1
|
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K ATP channel structure and function. Channels (Austin) 2024; 18:2327708. [PMID: 38489043 PMCID: PMC10950283 DOI: 10.1080/19336950.2024.2327708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
Collapse
Affiliation(s)
- Bruce L. Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Gao J, Ververi A, Thompson E, Tryon R, Sotiriadis A, Rouvalis F, Grange DK, Giannios C, Nichols CG. A novel ABCC9 variant in a Greek family with Cantu syndrome affecting multiple generations highlights the functional role of the SUR2B NBD1. Am J Med Genet A 2024; 194:e63815. [PMID: 39031464 PMCID: PMC11540739 DOI: 10.1002/ajmg.a.63815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Cantu syndrome (CS) (OMIM #239850) is an autosomal dominant multiorgan system condition, associated with a characteristic facial phenotype, hypertrichosis, and multiple cardiovascular complications. CS is caused by gain-of-function (GOF) variants in KCNJ8 or ABCC9 that encode pore-forming Kir6.1 and regulatory SUR2 subunits of ATP-sensitive potassium (KATP) channels. A novel heterozygous ABCC9 variant, c.2440G>T; p.Gly814Trp, was identified in three individuals from a four generation Greek family. The membrane potential in cells stably expressing hKir6.1 and hSUR2B with p.Gly814Trp was hyperpolarized compared to cells expressing WT channels, and inside-out patch-clamp assays of KATP channels formed with hSUR2B p.Gly814Trp demonstrated a decreased sensitivity to ATP inhibition, confirming a relatively mild GOF effect of this variant. The specific location of the variant reveals an unrecognized functional role of the first glycine in the signature motif of the nucleotide binding domains in ATP-binding cassette (ABC) protein ion channels.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Athina Ververi
- Department for Genetics of Rare Diseases, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ellen Thompson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rob Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Ippokrateio Hospital, Thessaloniki, Greece
| | | | - Dorothy K Grange
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christos Giannios
- Department of Developmental Paediatrics, Naval Hospital of Athens, Athens, Greece
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Takeuchi A, Matsuoka S. A simulation study on the role of mitochondria-sarcoplasmic reticulum Ca 2+ interaction in cardiomyocyte energetics during exercise. J Physiol 2024. [PMID: 39387569 DOI: 10.1113/jp286054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Previous studies demonstrated that the mitochondrial Ca2+ uniporter MCU and the Na+-Ca2+ exchanger NCLX exist in proximity to the sarcoplasmic reticulum (SR) ryanodine receptor RyR and the Ca2+ pump SERCA, respectively, creating a mitochondria-SR Ca2+ interaction. However, the physiological relevance of the mitochondria-SR Ca2+ interaction has remained unsolved. Furthermore, although mitochondrial Ca2+ has been proposed to be an important factor regulating mitochondrial energy metabolism, by activating NADH-producing dehydrogenases, the contribution of the Ca2+-dependent regulatory mechanisms to cellular functions under physiological conditions has been controversial. In this study, we constructed a new integrated model of human ventricular myocyte with excitation-contraction-energetics coupling and investigated systematically the contribution of mitochondria-SR Ca2+ interaction, especially focusing on cardiac energetics during dynamic workload transitions in exercise. Simulation analyses revealed that the spatial coupling of mitochondria and SR, particularly via mitochondrial Ca2+ uniport activity-RyR, was the primary determinant of mitochondrial Ca2+ concentration, and that the Ca2+-dependent regulatory mechanism facilitated mitochondrial NADH recovery during exercise and contributed to the stability of NADH in the workload transition by about 40%, while oxygen consumption rate and cytoplasmic ATP level were not influenced. We concluded that the mitochondria-SR Ca2+ interaction, created via the uneven distribution of Ca2+ handling proteins, optimizes the contribution of the mitochondrial Ca2+-dependent regulatory mechanism to stabilizing NADH during exercise. KEY POINTS: The mitochondrial Ca2+ uniporter protein MCU and the Na+-Ca2+ exchanger protein NCLX are reported to exist in proximity to the sarcoplasmic reticulum (SR) ryanodine receptor RyR and the Ca2+ pump SERCA, respectively, creating a mitochondria-SR Ca2+ interaction in cardiomyocytes. Mitochondrial Ca2+ (Ca2+ mit) has been proposed to be an important factor regulating mitochondrial energy metabolism, by activating NADH-producing dehydrogenases. Here we constructed an integrated model of a human ventricular myocyte with excitation-contraction-energetics coupling and investigated the role of the mitochondria-SR Ca2+ interaction in cardiac energetics during exercise. Simulation analyses revealed that the spatial coupling particularly via mitochondrial Ca2+ uniport activity-RyR is the primary determinant of Ca2+ mit concentration, and that the activation of NADH-producing dehydrogenases by Ca2+ mit contributes to NADH stability during exercise. The mitochondria-SR Ca2+ interaction optimizes the contribution of Ca2+ mit to the activation of NADH-producing dehydrogenases.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences and Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences and Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Fitts RH, Wang X, Kwok WM, Camara AKS. Cardiomyocyte Adaptation to Exercise: K+ Channels, Contractility and Ischemic Injury. Int J Sports Med 2024; 45:791-803. [PMID: 38648799 DOI: 10.1055/a-2296-7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), β-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3β, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.
Collapse
Affiliation(s)
- Robert H Fitts
- Biological Sciences, Marquette University, Milwaukee, United States
| | - Xinrui Wang
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Wai-Meng Kwok
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
| | - Amadou K S Camara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
- Physiology, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
5
|
Kim HJ, Norton CE, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation. FUNCTION 2024; 5:zqae033. [PMID: 39075985 PMCID: PMC11384908 DOI: 10.1093/function/zqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Charles E Norton
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Marinko M, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW, Novakovic A. Involvement of different K + channel subtypes in hydrogen sulfide-induced vasorelaxation of human internal mammary artery. Fundam Clin Pharmacol 2024. [PMID: 39246043 DOI: 10.1111/fcp.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Changes in K+ channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K+ channels. Their involvement in hydrogen sulfide (H2S)-mediated vasorelaxation is still unclear, and data about human vessels are limited. OBJECTIVE To determine the role of K+ channel subtypes in the vasorelaxant mechanism of H2S donor, sodium-hydrosulfide (NaHS), on isolated human internal mammary artery (HIMA). RESULTS NaHS (1 × 10-6-3 × 10-3 mol/L) induced a concentration-dependent relaxation of HIMA pre-contracted by phenylephrine and high K+. Among K+ channel blockers, iberiotoxin, glibenclamide, 4-aminopyridine (4-AP), and margatoxin significantly inhibited NaHS-induced relaxation of phenylephrine-contracted HIMA (P < 0.01), whereas in the presence of apamin/1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) combination, the HIMA relaxation was partially reduced (P < 0.05). The effect of NaHS was antagonized by NO pathway inhibitors, L-NAME and KT5823, and by cyclo-oxygenase inhibitor, indomethacin (P < 0.01). Under conditions of blocked NO/prostacyclin synthesis and release, apamin/TRAM-34 and glibenclamide caused further decrease in NaHS-induced vasorelaxation (P < 0.01), while iberiotoxin, 4-AP, and margatoxin were without additional effect (P > 0.05). In the presence of nifedipine, NaHS induced partial relaxation of HIMA (P < 0.01). CONCLUSION Our results demonstrated that H2S donor, NaHS, induced concentration-dependent relaxation of isolated HIMA. Vasorelaxant mechanisms of H2S included direct or indirect opening of different K+ channel subtypes, KATP, BKCa, SKCa/IKCa, and KV (subtype KV1.3), in addition to NO pathway activation and interference with extracellular Ca2+ influx.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Samper N, Harðardóttir L, Depierreux DM, Song SC, Nakazawa A, Gando I, Nakamura TY, Sharkey AM, Nowosad CR, Feske S, Colucci F, Coetzee WA. Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608003. [PMID: 39211194 PMCID: PMC11361148 DOI: 10.1101/2024.08.14.608003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells. We show that Kcnj8, which codes for the Kir6.1 subunit of a certain type of ATP-sensitive potassium (K ATP ) channel, is highly expressed in murine splenic and uterine NK cells compared to other K + channels previously identified in NK cells. Kcnj8 expression is highest in the most mature subset of splenic NK cells (CD27 - CD11b + ) and in NKG2A + or Ly49C/I + educated uterine NK cells. Using patch clamping, we show that a subset of NK cells expresses a current sensitive to the Kir6.1 blocker PNU-37883A. Kcnj8 does not participate in NK cell degranulation in response to tumor cells in vitro or rejection of tumor cells in vivo . Transcriptomics show that genes previously implicated in NK cell development are amongst those differentially expressed in CD27 - CD11b + NK cells deficient of Kcnj8 . Indeed, we found that mice with NK-cell specific Kcnj8 gene ablation have fewer CD11b + CD27 - and KLRG-1 + NK cells in the bone barrow and spleen. These results show that the K ATP subunit Kir6.1 has a key role in NK-cell development.
Collapse
|
8
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Peixoto-Neves D, Jaggar JH. Physiological functions and pathological involvement of ion channel trafficking in the vasculature. J Physiol 2024; 602:3275-3296. [PMID: 37818949 PMCID: PMC11006830 DOI: 10.1113/jp285007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
A variety of ion channels regulate membrane potential and calcium influx in arterial smooth muscle and endothelial cells to modify vascular functions, including contractility. The current (I) generated by a population of ion channels is equally dependent upon their number (N), open probability (Po) and single channel current (i), such that I = N.PO.i. A conventional view had been that ion channels traffic to the plasma membrane in a passive manner, resulting in a static surface population. It was also considered that channels assemble with auxiliary subunits prior to anterograde trafficking of the multimeric complex to the plasma membrane. Recent studies have demonstrated that physiological stimuli can regulate the surface abundance (N) of several different ion channels in arterial smooth muscle and endothelial cells to control arterial contractility. Physiological stimuli can also regulate the number of auxiliary subunits present in the plasma membrane to modify the biophysical properties, regulatory mechanisms and physiological functions of some ion channels. Furthermore, ion channel trafficking becomes dysfunctional in the vasculature during hypertension, which negatively impacts the regulation of contractility. The temporal kinetics of ion channel and auxiliary subunit trafficking can also vary depending on the signalling mechanisms and proteins involved. This review will summarize recent work that has uncovered the mechanisms, functions and pathological modifications of ion channel trafficking in arterial smooth muscle and endothelial cells.
Collapse
Affiliation(s)
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38139
| |
Collapse
|
10
|
Rhana P, Matsumoto C, Fong Z, Costa AD, Del Villar SG, Dixon RE, Santana LF. Fueling the heartbeat: Dynamic regulation of intracellular ATP during excitation-contraction coupling in ventricular myocytes. Proc Natl Acad Sci U S A 2024; 121:e2318535121. [PMID: 38865270 PMCID: PMC11194497 DOI: 10.1073/pnas.2318535121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of β-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.
Collapse
Affiliation(s)
- Paula Rhana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Collin Matsumoto
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Zhihui Fong
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Alexandre D. Costa
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Silvia G. Del Villar
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - L. Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| |
Collapse
|
11
|
Yin XM, Song YY, Jiang WY, Zhang HT, Chen JW, Murao K, Han MX, Sun WP, Zhang GX. Mitochondrial K ATP channel-mediated autophagy contributes to angiotensin II-induced vascular dysfunction in mice. Nutr Metab Cardiovasc Dis 2024; 34:1571-1580. [PMID: 38418351 DOI: 10.1016/j.numecd.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIM The present study aimed to investigate whether the mitochondrial KATP channel contributes to angiotensin II (Ang II)-induced vascular dysfunction, the development of hypertension, and atherosclerosis. METHODS AND RESULTS ApoE (-/-) mice fed a high-fat diet were chronically infused with Ang II for eight weeks and concomitantly treated with losartan (ARB), apocynin, or 5-hydroxy decanoate (5-HD), or 3-methyladenine (3-MA). Systolic blood pressure was measured, and pathological changes of aortic or liver tissue were observed. Nitric oxide (NO), superoxide dismutase 2 (SOD2) levels and vasorelaxation rate were measured, and protein and mRNA expressions were examined by western blot and RT-PCR. Ang II-induced development of hypertension was suppressed not only by ARB, and apocynin but also by 5-HD or 3-MA. Ang II infusion decreased aortic NO production and relaxation, as well as SOD2 activity in liver, which were improved by all treatments. In addition, Ang II-induced activation of autophagy was suppressed by 5-HD in aortic tissue, furthermore, Ang II increases the atherosclerotic index in plasma and exacerbates the development of atherosclerosis by increases of fat deposition in the aorta and liver. Lipid metabolism-related mRNA expressions (LXR-α, LDLR, SRBI, Acca, and FASN) were changed by Ang II. Similarly, not only ARB, and apocynin, but also 5-HD and 3-MA suppressed Ang II-induced these changes. CONCLUSIONS Our present findings evidence that mitochondrial KATP channel-mediated autophagy contributes to Ang II-induced vascular dysfunction, development of hypertension, and atherosclerosis.
Collapse
Affiliation(s)
- Xue-Min Yin
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yi-Yi Song
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wen-Yi Jiang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Hao-Tian Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Jing-Wei Chen
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou 215003, PR China
| | - Koji Murao
- Department of Endocrine and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Meng-Xiao Han
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Wan-Ping Sun
- Laboratory of Molecular Diagnostics, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Guo-Xing Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China; Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Efthymiou S, Scala M, Nagaraj V, Ochenkowska K, Komdeur FL, Liang RA, Abdel-Hamid MS, Sultan T, Barøy T, Van Ghelue M, Vona B, Maroofian R, Zafar F, Alkuraya FS, Zaki MS, Severino M, Duru KC, Tryon RC, Brauteset LV, Ansari M, Hamilton M, van Haelst MM, van Haaften G, Zara F, Houlden H, Samarut É, Nichols CG, Smeland MF, McClenaghan C. Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome. Brain 2024; 147:1822-1836. [PMID: 38217872 PMCID: PMC11068106 DOI: 10.1093/brain/awae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/22/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marcello Scala
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Vini Nagaraj
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Fenne L Komdeur
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Robin A Liang
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Barbara Vona
- Institute of Human Genetics and Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children’s Hospital and Institute of Child Health, Multan, Punjab 60000, Pakistan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Lin Vigdis Brauteset
- Division of Habilitation for Children, Innlandet Hospital Sanderud, Hamar 2312, Norway
| | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Mieke M van Haelst
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center, Utrecht, 3584 CX, The Netherlands
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Marie F Smeland
- Department of Pediatric Rehabilitation, University Hospital of North Norway, 9019 Tromsø, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| |
Collapse
|
13
|
Fan L, Wang H, Kassab GS, Lee LC. Review of cardiac-coronary interaction and insights from mathematical modeling. WIREs Mech Dis 2024; 16:e1642. [PMID: 38316634 PMCID: PMC11081852 DOI: 10.1002/wsbm.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Cardiac-coronary interaction is fundamental to the function of the heart. As one of the highest metabolic organs in the body, the cardiac oxygen demand is met by blood perfusion through the coronary vasculature. The coronary vasculature is largely embedded within the myocardial tissue which is continually contracting and hence squeezing the blood vessels. The myocardium-coronary vessel interaction is two-ways and complex. Here, we review the different types of cardiac-coronary interactions with a focus on insights gained from mathematical models. Specifically, we will consider the following: (1) myocardial-vessel mechanical interaction; (2) metabolic-flow interaction and regulation; (3) perfusion-contraction matching, and (4) chronic interactions between the myocardium and coronary vasculature. We also provide a discussion of the relevant experimental and clinical studies of different types of cardiac-coronary interactions. Finally, we highlight knowledge gaps, key challenges, and limitations of existing mathematical models along with future research directions to understand the unique myocardium-coronary coupling in the heart. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lei Fan
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
15
|
Bravo Sánchez E, Nolasco Ruíz CJ, Gómez-Barroso M, Cortés Rojo C, Rodríguez Orozco AR, Saavedra Molina A, Manzo Ávalos S, Montoya Pérez R. Diazoxide and moderate-intensity exercise improve skeletal muscle function by decreasing oxidants and enhancing antioxidant defenses in hypertensive male rats. Physiol Rep 2024; 12:e16026. [PMID: 38653584 DOI: 10.14814/phy2.16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.
Collapse
Affiliation(s)
- Estefanía Bravo Sánchez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - César J Nolasco Ruíz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Christian Cortés Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alain R Rodríguez Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alfredo Saavedra Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Salvador Manzo Ávalos
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Rocío Montoya Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
16
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Moon DO. Exploring the Role of Surface and Mitochondrial ATP-Sensitive Potassium Channels in Cancer: From Cellular Functions to Therapeutic Potentials. Int J Mol Sci 2024; 25:2129. [PMID: 38396807 PMCID: PMC10888650 DOI: 10.3390/ijms25042129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
18
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Liu M, Li S, Yin M, Li Y, Chen J, Chen Y, Zhou Y, Li Q, Xu F, Dai C, Xia Y, Chen A, Lu D, Chen Z, Qian J, Ge J. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res Cardiol 2024; 119:113-131. [PMID: 38168863 PMCID: PMC10837255 DOI: 10.1007/s00395-023-01028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ming Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yuqiong Chen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Fei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chunfeng Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
20
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
21
|
ElSheikh A, Driggers CM, Shyng SL. Non-radioactive Rb + Efflux Assay for Screening K ATP Channel Modulators. Methods Mol Biol 2024; 2796:191-210. [PMID: 38856903 DOI: 10.1007/978-1-0716-3818-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt.
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
22
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Huo JY, Feng YL, Chen YT, Yang B, Zhi YT, Wang HJ, Yang HQ. Caveolin-3 negatively regulates endocytic recycling of cardiac K ATP channels. Am J Physiol Cell Physiol 2023; 325:C1106-C1118. [PMID: 37746698 DOI: 10.1152/ajpcell.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Sarcolemmal ATP-sensitive potassium (KATP) channels play a vital role in cardioprotection. Cardiac KATP channels are enriched in caveolae and physically interact with the caveolae structural protein caveolin-3 (Cav3). Disrupting caveolae impairs the regulation of KATP channels through several signaling pathways. However, the direct functional effect of Cav3 on KATP channels is still poorly understood. Here, we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and showed that Cav3 greatly reduced KATP channel surface density and current amplitude in a caveolae-independent manner. A screen of Cav3 functional domains revealed that a 25 amino acid region in the membrane attachment domain of Cav3 is the minimal effective segment (MAD1). The peptide corresponding to the MAD1 segment decreased KATP channel current in a concentration-dependent manner with an IC50 of ∼5 μM. The MAD1 segment prevented KATP channel recycling, thus decreasing KATP channel surface density and abolishing the cardioprotective effect of ischemic preconditioning. Our research identified the Cav3 MAD1 segment as a novel negative regulator of KATP channel recycling, providing pharmacological potential in the treatment of diseases with KATP channel trafficking defects.NEW & NOTEWORTHY Cardiac KATP channels physically interact with caveolin-3 in caveolae. In this study, we investigated the functional effect of caveolin-3 on KATP channel activity and identified a novel segment (MAD1) in the C-terminus domain of Caveolin-3 that negatively regulates KATP channel surface density and current amplitude by impairing KATP channel recycling. The peptide corresponding to the MAD1 segment abolished the cardioprotective effect of ischemic preconditioning.
Collapse
Affiliation(s)
- Jian-Yi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yu-Long Feng
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yue-Tong Chen
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Bo Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Ya-Ting Zhi
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Hao-Jie Wang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
25
|
Al-Katat A, Bergeron A, Parent L, Lorenzini M, Fiset C, Calderone A. Rapamycin treatment unmasks a sex-specific pattern of scar expansion of the infarcted rat heart: The relationship between mTOR and K ATP channel. IUBMB Life 2023; 75:717-731. [PMID: 36988388 DOI: 10.1002/iub.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) with the macrolide rapamycin or pharmacological suppression of KATP channel opening translated to scar expansion of the myocardial infarcted (MI) adult female rodent heart. The present study tested the hypotheses that rapamycin-mediated scar expansion was sex-specific and that mTOR signaling directly influenced KATP channel subunit expression/activity. Scar size was significantly larger in post-MI male rats as compared to the previous data reported in post-MI female rats. The reported scar expansion of rapamycin-treated post-MI female rats was not observed following the administration of the macrolide to post-MI male rats. Protein levels of the KATP channel subunits Kir6.2 and SUR2A and phosphorylation of the serine2448 residue of mTOR were similar in the normal heart of adult male and female rats. By contrast, greater tuberin inactivation characterized by the increased phosphorylation of the threonine1462 residue and reduced raptor protein levels were identified in the normal heart of adult female rats. Rapamycin pretreatment of phorbol 12,13-dibutyrate (PDBu)-treated neonatal rat ventricular cardiomyocytes (NNVMs) suppressed hypertrophy, inhibited p70S6K phosphorylation, and attenuated SUR2A protein upregulation. In the presence of low ATP levels, KATP channel activity detected in untreated NNVMs was significantly attenuated in PDBu-induced hypertrophied NNVMs via a rapamycin-independent pathway. Thus, rapamycin administration to post-MI rats unmasked a sex-specific pattern of scar expansion and mTOR signaling in PDBu-induced hypertrophied NNVMs significantly increased SUR2A protein levels. However, the biological advantage associated with SUR2A protein upregulation was partially offset by an mTOR-independent pathway that attenuated KATP channel activity in PDBu-induced hypertrophied NNVMs.
Collapse
Affiliation(s)
- Aya Al-Katat
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Lucie Parent
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Lorenzini
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Celine Fiset
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K ATP Channel Mutations in Intact Cells. J Pharmacol Exp Ther 2023; 386:298-309. [PMID: 37527933 PMCID: PMC10449099 DOI: 10.1124/jpet.123.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023] Open
Abstract
Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Conor McClenaghan
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Kenneth A Matreyek
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Dorothy K Grange
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| |
Collapse
|
27
|
Abstract
The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.
Collapse
Affiliation(s)
- Arndt F. Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Skakkebæk A, Kjær-Sørensen K, Matchkov VV, Christensen LL, Just J, Cömert C, Andersen NH, Oxvig C, Gravholt CH. Dosage of the pseudoautosomal gene SLC25A6 is implicated in QTc interval duration. Sci Rep 2023; 13:12089. [PMID: 37495650 PMCID: PMC10372092 DOI: 10.1038/s41598-023-38867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
The genetic architecture of the QT interval, defined as the period from onset of depolarisation to completion of repolarisation of the ventricular myocardium, is incompletely understood. Only a minor part of the QT interval variation in the general population has been linked to autosomal variant loci. Altered X chromosome dosage in humans, as seen in sex chromosome aneuploidies such as Turner syndrome (TS) and Klinefelter syndrome (KS), is associated with altered QTc interval (heart rate corrected QT), indicating that genes, located in the pseudoautosomal region 1 of the X and Y chromosomes may contribute to QT interval variation. We investigate the dosage effect of the pseudoautosomal gene SLC25A6, encoding the membrane ADP/ATP translocase 3 in the inner mitochondrial membrane, on QTc interval duration. To this end we used human participants and in vivo zebrafish models. Analyses in humans, based on 44 patients with KS, 44 patients with TS, 59 male and 22 females, revealed a significant negative correlation between SLC25A6 expression level and QTc interval duration. Similarly, downregulation of slc25a6 in zebrafish increased QTc interval duration with pharmacological inhibition of KATP channels restoring the systolic duration, whereas overexpression of SLC25A6 shortened QTc, which was normalized by pharmacological activation of KATP channels. Our study demonstrate an inverse relationship between SLC25A6 dosage and QTc interval indicating that SLC25A6 contributes to QT interval variation.
Collapse
Affiliation(s)
- Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Lise-Lotte Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
30
|
Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. CL-705G: a novel chemical Kir6.2-specific K ATP channel opener. Front Pharmacol 2023; 14:1197257. [PMID: 37408765 PMCID: PMC10319115 DOI: 10.3389/fphar.2023.1197257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Background: KATP channels have diverse roles, including regulation of insulin secretion and blood flow, and protection against biological stress responses and are excellent therapeutic targets. Different subclasses of KATP channels exist in various tissue types due to the unique assemblies of specific pore-forming (Kir6.x) and accessory (SURx) subunits. The majority of pharmacological openers and blockers act by binding to SURx and are poorly selective against the various KATP channel subclasses. Methods and Results: We used 3D models of the Kir6.2/SUR homotetramers based on existing cryo-EM structures of channels in both the open and closed states to identify a potential agonist binding pocket in a functionally critical area of the channel. Computational docking screens of this pocket with the Chembridge Core chemical library of 492,000 drug-like compounds yielded 15 top-ranked "hits", which were tested for activity against KATP channels using patch clamping and thallium (Tl+) flux assays with a Kir6.2/SUR2A HEK-293 stable cell line. Several of the compounds increased Tl+ fluxes. One of them (CL-705G) opened Kir6.2/SUR2A channels with a similar potency as pinacidil (EC50 of 9 µM and 11 μM, respectively). Remarkably, compound CL-705G had no or minimal effects on other Kir channels, including Kir6.1/SUR2B, Kir2.1, or Kir3.1/Kir3.4 channels, or Na+ currents of TE671 medulloblastoma cells. CL-705G activated Kir6.2Δ36 in the presence of SUR2A, but not when expressed by itself. CL-705G activated Kir6.2/SUR2A channels even after PIP2 depletion. The compound has cardioprotective effects in a cellular model of pharmacological preconditioning. It also partially rescued activity of the gating-defective Kir6.2-R301C mutant that is associated with congenital hyperinsulinism. Conclusion: CL-705G is a new Kir6.2 opener with little cross-reactivity with other channels tested, including the structurally similar Kir6.1. This, to our knowledge, is the first Kir-specific channel opener.
Collapse
Affiliation(s)
- Ivan Gando
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Manuel Becerra Flores
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - I.-Shan Chen
- Phamacology, Wakayama Medical University, Wakayama, Japan
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | | | - Timothy J. Cardozo
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - William A. Coetzee
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
31
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
32
|
Grizzanti J, Moritz WR, Pait MC, Stanley M, Kaye SD, Carroll CM, Constantino NJ, Deitelzweig LJ, Snipes JA, Kellar D, Caesar EE, Pettit-Mee RJ, Day SM, Sens JP, Nicol NI, Dhillon J, Remedi MS, Kiraly DD, Karch CM, Nichols CG, Holtzman DM, Macauley SL. KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer's disease-related pathology. JCI Insight 2023; 8:e162454. [PMID: 37129980 PMCID: PMC10386887 DOI: 10.1172/jci.insight.162454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aβ pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aβ, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aβ pathology in patients with diabetes or prediabetes.
Collapse
Affiliation(s)
- John Grizzanti
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - William R. Moritz
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Morgan C. Pait
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Molly Stanley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, Vermont, USA
| | - Sarah D. Kaye
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Caitlin M. Carroll
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas J. Constantino
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lily J. Deitelzweig
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A. Snipes
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E. Caesar
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | | | | | - Noelle I. Nicol
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmeen Dhillon
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria S. Remedi
- Department of Physiology and Pharmacology and
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | | | - Celeste M. Karch
- Department of Psychiatry
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Shannon L. Macauley
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer’s Disease Research Center
- Center on Diabetes, Obesity and Metabolism
- Center for Precision Medicine; and
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
33
|
Tuncay E, Gando I, Huo JY, Yepuri G, Samper N, Turan B, Yang HQ, Ramasamy R, Coetzee WA. The cardioprotective role of sirtuins is mediated in part by regulating K ATP channel surface expression. Am J Physiol Cell Physiol 2023; 324:C1017-C1027. [PMID: 36878847 PMCID: PMC10110703 DOI: 10.1152/ajpcell.00459.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ivan Gando
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Jian-Yi Huo
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Gautham Yepuri
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
| | - Natalie Samper
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Ravichandran Ramasamy
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| | - William A Coetzee
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
- Department of Physiology & Neuroscience, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| |
Collapse
|
34
|
Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K ATP channel gain-of-function. FUNCTION 2023; 4:zqad017. [PMID: 37214333 PMCID: PMC10194823 DOI: 10.1093/function/zqad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Maria Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
El-Meanawy SK, Dooge H, Wexler AC, Kosmach AC, Serban L, Santos EA, Alvarado FJ, Hacker TA, Ramratnam M. Overexpression of a Short Sulfonylurea Splice Variant Increases Cardiac Glucose Uptake and Uncouples Mitochondria by Regulating ROMK Activity. Life (Basel) 2023; 13:1015. [PMID: 37109544 PMCID: PMC10146620 DOI: 10.3390/life13041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial splice variant of the sulfonylurea receptor (SUR2A-55) is associated with protection from myocardial ischemia-reperfusion (IR) injury, increased mitochondrial ATP sensitive K+ channel activity (mitoKATP) and altered glucose metabolism. While mitoKATP channels composed of CCDC51 and ABCB8 exist, the mitochondrial K+ pore regulated by SUR2A-55 is unknown. We explored whether SUR2A-55 regulates ROMK to form an alternate mitoKATP. We assessed glucose uptake in mice overexpressing SUR2A-55 (TGSUR2A-55) compared with WT mice during IR injury. We then examined the expression level of ROMK and the effect of ROMK modulation on mitochondrial membrane potential (Δψm) in WT and TGSUR2A-55 mice. TGSUR2A-55 had increased glucose uptake compared to WT mice during IR injury. The expression of ROMK was similar in WT compared to TGSUR2A-55 mice. ROMK inhibition hyperpolarized resting cardiomyocyte Δψm from TGSUR2A-55 mice but not from WT mice. In addition, TGSUR2A-55 and ROMK inhibitor treated WT isolated cardiomyocytes had enhanced mitochondrial uncoupling. ROMK inhibition blocked diazoxide induced Δψm depolarization and prevented preservation of Δψm from FCCP perfusion in WT and to a lesser degree TGSUR2A-55 mice. In conclusion, cardio-protection from SUR2A-55 is associated with ROMK regulation, enhanced mitochondrial uncoupling and increased glucose uptake.
Collapse
Affiliation(s)
- Sarah K. El-Meanawy
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Holly Dooge
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Allison C. Wexler
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anna C. Kosmach
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Lara Serban
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Elizabeth A. Santos
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
| | - Francisco J. Alvarado
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy A. Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.K.E.-M.)
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
36
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
37
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
39
|
Abstract
Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary KATP and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashwini Hariharan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Strutynskyi RB, Strutynska NA, Piven OO, Mys LA, Goshovska YV, Fedichkina RA, Okhai IY, Strutynskyi VR, Dosenko VE, Dobrzyn P, Sagach VF. Upregulation of ATP-Sensitive Potassium Channels as the Potential Mechanism of Cardioprotection and Vasorelaxation Under the Action of Pyridoxal-5-Phosphate in Old Rats. J Cardiovasc Pharmacol Ther 2023; 28:10742484231213175. [PMID: 37946524 DOI: 10.1177/10742484231213175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Background: The aging process is accompanied by the weakening of the protective systems of the organism, in particular by the decrease in the expression of ATP-sensitive potassium (KATP) channels and in the synthesis of H2S. The aim of our work was to investigate the role of KATP channels in the cardioprotection induced by pyridoxal-5-phosphate (PLP) in aging. Methods: Experiments were performed on adult and old (aged 24 months) male Wistar rats, which were divided into 3 groups: adults, old, and old PLP-treated rats. PLP was administered orally once a day for 14 days at a dose of 0.7 mg/kg. The levels of mRNA expression of subunits KATP channels were determined by reverse transcription and real-time polymerase chain reaction analysis. Protein expression levels were determined by the Western blot. Cardiac tissue morphology was determined using transverse 6 μm deparaffinized sections stained with picrosirius red staining. Vasorelaxation responses of isolated aortic rings and the function of Langendorff-perfused isolated hearts during ischemia-reperfusion, H2S levels, and markers of oxidative stress were also studied. Results: Administration of PLP to old rats reduces cardiac fibrosis and improves cardiac function during ischemia-reperfusion and vasorelaxation responses to KATP channels opening. At the same time, there was a significant increase in mRNA and protein expression of SUR2 and Kir6.1 subunits of KATP channels, H2S production, and reduced markers of oxidative stress. The specific KATP channel inhibitor-glibenclamide prevented the enhancement of vasodilator responses and anti-ischemic protection in PLP-treated animals. Conclusions: We suggest that this potential therapeutic effect of PLP in old animals may be a result of increased expression of KATP channels and H2S production.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliіa A Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana O Piven
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidiia A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa A Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Y Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladyslav R Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Pawel Dobrzyn
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vadim F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
41
|
Szeri F, Miko A, Navasiolava N, Kaposi A, Verschuere S, Molnar B, Li Q, Terry SF, Boraldi F, Uitto J, van de Wetering K, Martin L, Quaglino D, Vanakker OM, Tory K, Aranyi T. The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals. Hum Mutat 2022; 43:1872-1881. [PMID: 36317459 PMCID: PMC9772137 DOI: 10.1002/humu.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Agnes Miko
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nastassia Navasiolava
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Ambrus Kaposi
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Beatrix Molnar
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy,Interuniversity Consortium for Biotechnologies (CIB), Italy
| | | | - Kalman Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Molecular Biology, Semmelweis University, Budapest, Hungary.,Corresponding author:
| |
Collapse
|
42
|
Yang B, Yao JL, Huo JY, Feng YL, Coetzee WA, Xu GY, Yang HQ. Rab35 GTPase positively regulates endocytic recycling of cardiac K ATP channels. Channels (Austin) 2022; 16:137-147. [PMID: 35754325 DOI: 10.1080/19336950.2022.2090667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.
Collapse
Affiliation(s)
- Bo Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jia-Lu Yao
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.,Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Jian-Yi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yu-Long Feng
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - William A Coetzee
- Departments of Pathology, Neuroscience & Physiology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.,Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
43
|
Wang MT, Pan HY, Huang YL, Wu LW, Wang PC, Hsu YJ, Lin TC, Lin C, Lai JH, Lee CH. Comparison of Mitochondrial Adenosine Triphosphate-Sensitive Potassium Channel High- vs Low-Affinity Sulfonylureas and Cardiovascular Outcomes in Patients With Type 2 Diabetes Treated With Metformin. JAMA Netw Open 2022; 5:e2245854. [PMID: 36484988 PMCID: PMC9856426 DOI: 10.1001/jamanetworkopen.2022.45854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Sulfonylureas are frequently used as add-on to metformin in type 2 diabetes (T2D), and individual sulfonylurea agents carry different risks of cardiovascular disease. Sulfonylureas' different affinities to cardiac mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channels have been speculated to account for the intraclass difference in cardiovascular risk from in vitro and ex vivo studies; however, this hypothesis has not been assessed in a general population with diabetes receiving sulfonylureas added to metformin. OBJECTIVE To compare the risk of myocardial infarction (MI), ischemic stroke, or cardiovascular death in patients with T2D treated with mitoKATP channel high-affinity sulfonylureas and low-affinity sulfonylureas as add-on to metformin. DESIGN, SETTING, AND PARTICIPANTS This is a new-user, active-comparator, and propensity score-matched cohort study with analysis of the Taiwanese Diabetes Mellitus Health Database from 2006, to 2017. Data analysis was performed from August 2020 to July 2021. EXPOSURES Cardiac mitoKATP channel high-affinity (glyburide and glipizide) and low-affinity (gliclazide and glimepiride) sulfonylureas combined with metformin. MAIN OUTCOMES AND MEASURES Primary outcome was major adverse cardiovascular events (MACEs), a composite of cardiovascular death or hospitalization for either MI or ischemic stroke. Secondary outcomes included individual MACE components, heart failure, arrhythmia, all-cause mortality, and severe hypoglycemia. Cox proportional hazards models were used to estimate adjusted hazard ratios (aHRs). RESULTS Each sulfonylurea group comprised 53 714 patients (mean [SD] age, 54.7 [12.1] years; 31 962 men [59.5%]). MitoKATP channel high-affinity sulfonylureas vs low-affinity sulfonylureas when combined with metformin were associated with an increased risk of MACE (aHR, 1.18; 95% CI, 1.03-1.34), MI (aHR, 1.34; 95% CI, 1.04-1.73), all-cause mortality (aHR, 1.27; 95% CI, 1.03-1.57), and severe hypoglycemia (aHR, 1.82; 95% CI, 1.58-2.10), but not with increased risks of ischemic stroke, cardiovascular death, arrhythmia, and heart failure. The duration analyses revealed the highest MACE risk during 1 to 90 days after initiation of mitoKATP channel high-affinity sulfonylureas (aHR, 6.06; 95% CI, 4.86-7.55). CONCLUSIONS AND RELEVANCE Use of mitoKATP channel high-affinity sulfonylureas vs low-affinity sulfonylureas was associated with an increased MACE risk in patients with T2D concomitantly receiving metformin, suggesting that high-affinity blockage of the mitoKATP channels could account for sulfonylurea-associated MACEs.
Collapse
Affiliation(s)
- Meng-Ting Wang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Hsueh-Yi Pan
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Ling Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Wei Wu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Pin-Chun Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Chieh Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - ChenWei Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyun-Heng Lai
- College of Pharmacy, The University of Texas at Austin, Austin
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
44
|
Driggers CM, Shyng SL. Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 2022; 155:213723. [PMID: 36441147 PMCID: PMC9700523 DOI: 10.1085/jgp.202113046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Gated by intracellular ATP and ADP, ATP-sensitive potassium (KATP) channels couple cell energetics with membrane excitability in many cell types, enabling them to control a wide range of physiological processes based on metabolic demands. The KATP channel is a complex of four potassium channel subunits from the Kir channel family, Kir6.1 or Kir6.2, and four sulfonylurea receptor subunits, SUR1, SUR2A, or SUR2B, from the ATP-binding cassette (ABC) transporter family. Dysfunction of KATP channels underlies several human diseases. The importance of these channels in human health and disease has made them attractive drug targets. How the channel subunits interact with one another and how the ligands interact with the channel to regulate channel activity have been long-standing questions in the field. In the past 5 yr, a steady stream of high-resolution KATP channel structures has been published using single-particle cryo-electron microscopy (cryo-EM). Here, we review the advances these structures bring to our understanding of channel regulation by physiological and pharmacological ligands.
Collapse
Affiliation(s)
- Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR,Correspondence to Show-Ling Shyng:
| |
Collapse
|
45
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Dhoundiyal A, Goeschl V, Boehm S, Kubista H, Hotka M. Glycerol-3-Phosphate Shuttle Is a Backup System Securing Metabolic Flexibility in Neurons. J Neurosci 2022; 42:7339-7354. [PMID: 35999055 PMCID: PMC9525167 DOI: 10.1523/jneurosci.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical activity in neurons is highly energy demanding and accompanied by rises in cytosolic Ca2+ Cytosolic Ca2+, in turn, secures energy supply by pushing mitochondrial metabolism either through augmented NADH (nicotinamide adenine dinucleotide) transfer into mitochondria via the malate-aspartate shuttle (MAS) or via direct activation of dehydrogenases of the TCA cycle after passing into the matrix through the mitochondrial Ca2+ uniporter (MCU). Another Ca2+-sensitive booster of mitochondrial ATP synthesis is the glycerol-3-phosphate shuttle (G3PS), whose role in neuronal energy supply has remained elusive. Essential components of G3PS are expressed in hippocampal neurons. Single neuron metabolic measurements in primary hippocampal cultures derived from rat pups of either sex reveal only moderate, if any, constitutive activity of G3PS. However, during electrical activity neurons fully rely on G3PS when MAS and MCU are unavailable. Under these conditions, G3PS is required for appropriate action potential firing. Accordingly, G3PS safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling.SIGNIFICANCE STATEMENT Ca2+ ions are known to provide a link between the energy-demanding electrical activity and an adequate ATP supply in neurons. To do so, Ca2+ acts both from outside and inside of the mitochondrial inner membrane. Neuronal function critically depends on this regulation, and its defects are often found in various neurologic disorders. Although interest in neuronal metabolism has increased, many aspects thereof have remained unresolved. In particular, a Ca2+-sensitive NADH (nicotinamide adenine dinucleotide) shuttling system, the glycerol-3-phosphate shuttle, has been largely ignored with respect to its function in neurons. Our results demonstrate that this shuttle is functional in hippocampal neurons and safeguards ATP supply and appropriate action potential firing when malate aspartate shuttle and mitochondrial Ca2+ uniporter are unavailable, thereby ensuring neuronal metabolic flexibility.
Collapse
Affiliation(s)
- Ankit Dhoundiyal
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vanessa Goeschl
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
47
|
Redel-Traub G, Sampson KJ, Kass RS, Bohnen MS. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1341. [PMID: 36291551 PMCID: PMC9599705 DOI: 10.3390/biom12101341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.
Collapse
Affiliation(s)
- Gabriel Redel-Traub
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael S. Bohnen
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
48
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
49
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
50
|
Carrasquel-Ursulaez W, Segura I, Díaz-Franulic I, Márquez-Miranda V, Echeverría F, Lorenzo-Ceballos Y, Espinoza N, Rojas M, Garate JA, Perozo E, Alvarez O, Gonzalez-Nilo FD, Latorre R. Mechanism of voltage sensing in Ca 2+- and voltage-activated K + (BK) channels. Proc Natl Acad Sci U S A 2022; 119:e2204620119. [PMID: 35704760 PMCID: PMC9231616 DOI: 10.1073/pnas.2204620119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.
Collapse
Affiliation(s)
- Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Valeria Márquez-Miranda
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745
| | - Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Yenisleidy Lorenzo-Ceballos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Nicolás Espinoza
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Millennium Nucleus in NanoBioPhysics, Valparaíso 2340000, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7810000, Chile
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7810000, Chile
| | - Fernando D. Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|