1
|
Yu J, Leong Bin Abdullah MFI, Mansor NS. The inhibitory control deficit of internet gaming disorder: An Event-Related Potentials(ERPs) study. Behav Brain Res 2025; 476:115253. [PMID: 39313075 DOI: 10.1016/j.bbr.2024.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The primary difficulty and challenge encountered by individuals with Internet Gaming Disorder (IGD) is inhibitory control deficit. Given that different types of inhibitory control have different effects on IGD patients, it is critical to investigate the neurological cognitive processes underlying various inhibitory control problems. METHODS The IGD-20 questionnaire was used to identify Internet game disorder and healthy control group, and finally Internet game disorder in (n=25) and healthy control group (n=28) in Flanker task, Internet game disorder (n=29) and health control group (n=24) in GO/NOGO task. The Flanker task was employed to investigate distractor interference inhibition control in those with IGD, while the Go/NoGo task was used to measure their prepotent response inhibitory control. Event-related potentials (ERPs) were used to evaluate the brain mechanisms difference of both IGD and healthy participants during these different inhibitory control tasks. RESULTS Findings indicate that compared to healthy control subjects, individuals with Internet Gaming Disorder (IGD) have deficits in inhibitory control tasks during both distraction inhibition and prepotent response inhibition tasks, and distraction inhibition occurs earlier than prepotent response inhibition. In distraction inhibition tasks, the IGD group's N2 amplitude is significantly lower than the healthy control groups. In prepotent response inhibition, the N2 amplitude provoked in the IGD group is not only significantly lower than in the healthy control group, but the P3 amplitude is also significantly larger in the IGD group. The main brain activity areas of interference inhibitory control are the frontal lobe and prefrontal lobe, while the main brain activity areas of prepotent response inhibitory control are the frontal lobe and occipital lobe. CONCLUSION The present study concentrates on the differential neurophysiological characteristics observed in individuals with Internet gaming problems, notably the ability to avoid distractions and prepotent reactions. The current research provides foundations for the assessment and development of tailored therapy and treatment methods to address the wide variety of cognitive problems reported in individuals with Internet Gaming Disorder (IGD).
Collapse
Affiliation(s)
- Junjian Yu
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| | | | - Nor Shuhada Mansor
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
2
|
Davis AD, Scott MW, Pond AK, Hurst AJ, Yousef T, Kraeutner SN. Transformation but not generation of motor images is disrupted following stimulation over the left inferior parietal lobe. Neuropsychologia 2024; 204:109013. [PMID: 39401545 DOI: 10.1016/j.neuropsychologia.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Motor imagery (MI) involves the generation, maintenance, and transformation of motor images; yet, the neural underpinnings of each stage are not well understood. Here, we investigated the role of the left inferior parietal lobe (IPL) in the stages of MI. Healthy participants (N = 20) engaged in a MI task (making judgments about hands presented on a screen; hand laterality judgment task) over two days. Past literature demonstrates the mental rotation of hands in this task involves implicit MI (i.e., where MI occurs spontaneously in the absence of explicit instructions). During the task, active (Day A; 120% resting motor threshold) or sham (Day B; placebo) neuronavigated transcranial magnetic stimulation (TMS) was applied to the left IPL (location determined from past neuroimaging work) on 50% of trials at 250, 500, or 750ms post-stimulus onset, corresponding to different stages of MI. A/B days were randomized across participants. Linear mixed effects (LME) modelling conducted on reaction time and accuracy revealed that longer reaction times were observed when TMS was delivered at 750ms after trial onset, and more greatly for active vs. sham stimulation. This effect was exacerbated for palm-vs. back-view stimuli and for left vs. right hands. Accuracy overall was decreased for active vs. sham stimulation, and to a greater extent for palm-vs. back-view stimuli. Findings suggest that the left IPL is involved in image transformation. Overall this work informs on the neural underpinnings of the stages of MI.
Collapse
Affiliation(s)
- Alisha D Davis
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Matthew W Scott
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - AnnaMae K Pond
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Austin J Hurst
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Tareq Yousef
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Yokoyama O, Nishimura Y. Preselection of potential target spaces based on partial information by the supplementary eye field. Commun Biol 2024; 7:1215. [PMID: 39367079 PMCID: PMC11452695 DOI: 10.1038/s42003-024-06878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Before selecting a saccadic target, we often acquire partial information about the location of the forthcoming target and preselect a region of visual space even before the target becomes visible. To determine whether the supplementary eye field (SEF) represents information signifying the potential target space, we examined neuronal activity in the SEF of monkeys performing a behavioral task designed to isolate the process of visuospatial preselection under uncertainty from the process of selecting a specified location. Our data showed that the activity of SEF neurons represented information about the potential target space instructed by symbolic cues. Increased activity of visuospatially selective SEF neurons encoded the potential target space, which could be a mechanism facilitating subsequent selection of an appropriate target. Furthermore, electrical stimulation of the SEF during the preselection period disrupted subsequent target selection. These results demonstrate that the SEF contributes to the preselection of potential target spaces based on partial information.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
4
|
Ruihan C, Zhitong Z, Zhiyan C, Hongge L. Similarities and differences in core symptoms of problematic smartphone use among Chinese students enrolled in grades 4 to 9: A large national cross-sectional study. Addict Behav 2024; 160:108164. [PMID: 39277922 DOI: 10.1016/j.addbeh.2024.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Children and adolescents are highly susceptible to problematic smartphone usage. We employed network analysis to explore the similarities and differences in the core symptoms of problematic smartphone use across grades 4-9, using a large nationwide sample. This study included 8552 children and adolescents (Mage = 12.98, SD=1.51) who met the critical value for problematic smartphone use. The results showed that the core symptoms of problematic smartphone use exhibit both similarities and differences between grades 4 and 9. 'Withdrawal symptoms' and 'preoccupation symptoms' were the stable core symptoms of problematic smartphone use across grades 4 to 9, suggesting that problematic smartphone use begin to appear from earlier grades, such as grade 4. 'Feel impatient and fretful', 'never give up' and 'always thinking about' were the core symptoms in grades 4 and 5. 'Longer than I had intended' and 'hard to concentrate' emerged as additional core symptoms in grade 6, with the intensity indicators peaking in grades 8 and 9, suggesting that the issue of problematic smartphone use among Chinese children and adolescents has become intensified and intricate. Symptoms of problematic smartphone use vary across grades and exhibit both continuity and stage specificity. Consequently, to address this issue, the formulation of intervention measures should comprehensively consider both the grade levels and symptoms.
Collapse
Affiliation(s)
- Cai Ruihan
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zhou Zhitong
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063000, China
| | - Chen Zhiyan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Luo Hongge
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
5
|
Rodriguez NY, Ahuja A, Basu D, McKim TH, Desrochers TM. Different subregions of monkey lateral prefrontal cortex respond to abstract sequences and their components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580192. [PMID: 38405897 PMCID: PMC10888850 DOI: 10.1101/2024.02.13.580192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sequential information permeates daily activities, such as when watching for the correct series of buildings to determine when to get off the bus or train. These sequences include periodicity (the spacing of the buildings), the identity of the stimuli (the kind of house), and higher-order more abstract rules that may not depend on the exact stimulus (e.g. house, house, house, business). Previously, we found that the posterior fundus of area 46 in the monkey lateral prefrontal cortex (LPFC) responds to rule changes in such abstract visual sequences. However, it is unknown if this region responds to other components of the sequence, i.e., image periodicity and identity, in isolation. Further, it is unknown if this region dissociates from other, more ventral LPFC subregions that have been associated with sequences and their components. To address these questions, we used awake functional magnetic resonance imaging in three male macaque monkeys during two no-report visual tasks. One task contained abstract visual sequences, and the other contained no visual sequences but maintained the same image periodicity and identities. We found the fundus of area 46 responded only to abstract sequence rule violations. In contrast, the ventral bank of area 46 responded to changes in image periodicity and identity, but not changes in the abstract sequence. These results suggest a functional specialization within anatomical substructures of LPFC to signal different kinds of stimulus regularities. This specialization may provide key scaffolding to identify abstract patterns and construct complex models of the world for daily living. Significance Statement Daily tasks, such as a bus commute, require tracking or monitoring your place (same, same, same, different building) until your stop. Sequence components such as rule, periodicity (timing), and item identity are involved in this process. While prior work located responses to sequence rule changes to area 46 of monkey lateral prefrontal cortex (LPFC) using awake monkey fMRI, less was known about other components. We found that LPFC subregions differentiated between sequence components. Area 46 posterior fundus responded to abstract visual sequence rule changes, but not to changes in image periodicity or identity. The converse was true for the more ventral, adjacent shoulder region. These results suggest that interactions between adjacent LPFC subregions provide key scaffolding for complex daily behaviors.
Collapse
Affiliation(s)
| | - Aarit Ahuja
- Department of Neuroscience, Brown University
| | - Debaleena Basu
- Department of Neuroscience, Brown University
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Theresa H. McKim
- Department of Biology & Institute for Neuroscience, University of Nevada, Reno
| | - Theresa M. Desrochers
- Department of Neuroscience, Brown University
- Department of Psychiatry and Human Behavior, Brown University
- Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University
| |
Collapse
|
6
|
Tinney EM, Ai M, España‐Irla G, Hillman CH, Morris TP. Physical activity and frontoparietal network connectivity in traumatic brain injury. Brain Behav 2024; 14:e70022. [PMID: 39295099 PMCID: PMC11410878 DOI: 10.1002/brb3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Prolonged changes to functional network connectivity as a result of a traumatic brain injury (TBI) may relate to long-term cognitive complaints reported by TBI survivors. No interventions have proven to be effective at treating long-term cognitive complaints after TBI but physical activity has been shown to promote cognitive function and modulate functional network connectivity in non-injured adults. Therefore, the objective of this study was to test if physical activity engagement was associated with functional connectivity of the cognitively relevant frontoparietal control network (FPCN) in adults with a TBI history. METHODS In a case-control study design, resting state function magnetic resonance imaging and physical activity data from a subset of participants (18-81 years old) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study was analyzed. Fifty-seven participants reported a prior head injury with loss of consciousness and 57 age and sex matched controls were selected. Seed-based functional connectivity analyses were performed using seeds in the dorsolateral prefrontal cortex and the inferior parietal lobule, to test for differences in functional connectivity between groups, associations between physical activity and functional connectivity within TBI as well as differential associations between physical activity and functional connectivity between TBI and controls. RESULTS Seed-based connectivity analyses from the dorsolateral prefrontal cortex showed that those with a history of TBI had decreased positive connectivity between dorsolateral prefrontal cortex and intracalcarine cortex, lingual gyrus, and cerebellum, and increased positive connectivity between dorsolateral prefrontal cortex and cingulate gyrus and frontal pole in the TBI group. Results showed that higher physical activity was positively associated with increased connectivity between the dorsolateral prefrontal cortex and inferior temporal gyrus. Differential associations were observed between groups whereby the strength of the physical activity-functional connectivity association was different between the inferior parietal lobule and inferior temporal gyrus in TBI compared to controls. DISCUSSION Individuals with a history of TBI show functional connectivity alterations of the FPCN. Moreover, engagement in physical activity is associated with functional network connectivity of the FPCN in those with a TBI. These findings are consistent with the evidence that physical activity affects FPCN connectivity in non-injured adults; however, this effect presents differently in those with a history of TBI.
Collapse
Affiliation(s)
- Emma M. Tinney
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Meishan Ai
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Goretti España‐Irla
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Charles H. Hillman
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Timothy P. Morris
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Applied PsychologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
7
|
Godet A, Serrand Y, Léger B, Moirand R, Bannier E, Val-Laillet D, Coquery N. Functional near-infrared spectroscopy-based neurofeedback training targeting the dorsolateral prefrontal cortex induces changes in cortico-striatal functional connectivity. Sci Rep 2024; 14:20025. [PMID: 39198481 PMCID: PMC11358514 DOI: 10.1038/s41598-024-69863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.
Collapse
Affiliation(s)
- A Godet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - Y Serrand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - B Léger
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - R Moirand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
- Unité d'Addictologie, CHU Rennes, Rennes, France
| | - E Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France.
- Radiology Department, CHU Rennes, Rennes, France.
| | - D Val-Laillet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France.
| | - N Coquery
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| |
Collapse
|
8
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Rodrigues D, Santa C, Manadas B, Monteiro P. Chronic Stress Alters Synaptic Inhibition/Excitation Balance of Pyramidal Neurons But Not PV Interneurons in the Infralimbic and Prelimbic Cortices of C57BL/6J Mice. eNeuro 2024; 11:ENEURO.0053-24.2024. [PMID: 39147579 DOI: 10.1523/eneuro.0053-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Biomedizinisches Centrum München (BMC), Ludwig-Maximilians-Universität München, Munich 82152, Bayern, Germany
| | - Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-517, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- RISE-Health, Health Research Network, Porto 4200-319, Portugal
| |
Collapse
|
10
|
Ouerchefani R, Ouerchefani N, Ben Rejeb MR, Le Gall D. Exploring behavioural and cognitive dysexecutive syndrome in patients with focal prefrontal cortex damage. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:443-463. [PMID: 35244518 DOI: 10.1080/23279095.2022.2036152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study's objectives were to characterize the frequency and profile of behavioral and cognitive dysexecutive syndromes in patients with focal prefrontal cortex damage and how these syndromes overlap. We also examined the contribution of the prefrontal brain regions to these syndromes. Therefore, thirty patients with prefrontal cortex damage and thirty control subjects were compared on their performances using the GREFEX battery assessing the dysexecutive syndromes. The results showed that combined behavioral and cognitive dysexecutive syndrome was observed in 53.33%, while pure cognitive dysexecutive syndrome was observed in 20% and behavioral in 26.67%. Also, almost all behavioral and cognitive dysexecutive disorders discriminated frontal patients from controls. Moreover, correlations and regression analyses between task scores in both domains of dysexecutive syndromes showed that the spectrum of behavioral disorders was differentially associated with cognitive impairment of initiation, inhibition, generation, deduction, coordination, flexibility and the planning process. Furthermore, the patterns of cognitive and behavioral dysexecutive syndrome were both predictors of impairment in daily living activities and loss of autonomy. Finally, frontal regions contributing to different dysexecutive syndromes assessed by MRI voxel lesion symptom analysis indicate several overlapping regions centered on the ventromedial and dorsomedial prefrontal cortex for both domains of dysexecutive syndrome. This study concludes that damage to the frontal structures may lead to a diverse set of changes in both cognitive and behavioral domains which both contribute to loss of autonomy. The association of the ventromedial and dorsomedial prefrontal regions to both domains of dysexecutive syndrome suggests a higher integrative role of these regions in processing cognition and behavior.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, Department of Psychology, University of Tunis El Manar, Tunis, Tunisia
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| | | | - Mohamed Riadh Ben Rejeb
- Faculty of Human and Social Science of Tunisia, Department of Psychology, University of Tunis I, Tunis, Tunisia
| | - Didier Le Gall
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| |
Collapse
|
11
|
Pablo-Ríos MV, Navarro-Asencio E, Mateos-Gordo P, García-Gómez R, Porras-Truque C, García Moreno LM. Dysexecutive symptomatology in everyday functioning and academic achievement in adolescents. Front Psychol 2024; 15:1323317. [PMID: 38863662 PMCID: PMC11165704 DOI: 10.3389/fpsyg.2024.1323317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background During the educational stage, academic achievement depends on various social, family, and personal factors. Among the latter, executive skills in everyday life play a significant role in dealing with the academic demands of adolescents. Therefore, the aim of this study is to ascertain the effects of executive symptomatology in everyday functioning on academic achievement in adolescents. Method The study involved 910 students aged between 13 and 15 years (M = 14.09, SD = 0.68) from both public and private schools in the Community of Madrid. The DEX, BDEFS-CA, and BRIEF-SR questionnaires were utilised to assess executive difficulties, while grades in language, mathematics, and natural sciences were used as a measure of academic achievement. Results The data revealed statistically significant differences in working memory, emotional control, materials organisation, and task completion. In relation to language and natural sciences subjects. In the case of mathematics, emotional control and task completion were significant variables. Conclusion Our results indicate that certain executive skills that are manifested in everyday life activities can contribute, albeit in a variable way, to academic achievement in the subjects studied. This aspect is relevant insofar as it allows us to develop preventive interventions based on the executive training of these everyday skills.
Collapse
Affiliation(s)
- María Victoria Pablo-Ríos
- Faculty of Education and Psychology, Francisco de Vitoria University, Madrid, Spain
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| | - Enrique Navarro-Asencio
- Department of Research and Psychology in Education, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| | - Patricia Mateos-Gordo
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| | - Raquel García-Gómez
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| | - Claudia Porras-Truque
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel García Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Education, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Gerardo F, Bárbara E, Cecilia G, Aldana M, Natalia C, Lucia B, Silva B, Leila C, Cecilia P, Orlando G, Magdalena C, Luciana L, Gabriel P, Ricardo A. Abnormal eye movements increase as motor disabilities and cognitive impairments become more evident in Multiple Sclerosis: A novel eye-tracking study. Mult Scler J Exp Transl Clin 2024; 10:20552173241255008. [PMID: 38817553 PMCID: PMC11138185 DOI: 10.1177/20552173241255008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background Eye movements can reflect brain alterations and inform on the presence of motor disabilities and cognitive impairments in people with multiple sclerosis (pwMS). Objective The aim of the study was to determine the correlation between motor and cognitive measurements and eye movement parameters when performing the n-back task (NBKT). Methods This was a cross-sectional study carried out at Ramos Mejía Hospital, a center specialized in demyelinating diseases in Buenos Aires, Argentina. The study population consisted of 66 patients with relapsing-remitting multiple sclerosis (RRMS) and 5 patients with secondary progressive multiple sclerosis (SPMS). pwMS performed the n-back test while using a device head mounted display (HMD) with eyetracking capabilities in order to capture eye movement. Clinical motor and cognitive measures were assessed with Expanded Disability Status Scale (EDSS), Nine Hole Peg Test (NHPT), Timed 25-Foot Walk (T25FW), and Symbol Digit Modalities Test (SDMT). Results pwMS showed strong and statistically significant correlations between gaze duration; number of fixations, saccade amplitude and motor disabilities and cognitive impairments as measured by EDSS, NHPT, T25FW, and SDMT. Conclusion This study found significant correlations between eye movement behavior and motor and cognitive disability in pwMS. These findings suggest that eye movements have the potential to be used as a surrogate biomarker in MS progression.
Collapse
Affiliation(s)
| | - Eizaguirre Bárbara
- Multiple Sclerosis University Center CUEM, Ramos Mejia Hospital, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | - Lazaro Luciana
- Centro Universitario de Esclerosis Múltiple y enfermedades desmielinizantes (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Pardo Gabriel
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Alonso Ricardo
- Multiple Sclerosis University Center CUEM, Ramos Mejia Hospital, Buenos Aires, Argentina
| |
Collapse
|
14
|
Franch M, Yellapantula S, Parajuli A, Kharas N, Wright A, Aazhang B, Dragoi V. Visuo-frontal interactions during social learning in freely moving macaques. Nature 2024; 627:174-181. [PMID: 38355804 PMCID: PMC10959748 DOI: 10.1038/s41586-024-07084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.
Collapse
Affiliation(s)
- Melissa Franch
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Arun Parajuli
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Natasha Kharas
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Anthony Wright
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Valentin Dragoi
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
15
|
Nazarova A, Drobinin V, Helmick CA, Schmidt MH, Cookey J, Uher R. Intracortical Myelin in Youths at Risk for Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100285. [PMID: 38323155 PMCID: PMC10844807 DOI: 10.1016/j.bpsgos.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is a leading cause of disability. To understand why depression develops, it is important to distinguish between early neural markers of vulnerability that precede the onset of MDD and features that develop during depression. Recent neuroimaging findings suggest that reduced global and regional intracortical myelination (ICM), especially in the lateral prefrontal cortex, may be associated with depression, but it is unknown whether it is a precursor or a consequence of MDD. The study of offspring of affected parents offers the opportunity to distinguish between precursors and consequences by examining individuals who carry high risk at a time when they have not experienced depression. Methods We acquired 129 T1-weighted and T2-weighted scans from 56 (25 female) unaffected offspring of parents with depression and 114 scans from 63 (34 female) unaffected offspring of parents without a history of depression (ages 9 to 16 years). To assess scan quality, we calculated test-retest reliability. We used the scan ratios to calculate myelin maps for 68 cortical regions. We analyzed data using mixed-effects modeling. Results ICM did not differ between high and low familial risk youths in global (B = 0.06, SE = 0.03, p = .06) or regional (B = 0.05, SE = 0.03, p = .08) analyses. Our pediatric sample had high ICM reliability (intraclass correlation coefficient = 0.79; 95% CI, 0.55-0.88). Conclusions Based on our results, reduced ICM does not appear to be a precursor of MDD. Future studies should examine ICM in familial high-risk youths across a broad developmental period.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Vladislav Drobinin
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Carl A. Helmick
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Matthias H. Schmidt
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Bruno A, Lothmann K, Bludau S, Mohlberg H, Amunts K. New organizational principles and 3D cytoarchitectonic maps of the dorsolateral prefrontal cortex in the human brain. FRONTIERS IN NEUROIMAGING 2024; 3:1339244. [PMID: 38455685 PMCID: PMC10917992 DOI: 10.3389/fnimg.2024.1339244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Areas of the dorsolateral prefrontal cortex (DLPFC) are part of the frontoparietal control, default mode, salience, and ventral attention networks. The DLPFC is involved in executive functions, like working memory, value encoding, attention, decision-making, and behavioral control. This functional heterogeneity is not reflected in existing neuroanatomical maps. For example, previous cytoarchitectonic studies have divided the DLPFC into two or four areas. Macroanatomical parcellations of this region rely on gyri and sulci, which are not congruent with cytoarchitectonic parcellations. Therefore, this study aimed to provide a microstructural analysis of the human DLPFC and 3D maps of cytoarchitectonic areas to help address the observed functional variability in studies of the DLPFC. We analyzed ten human post-mortem brains in serial cell-body stained brain sections and mapped areal boundaries using a statistical image analysis approach. Five new areas (i.e., SFG2, SFG3, SFG4, MFG4, and MFG5) were identified on the superior and middle frontal gyrus, i.e., regions corresponding to parts of Brodmann areas 9 and 46. Gray level index profiles were used to determine interregional cytoarchitectural differences. The five new areas were reconstructed in 3D, and probability maps were generated in commonly used reference spaces, considering the variability of areas in stereotaxic space. Hierarchical cluster analysis revealed a high degree of similarity within the identified DLPFC areas while neighboring areas (frontal pole, Broca's region, area 8, and motoric areas) were separable. Comparisons with functional imaging studies revealed specific functional profiles of the DLPFC areas. Our results indicate that the new areas do not follow a simple organizational gradient assumption in the DLPFC. Instead, they are more similar to those of the ventrolateral prefrontal cortex (Broca's areas 44, 45) and frontopolar areas (Fp1, Fp2) than to the more posterior areas. Within the DLPFC, the cytoarchitectonic similarities between areas do not seem to follow a simple anterior-to-posterior gradient either, but cluster along other principles. The new maps are part of the publicly available Julich Brain Atlas and provide a microstructural reference for existing and future imaging studies. Thus, our study represents a further step toward deciphering the structural-functional organization of the human prefrontal cortex.
Collapse
Affiliation(s)
- Ariane Bruno
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kimberley Lothmann
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Licheri V, Jacquez BJ, Castillo VK, Sainz DB, Valenzuela CF, Brigman JL. Long-term effects of low prenatal alcohol exposure on GABAergic interneurons of the murine posterior parietal cortex. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2248-2261. [PMID: 38151788 PMCID: PMC10760801 DOI: 10.1111/acer.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASDs) are characterized by a wide range of physical, cognitive, and behavioral impairments that occur throughout the lifespan. Prenatal alcohol exposure (PAE) can lead to adult impairments in cognitive control behaviors mediated by the posterior parietal cortex (PPC). The PPC plays a fundamental role in the performance of response tasks in both primates and rodents, specifically when choices between similar target and nontarget stimuli are required. Furthermore, the PPC is reciprocally connected with other cortical areas. Despite the extensive literature investigating the molecular mechanisms underlying PAE impairments in cognitive functions mediated by cortical areas, little is known regarding the long-term effects of PAE on PPC development and function. Here, we examined changes in the cellular organization of GABAergic interneurons and their function in PPC using behaviorally naïve control and PAE mice. METHODS We used a limited access model of PAE in which C57BL/6J females were exposed to a solution of 10% (w/v) ethanol and 0.066% (w/V) saccharin for 4 h/day throughout gestation. Using high-throughput fluorescent microscopy, we quantified the levels of GABAergic interneurons in the PPC of adult PAE and control offspring. In a separate cohort, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch clamp recordings from PPC layer 5 pyramidal neurons. RESULTS PAE led to a significant overall reduction of parvalbumin-expressing GABAergic interneurons in PAE mice regardless of sex. Somatostatin- and calretinin-expressing GABAergic interneurons were not affected. Interestingly, PAE did not modulate sIPSC amplitude or frequency. CONCLUSIONS These results suggest that impairments in cognitive control observed in FASD may be due to the significant reduction of parvalbumin-expressing GABAergic interneurons in the PPC. PAE animals may show compensatory changes in GABAergic function following developmental reduction of these interneurons.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
- New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM, USA
| | - Belkis J. Jacquez
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
| | - Victoria K. Castillo
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
| | - Dylan B. Sainz
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
- New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM, USA
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque NM, USA
- New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM, USA
| |
Collapse
|
18
|
Ott T, Stein AM, Nieder A. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 2023; 14:7537. [PMID: 37985776 PMCID: PMC10661983 DOI: 10.1038/s41467-023-43271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Dopamine neurons respond to reward-predicting cues but also modulate information processing in the prefrontal cortex essential for cognitive control. Whether dopamine controls reward expectation signals in prefrontal cortex that motivate cognitive control is unknown. We trained two male macaques on a working memory task while varying the reward size earned for successful task completion. We recorded neurons in lateral prefrontal cortex while simultaneously stimulating dopamine D1 receptor (D1R) or D2 receptor (D2R) families using micro-iontophoresis. We show that many neurons predict reward size throughout the trial. D1R stimulation showed mixed effects following reward cues but decreased reward expectancy coding during the memory delay. By contrast, D2R stimulation increased reward expectancy coding in multiple task periods, including cueing and memory periods. Stimulation of either dopamine receptors increased the neurons' selective responses to reward size upon reward delivery. The differential modulation of reward expectancy by dopamine receptors suggests that dopamine regulates reward expectancy necessary for successful cognitive control.
Collapse
Affiliation(s)
- Torben Ott
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience and Institute of Biology, Humboldt-University of Berlin, 10099, Berlin, Germany.
| | - Anna Marlina Stein
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
19
|
Wang Y, Tang L, Wang M, Wu G, Li W, Wang X, Wang J, Yang Z, Li X, Li Z, Chen Q, Zhang P, Wang Z. The role of functional and structural properties of the nucleus accumbens subregions in eating behavior regulation of bulimia nervosa. Int J Eat Disord 2023; 56:2084-2095. [PMID: 37530570 DOI: 10.1002/eat.24038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Although studies have demonstrated the involvement of the nucleus accumbens (NAc) in the neurobiology of eating disorders, its alterations in bulimia nervosa (BN) remain largely unknown. This study investigated the structural and functional properties of NAc in patients with BN. METHOD Based on the resting-state functional MRI and high-resolution anatomical T1-weighted imaging data acquired from 43 right-handed BN patients and 40 sex-, age- and education-matched right-handed healthy controls (HCs), the group differences in gray matter volume (GMV) and fractional amplitude of low-frequency fluctuation (fALFF) in slow-4 and -5 bands and functional connectivity (FC) of NAc subregions (core and shell) were compared. The relationships between MRI and clinical data were explored in the BN group. RESULTS Compared with HCs, BN patients showed preserved GMV, decreased fALFF in slow-5 band of the left NAc core and shell, decreased FC between left NAc core and right caudate, and increased FC between all NAc subregions and frontal regions, between all NAc subregions (except the right NAc core) and the supramarginal gyrus (SMG), and between right NAc shell and left middle temporal gyrus. FC between the NAc and SMG was correlated with emotional eating behaviors. DISCUSSION Our study revealed preserved GMV, local neuronal activity reduction and functional network reorganization of the NAc in BN. The functional network reorganization of the NAc mainly occurred in the frontal cortex and was correlated with emotional eating behavior. These findings may provide novel insights into the BN using NAc as an entry point. PUBLIC SIGNIFICANCE Although studies have demonstrated the involvement of the nucleus accumbens (NAc) in the neurobiology of eating disorders, its alterations in bulimia nervosa (BN) remain largely unknown. We used a multimodal MRI technique to systematically investigate structural and functional alterations in NAc subregions of BN patients and explored the associations between such alterations and maladaptive eating behaviors, hoping to provide novel insights into BN.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lirong Tang
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Miao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weihua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Jiani Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Zhanjiang Li
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Moraresku S, Hammer J, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG. Brain Topogr 2023; 36:870-889. [PMID: 37474691 PMCID: PMC10522529 DOI: 10.1007/s10548-023-00989-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Spatial reference frames (RFs) play a key role in spatial cognition, especially in perception, spatial memory, and navigation. There are two main types of RFs: egocentric (self-centered) and allocentric (object-centered). Although many fMRI studies examined the neural correlates of egocentric and allocentric RFs, they could not sample the fast temporal dynamics of the underlying cognitive processes. Therefore, the interaction and timing between these two RFs remain unclear. Taking advantage of the high temporal resolution of intracranial EEG (iEEG), we aimed to determine the timing of egocentric and allocentric information processing and describe the brain areas involved. We recorded iEEG and analyzed broad gamma activity (50-150 Hz) in 37 epilepsy patients performing a spatial judgment task in a three-dimensional circular virtual arena. We found overlapping activation for egocentric and allocentric RFs in many brain regions, with several additional egocentric- and allocentric-selective areas. In contrast to the egocentric responses, the allocentric responses peaked later than the control ones in frontal regions with overlapping selectivity. Also, across several egocentric or allocentric selective areas, the egocentric selectivity appeared earlier than the allocentric one. We identified the maximum number of egocentric-selective channels in the medial occipito-temporal region and allocentric-selective channels around the intraparietal sulcus in the parietal cortex. Our findings favor the hypothesis that egocentric spatial coding is a more primary process, and allocentric representations may be derived from egocentric ones. They also broaden the dominant view of the dorsal and ventral streams supporting egocentric and allocentric space coding, respectively.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czechia.
| |
Collapse
|
21
|
Borra E, Rizzo M, Luppino G. Gradients of thalamic connectivity in the macaque lateral prefrontal cortex. Front Integr Neurosci 2023; 17:1239426. [PMID: 37908780 PMCID: PMC10613699 DOI: 10.3389/fnint.2023.1239426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
In the primate brain, the lateral prefrontal cortex (LPF) is a large, heterogeneous region critically involved in the cognitive control of behavior, consisting of several connectionally and functionally distinct areas. Studies in macaques provided evidence for distinctive patterns of cortical connectivity between architectonic areas located at different dorsoventral levels and for rostrocaudal gradients of parietal and frontal connections in the three main architectonic LPF areas: 46d, 46v, and 12r. In the present study, based on tracer injections placed at different dorsoventral and rostrocaudal cortical levels, we have examined the thalamic projections to the LPF to examine to what extent fine-grained connectional gradients of cortical connectivity are reflected in the topography of thalamo-LPF projections. The results showed mapping onto the nucleus medialis dorsalis (MD), by far the major source of thalamic input to the LPF, of rostral-to-caudal LPF zones, in which MD zones projecting to more caudal LPF sectors are located more rostral than those projecting to intermediate LPF sectors. Furthermore, the MD zones projecting to the rostral LPF sectors tended to be much more extensive in the rostrocaudal direction. One rostrolateral MD sector appeared to be a common source of projections to caudal prefrontal areas involved in the oculomotor frontal domain, a more caudal and ventral MD sector to a large extent of the ventral LPF, and middle and dorsal MD sectors to most of the dorsal LPF. Additional topographically organized projections to LPF areas originated from the nucleus pulvinaris medialis and projections from the nucleus anterior medialis selectively targeted more rostral sectors of LPF. Thus, the present data suggest that the topography of the MD-LPF projections does not adhere to simple topological rules, but is mainly organized according to functional criteria.
Collapse
Affiliation(s)
| | | | - Giuseppe Luppino
- Neuroscience Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Rozzi S, Gravante A, Basile C, Cappellaro G, Gerbella M, Fogassi L. Ventrolateral prefrontal neurons of the monkey encode instructions in the 'pragmatic' format of the associated behavioral outcomes. Prog Neurobiol 2023; 229:102499. [PMID: 37429374 DOI: 10.1016/j.pneurobio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representation is, to date, largely unknown. In order to study how instructions and behaviors are encoded in prefrontal cortex, we recorded the activity of monkeys (Macaca mulatta) ventrolateral prefrontal neurons in a task requiring to perform (Action condition) or withhold (Inaction condition) grasping actions on real objects. Our data show that there are neurons responding in different task phases, and that the neuronal population discharge is stronger in the Inaction condition when the instructing cue is presented, and in the Action condition in the subsequent phases, from object presentation to action execution. Decoding analyses performed on neuronal populations showed that the neural activity recorded during the initial phases of the task shares the same type of format with that recorded during the final phases. We propose that this format has a pragmatic nature, that is instructions and goals are encoded by prefrontal neurons as predictions of the behavioral outcome.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Alfonso Gravante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Claudio Basile
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giorgio Cappellaro
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
23
|
Dufour BD, McBride E, Bartley T, Juarez P, Martínez-Cerdeño V. Distinct patterns of GABAergic interneuron pathology in autism are associated with intellectual impairment and stereotypic behaviors. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:1730-1745. [PMID: 36935610 PMCID: PMC10846597 DOI: 10.1177/13623613231154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental condition characterized by deficits in sociability and communication and the presence of repetitive behaviors. How specific pathological alterations of the brain contribute to the clinical profile of autism spectrum disorder remains unknown. We previously found that a specific type of inhibitory interneuron is reduced in number in the autism spectrum disorder prefrontal cortex. Here, we assessed the relationship between interneuron reduction and autism spectrum disorder symptom severity. We collected clinical records from autism spectrum disorder (n = 20) and assessed the relationship between the severity of symptoms and interneuron number. We found that the reduced number of inhibitory interneurons that we previously reported is linked to specific symptoms of autism spectrum disorder, particularly stereotypic movements and intellectual impairments.
Collapse
Affiliation(s)
- Brett D Dufour
- UC Davis Department of Psychiatry and Behavioral Sciences, USA
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
| | - Erin McBride
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| | - Trevor Bartley
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| | - Pablo Juarez
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
| | - Verónica Martínez-Cerdeño
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
24
|
Hiura M, Funaki A, Shibutani H, Takahashi K, Katayama Y. Dissociated coupling between cerebral oxygen metabolism and perfusion in the prefrontal cortex during exercise: a NIRS study. Front Physiol 2023; 14:1165939. [PMID: 37565141 PMCID: PMC10411551 DOI: 10.3389/fphys.2023.1165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: The present study used near-infrared spectroscopy to investigate the relationships between cerebral oxygen metabolism and perfusion in the prefrontal cortex (PFC) during exercises of different intensities. Methods: A total of 12 recreationally active men (age 24 ± 6 years) were enrolled. They performed 17 min of low-intensity exercise (ExL), followed by 3 min of moderate-intensity exercise (ExM) at constant loads. Exercise intensities for ExL and ExM corresponded to 30% and 45% of the participants' heart rate reserve, respectively. Cardiovascular and respiratory parameters were measured. We used near-infrared time-resolved spectroscopy (TRS) to measure the cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]), which can indicate the cerebral blood volume (CBV). As the cerebral metabolic rate for oxygen (CMRO2) is calculated using cerebral blood flow (CBF) and ScO2, we assumed a constant power law relationship between CBF and CBV based on investigations by positron emission tomography (PET). We estimated the relative changes in CMRO2 (rCMRO2) and CBV (rCBV) from the baseline. During ExL and ExM, the rate of perceived exertion was monitored, and alterations in the subjects' mood induced by exercise were evaluated using the Profile of Moods Scale-Brief. Results: Three minutes after exercise initiation, ScO2 decreased and rCMRO2 surpassed rCBV in the left PFC. When ExL changed to ExM, cardiovascular variables and the sense of effort increased concomitantly with an increase in [HbT] but not in ScO2, and the relationship between rCMRO2 and rCBV was dissociated in both sides of the PFC. Immediately after ExM, [HbT], and ScO2 increased, and the disassociation between rCMRO2 and rCBV was prominent in both sides of the PFC. While blood pressure decreased and a negative mood state was less prominent following ExM compared with that at rest, ScO2 decreased 15 min after exercise and rCMRO2 surpassed rCBV in the left PFC. Conclusion: Dissociated coupling between cerebral oxidative metabolism and perfusion in the PFC was consistent with the effort required for increased exercise intensity and associated with post-exercise hypotension and altered mood status after exercise. Our result demonstrates the first preliminary results dealing with the coupling between cerebral oxidative metabolism and perfusion in the PFC using TRS.
Collapse
Affiliation(s)
- Mikio Hiura
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| | - Akio Funaki
- Faculty of Sociology, Aomori University, Aomori, Japan
| | | | - Katsumi Takahashi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yoichi Katayama
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| |
Collapse
|
25
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Watanabe A, Sawamura D, Nakazono H, Tokikuni Y, Miura H, Sugawara K, Fuyama K, Tohyama H, Yoshida S, Sakai S. Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. J Transl Med 2023; 21:143. [PMID: 36823635 PMCID: PMC9951449 DOI: 10.1186/s12967-023-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The left dorsolateral prefrontal cortex (DLPFC) is involved in early-phase manual dexterity skill acquisition when cognitive control processes, such as integration and complexity demands, are required. However, the effectiveness of left DLPFC transcranial direct current stimulation (tDCS) on early-phase motor learning and whether its effectiveness depends on the cognitive demand of the target task are unclear. This study aimed to investigate whether tDCS over the left DLPFC improves non-dominant hand dexterity performance and determine if its efficacy depends on the cognitive demand of the target task. METHODS In this randomized, double-blind, sham-controlled trial, 70 healthy, right-handed, young adult participants were recruited. They were randomly allocated to the active tDCS (2 mA for 20 min) or sham groups and repeatedly performed the Purdue Pegboard Test (PPT) left-handed peg task and left-handed assembly task three times: pre-tDCS, during tDCS, and post tDCS. RESULTS The final sample comprised 66 healthy young adults (mean age, 22.73 ± 1.57 years). There were significant interactions between group and time in both PPT tasks, indicating significantly higher performance of those in the active tDCS group than those in the sham group post tDCS (p < 0.001). Moreover, a greater benefit was observed in the left-handed assembly task performance than in the peg task performance (p < 0.001). No significant correlation between baseline performance and benefits from tDCS was observed in either task. CONCLUSIONS These results demonstrated that prefrontal tDCS significantly improved early-phase manual dexterity skill acquisition, and its benefits were greater for the task with high cognitive demands. These findings contribute to a deeper understanding of the underlying neurophysiological mechanisms of the left DLPFC in the modulation of early-phase dexterity skill acquisition. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000046868), Registered February 8, 2022 https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053467.
Collapse
Affiliation(s)
- Akihiro Watanabe
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Hisato Nakazono
- grid.443459.b0000 0004 0374 9105Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001 Japan
| | - Yukina Tokikuni
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Hiroshi Miura
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Kazuhiro Sugawara
- grid.263171.00000 0001 0691 0855Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556 Japan
| | - Kanako Fuyama
- grid.412167.70000 0004 0378 6088Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648 Japan
| | - Harukazu Tohyama
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| | - Susumu Yoshida
- grid.412021.40000 0004 1769 5590Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293 Japan
| | - Shinya Sakai
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
27
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
28
|
Yun S, Soler I, Tran F, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525756. [PMID: 36747871 PMCID: PMC9900985 DOI: 10.1101/2023.01.26.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities which are disrupted in many brain disorders. Better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on integrity of the hippocampal dentate gyrus (DG) which both receive glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). Inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here we asked if the activity of LEC fan cells that directly project to the DG (LEC➔DG neurons) regulates behavioral pattern separation or cognitive flexibility. C57BL6/J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA); this approach increases the activity of LEC➔DG neurons. Four weeks later, mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based Location Discrimination Reversal [LDR] task) and innate fear of open spaces (elevated plus maze [EPM]) followed by counting of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). TRIP8b and SCR shRNA mice performed similarly in general touchscreen training and LDR training. However, in late LDR testing, TRIP8b shRNA mice reached the first reversal more quickly and had more accurate discrimination vs. SCR shRNA mice, specifically when pattern separation was challenging (lit squares close together or "small separation"). Also, TRIP8b shRNA mice achieved more reversals in late LDR testing vs. SCR shRNA mice. Supporting a specific influence on cognitive behavior, SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis vs. SCR shRNA mice. This work advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival - behavioral pattern separation and cognitive flexibility - and suggests the activity of LEC➔DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
|
29
|
Pitts M, Nee DE. Generalizing the control architecture of the lateral prefrontal cortex. Neurobiol Learn Mem 2022; 195:107688. [PMID: 36265793 PMCID: PMC11514053 DOI: 10.1016/j.nlm.2022.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022]
Abstract
Cognitive control guides non-habitual, goal directed behaviors allowing us to flexibly adapt to ongoing demands. Previous work has suggested that multiple cognitive control processes exist that can be classed according to their action on present-oriented/external information versus future-oriented/internal information. These processes can be mapped onto the lateral prefrontal cortex (LPFC) such that increasingly rostral areas are involved in increasingly future-oriented/internal control processes. Whether and how such processes are organized to support goal-directed behavior remains unclear. On the one hand, the LPFC may flexibly adapt based upon demands. On the other hand, there may be a consistent control architecture such as a control hierarchy that generalizes across demands. Previous work using fMRI in humans during a comprehensive control task that engaged several control processes at once found that an area in mid-LPFC consistently exerted widespread influence throughout the LPFC. These data suggested that the mid-LPFC forms an apex of a putative control hierarchy. However, whether such an architecture generalizes across tasks remains to be tested. Here, we utilized a modified comprehensive control task designed to alter how control processes influence one another to test the generalizability of the LPFC control architecture. Univariate fMRI activations revealed distinct control-related activations relative to past work. Despite these changes, effective connectivity modeling revealed a directed architecture similar to previous findings with the mid-LPFC exerting the most widespread influences throughout LPFC. These results suggest that the fundamental control architecture of the LPFC is relatively fixed, and that different demands are accommodated through modulations of this fixed architecture.
Collapse
Affiliation(s)
- McKinney Pitts
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States.
| |
Collapse
|
30
|
Siste K, Pandelaki J, Miyata J, Oishi N, Tsurumi K, Fujiwara H, Murai T, Nasrun MW, Wiguna T, Bardosono S, Sekartini R, Sarasvita R, Murtani BJ, Sen LT, Firdaus KK. Altered Resting-State Network in Adolescents with Problematic Internet Use. J Clin Med 2022; 11:jcm11195838. [PMID: 36233704 PMCID: PMC9570959 DOI: 10.3390/jcm11195838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Problematic internet use (PIU) is increasingly recognized as a mental health concern, particularly among adolescents. The resting-state functional connectivity (rsFC) of the triple-network model has been described inconsistently in PIU. Using resting-state fMRI (rsFMRI) and hypothesizing a lower rsFC between default mode (DMN) and central executive networks (CEN) but a higher rsFC within the salience network (SN), this study scrutinized the neural substrates of PIU adolescents. A total of 30 adolescents with PIU and 30 control subjects underwent rsFMRI. The severity of PIU was evaluated by the Internet Addiction Test. Additionally, personality traits as well as emotional and behavioral problems were evaluated by the Temperament and Character Inventory (TCI) and the Strength and Difficulties Questionnaire (SDQ), respectively. Focusing on the DMN, SN, and CEN, we compared rsFC values between PIU and the control. Subsequently, within the combined group of subjects, TCI and SDQ correlation and mediation effects were investigated. Higher rsFC values of the left lateral prefrontal cortex (LPFC(L)) with the left anterior insula (aIns(L)) were observed for PIU than for the control, while rsFCs of the LPFC(L) with the medial PFC (MPFC), LPFC(L), as well as with the right lateral parietal cortex (LP(R)) were lower for PIU. Among these significant group differences, the rsFC between the LPFC(L) and MPFC was mediated by emotional symptoms (standardized β = −0.12, 95% CI −0.29, −0.0052). The dysfunctional attention switching and incentive salience regulated by the SN were implicated as being a neural correlate of PIU, and this relationship would in part be explained by the emotional dysregulation associated with PIU in adolescents.
Collapse
Affiliation(s)
- Kristiana Siste
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
- Correspondence:
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Naoya Oishi
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Tsurumi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Decentralized Big Data Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- The General Research Division, Osaka University Research Center on Ethical, Legal, and Social Issues, Osaka 565-0871, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Martina Wiwie Nasrun
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Tjhin Wiguna
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Saptawati Bardosono
- Department of Clinical Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Rini Sekartini
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Riza Sarasvita
- Faculty of Psychology, Soegijapranata University, Central Java 50234, Indonesia
| | - Belinda Julivia Murtani
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Lee Thung Sen
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Karina Kalani Firdaus
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
31
|
Ferrucci L, Nougaret S, Ceccarelli F, Sacchetti S, Fascianelli V, Benozzo D, Genovesio A. Social monitoring of actions in the macaque frontopolar cortex. Prog Neurobiol 2022; 218:102339. [PMID: 35963359 DOI: 10.1016/j.pneurobio.2022.102339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
The frontopolar cortex (FPC) of primates appeared as a main innovation in the evolution of anthropoid primates and it has been placed at the top of the prefrontal hierarchy. The only study to date that investigated the activity of FPC neurons in monkeys performing a cognitive task suggested that these cells were involved in the monitoring of self-generated actions. We recorded the activity of neurons in the FPCs of two rhesus monkeys while they performed a social variant of a nonmatch-to-goal task that required monitoring the actions of a human or computer agent. We discovered that the role of FPC neurons extends beyond self-generated actions to include monitoring others' actions. Their monitoring activity was very specific. First, neurons in the FPC encoded the spatial position of the target but not its object features. Second, a dedicated representation of the human agent actions was tied to the time of target acquisition, while it was reduced or absent in the successive epochs of the trial. Finally, this other-specific neural substrate did not emerge during the interaction with a virtual agent such as the computer. These results provide a new perspective on the functions of a uniquely primate brain area, suggesting that FPC might play an important role in social behaviors.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simon Nougaret
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefano Sacchetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
32
|
Deng X, Liufu M, Xu J, Yang C, Li Z, Chen J. Understanding implicit and explicit sensorimotor learning through neural dynamics. Front Comput Neurosci 2022; 16:960569. [PMID: 35990367 PMCID: PMC9381967 DOI: 10.3389/fncom.2022.960569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xueqian Deng
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Mengzhan Liufu
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
| | - Jingyue Xu
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Chen Yang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Zina Li
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Juan Chen
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
33
|
Plucknett W, Sanchez Giraldo LG, Bae J. Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces. Front Hum Neurosci 2022; 16:902183. [PMID: 35845246 PMCID: PMC9283905 DOI: 10.3389/fnhum.2022.902183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Decoding movement related intentions is a key step to implement BMIs. Decoding EEG has been challenging due to its low spatial resolution and signal to noise ratio. Metric learning allows finding a representation of data in a way that captures a desired notion of similarity between data points. In this study, we investigate how metric learning can help finding a representation of the data to efficiently classify EEG movement and pre-movement intentions. We evaluate the effectiveness of the obtained representation by comparing classification the performance of a Support Vector Machine (SVM) as a classifier when trained on the original representation, called Euclidean, and representations obtained with three different metric learning algorithms, including Conditional Entropy Metric Learning (CEML), Neighborhood Component Analysis (NCA), and the Entropy Gap Metric Learning (EGML) algorithms. We examine different types of features, such as time and frequency components, which input to the metric learning algorithm, and both linear and non-linear SVM are applied to compare the classification accuracies on a publicly available EEG data set for two subjects (Subject B and C). Although metric learning algorithms do not increase the classification accuracies, their interpretability using an importance measure we define here, helps understanding data organization and how much each EEG channel contributes to the classification. In addition, among the metric learning algorithms we investigated, EGML shows the most robust performance due to its ability to compensate for differences in scale and correlations among variables. Furthermore, from the observed variations of the importance maps on the scalp and the classification accuracy, selecting an appropriate feature such as clipping the frequency range has a significant effect on the outcome of metric learning and subsequent classification. In our case, reducing the range of the frequency components to 0-5 Hz shows the best interpretability in both Subject B and C and classification accuracy for Subject C. Our experiments support potential benefits of using metric learning algorithms by providing visual explanation of the data projections that explain the inter class separations, using importance. This visualizes the contribution of features that can be related to brain function.
Collapse
Affiliation(s)
| | | | - Jihye Bae
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
35
|
Eggins P, Wong S, Wei G, Hodges JR, Husain M, Piguet O, Irish M, Kumfor F. A shared cognitive and neural basis underpinning cognitive apathy and planning in behavioural-variant frontotemporal dementia and Alzheimer's disease. Cortex 2022; 154:241-253. [DOI: 10.1016/j.cortex.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
36
|
Sakamoto K, Kawaguchi N, Mushiake H. Shape and Rule Information Is Reflected in Different Local Field Potential Frequencies and Different Areas of the Primate Lateral Prefrontal Cortex. Front Behav Neurosci 2022; 16:750832. [PMID: 35645746 PMCID: PMC9137426 DOI: 10.3389/fnbeh.2022.750832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LFPC) plays a crucial role in executive function by adaptively storing behavior-relevant information as working memory. Neural mechanisms associated with local field potentials (LFPs) may underlie the adaptive properties of the LFPC. Here, we analyzed how LFPs recorded from the monkey LFPC are modulated by the crucial factors of a shape manipulation task. In this task, the test shape is transformed by manipulating a lever to match the size and orientation of the sample shape. The subject is required to temporarily memorize the rules such as the arm-movement-manipulation relationship and the sample shape to generate the sequential behavior of operations. In the present study, we focused on task variables about shape and rules, and examined among which aspects distinguish the ventral and dorsal sides of the LFPC. We found that the transformed shape in the sample period strongly affected the theta and delta waves in the delay period on the ventral side, while the arm-manipulation assignment influenced the gamma components on the dorsal side. These findings suggest that area- and frequency-selective LFP modulations are involved in dynamically recruiting different behavior-relevant information in the LFPC.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Department of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
- *Correspondence: Kazuhiro Sakamoto,
| | - Norihiko Kawaguchi
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Wang X, Hu W, Wang H, Gao D, Liu Y, Zhang X, Jiang Y, Mo J, Meng F, Zhang K, Zhang JG. Altered Structural Brain Network Topology in Patients With Primary Craniocervical Dystonia. Front Neurol 2022; 13:763305. [PMID: 35432176 PMCID: PMC9005792 DOI: 10.3389/fneur.2022.763305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeRegional cortical thickness or volume analyses based upon structural MRI scans have been employed to study the pathophysiology of primary craniocervical dystonia (CCD). In the present study, brain connectivity network analyses based upon morphological distribution similarities among different brain areas were used to study the network disruption in individuals affected by CCD.MethodsThe T1 MRI scans were completed for 37 patients with CCD and 30 healthy controls, with individual brain structural networks being constructed based upon gray matter (GM) similarities in 90 regions within the brain. Area under the curve (AUC) values for each network parameter were determined, and the GRETNA program was used to conduct a graph theory-based measurement of nodal and global network properties. These properties were then compared between healthy controls and those with CCD. In addition, relationships between nodal properties and the severity of clinical dystonia were assessed through Spearman's correlation analyses.ResultsRelative to individuals in the control group, patients with CCD exhibited decreased local nodal properties in the right globus pallidus, right middle frontal gyrus, and right superior temporal pole. The degree of centrality as well as the node efficiency of the right globus pallidus were found to be significantly correlated with ocular dystonic symptom. The node efficiency of right middle frontal gyrus was significantly related to the total motor severity. No nodal properties were significantly correlated with oral dystonic motor scores. Among CCD patients, the right hemisphere exhibited more widespread decreases in connectivity associated with the motor related brain areas, associative cortex, and limbic system, particularly in the middle frontal gyrus, globus pallidus, and cingulate gyrus.ConclusionsThe assessment of morphological correlations between different areas in the brain may represent a sensitive approach for detecting alterations in brain structures and to understand the mechanistic basis for CCD at the network level. Based on the nodal properties identified in this study, the right middle frontal gyrus and globus pallidus were the most severely affected in patients with CCD. The widespread alterations in morphological connectivity, such as the cortico-cortical and cortico-subcortical networks, further support the network mechanism as a basis for CCD.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Huimin Wang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Medical Alliance of Beijing Tian Tan Hospital, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yuye Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Kai Zhang
| | - Jian-guo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Jian-guo Zhang
| |
Collapse
|
38
|
Seo J, Oliver KI, Daffre C, Moore KN, Gazecki S, Lasko NB, Milad MR, Pace-Schott EF. Associations of sleep measures with neural activations accompanying fear conditioning and extinction learning and memory in trauma-exposed individuals. Sleep 2022; 45:zsab261. [PMID: 34718807 PMCID: PMC8919204 DOI: 10.1093/sleep/zsab261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Sleep disturbances increase risk of posttraumatic stress disorder (PTSD). Sleep effects on extinction may contribute to such risk. Neural activations to fear extinction were examined in trauma-exposed participants and associated with sleep variables. METHODS Individuals trauma-exposed within the past 2 years (N = 126, 63 PTSD) completed 2 weeks actigraphy and sleep diaries, three nights ambulatory polysomnography and a 2-day fMRI protocol with Fear-Conditioning, Extinction-Learning and, 24 h later, Extinction-Recall phases. Activations within the anterior cerebrum and regions of interest (ROI) were examined within the total, PTSD-diagnosed and trauma-exposed control (TEC) groups. Sleep variables were used to predict activations within groups and among total participants. Family wise error was controlled at p < 0.05 using nonparametric analysis with 5,000 permutations. RESULTS Initially, Fear Conditioning activated broad subcortical and cortical anterior-cerebral regions. Within-group analyses showed: (1) by end of Fear Conditioning activations decreased in TEC but not PTSD; (2) across Extinction Learning, TEC activated medial prefrontal areas associated with emotion regulation whereas PTSD did not; (3) beginning Extinction Recall, PTSD activated this emotion-regulatory region whereas TEC did not. However, the only between-group contrast reaching significance was greater activation of a hippocampal ROI in TEC at Extinction Recall. A greater number of sleep variables were associated with cortical activations in separate groups versus the entire sample and in PTSD versus TEC. CONCLUSIONS PTSD nonsignificantly delayed extinction learning relative to TEC possibly increasing vulnerability to pathological anxiety. The influence of sleep integrity on brain responses to threat and extinction may be greater in more symptomatic individuals.
Collapse
Affiliation(s)
- Jeehye Seo
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
- Department of Brain & Cognitive Engineering, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Katelyn I Oliver
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Carolina Daffre
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Kylie N Moore
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Rush Medical College, Chicago, IL, USA
| | - Natasha B Lasko
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Rockland, NY, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
39
|
Gongcheng X, Congcong H, Jiahui Y, Wenhao L, Hui X, Xiangyang L, Zengyong L, Yonghui W, Daifa W. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke. Med Phys 2022; 49:3333-3346. [PMID: 35262918 DOI: 10.1002/mp.15570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Knowing the patterns of brain activation that occur and networks involved under different interventions is important for motor recovery in subjects with stroke. This study aimed to study the patterns of brain activation and networks in two interventions, affected upper limb side and bilateral exercise training, using concurrent functional near-infrared spectroscopy (fNIRS) imaging. METHODS Thirty-two patients in the early subacute stage were randomly divided into two groups: unilateral and bilateral groups. The patients in the unilateral group underwent isokinetic muscle strength training on the affected upper limb side and patients in the bilateral group underwent bilateral upper limb training. Oxyhemoglobin and deoxyhemoglobin concentration changes (ΔHbO2 and ΔHbR, respectively) were recorded in the ipsilateral and contralateral prefrontal cortex (IPFC and CPFC, respectively) and ipsilateral and contralateral motor cortex (IMC and CMC, respectively) by fNIRS equipment in the resting state and training conditions. The phase information of a 0.01-0.08 Hz fNIRS signal was extracted by the wavelet transform method. Dynamic Bayesian inference was adopted to calculate the coupling strength and direction of effective connectivity. The network threshold was determined by surrogate signal method, the global (weighted clustering coefficient, global efficiency and small-worldness) and local (degree, betweenness centrality and local efficiency) network metrics were calculated. The degree of cerebral lateralization was also compared between the two groups. RESULTS The results of covariance analysis showed that, compared with bilateral training, the coupling effect of CMC→IMC was significantly enhanced (p = 0.03); also, the local efficiency of the IMC (p = 0.01), IPFC (p<0.001), and CPFC (p = 0.006) and the hemispheric autonomy index of IPFC (p = 0.007) were significantly increased in unilateral training. In addition, there was a significant positive correlation between the coupling intensity of the inter-hemispheric motor area and the shifted local efficiency. CONCLUSIONS The results indicated that unilateral upper limb training could more effectively promote the interaction and balance of bilateral motor hemispheres and help brain reorganization in the IMC and prefrontal cortex in stroke patients. The method provided in this study could be used to evaluate dynamic brain activation and network reorganization under different interventions, thus improving the strategy of rehabilitation intervention in a timely manner and resulting in better motor recovery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xu Gongcheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Huo Congcong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Yin Jiahui
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Li Wenhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Xie Hui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Li Xiangyang
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, 330031, China
| | - Li Zengyong
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Wang Yonghui
- Department of physical medicine and rehabilitation, Qilu hospital, Shandong University, Jinan, 250061, China
| | - Wang Daifa
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
40
|
Zhao HC, Lv R, Zhang GY, He LM, Cai XT, Sun Q, Yan CY, Bao XY, Lv XY, Fu B. Alterations of Prefrontal-Posterior Information Processing Patterns in Autism Spectrum Disorders. Front Neurosci 2022; 15:768219. [PMID: 35173572 PMCID: PMC8841879 DOI: 10.3389/fnins.2021.768219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder characterized by different levels of repetitive and stereotypic behavior as well as deficits in social interaction and communication. In this current study, we explored the changes in cerebral neural activities in ASD. The purpose of this study is to investigate whether there exists a dysfunction of interactive information processing between the prefrontal cortex and posterior brain regions in ASD. We investigated the atypical connectivity and information flow between the prefrontal cortex and posterior brain regions in ASD utilizing the entropy connectivity (a kind of directional connectivity) method. Eighty-nine patients with ASD and 94 typical developing (TD) teenagers participated in this study. Two-sample t-tests revealed weakened interactive entropy connectivity between the prefrontal cortex and posterior brain regions. This result indicates that there exists interactive prefrontal-posterior underconnectivity in ASD, and this disorder might lead to less prior knowledge being used and updated. Our proposals highlighted that aforementioned atypical change might accelerate the deoptimization of brain networks in ASD.
Collapse
|
41
|
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022; 47:72-89. [PMID: 34408280 PMCID: PMC8617292 DOI: 10.1038/s41386-021-01132-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Concepts of cognitive control (CC) and executive function (EF) are defined in terms of their relationships with goal-directed behavior versus habits and controlled versus automatic processing, and related to the functions of the prefrontal cortex (PFC) and related regions and networks. A psychometric approach shows unity and diversity in CC constructs, with 3 components in the most commonly studied constructs: general or common CC and components specific to mental set shifting and working memory updating. These constructs are considered against the cellular and systems neurobiology of PFC and what is known of its functional neuroanatomical or network organization based on lesioning, neurochemical, and neuroimaging approaches across species. CC is also considered in the context of motivation, as "cool" and "hot" forms. Its Common CC component is shown to be distinct from general intelligence (g) and closely related to response inhibition. Impairments in CC are considered as possible causes of psychiatric symptoms and consequences of disorders. The relationships of CC with the general factor of psychopathology (p) and dimensional constructs such as impulsivity in large scale developmental and adult populations are considered, as well as implications for genetic studies and RDoC approaches to psychiatric classification.
Collapse
Affiliation(s)
- Naomi P Friedman
- Department of Psychology & Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Zilcha‐Mano S, Zhu X, Lazarov A, Suarez‐Jimenez B, Helpman L, Kim Y, Maitlin C, Neria Y, Rutherford BR. Structural brain features signaling trauma, PTSD, or resilience? A systematic exploration. Depress Anxiety 2022; 39:695-705. [PMID: 35708133 PMCID: PMC9588504 DOI: 10.1002/da.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies have searched for neurobiological markers of trauma exposure, posttraumatic stress disorder (PTSD) diagnosis, and resilience to trauma to identify therapeutic targets for PTSD. Despite some promising results, findings are inconsistent. AIMS The present study adopted a data-driven approach to systematically explore whether structural brain markers of trauma, PTSD, or resilience emerge when all are explored. MATERIALS & METHODS Differences between clusters in the proportion of PTSD, healthy controls (HC), and trauma-exposed healthy controls (TEHC) served to indicate the presence of PTSD, trauma, and resilience markers, respectively. A total of 129 individuals, including 46 with PTSD, 49 TEHCs, and 34 HCs not exposed to trauma were scanned. Volumes, cortical thickness, and surface areas of interest were obtained from T1 structural MRI and used to identify data-driven clusters. RESULTS Two clusters were identified, differing in the proportion of TEHCs but not of PTSDs or HCs. The cluster with the higher proportion of TEHCs, referred to as the resilience cluster, was characterized by higher volume in brain regions implicated in trauma exposure, especially the thalamus and rostral middle frontal gyrus. Cross-validation established the robustness and consistency of the identified clusters. DISCUSSION & CONCLUSION Findings support the existence of structural brain markers of resilience.
Collapse
Affiliation(s)
| | - Xi Zhu
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Amit Lazarov
- School of Psychological SciencesTel‐Aviv UniversityTel‐AvivIsrael,Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Benjamin Suarez‐Jimenez
- New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA,Department of NeuroscienceUniversity of RochesterRochesterNew YorkUSA
| | - Liat Helpman
- Department of Counseling and Human DevelopmentUniversity of HaifaMount CarmelHaifaIsrael,Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yoojean Kim
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Carly Maitlin
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Yuval Neria
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Bret R. Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric InstituteNew York CityNew YorkUSA
| |
Collapse
|
43
|
Asahara R, Ishii K, Liang N, Hatanaka Y, Hihara K, Matsukawa K. Regional difference in prefrontal oxygenation before and during overground walking in humans: a wearable multichannel NIRS study. Am J Physiol Regul Integr Comp Physiol 2022; 322:R28-R40. [PMID: 34843411 DOI: 10.1152/ajpregu.00192.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using wireless multichannel near-infrared spectroscopy, regional difference in cortical activity over the prefrontal cortex (PFC) was examined before and during overground walking and in response to changes in speed and cognitive demand. Oxygenated-hemoglobin concentration (Oxy-Hb) as index of cortical activity in ventrolateral PFC (VLPFC), dorsolateral PFC (DLPFC), and frontopolar cortex (FPC) was measured in 14 subjects, whereas heart rate was measured as estimation of exercise intensity in six subjects. The impact of mental imagery on prefrontal Oxy-Hb was also explored. On both sides, Oxy-Hb in VLPFC, DLPFC, and lateral FPC was increased before the onset of normal-speed walking, whereas Oxy-Hb in medial FPC did not respond before walking onset. During the walking, Oxy-Hb further increased in bilateral VLPFC, whereas Oxy-Hb was decreased in DLPFC and lateral and medial FPC. Increasing walking speed did not alter the increase in Oxy-Hb in VLPFC but counteracted the decrease in Oxy-Hb in DLPFC (but not in lateral and medial FPC). Treadmill running evoked a greater Oxy-Hb increase in DLPFC (n = 5 subjects). Furthermore, increasing cognitive demand during walking, by deprivation of visual feedback, counteracted the decrease in Oxy-Hb in DLPFC and lateral and medial FPC, but it did not affect the increase in Oxy-Hb in VLPFC. Taken together, the profound and localized Oxy-Hb increase is a unique response for the VLPFC. The regional heterogeneity of the prefrontal Oxy-Hb responses to natural overground walking was accentuated by increasing walking speed or cognitive demand, suggesting functional distinction within the PFC.
Collapse
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Human Informatics and Interaction Research Institute, grid.208504.bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Human Informatics and Interaction Research Institute, grid.208504.bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukari Hatanaka
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Hihara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Hosaka R, Watanabe H, Nakajima T, Mushiake H. Theta Dynamics Contribute to Retrieving Motor Plans after Interruptions in the Primate Premotor Area. Cereb Cortex Commun 2021; 2:tgab059. [PMID: 34806015 PMCID: PMC8597970 DOI: 10.1093/texcom/tgab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
To achieve a behavioral goal, we often need to maintain an internal action plan against external interruption and thereafter retrieve the action plan. We recently found that the maintenance and updating of motor plans are reflected by reciprocal changes in the beta and gamma power of the local field potential (LFP) of the primate medial motor areas. In particular, the maintenance of the immediate motor plan is supported by enhanced beta oscillations. However, it is unclear how the brain manages to maintain and retrieve the internal action plan against interruptions. Here, we show that dynamic theta changes contribute to the maintenance of the action plan. Specifically, the power of the theta frequency band (4-10 Hz) of LFPs increased before and during the interruption in the dorsal premotor areas in two monkeys. Without theta enhancement before the interruption, retrieval of the internal action plan was impaired. Theta and beta oscillations showed distinct changes depending on the behavioral context. Our results demonstrate that immediate and suspended motor plans are supported by the beta and theta oscillatory components of LFPs. Motor cortical theta oscillations may contribute to bridging motor plans across behavioral interruptions in a prospective manner.
Collapse
Affiliation(s)
- Ryosuke Hosaka
- Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hidenori Watanabe
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Toshi Nakajima
- Department of Integrative Neuroscience, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
45
|
Dalkner N, Bengesser S, Birner A, Rieger A, Seebauer J, Platzer M, Hamm C, Maget A, Queissner R, Pilz R, Fellendorf FT, Reininghaus B, Strassnig MT, Kapfhammer HP, Weiss EM, Reininghaus EZ. Body Mass Index Predicts Decline in Executive Function in Bipolar Disorder: Preliminary Data of a 12-Month Follow-up Study. Neuropsychobiology 2021; 80:1-11. [PMID: 32454501 DOI: 10.1159/000505784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Obesity and associated risk factors have been linked to cognitive decline before. OBJECTIVES In the present study, we evaluated potential cumulative negative effects of overweight and obesity on cognitive performance in euthymic patients with bipolar disorder (BD) in a longitudinal design. METHODS Neurocognitive measures (California Verbal Learning Test, Trail Making Test [TMT] A/B, Digit-Symbol-Test, Digit-Span, d2 Test), anthropometrics (e.g., body mass index [BMI]), and clinical ratings (Hamilton Depression Scale, Young Mania Rating Scale) were collected over a 12-month observation period. Follow-up data of 38 patients with BD (mean age 40 years; 15 males, 23 females) were available. RESULTS High baseline BMI predicted a decrease in the patient's performance in the Digit-Span backwards task measuring working memory performance. In contrast, cognitive performance was not predicted by increases in BMI at follow-up. Normal weight bipolar patients (n = 19) improved their performance on the TMT B, measuring cognitive flexibility and executive functioning, within 1 year, while overweight bipolar patients (n = 19) showed no change in this task. CONCLUSIONS The results suggest that overweight can predict cognitive performance changes over 12 months.
Collapse
Affiliation(s)
- Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria,
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Julia Seebauer
- Department of Biological Psychology, University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - René Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Martin T Strassnig
- Department of Integrated Medical Science, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Elisabeth M Weiss
- Department of Biological Psychology, University of Graz, Graz, Austria.,Department of Psychology, University of Innsbruck, Clinical Psychology, Innsbruck, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
46
|
Oguchi M, Tanaka S, Pan X, Kikusui T, Moriya-Ito K, Kato S, Kobayashi K, Sakagami M. Chemogenetic inactivation reveals the inhibitory control function of the prefronto-striatal pathway in the macaque brain. Commun Biol 2021; 4:1088. [PMID: 34531520 PMCID: PMC8446038 DOI: 10.1038/s42003-021-02623-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The lateral prefrontal cortex (LPFC) has a strong monosynaptic connection with the caudate nucleus (CdN) of the striatum. Previous human MRI studies have suggested that this LPFC-CdN pathway plays an important role in inhibitory control and working memory. We aimed to validate the function of this pathway at a causal level by pathway-selective manipulation of neural activity in non-human primates. To this end, we trained macaque monkeys on a delayed oculomotor response task with reward asymmetry and expressed an inhibitory type of chemogenetic receptors selectively to LPFC neurons that project to the CdN. Ligand administration reduced the inhibitory control of impulsive behavior, as well as the task-related neuronal responses observed in the local field potentials from the LPFC and CdN. These results show that we successfully suppressed pathway-selective neural activity in the macaque brain, and the resulting behavioral changes suggest that the LPFC-CdN pathway is involved in inhibitory control.
Collapse
Affiliation(s)
- Mineki Oguchi
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shingo Tanaka
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.260975.f0000 0001 0671 5144Department of Physiology, School of Medicine, Niigata University, Niigata, Japan
| | - Xiaochuan Pan
- grid.28056.390000 0001 2163 4895Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Takefumi Kikusui
- grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Keiko Moriya-Ito
- grid.272456.0Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeki Kato
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Kobayashi
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Masamichi Sakagami
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
47
|
Numan R. The Prefrontal-Hippocampal Comparator: Volition and Episodic Memory. Percept Mot Skills 2021; 128:2421-2447. [PMID: 34424092 DOI: 10.1177/00315125211041341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review describes recent research that is relevant to the prefrontal-hippocampal comparator model with the following conclusions: 1. Hippocampal area CA1 serves, at least in part, as an associative match-mismatch comparator. 2. Voluntary movement strengthens episodic memories for goal-directed behavior. 3. Hippocampal theta power serves as a prediction error signal during hippocampal dependent tasks. 4. The self-referential component of episodic memory in humans is mediated by the corollary discharge (the efference copy of the action plan developed by prefrontal cortex and transmitted to hippocampus where it is stored as a working memory; CA1 uses this efference copy to compare the expected consequences of action to the actual consequences of action). 5. Impairments in the production or transmission of this corollary discharge may contribute to some of the symptoms of schizophrenia. Unresolved issues and suggestions for future research are discussed.
Collapse
Affiliation(s)
- Robert Numan
- Department of Psychology, Santa Clara University, Santa Clara, California, United States
| |
Collapse
|
48
|
Ghaleh M, Lacey EH, Fama ME, Anbari Z, DeMarco AT, Turkeltaub PE. Dissociable Mechanisms of Verbal Working Memory Revealed through Multivariate Lesion Mapping. Cereb Cortex 2021; 30:2542-2554. [PMID: 31701121 DOI: 10.1093/cercor/bhz259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion-symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.
Collapse
Affiliation(s)
- Maryam Ghaleh
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth H Lacey
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA
| | - Mackenzie E Fama
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA.,Department of Speech-Language Pathology and Audiology, Towson University, Towson, MD 21252, USA
| | - Zainab Anbari
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA
| |
Collapse
|
49
|
Controlling a Mouse Pointer with a Single-Channel EEG Sensor. SENSORS 2021; 21:s21165481. [PMID: 34450924 PMCID: PMC8400812 DOI: 10.3390/s21165481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
(1) Goals: The purpose of this study was to analyze the feasibility of using the information obtained from a one-channel electro-encephalography (EEG) signal to control a mouse pointer. We used a low-cost headset, with one dry sensor placed at the FP1 position, to steer a mouse pointer and make selections through a combination of the user’s attention level with the detection of voluntary blinks. There are two types of cursor movements: spinning and linear displacement. A sequence of blinks allows for switching between these movement types, while the attention level modulates the cursor’s speed. The influence of the attention level on performance was studied. Additionally, Fitts’ model and the evolution of the emotional states of participants, among other trajectory indicators, were analyzed. (2) Methods: Twenty participants distributed into two groups (Attention and No-Attention) performed three runs, on different days, in which 40 targets had to be reached and selected. Target positions and distances from the cursor’s initial position were chosen, providing eight different indices of difficulty (IDs). A self-assessment manikin (SAM) test and a final survey provided information about the system’s usability and the emotions of participants during the experiment. (3) Results: The performance was similar to some brain–computer interface (BCI) solutions found in the literature, with an averaged information transfer rate (ITR) of 7 bits/min. Concerning the cursor navigation, some trajectory indicators showed our proposed approach to be as good as common pointing devices, such as joysticks, trackballs, and so on. Only one of the 20 participants reported difficulty in managing the cursor and, according to the tests, most of them assessed the experience positively. Movement times and hit rates were significantly better for participants belonging to the attention group. (4) Conclusions: The proposed approach is a feasible low-cost solution to manage a mouse pointer.
Collapse
|
50
|
Xu L, Guan NN, Huang CX, Hua Y, Song J. A neuronal circuit that generates the temporal motor sequence for the defensive response in zebrafish larvae. Curr Biol 2021; 31:3343-3357.e4. [PMID: 34289386 DOI: 10.1016/j.cub.2021.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023]
Abstract
Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.
Collapse
Affiliation(s)
- Lulu Xu
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Na N Guan
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China
| | - Chun-Xiao Huang
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianren Song
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China.
| |
Collapse
|