressure, prone positioning, and neuromuscular blockade have each been demonstrated to decrease indices of activation of the inflammatory response. This review examines the evolution of our understanding of the mechanisms underlying VILI, particularly regarding biotrauma. We will assess evidence that ventilatory and other "adjunctive" strategies that decrease biotrauma offer great potential to minimize the adverse consequences of VILI and to improve the outcomes of patients with respiratory failure.
Collapse
|
20
|
The effect of diet-induced serum hypercholesterolemia on the surfactant system and the development of lung injury. Biochem Biophys Rep 2016; 7:180-187. [PMID: 28758151 PMCID: PMC5527759 DOI: 10.1016/j.bbrep.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a pulmonary disorder associated with alterations to the pulmonary surfactant system. Recent studies showed that supra-physiological levels of cholesterol in surfactant contribute to impaired function. Since cholesterol is incorporated into surfactant within the alveolar type II cells which derives its cholesterol from serum, it was hypothesized that serum hypercholesterolemia would predispose the host to the development of lung injury due to alterations of cholesterol content in the surfactant system. Wistar rats were randomized to a standard lab diet or a high cholesterol diet for 17–20 days. Animals were then exposed to one of three models of lung injury: i) acid aspiration ii) ventilation induced lung injury, and iii) surfactant depletion. Following physiological monitoring, lungs were lavaged to obtain and analyze the surfactant system. The physiological results showed there was no effect of the high cholesterol diet on the severity of lung injury in any of the three models of injury. There was also no effect of the diet on surfactant cholesterol composition. Rats fed a high cholesterol diet had a significant impairment in surface tension reducing capabilities of isolated surfactant compared to those fed a standard diet exposed to the surfactant depletion injury. In addition, only rats that were exposed to ventilation induced lung injury had elevated levels of surfactant associated cholesterol compared to non-injured rats. It is concluded that serum hypercholesterolemia does not predispose rats to altered surfactant cholesterol composition or to lung injury. Elevated cholesterol within surfactant may be a marker for ventilation induced lung damage. Hypercholesterolemia in rats did not alter the susceptibility to lung injury. Elevated cholesterol within surfactant is observed in ventilation induced lung injury. Increases in surfactant-associated cholesterol depend on the type of lung injury.
Collapse
|
21
|
Haase K, Macadangdang JKL, Edrington CH, Cuerrier CM, Hadjiantoniou S, Harden JL, Skerjanc IS, Pelling AE. Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner. Sci Rep 2016; 6:21300. [PMID: 26892269 PMCID: PMC4759536 DOI: 10.1038/srep21300] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the nucleus in response to force. Here, using 3T3s as a model, we demonstrate that extra-cellular forces cause cell nuclei to rapidly deform (<1 s) preferentially along their shorter nuclear axis, in an anisotropic manner. Nuclear anisotropy is shown to be regulated by the cytoskeleton within intact cells, with actin and microtubules resistant to orthonormal strains. Importantly, nuclear anisotropy is intrinsic, and observed in isolated nuclei. The sensitivity of this behaviour is influenced by chromatin organization and lamin-A expression. An anisotropic response to force was also highly conserved amongst an array of examined nuclei from differentiated and undifferentiated cell types. Although the functional purpose of this conserved material property remains elusive, it may provide a mechanism through which mechanical cues in the microenvironment are rapidly transmitted to the genome.
Collapse
Affiliation(s)
- Kristina Haase
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Joan K L Macadangdang
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Claire H Edrington
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Charles M Cuerrier
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sebastian Hadjiantoniou
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - James L Harden
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,Ottawa Institute of Systems Biology, Roger Guindon Hall, 451 Smyth Road, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology &Immunology, Roger Guindon Hall, 451 Smyth Road, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Andrew E Pelling
- Centre for Interdisciplinary NanoPhysics, Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
22
|
Impact of a lung-protective ventilatory strategy on systemic and pulmonary inflammatory responses during laparoscopic surgery: is it really helpful? Inflammation 2015; 38:361-7. [PMID: 25280837 DOI: 10.1007/s10753-014-0039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Laparoscopic surgery is performed by carbon dioxide (CO2) insufflation, but this may induce stress responses. The aim of this study is to compare the level of inflammatory mediators in patients receiving low tidal volume (VT) versus traditional VT during gynecological laparoscopic surgery. Forty American Society of Anesthesiologists (ASA) physical status 1 and 2 subjects older than 18 years old undergoing laparoscopic gynecological surgery were included. Systemic inflammatory response was assessed with serum IL-6, TNF-alpha, IL-8, and IL-1β in patients receiving intraoperative low VT and traditional VT during laparoscopic surgery [within the first 5 min after endotracheal intubation (T1), 60 min after the initiation of mechanical ventilation (T2), and in the postanesthesia care unit 30 min after tracheal extubation (T3)]. Additionally, inflammatory response was assessed with bronchoalveolar lavage (BAL) at T1 and T3 periods. An increase in the serum levels of IL-6, TNF-alpha, IL-8, and IL-1β was observed in both groups during the time periods of T1, T2, and T3. No significant differences were found in the serum and BAL levels of inflammatory mediators during time periods between groups. The results of the present study suggested that the lung-protective ventilation and traditional strategies are not different in terms of lung injury and inflammatory response during conventional laparoscopic gynecological surgery.
Collapse
|
23
|
Acosta-Herrera M, Lorenzo-Diaz F, Pino-Yanes M, Corrales A, Valladares F, Klassert TE, Valladares B, Slevogt H, Ma SF, Villar J, Flores C. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury. PLoS One 2015; 10:e0132296. [PMID: 26147972 PMCID: PMC4492998 DOI: 10.1371/journal.pone.0132296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/11/2015] [Indexed: 01/17/2023] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The 'response to microorganisms' was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the 'neuron projection morphogenesis' process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection morphogenesis', which have been never anticipated in ALI pathogenesis, promotes lung-protective effects of LVT with high levels of PEEP.
Collapse
Affiliation(s)
- Marialbert Acosta-Herrera
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Fabian Lorenzo-Diaz
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Almudena Corrales
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Francisco Valladares
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Department of Anatomy, Pathology and Histology, University of La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Shwu-Fan Ma
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jesus Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael´s Hospital, Toronto, Canada
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
24
|
Zeng G, Liu J, Wu N, Jia CW, Guo SB. Lipopolysaccharide challenge induces long pentraxin 3 expression in mice independently from acute lung injury. ACTA ACUST UNITED AC 2015; 30:7-17. [PMID: 25837354 DOI: 10.1016/s1001-9294(15)30002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the onset of acute lung injury (ALI) induces the up-regulation of pentraxin 3 (PTX3) expression in mice and whether PTX3 concentration in the biofluid can help recognizing sepsis-induced ALI. METHODS Wild-type C57BL/6 mice (12-14 weeks old) were randomly divided into 3 groups. Mice in the group 1 (n=12) and group 2 (n=12) were instilled with lipopolysaccharide via intratracheal or intraperitoneal routes, respectively. Mice in the group 3 (n=8) were taken as blank controls. Pulmonary morphological and functional alterations were measured to determine the presence of experimental ALI. PTX3 expression in the lung was quantified at both protein and mRNA levels. PTX3 protein concentration in blood and bronchoalveolar lavage fluid was measured to evaluate its ability to diagnose sepsis-induced ALI by computing area under receiver operator characteristic curve (AUROCC). RESULTS ALI was commonly confirmed in the group 1 but never in the other groups. PTX3 expression was up-regulated indiscriminately among lipopolysaccharide-challenged mice. PTX3 protein concentration in the biofluid was unable to diagnose sepsis-induced ALI evidenced by its small AUROCC. PTX3 concentration in bronchoalveolar lavage fluid did not correlate with that in serum. CONCLUSIONS Lipopolysaccharide challenges induced PTX3 expression in mice regardless of the presence of ALI. PTX3 may act as an indicator of inflammatory response instead of organ injury per se.
Collapse
Affiliation(s)
- Gao Zeng
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jie Liu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ning Wu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cong-wei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shu-bin Guo
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Sharp C, Millar AB, Medford ARL. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89:420-434. [PMID: 25925331 DOI: 10.1159/000381102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of acute lung injury (ALI) occurs as a result of an initial acute systemic inflammatory response. This can be consequent to a plethora of insults, either direct to the lung or indirect. The insult results in increased epithelial permeability, leading to alveolar flooding with a protein-rich oedema fluid. The resulting loss of gas exchange leads to acute respiratory failure and typically catastrophic illness, termed acute respiratory distress syndrome (ARDS), requiring ventilatory and critical care support. There remains a significant disease burden, with some estimates showing 200,000 cases each year in the USA with a mortality approaching 50%. In addition, there is a significant burden of morbidity in survivors. There are currently no disease-modifying therapies available, and the most effective advances in caring for these patients have been in changes to ventilator strategy as a result of the ARDS network studies nearly 15 years ago. Here, we will give an overview of more recent advances in the understanding of the cellular biology of ALI and highlight areas that may prove fertile for future disease-modifying therapies.
Collapse
Affiliation(s)
- Charles Sharp
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Westbury-on-Trym, UK
| | | | | |
Collapse
|
26
|
Jaillon S, Bonavita E, Gentile S, Rubino M, Laface I, Garlanda C, Mantovani A. The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol 2014; 165:165-78. [PMID: 25531094 DOI: 10.1159/000368778] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These PRMs recognize pathogen-associated molecular patterns and are functional ancestors of antibodies, playing a role in complement activation, opsonization and agglutination. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. The prototypic long pentraxin PTX3 is highly conserved in evolution and produced by somatic and innate immune cells after proinflammatory stimuli. PTX3 interacts with a set of self, nonself and modified self ligands and exerts essential roles in innate immunity, inflammation control and matrix deposition. In addition, translational studies suggest that PTX3 may be a useful biomarker of human pathologies complementary to C-reactive protein. In this study, we will review the general functions of pentraxins in innate immunity and inflammation, focusing our attention on the prototypic long pentraxin PTX3.
Collapse
|
27
|
Wright FL, Gamboni F, Moore EE, Nydam TL, Mitra S, Silliman CC, Banerjee A. Hyperosmolarity invokes distinct anti-inflammatory mechanisms in pulmonary epithelial cells: evidence from signaling and transcription layers. PLoS One 2014; 9:e114129. [PMID: 25479425 PMCID: PMC4257597 DOI: 10.1371/journal.pone.0114129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022] Open
Abstract
Hypertonic saline (HTS) has been used intravenously to reduce organ dysfunction following injury and as an inhaled therapy for cystic fibrosis lung disease. The role and mechanism of HTS inhibition was explored in the TNFα and IL-1β stimulation of pulmonary epithelial cells. Hyperosmolar (HOsm) media (400 mOsm) inhibited the production of select cytokines stimulated by TNFα and IL-1β at the level of mRNA translation, synthesis and release. In TNFα stimulated A549 cells, HOsm media inhibited I-κBα phosphorylation, NF-κB translocation into the nucleus and NF-κB nuclear binding. In IL-1β stimulated cells HOsm inhibited I-κBα phosphorylation without affecting NF-κB translocation or nuclear binding. Incubation in HOsm conditions inhibited both TNFα and IL-1β stimulated nuclear localization of interferon response factor 1 (IRF-1). Additional transcription factors such as AP-1, Erk-1/2, JNK and STAT-1 were unaffected by HOsm. HTS and sorbitol supplemented media produced comparable outcomes in all experiments, indicating that the effects of HTS were mediated by osmolarity, not by sodium. While not affecting MAPK modules discernibly in A549 cells, both HOsm conditions inhibit IRF-1 against TNFα or IL-1β, but inhibit p65 NF-kB translocation only against TNFα but not IL-1β. Thus, anti-inflammatory mechanisms of HTS/HOsm appear to disrupt cytokine signals at distinct intracellular steps.
Collapse
Affiliation(s)
- Franklin L. Wright
- Department of Surgery/Trauma Research Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Fabia Gamboni
- Department of Surgery/Trauma Research Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Ernest E. Moore
- Department of Surgery, Denver Health Medical Center, Denver, Colorado, United States of America
| | - Trevor L. Nydam
- Department of Surgery/Trauma Research Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sanchayita Mitra
- Department of Surgery/Trauma Research Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Christopher C. Silliman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anirban Banerjee
- Department of Surgery/Trauma Research Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
Líbalová H, Krčková S, Uhlířová K, Kléma J, Ciganek M, Rössner P, Šrám RJ, Vondráček J, Machala M, Topinka J. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles. Mutat Res 2014; 770:94-105. [PMID: 25771875 DOI: 10.1016/j.mrfmmm.2014.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
A number of toxic effects of respirable ambient air particles (genotoxic effects, inflammation, oxidative damage) have been attributed to organic compounds bound onto the particle surface. In this study, we analyzed global gene expression changes caused by the extractable organic matters (EOMs) from respirable airborne particles <2.5μm (PM2.5), collected at 3 localities from heavily polluted areas of the Czech Republic and a control locality with low pollution levels, in human lung epithelial A549 cells. Although the sampled localities differed in both extent and sources of air pollution, EOMs did not induce substantially different gene expression profiles. The number of transcripts deregulated in A549 cells treated with the lowest EOM concentration (10μg/ml) ranged from 65 to 85 in 4 sampling localities compared to the number of transcripts deregulated after 30μg/ml and 60μg/ml of EOMs, which ranged from 90 to 109, and from 149 to 452, respectively. We found numerous commonly deregulated genes and pathways related to activation of the aryl hydrocarbon receptor (AhR) and metabolism of xenobiotics and endogenous compounds. We further identified deregulation of expression of the genes involved in pro-inflammatory processes, oxidative stress response and in cancer and developmental pathways, such as TGF-β and Wnt signaling pathways. No cell cycle arrest, DNA repair or pro-apoptotic responses were identified at the transcriptional level after the treatment of A549 cells with EOMs. In conclusion, numerous processes and pathways deregulated in response to EOMs suggest a significant role of activated AhR. Interestingly, we did not observe substantial gene expression changes related to DNA damage response, possibly due to the antagonistic effect of non-genotoxic EOM components. Moreover, a comparison of EOM effects with other available data on modulation of global gene expression suggests possible overlap among the effects of PM2.5, EOMs and various types of AhR agonists.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Simona Krčková
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Kateřina Uhlířová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiří Kléma
- Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
| | - Miroslav Ciganek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Pavel Rössner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radim J Šrám
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vondráček
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Machala
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
29
|
Tomar D, Singh R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-κB pathway. Biol Cell 2014; 107:22-40. [DOI: 10.1111/boc.201400046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology; School of Biological Sciences and Biotechnology; Indian Institute of Advanced Research; Gandhinagar India
| | - Rajesh Singh
- Department of Biochemistry; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| |
Collapse
|
30
|
Sutherasan Y, D'Antini D, Pelosi P. Advances in ventilator-associated lung injury: prevention is the target. Expert Rev Respir Med 2014; 8:233-48. [PMID: 24601663 DOI: 10.1586/17476348.2014.890519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanical ventilation (MV) is the main supportive treatment in respiratory failure due to different etiologies. However, MV might aggravate ventilator-associated lung injury (VALI). Four main mechanisms leading to VALI are: 1) increased stress and strain, induced by high tidal volume (VT); 2) increased shear stress, i.e. opening and closing, of previously atelectatic alveolar units; 3) distribution of perfusion and 4) biotrauma. In severe acute respiratory distress syndrome patients, low VT, higher levels of positive end expiratory pressure, long duration prone position and neuromuscular blockade within the first 48 hours are associated to a better outcome. VALI can also occur by using high VT in previously non injured lungs. We believe that prevention is the target to minimize injurious effects of MV. This review aims to describe pathophysiology of VALI, the possible prevention and treatment as well as monitoring MV to minimize VALI.
Collapse
Affiliation(s)
- Yuda Sutherasan
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, IRCCS San Martino - IST, Genoa, Italy
| | | | | |
Collapse
|
31
|
Zhang A, Yan X, Li H, Gu Z, Zhang P, Zhang H, Li Y, Yu H. TMEM16A protein attenuates lipopolysaccharide-mediated inflammatory response of human lung epithelial cell line A549. Exp Lung Res 2014; 40:237-50. [PMID: 24784799 DOI: 10.3109/01902148.2014.905655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To observe the expression of endogenous TMEM16A in rat alveolar type II epithelial cells (AT-II) and A549, and study the effect of TMEM16A on lipopolysaccharide (LPS)-induced proinflammatory cytokine secretion. METHODS Rat AT-II cells were isolated and TMEM16A protein expression in rat AT-II cells was measured by Western blot. TMEM16A mRNA and protein expressions in A549 were measured by real-time quantitative polymerase chain reaction (PCR) and Western blot, respectively. TMEM16A gene was transfected into A549 using Lipofectamine 2000. Transfected cells were selected in the presence of G418 to create a stable TMEM16A overexpression A549 cell line. The expression of TMEM16A in A549 was knocked down by lentiviral vector-mediated RNA interference. TNF-α and IL-8 levels were determined by enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter assay system was used to measure the transcriptional activity of NF-κB. RESULTS (1) Endogenous TMEM16A was expressed in rat AT-II and A549. (2) TMEM16A expression in A549 significantly increased at 24 hours and 36 hours, and then decreased at 48 hours after LPS treatment. (3) TMEM16A mRNA and protein expressions were increased in the stable TMEM16A overexpression A549 cell line. (4) TMEM16A overexpression decreased the LPS-induced TNF-α and IL-8 secretions. (5) TMEM16A mRNA and protein expressions were knocked down in TMEM16A-siRNA lentivirus transfected A549. (6) TMEM16A knockdown increased the LPS-induced TNF-α and IL-8 secretions. (7) TMEM16A overexpression inhibited LPS-induced NF-κB activation. CONCLUSIONS TMEM16A is expressed in AT-II. TMEM16A in A549 inhibits LPS-induced NF-κB activation and decreases proinflammatory cytokines release, protecting A549 from acute LPS-mediated damage.
Collapse
Affiliation(s)
- Aili Zhang
- 1Department of Respirology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Krebs J, Tsagogiorgas C, Pelosi P, Rocco PRM, Hottenrott M, Sticht C, Yard B, Luecke T. Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R59. [PMID: 24693992 PMCID: PMC4056811 DOI: 10.1186/cc13813] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 12/18/2022]
Abstract
Introduction The ideal ventilation strategy for patients with massive brain damage requires better elucidation. We hypothesized that in the presence of massive brain injury, a ventilation strategy using low (6 milliliters per kilogram ideal body weight) tidal volume (VT) ventilation with open lung positive end-expiratory pressure (LVT/OLPEEP) set according to the minimal static elastance of the respiratory system, attenuates the impact of massive brain damage on gas-exchange, respiratory mechanics, lung histology and whole genome alterations compared with high (12 milliliters per kilogram ideal body weight) VT and low positive end-expiratory pressure ventilation (HVT/LPEEP). Methods In total, 28 adult male Wistar rats were randomly assigned to one of four groups: 1) no brain damage (NBD) with LVT/OLPEEP; 2) NBD with HVT/LPEEP; 3) brain damage (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. All animals were mechanically ventilated for six hours. Brain damage was induced by an inflated balloon catheter into the epidural space. Hemodynamics was recorded and blood gas analysis was performed hourly. At the end of the experiment, respiratory system mechanics and lung histology were analyzed. Genome wide gene expression profiling and subsequent confirmatory quantitative polymerase chain reaction (qPCR) for selected genes were performed. Results In NBD, both LVT/OLPEEP and HVT/LPEEP did not affect arterial blood gases, as well as whole genome expression changes and real-time qPCR. In BD, LVT/OLPEEP, compared to HVT/LPEEP, improved oxygenation, reduced lung damage according to histology, genome analysis and real-time qPCR with decreased interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant 1 (CINC)-1 and angiopoietin-4 expressions. LVT/OLPEEP compared to HVT/LPEEP improved overall survival. Conclusions In BD, LVT/OLPEEP minimizes lung morpho-functional changes and inflammation compared to HVT/LPEEP.
Collapse
|
33
|
Brabcová E, Kolesár L, Thorburn E, Stříž I. Chemokines induced in human respiratory epithelial cells by IL-1 family of cytokines. Folia Biol (Praha) 2014; 60:180-6. [PMID: 25152051 DOI: 10.14712/fb2014060040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IL-1-related cytokines share similarities in their receptor distribution and signalling pathways; however, overlapping actions of these cytokines have not been clearly demonstrated. The aim of our study was to compare the capacity of different IL-1-related cytokines to stimulate production and release of multiple CC and CXC chemokines by epithelial cells. The chemokine gene expression was studied using a cDNA array system in human alveolar type-II like cells A549 stimulated by IL-1β, IL-18, and IL-33. The chemokine levels in culture supernatants were measured using multiplex immunoluminometric assay or by ELISA. In repetitive experiments, in response to IL-1β epithelial cells expressed mRNA for CCL2, CCL5, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, and CXCL11. In contrast, induction of epithelial cells by IL-33 and IL-18 resulted only in moderate up-regulation of a few CC or CXC chemokines compared to the potent effect of IL-1β stimulation. We conclude from our data that individual members of the IL-1 family, although related in molecular structure and signalling pathways, widely differ in their capacity to stimulate epithelial production of both CXC and CC chemokines.
Collapse
Affiliation(s)
- E Brabcová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - L Kolesár
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - E Thorburn
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - I Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
34
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
35
|
β-Carotene regulates expression of β-carotene 15,15′-monoxygenase in human alveolar epithelial cells. Arch Biochem Biophys 2013; 539:230-8. [DOI: 10.1016/j.abb.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
|
36
|
Abstract
Cytokines and growth factors play an integral role in the maintenance of immune homeostasis, the generation of protective immunity, and lung reparative processes. However, the dysregulated expression of cytokines and growth factors in response to infectious or noxious insults can initiate and perpetuate deleterious lung inflammation and fibroproliferation. In this article, we will comprehensively review the contribution of individual cytokines and growth factors and cytokine networks to key pathophysiological events in human and experimental acute lung injury (ALI), including inflammatory cell recruitment and activation, alveolar epithelial injury and repair, angiogenesis, and matrix deposition and remodeling. The application of cytokines/growth factors as prognostic indicators and therapeutic targets in human ALI is explored.
Collapse
Affiliation(s)
- Jane C Deng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Kim H, Zamel R, Bai XH, Liu M. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells. PLoS One 2013; 8:e64182. [PMID: 23691166 PMCID: PMC3656947 DOI: 10.1371/journal.pone.0064182] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/12/2013] [Indexed: 02/07/2023] Open
Abstract
A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC) is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B) cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu), and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.
Collapse
Affiliation(s)
- Hyunhee Kim
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute University Health Network, Toronto, Ontario, Canada
| | - Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departments of Surgery and Medicine, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Barabutis N, Handa V, Dimitropoulou C, Rafikov R, Snead C, Kumar S, Joshi A, Thangjam G, Fulton D, Black SM, Patel V, Catravas JD. LPS induces pp60c-src-mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. Am J Physiol Lung Cell Mol Physiol 2013; 304:L883-93. [PMID: 23585225 DOI: 10.1152/ajplung.00419.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 90 (Hsp90) inhibitors were initially developed as anticancer agents; however, it is becoming increasing clear that they also possess potent anti-inflammatory properties. Posttranslational modifications of Hsp90 have been reported in tumors and have been hypothesized to affect client protein- and inhibitor-binding activities. In the present study we investigated the posttranslational modification of Hsp90 in inflammation. LPS, a prototypical inflammatory agent, induced concentration- and time-dependent tyrosine (Y) phosphorylation of Hsp90α and Hsp90β in bovine pulmonary arterial and human lung microvascular endothelial cells (HLMVEC). Mass spectrometry identified Y309 as a major site of Y phosphorylation on Hsp90α (Y300 of Hsp90β). LPS-induced Hsp90 phosphorylation was prevented by the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin (17-AAG) in vitro as well as in lungs from LPS-treated mice, in vivo. Furthermore, 17-AAG prevented LPS-induced pp60src activation. LPS-induced Hsp90 phosphorylation was also prevented by the pp60src inhibitor PP2. Additionally, Hsp90 phosphorylation was induced by infecting cells with a constitutively active pp60src adenovirus, whereas either a dominant-negative pp60src adenovirus or reduced expression of pp60src by a specific siRNA prevented the LPS-induced Y phosphorylation of Hsp90. Transfection of HLMVEC with the nonphosphorylatable Hsp90β Y300F mutant prevented LPS-induced Hsp90β tyrosine phosphorylation but not pp60src activation. Furthermore, the Hsp90β Y300F mutant showed a reduced ability to bind the Hsp90 client proteins eNOS and pp60src and HLMVEC transfected with the mutant exhibited reduced LPS-induced barrier dysfunction. We conclude that inflammatory stimuli cause posttranslational modifications of Hsp90 that are Hsp90-inhibitor sensitive and may be important to the proinflammatory actions of Hsp90.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SHJ, Stewart DJ, Liles WC. Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 181:1681-92. [PMID: 23083833 DOI: 10.1016/j.ajpath.2012.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/03/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Abstract
Although bone marrow-derived mesenchymal stem cell (MSC) systemic administration reduces sepsis-associated inflammation, organ injury, and mortality in clinically relevant models of polymicrobial sepsis, the cellular and molecular mechanisms mediating beneficial effects are controversial. This study identifies the molecular mechanisms of MSC-conferred protection in sepsis by interrogating transcriptional responses of target organs to MSC therapy. Sepsis was induced in C57Bl/6J mice by cecal ligation and puncture, followed 6 hours later by an i.v. injection of either MSCs or saline. Total RNA from lungs, hearts, kidneys, livers, and spleens harvested 28 hours after cecal ligation and puncture was hybridized to mouse expression bead arrays. Common transcriptional responses were analyzed using a network knowledge-based approach. A total of 4751 genes were significantly changed between placebo- and MSC-treated mice (adjusted P ≤ 0.05). Transcriptional responses identified three common effects of MSC administration in all five organs examined: i) attenuation of sepsis-induced mitochondrial-related functional derangement, ii down-regulation of endotoxin/Toll-like receptor innate immune proinflammatory transcriptional responses, and iii) coordinated expression of transcriptional programs implicated in the preservation of endothelial/vascular integrity. Transcriptomic analysis indicates that the protective effect of MSC therapy in sepsis is not limited to a single mediator or pathway but involves a range of complementary activities affecting biological networks playing critical roles in the control of host cell metabolism and inflammatory response.
Collapse
Affiliation(s)
- Claudia C dos Santos
- Interdepartmental Division of Critical Care, The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiao H, Bai XH, Wang Y, Kim H, Mak AS, Liu M. MEK/ERK pathway mediates PKC activation-induced recruitment of PKCζ and MMP-9 to podosomes. J Cell Physiol 2013; 228:416-27. [PMID: 22740332 DOI: 10.1002/jcp.24146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP-9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation-induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu-induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)-inhibited PDBu-induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP-9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu-induced podosomes by influencing the recruitment of PKCζ and MMP-9 to podosomes.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cell and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Schwingshackl A, Teng B, Ghosh M, Lim KG, Tigyi G, Narayanan D, Jaggar JH, Waters CM. Regulation of interleukin-6 secretion by the two-pore-domain potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 304:L276-86. [PMID: 23275623 DOI: 10.1152/ajplung.00299.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently proposed a role for the two-pore-domain K(+) (K2P) channel Trek-1 in the regulation of cytokine release from mouse alveolar epithelial cells (AECs) by demonstrating decreased interleukin-6 (IL-6) secretion from Trek-1-deficient cells, but the underlying mechanisms remained unknown. This study was designed to investigate the mechanisms by which Trek-1 decreases IL-6 secretion. We hypothesized that Trek-1 regulates tumor necrosis factor-α (TNF-α)-induced IL-6 release via NF-κB-, p38-, and PKC-dependent pathways. We found that Trek-1 deficiency decreased IL-6 secretion from mouse and human AECs at both transcriptional and translational levels. While NF-κB/p65 phosphorylation was unchanged, p38 phosphorylation was decreased in Trek-1-deficient cells, and pharmacological inhibition of p38 decreased IL-6 secretion in control but not Trek-1-deficient cells. Similarly, pharmacological inhibition of PKC also decreased IL-6 release, and we found decreased phosphorylation of the isoforms PKC/PKDμ (Ser(744/748)), PKCθ, PKCδ, PKCα/βII, and PKCζ/λ, but not PKC/PKDμ (Ser(916)) in Trek-1-deficient AECs. Phosphorylation of PKCθ, a Ca(2+)-independent isoform, was intact in control cells but impaired in Trek-1-deficient cells. Furthermore, TNF-α did not elevate the intracellular Ca(2+) concentration in control or Trek-1-deficient cells, and removal of extracellular Ca(2+) did not impair IL-6 release. In summary, we report the expression of Trek-1 in human AECs and propose that Trek-1 deficiency may alter both IL-6 translation and transcription in AECs without affecting Ca(2+) signaling. The results of this study identify Trek-1 as a new potential target for the development of novel treatment strategies against acute lung injury.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu P, Wang X, Haitsma JJ, Furmli S, Masoom H, Liu M, Imai Y, Slutsky AS, Beyene J, Greenwood CMT, dos Santos C. Microarray meta-analysis identifies acute lung injury biomarkers in donor lungs that predict development of primary graft failure in recipients. PLoS One 2012; 7:e45506. [PMID: 23071521 PMCID: PMC3470558 DOI: 10.1371/journal.pone.0045506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications.
Collapse
Affiliation(s)
- Pingzhao Hu
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xinchen Wang
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Jack J. Haitsma
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Suleiman Furmli
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Hussain Masoom
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Thoracic Surgery Research Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yumiko Imai
- Biological Informatics and Experimental Therapeutics Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Arthur S. Slutsky
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Beyene
- Program in Population Genomics, Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Celia M. T. Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Claudia dos Santos
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Mechanical ventilation is essential for the support of critically ill patients, but may aggravate lung damage, leading to ventilator-associated lung injury (VALI). VALI results from a succession of events beginning with mechanical alteration of lung parenchyma, because of disproportionate stress and strain. The resulting structural tension initiates a biological inflammatory cascade; however, tension can reach the limits of stress, triggering the destruction of structures. This article reviews and discusses the ongoing research into the mechanisms of VALI and their implications for the management of ventilated patients. RECENT FINDINGS Several experimental and clinical studies have been performed to evaluate the contribution of pathogenic mechanical forces to organ and cellular deformation and the implications for guiding ventilator management in patients at risk for VALI. VALI may be attenuated by reducing tidal volume, but the key variable in determining pulmonary overdistension is transpulmonary pressure. Other parameters associated with the induction of VALI include positive end-expiratory pressure, inspiratory airflow and time, and respiratory frequency. SUMMARY How ventilation strategy, specific mechanisms of mechanotransduction, and their individual threshold values impact on VALI remains to be elucidated. In addition, clinical studies are required to evaluate the usefulness of individualized ventilator strategies based on lung mechanics.
Collapse
|
44
|
Grimley R, Polyakova O, Vamathevan J, McKenary J, Hayes B, Patel C, Smith J, Bridges A, Fosberry A, Bhardwaja A, Mouzon B, Chung CW, Barrett N, Richmond N, Modha S, Solari R. Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFκB responses. PLoS One 2012; 7:e39847. [PMID: 22792191 PMCID: PMC3391194 DOI: 10.1371/journal.pone.0039847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
SIRT6 is involved in inflammation, aging and metabolism potentially by modulating the functions of both NFκB and HIF1α. Since it is possible to make small molecule activators and inhibitors of Sirtuins we wished to establish biochemical and cellular assays both to assist in drug discovery efforts and to validate whether SIRT6 represents a valid drug target for these indications. We confirmed in cellular assays that SIRT6 can deacetylate acetylated-histone H3 lysine 9 (H3K9Ac), however this deacetylase activity is unusually low in biochemical assays. In an effort to develop alternative assay formats we observed that SIRT6 overexpression had no influence on TNFα induced nuclear translocation of NFκB, nor did it have an effect on nuclear mobility of RelA/p65. In an effort to identify a gene expression profile that could be used to identify a SIRT6 readout we conducted genome-wide expression studies. We observed that overexpression of SIRT6 had little influence on NFκB-dependent genes, but overexpression of the catalytically inactive mutant affected gene expression in developmental pathways.
Collapse
Affiliation(s)
- Rachel Grimley
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Oxana Polyakova
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Jessica Vamathevan
- Computational Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Joanne McKenary
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Brian Hayes
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Champa Patel
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Janet Smith
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Angela Bridges
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Andrew Fosberry
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Anshu Bhardwaja
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Bernadette Mouzon
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Chun-Wa Chung
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Nathalie Barrett
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Nicola Richmond
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Sundip Modha
- Platform Technology Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
| | - Roberto Solari
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Shiozaki A, Bai XH, Shen-Tu G, Moodley S, Takeshita H, Fung SY, Wang Y, Keshavjee S, Liu M. Claudin 1 mediates TNFα-induced gene expression and cell migration in human lung carcinoma cells. PLoS One 2012; 7:e38049. [PMID: 22675434 PMCID: PMC3365005 DOI: 10.1371/journal.pone.0038049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 05/02/2012] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Xiao-hui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Grace Shen-Tu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Hiroki Takeshita
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shan-Yu Fung
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
46
|
Carpenter TC, Schroeder W, Stenmark KR, Schmidt EP. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am J Respir Cell Mol Biol 2012; 46:40-7. [PMID: 21799118 DOI: 10.1165/rcmb.2011-0044oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stimulation by the ephrin-A1 ligand of the EphA2 receptor increases endothelial permeability. Lung injury increases the expression of EphA2, but the role of EphA2 in such injury is not well understood. To determine whether EphA2 contributes to changes in permeability and inflammation in the injured lung, we studied wild-type (WT) and EphA2 knockout (KO) mice, using isolated, perfused lung (IPL) preparations and a model of bleomycin-induced lung injury. We also studied the response of endothelial cells to ephrin-A1. In the IPL preparations, ephrin-A1 increased the filtration coefficient in WT mice, but not in EphA2 KO mice, demonstrating that EphA2 regulates vascular permeability. In early bleomycin injury in WT mice, the expression of both EphA2 and ephrin-A1 increased. EphA2 KO animals were protected from lung injury, showing less water and alveolar protein in the lungs than WT mice, consistent with reduced permeability. Bleomycin caused less accumulation of lung leukocytes in EphA2 KO animals than in WT animals, suggesting that EphA2 regulates inflammation. To determine whether EphA2 deficiency alters the production of chemokines, CXCL1 and CCL2 in the lungs were measured. After bleomycin injury, EphA2 KO animals produced less CXCL1 and CCL2 than WT animals. Because NF-κβ mediates the production of chemokines, the effect of the ephrin-A1 ligand on the activation of NF-κβ and the expression of chemokines was measured in endothelial cells. Ephrin-a1 significantly increased NF-κβ nuclear translocation and the expression of chemokine mRNA. This study demonstrates that the expression of EphA2 increases in the injured lung, and not only contributes to changes in permeability, but also plays a previously unrecognized role in promoting inflammatory responses.
Collapse
Affiliation(s)
- Todd C Carpenter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, 80045, USA.
| | | | | | | |
Collapse
|
47
|
Oyaizu T, Fung SY, Shiozaki A, Guan Z, Zhang Q, dos Santos CC, Han B, Mura M, Keshavjee S, Liu M. Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury. Intensive Care Med 2012; 38:894-905. [PMID: 22349424 DOI: 10.1007/s00134-012-2498-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 12/06/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE Pulmonary ischemia-reperfusion is a pathological process seen in several clinical conditions, including lung transplantation, cardiopulmonary bypass, resuscitation for circulatory arrest, atherosclerosis, and pulmonary embolism. A better understanding of its molecular mechanisms is very important. METHODS Rat left lung underwent in situ ischemia for 60 min, followed by 2 h of reperfusion. The gene expression profiles and Src protein tyrosine kinase (PTK) phosphorylation were studied over time, and PP2, an Src PTK inhibitor, was intravenously administered 10 min before lung ischemia to determine the role of Src PTK in lung injury. RESULTS Reperfusion following ischemia significantly changed the expression of 169 genes, with Mmp8, Mmp9, S100a9, and S100a8 being the most upregulated genes. Ischemia alone only affected expression of 9 genes in the lung. However, Src PTK phosphorylation (activation) was increased in the ischemic lung, mainly on the alveolar wall. Src PTK inhibitor pretreatment decreased phosphorylation of Src PTKs, total protein tyrosine phosphorylation, and STAT3 phosphorylation. It increased phosphorylation of the p85α subunit of PI3 kinase, a signal pathway that can inhibit coagulation and inflammation. PP2 reduced leukocyte infiltration in the lung, apoptotic cell death, fibrin deposition, and severity of acute lung injury after reperfusion. Src inhibition also significantly reduced CXCL1 (GRO/KI) and CCL2 (MCP-1) chemokine levels in the serum. CONCLUSION During pulmonary ischemia, Src PTK activation, rather than alteration in gene expression, may play a critical role in reperfusion-induced lung injury. Src PTK inhibition presents a new prophylactic treatment for pulmonary ischemia-reperfusion-induced acute lung injury.
Collapse
Affiliation(s)
- Takeshi Oyaizu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Real JM, Spilborghs GMGT, Morato-Marques M, de Moura RP, Negri EM, Camargo AA, Deheinzelin D, Dias AAM. Pentraxin 3 accelerates lung injury in high tidal volume ventilation in mice. Mol Immunol 2012; 51:82-90. [PMID: 22425349 DOI: 10.1016/j.molimm.2012.02.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
Abstract
Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V(T)=45 mL/kg, PEEP(zero)). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156±42 min and 148±41 min, respectively; p=0.8173). However, Ptx3 over-expression led to a faster development of VILI in Ptx3-overexpressing mice (77±29 min vs 118±41 min, p=0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development.
Collapse
|
49
|
Abstract
OBJECTIVES Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. METHODS C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. MEASUREMENT AND MAIN RESULTS Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. CONCLUSIONS Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
Collapse
|
50
|
Schmitt S, Hendricks P, Weir J, Somasundaram R, Sittampalam GS, Nirmalanandhan VS. Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol 2012; 10:137-47. [PMID: 22352900 DOI: 10.1089/adt.2011.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have shown a great deal of interest and research into the understanding of the biological and physiological roles of mechanical forces on cellular behavior. Despite these reports, in vitro screening of new molecular entities for lung ailments is still performed in static cell culture models. Failure to incorporate the effects of mechanical forces during early stages of screening could significantly reduce the success rate of drug candidates in the highly expensive clinical phases of the drug discovery pipeline. The objective of this review is to expand our current understanding of lung mechanotransduction and extend its applicability to cellular physiology and new drug screening paradigms. This review covers early in vivo studies and the importance of mechanical forces in normal lung development, use of different types of bioreactors that simulate in vivo movements in a controlled in vitro cell culture environment, and recent research using dynamic cell culture models. The cells in lungs are subjected to constant stretching (mechanical forces) in regular cycles due to involuntary expansion and contraction during respiration. The effects of stretch on normal and abnormal (disease) lung cells under pathological conditions are discussed. The potential benefits of extending dynamic cell culture models (screening in the presence of forces) and the associated challenges are also discussed in this review. Based on this review, the authors advocate the development of dynamic high throughput screening models that could facilitate the rapid translation of in vitro biology to animal models and clinical efficacy. These concepts are translatable to cardiovascular, digestive, and musculoskeletal tissues and in vitro cell systems employed routinely in drug-screening applications.
Collapse
Affiliation(s)
- Sarah Schmitt
- School of Engineering, The University of Kansas, Lawrence, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|