1
|
Liu Y, Ji H, Wu LH, Wang XX, Yang Y, Zhang Q, Zhang HM. Stratifying hepatocellular carcinoma based on immunophenotypes for immunotherapy response and prognosis. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200890. [PMID: 39498358 PMCID: PMC11532917 DOI: 10.1016/j.omton.2024.200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Immunotherapy has transformed the management of hepatocellular carcinoma (HCC), but effectiveness varies among patients. This study aimed to identify biomarkers and HCC subtypes responsive to immunotherapy. Patients were classified into Immunity-High (Immunity-H) and Immunity-Low (Immunity-L) subtypes using ssGSEA scores. Prognostic genes were identified through Cox regression, and immune cell infiltration was quantified with TIMER 2.0. Brother of CDO (BOC) expression, analyzed via immunohistochemistry, correlated with immunotherapy responses. Flow cytometry assessed immune cell infiltration relative to BOC levels, while CCK-8 and transwell assays evaluated BOC overexpression's effects on cell proliferation and invasiveness. Clinically, immunity-H patients had better survival outcomes. Three hub genes-BOC, V-Set and Transmembrane Domain Containing 1 (VSTM1), and PRDM12-were identified as significantly associated with prognosis. Among these, BOC and VSTM1 demonstrated positive correlations with immune cell infiltration. Elevated expression of BOC was found to be predictive of favorable responses to immunotherapy and was associated with enhanced infiltration of T cells, dendritic cells, and B cells in the tumor microenvironment. Conversely, BOC overexpression in liver cancer cell lines led to decreased cell proliferation and invasiveness. This study underscores the prognostic significance of HCC subtypes defined by immunogenomic profiles and identifies BOC as a potential biomarker for immunotherapy selection and outcome prediction.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hongchen Ji
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Li-Hong Wu
- Department of Gastroenterology, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
2
|
Wong PY, Chan CYK, Xue HDG, Goh CC, Cheu JWS, Tse APW, Zhang MS, Zhang Y, Wong CCL. Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer. JCI Insight 2024; 9:e170532. [PMID: 39388278 PMCID: PMC11601891 DOI: 10.1172/jci.insight.170532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cell cycle inhibitors have a long history as cancer treatment. Here, we report that these inhibitors combated cancer partially via the stimulator of IFN genes (STING) signaling pathway. We demonstrated that paclitaxel (microtubule stabilizer), palbociclib (cyclin-dependent kinase 4/6 inhibitor), and AZD1152 and GSK1070916 (aurora kinase B inhibitors) have anticancer functions beyond arresting the cell cycle. They consistently caused cytosolic DNA accumulation and DNA damage, which inadvertently triggered the cytosolic DNA sensor DEAD-box helicase 41 (DDX41) and activated STING to secrete pro-inflammatory senescence-associated secretory phenotype factors (SASPs). Interestingly, we found that DDX41 was a transcriptional target of HIF. Hypoxia induced expression of DDX41 through HIF-1, making hypoxic hepatocellular carcinoma (HCC) cells more sensitive to the antimitotic agents in STING activation and SASP production. The SASPs triggered immune cell infiltration in tumors for cancer clearance. The treatment with cell cycle inhibitors, especially paclitaxel, extended survival by perturbing mouse HCC growth when used in combination with anti-PD-1. We observed a trend that paclitaxel suppressed Sting wild-type HCC more effectively than Sting-KO HCC, suggesting that STING might contribute to the antitumor effects of paclitaxel. Our study revealed the immune-mediated tumor-suppressing properties of cell cycle inhibitors and suggested combined treatment with immunotherapy as a potential therapeutic approach.
Collapse
Affiliation(s)
- Po Yee Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cerise Yuen Ki Chan
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Helen Do Gai Xue
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chi Ching Goh
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jacinth Wing Sum Cheu
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Aki Pui Wah Tse
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Misty Shuo Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Carmen Chak Lui Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Yin E, Liu C, Yao Y, Luo Y, Yang Y, Tang X, Zheng S, Tian L, He J. Unveiling the role of Pleckstrin-2 in tumor progression and immune modulation: insights from a comprehensive pan-cancer analysis with focus on lung cancer. MOLECULAR BIOMEDICINE 2024; 5:59. [PMID: 39546161 PMCID: PMC11568116 DOI: 10.1186/s43556-024-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer remains a leading cause of mortality globally, highlighting the need for novel biomarkers to enhance prognosis and therapeutic strategies. Pleckstrin-2 (PLEK2), a member of the pleckstrin family, has been implicated in processes critical to tumor progression, but its role across cancers remains underexplored. This study systematically examined the expression patterns, prognostic relevance, and functional impact of PLEK2 across multiple cancer types. Using data from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression Project (GTEx), and the Human Protein Atlas, we analyzed PLEK2 expression in both cancerous and normal tissues, revealing significant overexpression of PLEK2 in various cancers at the mRNA and protein levels. Single-cell RNA sequencing further indicated predominant expression of PLEK2 in tumor cells and macrophages within the tumor microenvironment. Survival analysis demonstrated that elevated PLEK2 expression correlated with poor prognosis in specific cancers, though its impact varied across cancer types. Functional assays showed that PLEK2 knockdown inhibited proliferation and migration in human cancer cell lines. In vivo studies using a Lewis lung carcinoma (LLC) model confirmed that PLEK2 knockdown suppressed tumor growth and enhanced the efficacy of PD-1 immunotherapy. Mechanistically, PLEK2 knockdown was associated with reduced AKT pathway activation, diminished tumor-associated macrophage infiltration, and increased CD8 T cell presence. Compounds like Navitoclax were also identified as potential PLEK2 inhibitors. In conclusion, PLEK2 played a multifaceted role in cancer progression and immune response modulation. Targeting PLEK2 might suppress tumor growth and overcome immunotherapy resistance, offering a promising biomarker and therapeutic target to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linyan Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen S, Liu J, He G, Tang N, Zeng Y. Research Hotspots and Trends in Global Cancer immunometabolism:A Bibliometric Analysis from 2000 to 2023. J Multidiscip Healthc 2024; 17:5117-5137. [PMID: 39553266 PMCID: PMC11568773 DOI: 10.2147/jmdh.s495330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cancer poses a major global health challenge, and immunotherapy, known as the third revolution in cancer treatment, has brought new hope to patients. The emerging field of immunometabolism has further enhanced the safety and efficacy of immunotherapy. Over the past two decades, this field has rapidly evolved in oncology, leading to numerous significant findings. This review systematically examines the literature on immunometabolism in cancer, visualizing research trends and identifying future directions. Methods A comprehensive literature search was conducted in the Web of Science, PubMed, and Scopus databases, covering publications from January 2000 to December 2023. We employed tools like Citespace, VOSviewer, and RStudio for visual analysis of publication trends, regional contributions, institutions, authors, journals, and keywords. Results A total of 3320 articles were published by 8090 authors across 1738 institutions, involving 71 countries. Leading contributors were China (n=469), the United States (n=361), and Germany (n=82). Harvard University was the most influential institution, while Frontiers in Immunology had the highest number of publications. The top research areas included glucose, lipid, and amino acid metabolism, the tumor microenvironment, and immune cell regulation. Conclusion International collaboration and interdisciplinary efforts are advancing the field of cancer immunometabolism. Future research will likely focus on the interplay between metabolism and immunity, metabolic markers, immune cell reprogramming, and tumor-immune metabolic competition.
Collapse
Affiliation(s)
- Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Jie Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guilian He
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Nana Tang
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yingjian Zeng
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
5
|
Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod 2024; 111:987-999. [PMID: 39325972 DOI: 10.1093/biolre/ioae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Miscarriage poses a significant threat to both maternal and fetal health. Its etiology remains unknown, and there are no established effective identification or prevention strategies. A low-oxygen environment in early pregnancy is a physiological necessity for embryonic and placental growth. Hypoxia-inducible factors are a family of classic hypoxia signaling molecules whose expression level may fluctuate abnormally because of an imbalance in oxygen levels. Its unusual fluctuations initiate multiple signaling pathways at the maternal womb. Hypoxia-inducible factors are a family of classic hypoxia-signaling molecules and immune tolerance. Notably, aberrant regulation of these processes may lead to miscarriage. This review aims to clarify how the hypoxia-inducible factor-1α mediates the aberrant regulation of biological processes, including autophagy, metabolic reprogramming, et al., and how these effects impact trophoblasts and other cells at the maternal-fetal interface. These findings provide new insights into potential therapeutic and preventive strategies for miscarriage.
Collapse
Affiliation(s)
- Yuxuan Lai
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Fu
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Gao
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Saadh MJ, Khalifehsoltani A, Hussein AHA, Allela OQB, Sameer HN, Rizaev J, Hameed HG, Idan AH, Alsaikhan F. Exosomal microRNAs in cancer metastasis: A bridge between tumor micro and macroenvironment. Pathol Res Pract 2024; 263:155666. [PMID: 39476605 DOI: 10.1016/j.prp.2024.155666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Malignant tumors are complicated structures of cancer cells that are constantly in communication with their local and distant environment. Exosomes are released by tumor cells and can facilitate the cell-cell interaction within the local microenvironment and the primary tumor. In fact, exosomes are secreted by both tumor and non-tumor cells, to provide a mutual communication network between cells and their micro- and/or macro-environments. Exososmes can contain a variety of biological cargos mostly based on their originated cells. Uptake of these exosomes by their recipient cells results in the alterations that their cargo can exert. MicroRNAs are identified as one of the most critical exosomal components, considering their pivotal regulatory roles in distinct biological process, including metastasis. Release and absorbance of exosomal microRNAs is possible by various cells within the host, and can have distinct biological consequences. Therefore, in this review we will discuss the role of exosomal microRNAs derived from tumor cells and untransformed cells within their micro- and macroenvironment in cancer progression and metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
Cui J, Chai S, Liu R, Shen G. Targeting PGK1: A New Frontier in Breast Cancer Therapy Under Hypoxic Conditions. Curr Issues Mol Biol 2024; 46:12214-12229. [PMID: 39590319 PMCID: PMC11593045 DOI: 10.3390/cimb46110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer represents one of the most prevalent malignant neoplasms affecting women, and its pathogenesis has garnered significant scholarly interest. Research indicates that the progression of breast cancer is intricately regulated by glucose metabolism. Under hypoxic conditions within the tumor microenvironment, breast cancer cells generate ATP and essential biosynthetic precursors for growth via the glycolytic pathway. Notably, phosphoglycerate kinase 1 (PGK1) is intimately associated with the regulation of hypoxia-inducible factors in breast cancer and plays a crucial role in modulating glycolytic processes. Further investigation into the role of PGK1 in breast cancer pathogenesis is anticipated to identify novel therapeutic targets and strategies. This review consolidates current research on the regulation of glucose metabolism and the function of PGK1 in breast cancer within hypoxic conditions. It aims to offer a significant theoretical foundation for elucidating the mechanisms underlying breast cancer progression and metastasis, thereby facilitating the development of innovative treatment approaches.
Collapse
Affiliation(s)
- Jiayong Cui
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Shengjun Chai
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
| | - Rui Liu
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| |
Collapse
|
8
|
Cappellesso F, Mazzone M, Virga F. Acid affairs in anti-tumour immunity. Cancer Cell Int 2024; 24:354. [PMID: 39465367 PMCID: PMC11514911 DOI: 10.1186/s12935-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic rewiring of cancer cells is one of the hallmarks of cancer. As a consequence, the metabolic landscape of the tumour microenvironment (TME) differs compared to correspondent healthy tissues. Indeed, due to the accumulation of acid metabolites, such as lactate, the pH of the TME is generally acidic with a pH drop that can be as low as 5.6. Disruptions in the acid-base balance and elevated lactate levels can drive malignant progression not only through cell-intrinsic mechanisms but also by impacting the immune response. Generally, acidity and lactate dampen the anti-tumour response of both innate and adaptive immune cells favouring tumour progression and reducing the response to immunotherapy. In this review, we summarize the current knowledge on the functional, metabolic and epigenetic effects of acidity and lactate on the cells of the immune system. In particular, we focus on the role of monocarboxylate transporters (MCTs) and other solute carrier transporters (SLCs) that, by mediating the exchange of lactate (among other metabolites) and bicarbonate, participate in pH regulation and lactate transport in the cancer context. Finally, we discuss advanced approaches to target pH or lactate in the TME to enhance the anti-tumour immune response.
Collapse
Affiliation(s)
- Federica Cappellesso
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, Inflammation Research Center, VIB, Brussels, Belgium.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federico Virga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
9
|
Ju M, Pan B, Huang Y, Zhou Y, Chen J, Xiang H, Xu S, Chen S, Lan C, Li J, Zheng M. The efficacy of first and second immunotherapy exposure in patients with recurrent or metastatic cervical cancer. Cancer Med 2024; 13:e70204. [PMID: 39382194 PMCID: PMC11462590 DOI: 10.1002/cam4.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Immunotherapy has led to changes in cervical cancer guidelines. Therefore, additional biomarkers to identify the ideal patient who would experience the most benefit may be important. METHODS We retrospectively collected 208 patients with R/M CC and recorded clinicopathologic information, peripheral blood markers and treatments to analyze the prognostic factors of clinical outcomes. Response rate comparison, univariate, and multivariate analyses were performed to assess the efficacy of different factors. RESULTS A total of 43.27% patients achieved objective responses, including 18 with complete response and 72 with partial response. Patients receiving first-line immunotherapy had much higher objective response rate (ORR) than the remaining patients (53.8% vs. 34.8%, p = 0.006). CRP >3 ECOG ≥1 and recurrence in 6 months predicted shorter progression free survival (PFS). CRP >3, GLU >6.1 independently predicted unfavorable overall survival (OS). Compared with no antiangiogenic therapy, previous antiangiogenic therapy reduced the median OS by nearly 14 months. Immunotherapy rechallenge was still effective after first immunotherapy failure, and combined with dual-immunotherapy or bevacizumab combined with chemoradiotherapy resulted in a 60.00% or 62.50% ORR, respectively. Patients with squamous cell carcinoma, with stable disease or objective response in the first immunotherapy or without chemotherapy in second immunotherapy had favorable clinical outcome. CONCLUSION The baseline CRP levels in serum was an independent factor for PFS and OS of R/M CC patients treated with immunotherapy, and previous antiangiogenic therapy was associated with poor OS. Patients still show response to immunotherapy rechallenge and combined treatment with bevacizumab or candonilimab showed higher response rate than anti-PD-1 after immunotherapy failure.
Collapse
Affiliation(s)
- Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Yongwen Huang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Yun Zhou
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Jieping Chen
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Shije Xu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Siyu Chen
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Chunyan Lan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| |
Collapse
|
10
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
11
|
Zhang W, Zhou X, Lin L, Lin A, Cheng Q, Liu Z, Luo P, Zhang J. Development and validation of a novel immune‒metabolic-Based classifier for hepatocellular carcinoma. Heliyon 2024; 10:e37327. [PMID: 39296052 PMCID: PMC11407989 DOI: 10.1016/j.heliyon.2024.e37327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
The heterogeneity of immune cells and metabolic pathways in hepatocellular carcinoma (HCC) patients has not been fully elucidated, leading to diverse clinical outcomes. Accurately distinguishing different HCC subtypes and recommending appropriate treatments is are highly important. In this study, we conducted a comprehensive analysis of 28 immune cells and 85 metabolic pathways in the TCGA-LIHC and GSE14520 datasets. Metabolism-related first principal component (MRPC1) and cytotoxic T lymphocyte (CTL) infiltration were used to assess the metabolic and immune infiltration levels of HCC patients, respectively. These two quantifiable indicators were then used to construct an immune‒metabolic classifier, which categorized HCC patients into three distinct groups. The potential biological mechanisms were explored through multiomics analysis, revealing that group S1 exhibited high metabolic activity and a high level of immune infiltration, that group S2 presented a low level of immune infiltration, and that group S3 presented low metabolic activity. This new immune‒metabolic classifier was well validated in a pancancer cohort of 9296 patients. The efficacy of multiple treatment approaches was assessed in relation to different immune‒metabolic groups, indicating that group S1 patients may benefit from immunotherapy, that group S2 patients are suitable for transcatheter arterial chemoembolization (TACE), and that group S3 patients are appropriate candidates for tyrosine kinase inhibitors. In conclusion, this immune‒metabolic classifier is anticipated to address the differences in treatment efficacy among HCC patients due to the heterogeneity of the tumor microenvironment, and to help refine the individualized treatment choices for clinical patients.
Collapse
Affiliation(s)
- Wenda Zhang
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Zhou
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lili Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liu C, Zhou X, Zeng H, Yu J, Li W, Zhang W, Liao Y, Wang H, Liu L. Endoplasmic Reticulum Stress Potentiates the Immunosuppressive Microenvironment in Hepatocellular Carcinoma by Promoting the Release of SNHG6-Enriched Small Extracellular Vesicles. Cancer Immunol Res 2024; 12:1184-1201. [PMID: 38900485 DOI: 10.1158/2326-6066.cir-23-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Endoplasmic reticulum (ER) stress leads to hepatocellular carcinoma (HCC) progression. Small extracellular vesicles (sEV) play a crucial role in modulating the tumor microenvironment (TME) by influencing cellular communication and immune responses. However, it is unclear whether ER stress modulates the TME through sEVs. In the current study, we investigated the effects and underlying mechanisms of ER stress on the HCC TME. In vivo and in vitro experiments showed that overactivated ER stress was a salient attribute of the immunosuppressive HCC TME. This was caused by the ATF4-promoted release of small nucleolar RNA host gene 6 (SNHG6)-carrying sEVs, which attenuated T cell-mediated immune responses. Overall, SNHG6 modulated the immunosuppressive TME and aggravated ER stress. Meanwhile, targeting SNHG6 facilitated M1-like macrophage and CD8+ T-cell infiltration and decreased the proportion of M2-like macrophages. In addition, SNHG6 knockdown enhanced anti-PD1 immunotherapeutic efficacy. Moreover, in HCC patients, overexpression of SNHG6 was associated with a lack of response to anti-PD1 therapy and poor prognosis, whereas low SNHG6 expression was associated with improved therapeutic efficacy and prognoses. These data indicate that a correlation exists among ER stress, sEVs, immunosuppressive HCC TME, and immunotherapeutic efficacy. Hence, SNHG6-targeted therapy may represent an effective strategy for patients with HCC.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hanyi Zeng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiaping Yu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenwen Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wanli Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanxia Liao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haijian Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
14
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
15
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
16
|
Almarii F, Sajin M, Simion G, Dima SO, Herlea V. Analyzing the Spatial Distribution of Immune Cells in Lung Adenocarcinoma. J Pers Med 2024; 14:925. [PMID: 39338178 PMCID: PMC11433064 DOI: 10.3390/jpm14090925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: This study investigates the tumor immune microenvironment, focusing on immune cell distribution in lung adenocarcinoma. (2) Methods: We evaluated fifty cases of lung adenocarcinoma, and suitable areas for further studies were annotated on the histological slides. Two tumor cores per case were obtained, one from the tumor's center and another from its periphery, and introduced into three paraffin receptor blocks for optimized processing efficiency. The 4-micrometer-thick tissue microarray sections were stained for H&E and for CD68, CD163, CD8, CD4, and PD-L1; (3) Results: Our investigation revealed significant correlations between PD-L1 expression in tumor cells and the presence of CD163+ macrophages, between CD4+ cells and CD8+, CD68+, and CD163+ cells, and also between CD8+ T cells and CD163+ cells. Additionally, while we observed some differences in cellular components and densities between the tumor center and periphery, these differences were not statistically significant. However, distinct correlations between PD-L1 and immune cells in these regions were identified, suggesting spatial heterogeneity in the immune landscape. (4) Conclusions: These results emphasize the intricate interactions between immune cells and tumor cells in lung adenocarcinoma. Understanding patient spatial immune profile could improve patient selection for immunotherapy, ensuring that those most likely to benefit are identified.
Collapse
Affiliation(s)
- Florina Almarii
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Maria Sajin
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, Emergency University Hospital, 050098 Bucharest, Romania
| | - George Simion
- Department of Pathology, Emergency University Hospital, 050098 Bucharest, Romania
| | - Simona O Dima
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Surgery, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Histopathology, The Center for Excellence in Translational Medicine, 022328 Bucharest, Romania
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Histopathology, The Center for Excellence in Translational Medicine, 022328 Bucharest, Romania
| |
Collapse
|
17
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
18
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
19
|
He L, Chen Q, Lu Q, Yang M, Xie B, Chen T, Wang X. Autophagy-Inducing MoO 3-x Nanowires Boost Photothermal-Triggered Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202404822. [PMID: 38687056 DOI: 10.1002/anie.202404822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Autophagy could play suppressing role in cancer therapy by facilitating release of tumor antigens from dying cells and inducing immunogenic cell death (ICD). Therefore, discovery and rational design of more effective inducers of cytotoxic autophagy is expected to develop new strategies for finding innovative drugs for precise and successful cancer treatment. Herein, we develop MoO3-x nanowires (MoO3-x NWs) with high oxygen vacancy and strong photothermal responsivity to ablate tumors through hyperthermia, thus promote the induction of cytotoxic autophagy and severe ICD. As expected, the combination of MoO3-x NWs and photothermal therapy (PTT) effectively induces autophagy to promote the release of tumor antigens from the ablated cells, and induces the maturation and antigen presentation of dendritic cells (DCs), subsequently activates cytotoxic T lymphocytes (CTLs)-mediated adaptive immunity. Furthermore, the combination treatment of MoO3-x NWs with immune checkpoint blockade of PD-1 could promote the tumor-associated macrophages (TAMs) polarization into tumor-killing M1 macrophages, inhibit infiltration of Treg cells at tumor sites, and alleviate immunosuppression in the tumor microenvironment, finally intensify the anti-tumor activity in vivo. This study provides a strategy and preliminary elucidation of the mechanism of using MoO3-x nanowires with high oxygen vacancy to induce autophagy and thus enhance photothermal immunotherapy.
Collapse
Affiliation(s)
- Lizhen He
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meijin Yang
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
21
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
22
|
Lin F, Long Y, Li M, Cai C, Wu Y, You X, Tian X, Zhou Q. Xihuang pills targeting the Warburg effect through inhibition of the Wnt/β-catenin pathway in prostate cancer. Heliyon 2024; 10:e32914. [PMID: 38994113 PMCID: PMC11237975 DOI: 10.1016/j.heliyon.2024.e32914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Prostate cancer, marked by a high incidence and mortality rate, presents a significant challenge, especially in the context of castration-resistant prostate cancer (CRPC) with limited treatment options due to drug resistance. This study aims to explore the anti-tumor effects of Xihuang Pills (XHP) on CRPC, focusing on metabolic reprogramming and the Wnt/β-catenin pathway. Methods In vitro and in vivo biofunctional assays were employed to assess the efficacy and mechanisms of XHP. Subcutaneous xenografts of PC3 in mice served as an in vivo model to evaluate XHP's anti-tumor activity. Tumor volume, weight, proliferation, and apoptosis were monitored. Various assays, including CCK8, TUNEL assay, QRT-PCR, and Western Blotting, were conducted to measure metabolic reprogramming, proliferation, apoptosis, and cell cycle in prostate cancer cells. RNA-seq analysis predicted XHP's impact on prostate cancer, validating the expression of Wnt/β-catenin-related proteins and mRNA. Additionally, 58 compounds in XHP were identified via LC-MS/MS, and molecular docking analysis connected these compounds to key genes. Results In vitro and in vivo experiments demonstrated that XHP significantly inhibited CRPC cell viability, induced apoptosis, and suppressed invasion and migration. mRNA sequencing revealed differentially expressed genes, with functional enrichment analysis indicating modulation of key biological processes. XHP treatment downregulated Wnt signaling pathway-related genes, including CCND2, PRKCG, and CCN4. Moreover, XHP effectively inhibited glucose uptake and lactate production, leading to reduced HIF-1α and glycolytic enzymes (GLUT1, HK2, PKM2), suggesting its potential in attenuating the Warburg effect. Molecular docking analysis suggested a plausible interaction between XHP's active compounds and Wnt1 protein, indicating a mechanism through which XHP modulates the Wnt/β-catenin pathway. Conclusion XHP demonstrated remarkable efficacy in suppressing the growth, proliferation, apoptosis, migration, and invasiveness of prostate tumors. The interaction between XHP's active constituents and Wnt1 was evident, leading to the inhibition of Wnt1 and downstream anti-carcinogenic factors, thereby influencing the β-catenin/HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Fengxia Lin
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong Province, China
- Graduate School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Yan Long
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
- Graduate School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Mingyue Li
- Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong Province, China
| | - Changlong Cai
- Department of Urology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong Province, China
| | - Yongrong Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xujun You
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong Province, China
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
| |
Collapse
|
23
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Ou Q, Lu Z, Cai G, Lai Z, Lin R, Huang H, Zeng D, Wang Z, Luo B, Ouyang W, Liao W. Unraveling the influence of metabolic signatures on immune dynamics for predicting immunotherapy response and survival in cancer. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 10/31/2024]
Abstract
AbstractMetabolic reprogramming in cancer significantly impacts immune responses within the tumor microenvironment, but its influence on cancer immunotherapy effectiveness remains uncertain. This study aims to elucidate the prognostic significance of metabolic genes in cancer immunotherapy through a comprehensive analytical approach. Utilizing data from the IMvigor210 trial (n = 348) and validated by retrospective datasets, we performed patient clustering using non‐negative matrix factorization based on metabolism‐related genes. A metabiotic score was developed using a “DeepSurv” neural network to assess correlations with overall survival (OS), progression‐free survival, and immunotherapy response. Validation of the metabolic score and key genes was achieved via comparative gene expression analysis using qPCR. Our analysis identified four distinct metabolic classes with significant variations in OS. Notably, the metabolism‐inactive and hypoxia‐low class demonstrated the most pronounced benefit in terms of OS. The metabolic score predicted immunotherapeutic benefits with high accuracy (AUC: 0.93 at 12 months). SETD3 emerged as a crucial gene, showing strong correlations with improved OS outcomes. This study underscores the importance of metabolic profiling in predicting cancer immunotherapy success. Specifically, patients classified as metabolism‐inactive and hypoxia‐low appear to derive substantial benefits. SETD3 is established as a promising prognostic marker, linking metabolic activity with patient outcomes, advocating for the integration of metabolic profiling into immunotherapy strategies to enhance treatment precision and efficacy.
Collapse
Affiliation(s)
- Qiyun Ou
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Zhiqiang Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Gengyi Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Zijia Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Ruicong Lin
- Faculty of Innovation Engineering Macau University of Science and Technology Taipa China
- School of Computer and Information Engineering Guangzhou Huali College Guangzhou China
| | - Hong Huang
- Clinical Medicine College Guilin Medical University Guilin China
| | - Dongqiang Zeng
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Zehua Wang
- Faculty of Medicine Macau University of Science and Technology Taipa China
| | - Baoming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wangjun Liao
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
| |
Collapse
|
25
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
26
|
Wang W, Fan J, Zhang C, Huang Y, Chen Y, Fu S, Wu J. Targeted modulation of gut and intra-tumor microbiota to improve the quality of immune checkpoint inhibitor responses. Microbiol Res 2024; 282:127668. [PMID: 38430889 DOI: 10.1016/j.micres.2024.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapies, such as those blocking the interaction of PD-1 with its ligands, can restore the immune-killing function of T cells. However, ICI therapy is clinically beneficial in only a small number of patients, and it is difficult to predict post-treatment outcomes, thereby limiting its widespread clinical use. Research suggests that gut microbiota can regulate the host immune system and affect cancer progression and treatment. Moreover, the effectiveness of immunotherapy is related to the composition of the patient's gut microbiota; different gut microbial strains can either activate or inhibit the immune response. However, the importance of the microbial composition within the tumor has not been explored until recently. This study describes recent advances in the crosstalk between microbes in tumors and gut microbiota, which can modulate the tumor microbiome by directly translocating into the tumor and altering the tumor microenvironment. This study focused on the potential manipulation of the tumor and gut microbiota using fecal microbiota transplantation (FMT), probiotics, antimicrobials, prebiotics, and postbiotics to enrich immune-boosting bacteria while decreasing unfavorable bacteria to proactively improve the efficacy of ICI treatments. In addition, the use of genetic technologies and nanomaterials to modify microorganisms can largely optimize tumor immunotherapy and advance personalized and precise cancer treatment.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - JunYing Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chi Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
27
|
Zheng H, Wu L, Chen J, Na N, Lou G. Neoadjuvant nivolumab plus bevacizumab therapy improves the prognosis of triple-negative breast cancer in humanized mouse models. Breast Cancer 2024; 31:371-381. [PMID: 38289410 DOI: 10.1007/s12282-024-01543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The combination of immune checkpoint inhibitors and anti-angiogenic agents has been proposed as a promising strategy to improve the outcome of advanced triple-negative breast cancer (TNBC). However, further investigation is warranted to elucidate the specific mechanisms underlying the effects of combination therapy and its potential as neoadjuvant therapy for early-stage TNBC. METHODS In this study, we constructed humanized mouse models by engrafting the human immune system into severely immunodeficient mice and subsequently implanting TNBC cells into the model. The mice were treated with neoadjuvant combination therapy (bevacizumab combined with nivolumab), followed by in vivo imaging system to assess tumor recurrence and metastasis after surgery. The immune microenvironment of tumors was analyzed to investigate the potential mechanisms. Furthermore, we verified the impact of extending the interval before surgery or administering adjuvant therapy after neoadjuvant therapy on the prognosis of mice. RESULTS Neoadjuvant combination therapy significantly inhibited tumor growth, prevented recurrence and metastasis by normalizing tumor vessels and inducing robust CD8+ T cell infiltration and activation in primary tumors (p < 0.001). In vivo experiments demonstrated that prolonging the interval before surgery or administering adjuvant therapy after neoadjuvant therapy did not enhance its efficacy. CONCLUSION The preclinical study has demonstrated the therapeutic efficacy and mechanism of neoadjuvant combination therapy (nivolumab plus bevacizumab) in treating early TNBC.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Lihua Wu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Na Na
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
28
|
Cao Y, Li Y, Ren C, Yang C, Hao R, Mu T. Manganese-based nanomaterials promote synergistic photo-immunotherapy: green synthesis, underlying mechanisms, and multiple applications. J Mater Chem B 2024; 12:4097-4117. [PMID: 38587869 DOI: 10.1039/d3tb02844e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Caixia Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Chengkai Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
29
|
Ross RB, Gadwa J, Yu J, Darragh LB, Knitz MW, Nguyen D, Olimpo NA, Abdelazeem KN, Nguyen A, Corbo S, Van Court B, Beynor J, Neupert B, Saviola AJ, D'Alessandro A, Karam SD. PPARα Agonism Enhances Immune Response to Radiotherapy While Dietary Oleic Acid Results in Counteraction. Clin Cancer Res 2024; 30:1916-1933. [PMID: 38363297 PMCID: PMC11061609 DOI: 10.1158/1078-0432.ccr-23-3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.
Collapse
Affiliation(s)
- Richard Blake Ross
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Justin Yu
- Department of Otolaryngology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jessica Beynor
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Department of Immunology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
30
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
31
|
Lu F, Verleg SMNE, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024; 181:117021. [PMID: 38253189 DOI: 10.1016/j.bone.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE This review aims to provide an overview of the multiple functions of neutrophils, with the recognition of the inflammatory (N1) and regenerative (N2) phenotypes, in relation to fracture healing. METHODS A literature search was performed using the PubMed database. The quality of the articles was evaluated using critical appraisal checklists. RESULTS Thirty one studies were included in this review. These studies consistently support that neutrophils exert both beneficial and detrimental effects on bone regeneration, influenced by Tumor Necrosis Factor-α (TNF-α), Interleukin 8 (IL-8), mast cells, and macrophages. The N2 phenotype has recently emerged as one promoter of bone healing. The N1 phenotype has progressively been connected with inflammatory neutrophils during fracture healing. CONCLUSIONS This review has pinpointed various aspects and mechanisms of neutrophil influence on bone healing. The recognition of N1 and N2 neutrophil phenotypes potentially shed new light on the dynamic shifts taking place within the Fracture Hematoma (FH).
Collapse
Affiliation(s)
- Fangzhou Lu
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Samai M N E Verleg
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
32
|
Su Y, Liu J, Tian Y, Dong H, Shi M, Zhang J, Li W, Huang Q, Xiang N, Wang C, Liu J, He L, Hu L, Haberman AM, Liu H, Yang X. HIF-1α Mediates Immunosuppression and Chemoresistance in Colorectal Cancer by Inhibiting CXCL9, -10 and -11. Biomed Pharmacother 2024; 173:116427. [PMID: 38484558 DOI: 10.1016/j.biopha.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.
Collapse
Affiliation(s)
- Yixi Su
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of Immunobiology, School of Medicine, Yale University, CT, USA
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weiqian Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qiang Huang
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nanlin Xiang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chen Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Lingyuan He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Limei Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ann M Haberman
- Department of Immunobiology, School of Medicine, Yale University, CT, USA
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
33
|
Pang L, Xiang F, Yang H, Shen X, Fang M, Li R, Long Y, Li J, Yu Y, Pang B. Single-cell integrative analysis reveals consensus cancer cell states and clinical relevance in breast cancer. Sci Data 2024; 11:289. [PMID: 38472225 DOI: 10.1038/s41597-024-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
High heterogeneity and complex interactions of malignant cells in breast cancer has been recognized as a driver of cancer progression and therapeutic failure. However, complete understanding of common cancer cell states and their underlying driver factors remain scarce and challenging. Here, we revealed seven consensus cancer cell states recurring cross patients by integrative analysis of single-cell RNA sequencing data of breast cancer. The distinct biological functions, the subtype-specific distribution, the potential cells of origin and the interrelation of consensus cancer cell states were systematically elucidated and validated in multiple independent datasets. We further uncovered the internal regulons and external cell components in tumor microenvironments, which contribute to the consensus cancer cell states. Using the state-specific signature, we also inferred the abundance of cells with each consensus cancer cell state by deconvolution of large breast cancer RNA-seq cohorts, revealing the association of immune-related state with better survival. Our study provides new insights for the cancer cell state composition and potential therapeutic strategies of breast cancer.
Collapse
Affiliation(s)
- Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Fengyu Xiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Huan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ming Fang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ran Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongjin Long
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiali Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghuan Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
34
|
Cheng X, Liang D, Li X, Deng C, Ye M, Yang J, Liu Y, Wu K, Wu J, Tian P. Hypoxia Potentiated Lung Cancer Cell Migration and Invasion by up-regulating HIF1α/JAK2/STAT3 Axis and Activating MMP13 Transcription. Cell Biochem Biophys 2024; 82:259-270. [PMID: 38129709 DOI: 10.1007/s12013-023-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Excessive aggressive migration and invasion are important factors that increase the mortality of cancer patients. Matrix metalloproteinase 13 (MMP13) expression is positively correlated with lung cancer malignancy. However, the mechanism underlying an elevated MMP13 expression is not clearly defined. In this study, we demonstrated that hypoxia induced by CoCl2 enhanced the expression of HIF1α, JAK2, STAT3 and MMP13 in A549 cells. A positive correlation between HIF1α and MMP13 expression was observed in lung adenocarcinoma patients. Mechanically, hypoxia upregulated HIF1α/JAK2/STAT3 signal axis, promoted transcription factor STAT3 to bind to MMP13 promoter region, and activated MMP13 transcription, finally promoted cell invasion and migration. However, stattic (STAT3 inhibitor) could reverse this effect caused by STAT3 in A549 cells. Together our data indicated that hypoxia might promote lung cancer cell migration and invasion through the HIF1α/JAK2/STAT3 axis by activating MMP13 transcription. MMP13 could be a promising therapeutic target for lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Xiaoju Cheng
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Damin Liang
- Department of Medical Technology, Zunyi Medical College, Zunyi, 563003, China
| | - Xiaoqian Li
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Chengmin Deng
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Meng Ye
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Jiao Yang
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Yurui Liu
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Kaifeng Wu
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China
| | - Jie Wu
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China.
| | - Peng Tian
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China.
- Department of Pathology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563003, China.
| |
Collapse
|
35
|
Lin M, Chuang Y, Wu H, Hsu C, Lin N, Huang M, Lou P. Targeting tumor O-glycosylation modulates cancer-immune-cell crosstalk and enhances anti-PD-1 immunotherapy in head and neck cancer. Mol Oncol 2024; 18:350-368. [PMID: 37452653 PMCID: PMC10850803 DOI: 10.1002/1878-0261.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cells in the tumor microenvironment (TME) communicate via membrane-bound and secreted proteins, which are mostly glycosylated. Altered glycomes of malignant tumors influence behaviors of stromal cells. In this study, we showed that the loss of core-1 β1,3-galactosyltransferase (C1GALT1)-mediated O-glycosylation suppressed tumor growth in syngeneic head and neck cancer mouse models. O-glycan truncation in tumor cells promoted the M1 polarization of macrophages, enhanced T-cell-mediated cytotoxicity, and reduced interleukin-6 (IL-6) levels in the secretome. Proteasomal degradation of IL-6 was controlled by the O-glycan at threonine 166. Both IL-6/IL-6R blockade and O-glycan truncation in tumor cells induced similar pro-inflammatory phenotypes in macrophages and cytotoxic T lymphocytes (CTLs). The combination of the O-glycosylation inhibitor itraconazole and anti-programmed cell death protein 1 (anti-PD-1) antibody effectively suppressed tumor growth in vivo. Collectively, our findings demonstrate that O-glycosylation in tumor cells governs their crosstalk with macrophages and CTLs. Thus, targeting O-glycosylation successfully reshapes the TME and consequently enhances the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Mei‐Chun Lin
- Department of OtolaryngologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ya‐Ting Chuang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Hsin‐Yi Wu
- Instrumentation CenterNational Taiwan UniversityTaipeiTaiwan
| | - Chia‐Lang Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Neng‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Min‐Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Pei‐Jen Lou
- Department of OtolaryngologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
36
|
Wang K, Lou Y, Tao Z. A New Genetic Signature of Lactate Metabolism-Associated Genes Predicting Clinically Distinctive Features and Tumor Microenvironment in Colorectal Cancer. Cancer Control 2024; 31:10732748241272721. [PMID: 39121198 PMCID: PMC11316264 DOI: 10.1177/10732748241272721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is characterized by its high malignancy and challenging prognosis. A significant aspect of cancer is metabolic reprogramming, where lactate serves as a crucial metabolite that contributes to the development of cancer and the tumor microenvironment (TME). Current studies have indicated that lactate plays a significant role in the progression of CRC. However, the relationship between lactate and the tumor microenvironment remains understudied, underscoring the potential of lactate as a novel biomarker. METHODS We sourced transcriptomic data for colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO) portals, along with the corresponding clinical information. Utilizing univariate Cox regression in conjunction with LASSO regression analysis, we identified genes involved in lactate metabolism that are associated with CRC prognosis. Subsequently, we developed models based on multi-factor Cox regression. To evaluate the correlation between tumor mutational burden (TMB), tumor microenvironment (TME), and lactate scores with patient survival, we conducted gene set enrichment analysis (GSEA) and immunogenic signature analyses. RESULTS 3 lactate metabolism-related genes (LMRGs) (SLC16A8, GATA1, and PYGL) were used to construct models that categorized patients into 2 subgroups based on their lactate scores. The function of the differential genes between the 2 subgroups was mainly enriched in cell cycle and mRNA division, and the prognosis of patients in the high score subgroup was poor. Furthermore, a significant positive correlation was observed between TMB and LMRGs scores in the high-scoring group (P = 0.003, r2 = 0.12). Lastly, LMRGs also reflected the characteristics of TME, with differences in immune cells and immune checkpoints between the 2 subgroups. CONCLUSIONS LMRGs may serve as a promising biomarker for predicting prognostic survival in CRC patients and to assess the TME.
Collapse
Affiliation(s)
- Kaiwen Wang
- Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Lou
- Department of Preventive Treatment of Disease, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihui Tao
- Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med 2024; 28:e18009. [PMID: 37882107 PMCID: PMC10805493 DOI: 10.1111/jcmm.18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.
Collapse
Affiliation(s)
- Chunlong Yang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xiaoning Cheng
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangChina
| | - Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
38
|
Yi S, Zhang C, Li M, Qu T, Wang J. Machine learning and experiments identifies SPINK1 as a candidate diagnostic and prognostic biomarker for hepatocellular carcinoma. Discov Oncol 2023; 14:231. [PMID: 38093163 PMCID: PMC10719188 DOI: 10.1007/s12672-023-00849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Machine learning techniques have been widely used in predicting disease prognosis, including cancer prognosis. One of the major challenges in cancer prognosis is to accurately classify cancer types and stages to optimize early screening and detection, and machine learning techniques have proven to be very useful in this regard. In this study, we aimed at identifying critical genes for diagnosis and outcomes of hepatocellular carcinoma (HCC) patients using machine learning. The HCC expression dataset was downloaded from GSE65372 datasets and TCGA datasets. Differentially expressed genes (DEGs) were identified between 39 HCC and 15 normal samples. For the purpose of locating potential biomarkers, the LASSO and the SVM-RFE assays were performed. The ssGSEA method was used to analyze the TCGA to determine whether there was an association between SPINK1 and tumor immune infiltrates. RT-PCR was applied to examine the expression of SPINK1 in HCC specimens and cells. A series of functional assays were applied to examine the function of SPINK1 knockdown on the proliferation of HCC cells. In this study, 103 DEGs were obtained. Based on LASSO and SVM-RFE analysis, we identified nine critical diagnostic genes, including C10orf113, SPINK1, CNTLN, NRG3, HIST1H2AI, GPRIN3, SCTR, C2orf40 and PITX1. Importantly, we confirmed SPINK1 as a prognostic gene in HCC. Multivariate analysis confirmed that SPINK1 was an independent prognostic factor for overall survivals of HCC patients. We also found that SPINK1 level was positively associated with Macrophages, B cells, TFH, T cells, Th2 cells, iDC, NK CD56bright cells, Th1 cells, aDC, while negatively associated with Tcm and Eosinophils. Finally, we demonstrated that SPINK1 expression was distinctly increased in HCC specimens and cells. Functionally, silence of SPINK1 distinctly suppressed the proliferation of HCC cells via regulating Wnt/β-catenin pathway. The evidence provided suggested that SPINK1 may possess oncogenic properties by inducing dysregulated immune infiltration in HCC. Additionally, SPINK1 was identified as a novel biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shiming Yi
- Department of Hepatobiliary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunlei Zhang
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ming Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyi Qu
- Emergency Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jiafeng Wang
- Department of Hepatobiliary Surgery, the Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
| |
Collapse
|
39
|
Chen G, Liu Y, Su D, Qiu J, Long J, Zhao F, Tao J, Yang G, Huang H, Xiao J, Zhang T, Zhao Y. Genomic analysis and filtration of novel prognostic biomarkers based on metabolic and immune subtypes in pancreatic cancer. Cell Oncol (Dordr) 2023; 46:1691-1708. [PMID: 37434012 DOI: 10.1007/s13402-023-00836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE Patients with pancreatic cancer (PC) can be classified into various molecular subtypes and benefit from some precise therapy. Nevertheless, the interaction between metabolic and immune subtypes in the tumor microenvironment (TME) remains unknown. We hope to identify molecular subtypes related to metabolism and immunity in pancreatic cancer METHODS: Unsupervised consensus clustering and ssGSEA analysis were utilized to construct molecular subtypes related to metabolism and immunity. Diverse metabolic and immune subtypes were characterized by distinct prognoses and TME. Afterward, we filtrated the overlapped genes based on the differentially expressed genes (DEGs) between the metabolic and immune subtypes by lasso regression and Cox regression, and used them to build risk score signature which led to PC patients was categorized into high- and low-risk groups. Nomogram were built to predict the survival rates of each PC patient. RT-PCR, in vitro cell proliferation assay, PC organoid, immunohistochemistry staining were used to identify key oncogenes related to PC RESULTS: High-risk patients have a better response for various chemotherapeutic drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) database. We built a nomogram with the risk group, age, and the number of positive lymph nodes to predict the survival rates of each PC patient with average 1-year, 2-year, and 3-year areas under the curve (AUCs) equal to 0.792, 0.752, and 0.751. FAM83A, KLF5, LIPH, MYEOV were up-regulated in the PC cell line and PC tissues. Knockdown of FAM83A, KLF5, LIPH, MYEOV could reduce the proliferation in the PC cell line and PC organoids CONCLUSION: The risk score signature based on the metabolism and immune molecular subtypes can accurately predict the prognosis and guide treatments of PC, meanwhile, the metabolism-immune biomarkers may provide novel target therapy for PC.
Collapse
Affiliation(s)
- Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Junyu Long
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
40
|
Chen H, Zhang Y, Chen X, Xu R, Zhu Y, He D, Cheng Y, Wang Z, Qing X, Cao K. Hypoxia is correlated with the tumor immune microenvironment: Potential application of immunotherapy in bladder cancer. Cancer Med 2023; 12:22333-22353. [PMID: 38063246 PMCID: PMC10757107 DOI: 10.1002/cam4.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVE Hypoxia, which can considerably affect the tumor microenvironment, hinders the use of immunotherapy in bladder cancer (BLCA). Therefore, we aimed to identify reliable hypoxia-related biomarkers to guide clinical immunotherapy in BLCA. METHODS Using data downloaded from TCGA-BLCA cohort, we determined BLCA subtypes which divide 408 samples into different subtypes. Tumor immune infiltration levels of two clusters were quantified using ssGSEA, MCPcounter, EPIC, ESTIMATE, and TIMER algorithms. Next, we constructed a hypoxia score based on the expression of hypoxia-related genes. The IMvigor210 cohort and SubMap analysis were used to predict immunotherapeutic responses in patients with different hypoxia scores. Hub genes were screened using cytoscape, immunohistochemistry (IHC), and multispectral immunofluorescence were used to detect the spatial distribution of immune markers. RESULTS Patients with BLCA were categorized into cluster1 (n = 227) and Cluster2 (n = 181). Immune infiltration and expression of immune markers were higher in Cluster1. Immune infiltration was also more obvious in the high-hypoxia score group which related to a better predicted response to immunotherapy. IHC, and multispectral immunofluorescence confirmed the importance of TLR8 in immune infiltration and immune phenotype. CONCLUSIONS BLCA subtype can evaluate the infiltration of immune cells in the tumor microenvironment of different patients. Hypoxia score in this study could effectively predict immunotherapeutic responses in patients with BLCA. TLR8 may be a potential target for clinical immunotherapy.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Runshi Xu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Respiration, The Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, China
| | - YaXin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Qing
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Zhao Y, Zhang M, Lv B, Xue G, Jiang H, Chen G, Ma Y, Sun Y, Cao J. "Closed-Loop" O 2-Economizer Induced In Situ Therapeutic Vaccine against Hypoxic Tumors. ACS NANO 2023; 17:21170-21181. [PMID: 37877944 DOI: 10.1021/acsnano.3c05034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Therapeutic tumor vaccines, which use tumor antigens to stimulate a cancer patient's immune system to eventually kill the tumor tissues, have emerged as one of the most attractive strategies in anticancer research. Especially, exploring in situ vaccines has become a potential field in cancer immunotherapy. However, due to the hypoxic tumor microenvironment, the generation of tumor antigens is always mild and not sufficient. Hence, in this study, we designed a closed-loop mitochondrial oxygen-economizer (TPCA) to induce enhanced phototherapy-driven in situ vaccines. The O2-economizer was developed by the integration of the photosensitizer CyI and the mitochondrial inhibitor atovaquone into the PAMAM dendrimer. In vitro and in vivo studies showed that TPCA could enter the mitochondria through (3-propylcarboxyl) triphenylphosphine bromide (TPP) and effectively restrict the respiration of tumor cells to reduce tumor hypoxia, thus providing continuous oxygen for enhanced iodinated cyanine dye mediated photodynamic therapy, which could further induce in situ vaccines for ablating the primary tumor directly and inhibiting the tumor metastasis and recurrence. Furthermore, the antitumor mechanism revealed that O2-economizer-based oxygen-boosted PDT elicited immunogenic cancer cell death with enhanced exposure and release of DAMPs and altered the immunosuppressive tumor microenvironment with increased recruitment of T cells in tumors, thereby inducing in situ vaccines and provoking the systematic antitumor responses against CT26 tumors. This study will provide innovative approaches for local, abscopal, and metastatic tumor treatment.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Bai Lv
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Guanghe Xue
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huimei Jiang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Yi Ma
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Cao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
43
|
Najafi A, Keykhaee M, Kazemi MH, Karimi MY, Khorramdelazad H, Aghamohamadi N, Bolouri MR, Ghaffari-Nazari H, Mirsharif ES, Karimi M, Dehghan Manshadi HR, Mahdavi SR, Safari E, Jalali SA, Falak R, Khoobi M. Catalase-gold nanoaggregates manipulate the tumor microenvironment and enhance the effect of low-dose radiation therapy by reducing hypoxia. Biomed Pharmacother 2023; 167:115557. [PMID: 37757491 DOI: 10.1016/j.biopha.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Alireza Najafi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohamadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seied Rabi Mahdavi
- Radiation Biology Research Center& Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
He D, Wang L, Xu J, Zhao J, Bai H, Wang J. Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer. Front Immunol 2023; 14:1265865. [PMID: 37915579 PMCID: PMC10618022 DOI: 10.3389/fimmu.2023.1265865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Immunotherapy has changed the treatment strategy of non-small cell lung cancer (NSCLC) in recent years, among which anti-PD-1/PD-L1 antibodies are the most used. However, the majority of patients with NSCLC do not derive benefit from immune checkpoint inhibitors (ICIs). Vascular abnormalities are a hallmark of most solid tumors and facilitate immune evasion. Thus, combining antiangiogenic therapies might increase the effectiveness of anti-PD-1/PD-L1 antibodies. In this paper, the mechanisms of anti-angiogenic agents combined with anti-PD-1/PD-L1 antibodies are illustrated, moreover, relevant clinical studies and predictive immunotherapeutic biomarkers are summarized and analyzed, in order to provide more treatment options for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | - Hua Bai
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Wang
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Liu T, Long K, Zhu Z, Song Y, Chen C, Xu G, Ke X. Roles of circRNAs in regulating the tumor microenvironment. Med Oncol 2023; 40:329. [PMID: 37819576 PMCID: PMC10567871 DOI: 10.1007/s12032-023-02194-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
CircRNAs, a type of non-coding RNA widely present in eukaryotic cells, have emerged as a prominent focus in tumor research. However, the functions of most circRNAs remain largely unexplored. Known circRNAs exert their regulatory roles through various mechanisms, including acting as microRNA sponges, binding to RNA-binding proteins, and functioning as transcription factors to modulate protein translation and coding. Tumor growth is not solely driven by gene mutations but also influenced by diverse constituent cells and growth factors within the tumor microenvironment (TME). As crucial regulators within the TME, circRNAs are involved in governing tumor growth and metastasis. This review highlights the role of circRNAs in regulating angiogenesis, matrix remodeling, and immunosuppression within the TME. Additionally, we discuss current research on hypoxia-induced circRNAs production and commensal microorganisms' impact on the TME to elucidate how circRNAs influence tumor growth while emphasizing the significance of modulating the TME.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Kaijun Long
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
46
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
47
|
Xu HZ, Lin XY, Xu YX, Xue HB, Lin S, Xu TW. An emerging research: the role of hepatocellular carcinoma-derived exosomal circRNAs in the immune microenvironment. Front Immunol 2023; 14:1227150. [PMID: 37753074 PMCID: PMC10518420 DOI: 10.3389/fimmu.2023.1227150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary malignancy of the liver, is one of the leading causes of cancer-related death and is associated with a poor prognosis. The tumor microenvironment (TME) of HCC comprises immune, immunosuppressive, and interstitial cells with hypoxic, angiogenic, metabolic reprogramming, inflammatory, and immunosuppressive features. Exosomes are nanoscale extracellular vesicles that secrete biologically active signaling molecules such as deoxyribonucleic acid (DNA), messenger ribonucleic acid (mRNA), microribonucleic acid (miRNA), proteins, and lipids. These signaling molecules act as messengers in the tumor microenvironment, especially the tumor immunosuppressive microenvironment. Exosomal circRNAs reshape the tumor microenvironment by prompting hypoxic stress response, stimulating angiogenesis, contributing to metabolic reprogramming, facilitating inflammatory changes in the HCC cells and inducing tumor immunosuppression. The exosomes secreted by HCC cells carry circRNA into immune cells, which intervene in the activation of immune cells and promote the overexpression of immune checkpoints to regulate immune response, leading tumor cells to acquire immunosuppressive properties. Furthermore, immunosuppression is the final result of a combination of TME-related factors, including hypoxia, angiogenesis, metabolic reprogramming, and inflammation changes. In conclusion, exosomal circRNA accelerates the tumor progression by adjusting the phenotype of the tumor microenvironment and ultimately forming an immunosuppressive microenvironment. HCC-derived exosomal circRNA can affect HCC cell proliferation, invasion, metastasis, and induction of chemoresistance. Therefore, this review aimed to summarize the composition and function of these exosomes, the role that HCC-derived exosomal circRNAs play in microenvironment formation, and the interactions between exosomes and immune cells. This review outlines the role of exosomal circRNAs in the malignant phenotype of HCC and provides a preliminary exploration of the clinical utility of exosomal circRNAs.
Collapse
Affiliation(s)
- Huang-Zhen Xu
- Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Yi Lin
- Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xian Xu
- Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hui-Bin Xue
- Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Tian-Wen Xu
- Department of Digestive Tumor, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
48
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
49
|
Zhang Y, Zhang T, Zhao Y, Wu H, Zhen Q, Zhu S, Hou S. Lactate dehydrogenase D serves as a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma. BMC Cancer 2023; 23:759. [PMID: 37587457 PMCID: PMC10428593 DOI: 10.1186/s12885-023-11221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Lung cancer is reported to be the leading cause of death in males and females, globally. Increasing evidence highlights the paramount importance of Lactate dehydrogenase D (LDHD) in different types of cancers, though it's role in lung adenocarcinoma (LUAD) is still inadequately explored. In this study, we aimed to investigate and determine the relationship between LDHD and LUAD. METHODS The collection of the samples was guided by The Cancer Genome Atlas (TCGA) datasets and Gene Expression Omnibus (GEO). To ascertain various aspects around LDHD function, we analyzed different expression genes (DEGs), functional enrichment, and protein-protein interaction (PPI) networks. The predictive values for LDHD were collectively determined using the Kaplan-Meier method, Cox regression analysis, and a nomogram. Evaluation of the immune infiltration analysis was completed using Estimate and ssGSEA. The prediction of the immunotherapy response was based on TIDE and IPS. The LDHD expression levels in LUAD were validated through Western blot, qPCR, and immunohistochemistry methods. Wound healing and transwell assays were also performed to illustrate the aggressive features in LUAD cell lines. RESULTS The results showed that LDHD was generally downregulated in LUAD patients, with the low LDHD group presenting a decline in OS, DSS, and PFI. Enriched pathways, which include pyruvate metabolism, central carbon metabolism, and oxidative phosphorylation were observed through KEGG analysis. It was also noted that the expression of LDHD expression was inversely related to immune cell infiltration and typical checkpoints. The high LDHD group's response to immunotherapy was remarkable, particularly in CTAL4 + /PD1- therapy. In vitro studies revealed that the overexpression of LDHD caused tumor migration and invasion to be suppressed. CONCLUSION In conclusion, our study revealed that LDHD might be an effective predictor of prognosis and immune filtration, possibly leading to better choices for immunotherapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tianyi Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yingdong Zhao
- Liaocheng Third People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hongdi Wu
- Department of Fundamental, Air Force Communications NCO Academy, Dalian, Liaoning, 116000, China
| | - Qiang Zhen
- College of Pharmacy, Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Shaoshuai Hou
- Department of Pharmacy, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China.
| |
Collapse
|
50
|
Yang L, Wang X, Liu J, Liu X, Li S, Zheng F, Dong Q, Xu S, Xiong J, Fu B. Prognostic and tumor microenvironmental feature of clear cell renal cell carcinoma revealed by m6A and lactylation modification-related genes. Front Immunol 2023; 14:1225023. [PMID: 37638005 PMCID: PMC10450969 DOI: 10.3389/fimmu.2023.1225023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Both lactylation and m6A modification have important implications for the development of clear cell renal cell carcinoma (ccRCC), and we aimed to use crosstalk genes of both to reveal the prognostic and immunological features of ccRCC. Methods Our first step was to look for lactylation-related genes that differed between normal and tumor tissues, and then by correlation analysis, we found the genes associated with M6A. Following that, ccRCC subtypes will be identified and risk models will be constructed to compare the prognosis and tumor microenvironment among different subgroups. A nomogram was constructed to predict the prognosis of ccRCC, and in vitro, experiments were conducted to validate the expression and function of key genes. Results We screened 100 crosstalk genes and identified 2 ccRCC subtypes. A total of 11 prognostic genes were screened for building a risk model. we observed higher immune scores, elevated tumor mutational burden, and microsatellite instability scores in the high-risk group. Therefore, individuals classified as high-risk would derive greater benefits from immunotherapy. The nomogram's ability to predict overall survival with a 1-year AUC of 0.863 demonstrates its significant practical utility. In addition, HIBCH was identified as a potential therapeutic target and its expression and function were verified by in vitro experiments. Conclusion In addition to developing a precise prognostic nomogram for patients with ccRCC, our study also discovered the potential of HIBCH as a biomarker for the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Songhui Xu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Xiong
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|