1
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Pergolizzi JV, LeQuang JA, Coluzzi F, El-Tallawy SN, Magnusson P, Ahmed RS, Varrassi G, Porpora MG. Managing the neuroinflammatory pain of endometriosis in light of chronic pelvic pain. Expert Opin Pharmacother 2024. [PMID: 39540855 DOI: 10.1080/14656566.2024.2425727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Endometriosis affects 5% to 10% of reproductive age women and may be associated with severely painful and debilitating symptoms as well as infertility. Endometriosis involves hormonal fluctuations, angiogenesis, neurogenesis, vascular changes and neuroinflammatory processes. The neuroinflammatory component of endometriosis makes it a systemic disorder, similar to other chronic epithelial inflammatory conditions. AREAS COVERED Inflammatory mediators, mast cells, macrophages, and glial cells play a role in endometriosis which can result in peripheral sensitization and central sensitization. There is overlap between chronic pelvic pain and endometriosis, but the two conditions are distinct. Effective treatment is based on a personalized approach using a variety of pharmacologic and other treatment options. EXPERT OPINION Hormonal therapies are a first-line approach, but endometriosis is a challenging condition to manage. 'Add-back' hormonal therapy has been effective. Painful symptoms are likely caused by the interplay of multiple factors and there may be a neuropathic component. Analgesics and anticonvulsants may be appropriate. A holistic approach and multimodal treatments are likely to be most effective. In addition to pharmacologic treatment, there are surgical and alternative medicine options. Endometriosis may also have a psychological component.
Collapse
Affiliation(s)
| | | | - Flaminia Coluzzi
- Dept. Medical-Surgical and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anesthesia Care and Pain Medicine, University Hospital Sant'Andrea, Rome, Italy
| | - Salah N El-Tallawy
- Anesthesia and Pain Management Department, College of Medicine, King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Peter Magnusson
- School of Medical Sciences, Orebro University, Orebro, Sweden and Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Maria Grazia Porpora
- Department of Maternal and Infantile Health and Urology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2024:10.1007/s11357-024-01422-7. [PMID: 39527177 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
4
|
Berkel C. Menopausal status-dependent alterations in the transcript levels of genes encoding ERα, ERβ, PR and HER2 in breast tumors with different receptor status. Clin Transl Oncol 2024:10.1007/s12094-024-03777-x. [PMID: 39495410 DOI: 10.1007/s12094-024-03777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Breast cancer has distinct causes and prognoses in patients with premenopausal and postmenopausal status. The expression status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are analyzed by immunohistochemistry (IHC) to classify molecular subtypes of breast cancer among which large differences in prognosis exist. METHODS The mRNA expression of ESR1 (encoding ERα), ESR2 (encoding ERβ), PGR (encoding PR), and ERBB2 (encoding HER2) was analyzed based on menopausal status (pre- vs post-menopausal) in tumors from breast cancer patients with different receptor status, in R programming environment, using transcriptomics data from TCGA-BRCA project. RESULTS In ER-positive or PR-positive or HER2-negative breast tumors, ESR1 transcript levels were found to be higher in tumors from postmenopausal women than those from premenopausal women; in contrast, ESR2 transcript levels were lower in tumors from postmenopausal women than those from premenopausal women. Furthermore, PGR mRNA expression was lower in breast tumors from postmenopausal women than those from premenopausal women, only in those with ER + or PR + status. The expression of these genes between tumors from pre- and post-menopausal patients with breast cancer was also analyzed based on the combination of status of three receptors. CONCLUSION Together, the results suggest that mRNA expression of ESR1, ESR2, and PGR might differ depending on menopausal status in breast tumors with certain receptor status. More importantly, the change in the expression of ESR1 and ESR2 following menopause is in the opposite directions in breast cancer patients showing the need to identify particular molecular mechanisms regulating the expression of ER isoforms post-menopause in different directions in breast cancer patients, considering the high clinical importance of these receptors in terms of the prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
5
|
Pfeifer B, King B, Ahmadi M, Kaluhiokalani JP, Shimizu KS, Hunter WN, Deshler C, Nielsen MN, Hancock CR, Nelson WB, Hyldahl RD. Menstrual cycle phase differences in myofiber damage and macrophage infiltration following electrical stimulation-induced muscle injury. Am J Physiol Endocrinol Metab 2024; 327:E616-E625. [PMID: 39259161 DOI: 10.1152/ajpendo.00168.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The purpose of this study was to examine the effects of menstrual cycle phase on myofiber injury, regenerative events, and inflammation after electrical stimulation (ES)-induced myofiber damage. Twenty-eight premenopausal women (20.8 ± 2 yr) were randomized into early follicular (EF; n = 14) and late follicular (LF; n = 14) groups. After menstrual cycle tracking and phase confirmation, subjects underwent 200 electrically stimulated eccentric muscle contractions 1 wk after providing a muscle biopsy. Seven days post-ES, subjects provided a final biopsy. Primary outcomes included serum estradiol, indirect markers of muscle damage, direct indicators of myofiber necrosis and regeneration, satellite cell number, and macrophage infiltration. Women in the LF group had higher serum estradiol (122.1 ± 23.4 vs. 81.7 ± 30.8 pg/mL; P < 0.001) than in the EF group on the day of ES. Although the EF group recovered baseline maximal isometric strength by 4 days post-ES, the LF group did not. Only women in the LF group showed significant and consistent evidence of myofiber necrosis and regeneration pre- to post-ES. Despite showing more evidence of myofiber damage, women in the LF group also experienced reduced total and CD206+ macrophage infiltration relative to the EF group. Satellite cell quantity increased significantly post-ES in both groups, with no differences between groups. Collectively, the data suggest that the high-estrogen LF phase may be associated with increased susceptibility to myofiber injury while also limiting the subsequent intramuscular inflammatory response.NEW & NOTEWORTHY The menstrual cycle has widespread physiological effects across many systems, including skeletal muscle. In this study, we show that women in the late follicular phase of the menstrual cycle may be more susceptible to myofiber necrosis following electrical stimulation. We also show reduced evidence of inflammation in the late follicular phase. This is the first study to demonstrate a difference in the response of human skeletal muscle to a necrotic stimulus across a menstrual cycle.
Collapse
Affiliation(s)
- Brandon Pfeifer
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Briell King
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Jamie P Kaluhiokalani
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Krista S Shimizu
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - W Noah Hunter
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Collin Deshler
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Madeline N Nielsen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Sciences, Brigham Young University, Provo, Utah
| | - W Bradley Nelson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
6
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
7
|
Alva-Gallegos R, Jirkovský E, Mladěnka P, Carazo A. Small phenolic compounds as potential endocrine disruptors interacting with estrogen receptor alpha. Front Endocrinol (Lausanne) 2024; 15:1440654. [PMID: 39512757 PMCID: PMC11540614 DOI: 10.3389/fendo.2024.1440654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
The human body is regularly exposed to simple catechols and small phenols originating from our diet or as a consequence of exposure to various industrial products. Several biological properties have been associated with these compounds such as antioxidant, anti-inflammatory, or antiplatelet activity. Less explored is their potential impact on the endocrine system, in particular through interaction with the alpha isoform of the estrogen receptor (ERα). In this study, human breast cancer cell line MCF-7/S0.5 was employed to investigate the effects on ERα of 22 closely chemically related compounds (15 catechols and 7 phenols and their methoxy derivatives), to which humans are widely exposed. ERα targets genes ESR1 (ERα) and TFF1, both on mRNA and protein level, were chosen to study the effect of the tested compounds on the mentioned receptor. A total of 7 compounds seemed to impact mRNA and protein expression similarly to estradiol (E2). The direct interaction of the most active compounds with the ERα ligand binding domain (LBD) was further tested in cell-free experiments using the recombinant form of the LBD, and 4-chloropyrocatechol was shown to behave like E2 with about 1/3 of the potency of E2. Our results provide evidence that some of these compounds can be considered potential endocrine disruptors interacting with ERα.
Collapse
Affiliation(s)
| | | | | | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| |
Collapse
|
8
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Han K, Suh JS, Choi G, Jang YK, Ahn S, Lee Y, Kim TJ. Novel FRET-Based Biosensors for Real-Time Monitoring of Estrogen Receptor Dimerization and Translocation Dynamics in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406907. [PMID: 39418112 DOI: 10.1002/advs.202406907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Estrogen receptors (ERs), comprising ER α and ER β, are crucial for regulating cell growth and differentiation via homo- and hetero-dimer formation. However, accurately detecting ER dimerization with precise spatiotemporal resolution remains a significant challenge. In this study, fluorescence resonance energy transfer-based biosensors to monitor ER dynamics in real-time, are developed and optimized. This approach involves comprehensive structural analysis, linker comparison, and the selection of optimal fluorescent protein pairs, resulting in three distinct biosensors capable of detecting all ER homo- and hetero-dimerizations within the nucleus. These biosensors are utilized to reveal interactions between ER α/β and calmodulin during dimer formation. Furthermore, by leveraging the ligand-binding domain (LBD) of ER β, ER ββ LBD biosensor is designed for real-time analysis of ER ββ homodimerization in the cytoplasm, enhancing the ability to screen ER dimerization-related drugs. Additionally, we developed a novel ER ββ translocation biosensor, which enables real-time observation of ER ββ translocation to the nucleus-a capability previously unavailable, is developed. This spatiotemporal analysis demonstrates the relevance of ER translocation in response to drug binding efficacy and extracellular matrix changes. Our biosensors offertransformative tools for studying ER dynamics, providing valuable insights for drug screening and the investigation of ER-related cellular processes.
Collapse
Affiliation(s)
- Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yerim Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
10
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
11
|
Muchtaridi M, Nurhidayah W, Fakih TM, Kannaka K, Suzuki H, Subroto T, Uehara T. Investigation of a Radio-Iodinated Alpha-Mangostin for Targeting Estrogen Receptor Alpha (ERα) in Breast Cancer: In Silico Design, Synthesis, and Biological Evaluation. Drug Des Devel Ther 2024; 18:4511-4526. [PMID: 39399125 PMCID: PMC11471106 DOI: 10.2147/dddt.s479447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Alpha-mangostin (AM), the most representative xanthone derivative isolated from the rind of the Purple Mangosteen (Garcinia mangostana Linn), has been reported pharmacologically to be associated with breast cancer in silico, in vitro, and in vivo. Although the pharmacological effects of AM are believed to involve the estrogen receptor alpha (ERα), there are no reports available in the literature describing the binding of AM to ERα. Methods In this study, iodine-125 (125I)-labeled AM ([125I]I-AM) was prepared, and its binding to ERα was investigated in vitro using MCF-7 cell lines. To investigate the applicability of radioiodine-labeled AM as a radiopharmaceutical for breast cancer, [125I]I-AM was injected into nude mice bearing MCF-7. Results The results obtained showed that the uptake of [125I]I-AM into MCF-7 cells was found to be inhibited by AM and tamoxifen, suggesting that its uptake is partially mediated by ERα. In addition, the biodistribution studies using MCF-7 bearing nude mice showed that [125I]I-AM accumulated in tumor tissues, although deiodination did occur, reducing the concentration of iodine-125 (125I) in the targeted cells. Conclusion These results suggested that AM would be a useful platform for the development of a new radiopharmaceutical targeting ERα. Further studies are, however, required to reduce deiodination of [125I]I-AM in vivo.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
| | - Wiwit Nurhidayah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, 40116, Indonesia
| | - Kento Kannaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| |
Collapse
|
12
|
Ding M, Han L, Miao J, Wang X, Wang L, Pan L. Estrogen receptor knockdown suggests its role in gonadal development regulation in Manila clam Ruditapes philippinarum. J Steroid Biochem Mol Biol 2024; 243:106594. [PMID: 39084493 DOI: 10.1016/j.jsbmb.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The estrogen receptor (ER), a ligand-dependent transcription factor, is critical for vertebrate reproduction. However, its role in bivalves is not well understood, with ongoing debates regarding its function in regulating reproduction similarly to vertebrates. To investigate ER's function, we conducted a 21-day RNA interference experiment focusing on its role in gonadal development in bivalves. Histological analyses revealed that ER inhibition significantly suppressed ovarian development in females and, conversely, promoted gonadal development in males. Additionally, levels of 17β-estrogen (E2) were markedly reduced in the gonads of both sexes following ER suppression. Transcriptomic analysis from RNA-seq of testes and ovaries after ER interference showed changes in the expression of key genes such as Vtg, CYP17, 3β-HSD, and 17β-HSD. These genes are involved in the estrogen signaling pathway and steroid hormone biosynthesis. Furthermore, ER suppression significantly affected the expression of genes linked to gametogenesis and the reproductive cycle. Our findings highlight ER's crucial, yet complex and sex-specific roles in gonadal development in bivalves, emphasizing the need for further detailed studies.
Collapse
Affiliation(s)
- Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, PR China
| | - Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
13
|
Kushnir MM, Salihovic S, Bergquist J, Lind PM, Lind L. Environmental contaminants, sex hormones and SHBG in an elderly population. ENVIRONMENTAL RESEARCH 2024; 263:120054. [PMID: 39341538 DOI: 10.1016/j.envres.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Effects of environmental contaminants (ECs) on endocrine systems have been reported, but few studies assessed associations between ECs and sex hormones (SH) in elderly. Aim of this study was to investigate whether blood concentrations of four classes of ECs were associated with SH concentrations in elderly. METHODS Samples from participants of the cross-sectional population-based Prospective Investigation of the Vasculature in Uppsala Seniors study (PIVUS, 70-year-old men and women, n = 1016) were analyzed using validated mass spectrometry-based methods for SH (testosterone (T), dihydrotestosterone (DHT), estrone and estradiol (E2)); 23 persistent organic pollutants (POPs); 8 perfluoroalkyl substances (PFAS); 4 phthalates and 11 metals. SH binding globulin (SHBG) was analyzed using immunoassay. The measured concentrations were normalized, and the values converted to a z-scale. Linear regression analyses were conducted to assess association between concentration of the SH, SHBG and E2/T (aromatase enzyme index, AEI) with the ECs. Multiple linear regression analyses were performed to model the relationships. RESULTS The strongest associations were observed with the polychlorinated biphenyls (PCBs). In men, the strongest associations with concentrations of SH and SHBG were seen for PCBs containing >5 chlorine, monoethyl phthalate (MEP), Ni and Cd; and in women, with PCBs, MEP, several of the PFAS, Cd, Co, and Ni. Difference in the effect of ECs on AEI between men and women were observed. Area under the ROC curve for the models predicting abnormal values of SH and SHBG >0.75 due to the effects of ECs was observed for T, DHT, and E2 in men, and for E2 and SHBG in women. CONCLUSIONS Results of this study suggest that in elderly subjects, concentrations of many ECs associated with concentrations of SH and SHBG, and AEI. Further studies are needed to confirm the findings and to assess effect of the pollutants on endocrine system function in elderly.
Collapse
Affiliation(s)
- Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Sweden
| | - Jonas Bergquist
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Holmberg CS, Levinger C, Abongwa M, Ceriani C, Archin NM, Siegel M, Ghosh M, Bosque A. HIV-1 latency reversal and immune enhancing activity of IL-15 is not influenced by sex hormones. JCI Insight 2024; 9:e180609. [PMID: 39078714 PMCID: PMC11389825 DOI: 10.1172/jci.insight.180609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The role of different biological variables including biological sex, age, and sex hormones in Human immunodeficiency virus (HIV) cure approaches is not well understood. The γc-cytokine IL-15 is a clinically relevant cytokine that promotes immune activation and mediates HIV reactivation from latency. In this work, we examined the interplay that biological sex, age, and sex hormones 17β-estradiol, progesterone, and testosterone may have on the biological activity of IL-15. We found that IL-15-mediated CD4+ T cell activation was higher in female donors than in male donors. This difference was abrogated at high 17β-estradiol concentration. Additionally, there was a positive correlation between age and both IL-15-mediated CD8+ T cell activation and IFN-γ production. In a primary cell model of latency, biological sex, age, or sex hormones did not influence the ability of IL-15 to reactivate latent HIV. Finally, 17β-estradiol did not consistently affect reactivation of translation-competent reservoirs in CD4+ T cells from people living with HIV who are antiretroviral therapy (ART) suppressed. Our study has found that biological sex and age, but not sex hormones, may influence some of the biological activities of IL-15. Understanding how different biological variables may affect HIV cure therapies will help us evaluate current and future clinical trials aimed toward HIV cure in diverse populations.
Collapse
Affiliation(s)
- Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Marie Abongwa
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Cristina Ceriani
- UNC HIV Cure Center and
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center and
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marc Siegel
- The George Washington School of Medicine and Health Sciences, Washington DC, USA
| | - Mimi Ghosh
- Department of Epidemiology, George Washington University, Washington DC, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| |
Collapse
|
15
|
Szaefer H, Licznerska B, Baer-Dubowska W. The Aryl Hydrocarbon Receptor and Its Crosstalk: A Chemopreventive Target of Naturally Occurring and Modified Phytochemicals. Molecules 2024; 29:4283. [PMID: 39339278 PMCID: PMC11433792 DOI: 10.3390/molecules29184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally sensitive transcription factor (TF) historically associated with carcinogenesis initiation via the activation of numerous carcinogens. Nowadays, the AhR has been attributed to multiple endogenous functions to maintain cellular homeostasis. Moreover, crosstalk, often reciprocal, has been found between the AhR and several other TFs, particularly estrogen receptors (ERs) and nuclear factor erythroid 2-related factor-2 (Nrf2). Adequate modulation of these signaling pathways seems to be an attractive strategy for cancer chemoprevention. Several naturally occurring and synthetically modified AhR or ER ligands and Nrf2 modulators have been described. Sulfur-containing derivatives of glucosinolates, such as indole-3-carbinol (I3C), and stilbene derivatives are particularly interesting in this context. I3C and its condensation product, 3,3'-diindolylmethane (DIM), are classic examples of blocking agents that increase drug-metabolizing enzyme activity through activation of the AhR. Still, they also affect multiple essential signaling pathways in preventing hormone-dependent cancer. Resveratrol is a competitive antagonist of several classic AhR ligands. Its analogs, with ortho-methoxy substituents, exert stronger antiproliferative and proapoptotic activity. In addition, they modulate AhR activity and estrogen metabolism. Their activity seems related to a number of methoxy groups introduced into the stilbene structure. This review summarizes the data on the chemopreventive potential of these classes of phytochemicals, in the context of AhR and its crosstalk modulation.
Collapse
Affiliation(s)
- Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (B.L.); (W.B.-D.)
| | | | | |
Collapse
|
16
|
Gao P, Li C, Gong Q, Liu L, Qin R, Liu J. Sex steroid hormone residues in milk and their potential risks for breast and prostate cancer. Front Nutr 2024; 11:1390379. [PMID: 39285863 PMCID: PMC11403374 DOI: 10.3389/fnut.2024.1390379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Milk was a source of important nutrients for humans and was especially important for children and adolescents. The modern dairy animal production pattern had contributed to residual sex steroid hormones in milk. When this milk was consumed by humans, these hormones entered the body leading to hormonal disruptions and potentially increasing the risk of various types of cancers. This article reviewed the presence of residual sex steroid hormones in milk, their potential risks on human health, and their possible association with the incidence of breast and prostate cancer. The potential linkage between dairy consumption and these cancers were described in detail. The hormones present in dairy products could affect the development and progression of these types of cancer. Sex steroid hormones could interact with different signaling pathways, influencing carcinogenic cascades that could eventually lead to tumorigenesis. Given these potential health risks, the article suggested appropriate consumption of dairy products. This included being mindful not just of the amount of dairy consumed, but also the types of dairy products selected. More scientific exploration was needed, but this review provided valuable insights for health-conscious consumers and contributed to the ongoing discussion on dietary guidelines and human health.
Collapse
Affiliation(s)
- Pengyue Gao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Chengyi Li
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| |
Collapse
|
17
|
Monteiro FL, Stepanauskaite L, Archer A, Williams C. Estrogen receptor beta expression and role in cancers. J Steroid Biochem Mol Biol 2024; 242:106526. [PMID: 38657699 DOI: 10.1016/j.jsbmb.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Estrogen drives the growth of some cancers, such as breast cancer, via estrogen receptor alpha (ERα). Estrogen also activates ERβ, but whether ERβ is expressed and has a role in different cancers is debated. The use of nonspecific antibodies has contributed to the confusion, and this review delves into ERβ's controversial role in cancer and focuses on tumor expression that can be supported by non-antibody-dependent assays. We discuss its expression at the transcript level and focus on its potential role in lymphoma, granulosa cell tumors, testicular, and adrenal cancers, emphasizing recent findings and the complexities that necessitate further research.
Collapse
Affiliation(s)
- Fátima L Monteiro
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Lina Stepanauskaite
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden.
| |
Collapse
|
18
|
Li C, Tan X, Deng D, Kong C, Feng L, Wang W, Lin K, Li Y, Lei Q, Liu L, Tao T, Pan R, Li G, Wu S. A Dopamine-Modified Hyaluronic Acid-Based Mucus Carrying Phytoestrogen and Urinary Exosome for Thin Endometrium Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407750. [PMID: 39115352 DOI: 10.1002/adma.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Thin endometrium (TE) is closely associated with infertility in reproductive medicine. Estrogen therapy gains unsatisfactory outcomes. In this study, an artificial mucus based on dopamine (L-DOPA)-modified hyaluronic acid combining phytoestrogen cajaninstilbene acid and rat urinary exosomes (CUEHD) is constructed for TE treatment using a rat TE model. In the rat TE model, the dominant elastic behavior and adhesive properties of CUEHD guarantee adequate retention, rendering superior synergistic treatment efficacy and favorable biosafety characteristics. CUEHD treatment significantly increases endometrial thickness and promotes receptivity and fertility. Mechanistically, estrogen homeostasis, inflammation inhibition, and endometrial regeneration are achieved through the crosstalk between ER-NLRP3-IL1β and Wnt-β catenin-TGFβ-smad signaling pathways. Moreover, the therapeutic potential of exosomes from human urine and adipose tissue-derived stem cells (ADSCs) and rat ADSCs are also demonstrated, indicating extensive use of the artificial mucus system. Thus, this study illustrates a platform combining phytoestrogen and exosomes with promising implications for TE treatment.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Lida Feng
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Weijing Wang
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Kaida Lin
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Qifang Lei
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Tao Tao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
19
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
20
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
21
|
Luo X, Zhang D, Zheng J, Liu H, Sun L, Guo H, Wang L, Cui S. Casein kinase 1α mediates estradiol secretion via CYP19A1 expression in mouse ovarian granulosa cells. BMC Biol 2024; 22:176. [PMID: 39183304 PMCID: PMC11346181 DOI: 10.1186/s12915-024-01957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Casein kinase 1α (CK1α), expressed in both ovarian germ and somatic cells, is involved in the initial meiosis and primordial follicle formation of mouse oocytes. Using in vitro and in vivo experiments in this study, we explored the function and mechanism of CK1α in estrogen synthesis in mice ovarian granulosa cells. METHODS A CK1α knockout (cKO) mouse model, targeted specifically to ovarian granulosa cells (GCs), was employed to establish the influence of CK1α on in vivo estrogen synthesis. The influence of CK1α deficiency on GCs was determined in vivo and in vitro by immunofluorescence analysis and Western blot assay. Transcriptome profiling, differentially expressed genes and gene functional enrichment analyses, and computation protein-protein docking, were further employed to assess the CK1α pathway. Furthermore, wild-type female mice were treated with the CK1α antagonist D4476 to elucidate the CK1α's role in estrogen regulation. RESULTS Ovarian GCs CK1α deficiency impaired fertility and superovulation of female mice; also, the average litter size and the estradiol (E2) level in the serum of cKO female mice were decreased by 57.3% and 87.4% vs. control mice, respectively. This deficiency disrupted the estrous cycle and enhanced the apoptosis in the GCs. We observed that CK1α mediated the secretion of estradiol in mouse ovarian GCs via the cytochrome P450 subfamily 19 member 1 (CYP19A1). CONCLUSIONS These findings improve the existing understanding of the regulation mechanism of female reproduction and estrogen synthesis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
22
|
Singh VK, Serebrenik AA, Wise SY, Petrus SA, Fatanmi OO, Kaytor MD. BIO 300: A Prophylactic Radiation Countermeasure for Acute Radiation Syndrome. Mil Med 2024; 189:390-398. [PMID: 39160790 DOI: 10.1093/milmed/usae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Exposure to high doses of ionizing radiation can result in hematopoietic acute radiation syndrome. Currently, there is no radiation medical countermeasure approved by the U.S. FDA which can be used before radiation exposure to protect exposed individuals. Here we aimed to evaluate the therapeutic potential of an aqueous suspension of synthetic genistein nanoparticles (BIO 300) as a radioprotectant in a pilot efficacy study using a nonhuman primate model of total body irradiation. MATERIALS AND METHODS Eight rhesus macaques were divided into two groups; four received vehicle and four received BIO 300 Injectable Suspension 24 h before 5.8 Gy total-body irradiation. Survival, blood cell counts, blood chemistry, and clinical parameters were monitored over the 60 days of the study. Tissues were collected at necropsy 60 days post-irradiation or from animals that met unscheduled euthanasia criteria and subjected to histopathological analysis. Tissues analyzed included the duodenum, jejunum, ileum, sternum, lung, heart, liver, kidney, spleen, gut-associated lymphoid tissue, and urinary bladder. RESULTS In this pilot study, all BIO 300 Injectable Suspension treated animals survived to day 60, while only 50% of the vehicle-treated animals survived. We found that BIO 300 Injectable Suspension did not mediate an improvement in blood cell counts (e.g., neutrophils, platelets, white blood cells). However, BIO 300 Injectable Suspension treated animals had a lower incidence of fever and febrile neutropenia, were able to better maintain their body weight post radiation exposure, and exhibited less anemia and faster recovery from anemia. Histopathological analysis revealed that BIO 300-treated animals had less irradiation-induced damage to the sternum and other tissues compared to vehicle controls. CONCLUSIONS BIO 300's mechanism of action is complex and protection against irradiation is attainable without much improvement in the complete blood count (CBC) profile. BIO 300's mechanism for radioprotection involves multiple biological pathways and systems.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah A Petrus
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
23
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
24
|
Marques RP, Ahmad W, Soares R, Oliveira KC, Botelho MC. Insights into the State of the Art of Urogenital Schistosomiasis with a Focus on Infertility. Trop Med Infect Dis 2024; 9:177. [PMID: 39195615 PMCID: PMC11360082 DOI: 10.3390/tropicalmed9080177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects developing countries worldwide and is caused by several species of parasites from the Schistosoma genus. Chronic infection is characterized by the formation of granulomas around the parasite eggs, the leading cause of pathology. The hepatosplenic clinical form is one of the most common, but urogenital schistosomiasis is another relevant clinical presentation responsible for infertility in men and women. Inflammatory response, anatomical deformations, and endocrine/biochemical changes are involved in the development of infertility. Schistosome parasites can synthesize catechol estrogen-like molecules and affect the sexual hormone balance in their host. Here, we review many aspects of the pathology of urogenital schistosomiasis, specifically infertility, and point to the biochemical and endocrinal elements that must be investigated in the future.
Collapse
Affiliation(s)
- Rafaella P. Marques
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (R.P.M.); (K.C.O.)
| | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences (UVAS), KBCMA Campus, Narowal 51800, Pakistan;
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Katia C. Oliveira
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (R.P.M.); (K.C.O.)
| | - Monica C. Botelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Health Promotion and Chronic Diseases, INSA—National Institute of Health Dr. Ricardo Jorge, 4000-055 Porto, Portugal
| |
Collapse
|
25
|
Lipowicz JM, Malińska A, Nowicki M, Rawłuszko-Wieczorek AA. Genes Co-Expressed with ESR2 Influence Clinical Outcomes in Cancer Patients: TCGA Data Analysis. Int J Mol Sci 2024; 25:8707. [PMID: 39201394 PMCID: PMC11354723 DOI: 10.3390/ijms25168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
ERβ has been assigned a tumor suppressor role in many cancer types. However, as conflicting findings emerge, ERβ's tissue-specific expression and functional role have remained elusive. There remains a notable gap in compact and comprehensive analyses of ESR2 mRNA expression levels across diverse tumor types coupled with an exploration of its potential gene network. In this study, we aim to address these gaps by presenting a comprehensive analysis of ESR2 transcriptomic data. We distinguished cancer types with significant changes in ESR2 expression levels compared to corresponding healthy tissue and concluded that ESR2 influences patient survival. Gene Set Enrichment Analysis (GSEA) distinguished molecular pathways affected by ESR2, including oxidative phosphorylation and epithelial-mesenchymal transition. Finally, we investigated genes displaying similar expression patterns as ESR2 in tumor tissues, identifying potential co-expressed genes that may exert a synergistic effect on clinical outcomes, with significant results, including the expression of ACIN1, SYNE2, TNFRSF13C, and MDM4. Collectively, our results highlight the significant influence of ESR2 mRNA expression on the transcriptomic landscape and the overall metabolism of cancerous cells across various tumor types.
Collapse
Affiliation(s)
- Julia Maria Lipowicz
- Department of Histology and Embryology, Doctoral School, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland;
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | | |
Collapse
|
26
|
Bugiel-Stabla K, Agnoli C, Pawlak A. Estrogen receptors alpha and beta expression in different canine cancer types with an emphasis on hematopoietic malignancies. Vet Res Commun 2024; 48:1977-1990. [PMID: 38594602 DOI: 10.1007/s11259-024-10368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Estrogen receptors (ERs) are located in both healthy and neoplastic tissues. The type of estrogen receptor expressed varies depending on its location, tumor type, and species. Estrogen action is mediated by binding to ER and activating the transcriptional and signaling processes that result in the control of gene expression. There are two main types of estrogen receptors: ER alpha (ERα) and ER beta (ERβ). Both receptors are functionally different, they may act antagonistically and are distributed in different tissues but their structure is similar - as they are composed of 5 different domains: A/B, C, D, E, and F. The signaling pathway and hence regulation of the gene expression by ERs is a complex and multifactorial process that involves both genomic and nongenomic actions. In the human reproductive tract, both ERα and β are present, with predominant expression of ERβ, while there are no satisfactory data distinguishing the type of ERs expressed in the canine reproductive tract. In mammary gland neoplasia, a decreased or lacking ERα expression in humans is associated with a poorer prognosis. This is similar to dogs, where higher ERα expression intensity was noted in benign tumors than in carcinomas. In human hematopoietic malignancies, ERβ is a predominant receptor. Selective and non-selective ERβ agonists have an antiproliferative and pro-apoptotic effect on human lymphoma cell lines and may be effective in the therapy of ERβ positive lymphomas and leukemias. In canine lymphoma tissues, none or only marginal expression of ERs was detected over the decades. Considering available data, we conducted preliminary studies proving that, in contrast to humans, the dominant ER expressed in canine hematopoietic tumors is ERα.
Collapse
Affiliation(s)
- Katarzyna Bugiel-Stabla
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
27
|
Guo M, Zhao F, Zhang M, Chen X, Duan M, Xie Y, Zhang Z, Jiang J, Qiu L. Long-term exposure of metamifop affects sex differentiation and reproductive system of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107004. [PMID: 38901218 DOI: 10.1016/j.aquatox.2024.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The extensive use of herbicide metamifop (MET) in rice fields for weeds control will inevitably lead to its entering into water environments and threaten the aquatic organisms. Previous researches have demonstrated that sublethal exposure of MET significantly affected zebrafish development. Yet the long-term toxicological impacts of MET on aquatic life remains unknown. Herein, we investigated the potential effects of MET (5 and 50 μg/L) on zebrafish during an entire life cycle. Since the expression level of male sex differentiation-related gene dmrt1 and sex hormone synthesis-related gene cyp19a1b were significantly changed after 50 μg/L MET exposure for only 7 days, indicators related to sex differentiation and reproductive system were further investigated. Results showed that the transcript of dmrt1 was inhibited, estradiol content increased and testosterone content decreased in zebrafish of both sexes after MET exposure at 45, 60 and 120 dpf. Histopathological sections showed that the proportions of mature germ cells in the gonads of male and female zebrafish (120 dpf) were significantly decreased. Moreover, males had elevated vitellogenin content while females did not after MET exposure; MET induced feminization in zebrafish, with the proportion of females significantly increased by 19.6% while that of males significantly decreased by 13.2% at 120 dpf. These results suggested that MET interfered with the expression levels of gonad development related-genes, disrupted sex hormone balance, and affected sex differentiation and reproductive system of female and male zebrafish, implying it might have potential endocrine disrupting effects after long-term exposure.
Collapse
Affiliation(s)
- Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Guangxi 530004, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manman Duan
- Rural Revitalization Research Institute, Dezhou University, Dezhou 253023, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Liang C, Mu X, Bao Q, Borzigin P, Sheng H, Han X, Chen Y, Wang T. Exploring the inhibitory impact of Mongolian medicinal He-Zi-3 soup on mammary gland hyperplasia in rats induced by estrogen and progestogen. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:117854. [PMID: 38583733 DOI: 10.1016/j.jep.2024.117854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mammary gland hyperplasia, a prevalent benign breast condition, often serves as a precursor to various other breast diseases. He-Zi-3 soup (HZ-3), a traditional Mongolian remedy, is utilized for treating this condition. AIM OF THE STUDY To explore the effect and underlying mechanism of HZ-3, a Mongolian medicinal preparation, on mammary gland hyperplasia. MATERIALS AND METHODS This study aimed to assess the impact of different doses of HZ-3 in a rat model of mammary hyperplasia. The active components within HZ-3 drug serum were identified and analyzed through network pharmacology and target prediction. To elucidate the underlying mechanism of HZ-3 in addressing mammary hyperplasia, we conducted a series of investigations on estradiol-induced mammary hyperplasia in model rates. Assessments included measurements of papilla width and height, hematoxylin and eosin staining, Masson staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry. RESULTS Our investigation revealed the identification of 21 compounds, primarily terpenoids, through serum medicinal chemistry screening. Utilizing network pharmacological analysis, we observed predominant regulation through the estrogen pathway, closely associated with key genes including esr1,esr2, ncoa1, krt 19, ctsd, ebag 9, and bcl-2. Assessments encompassing nipple height and width, histological examination, immunohistochemical analysis, and serum hormone levels via enzyme-linked immunosorbent assay demonstrated the inhibitory effect of HZ-3 on mammary hyperplasia in rat models. RT-qPCR and Western blot analyses corroborated these findings, affirming the suppression of mammary hyperplasia by HZ-3 through the activation of estrogen pathway signaling.
Collapse
Affiliation(s)
- Chunlan Liang
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, 010000, PR China.
| | - Xile Mu
- Mongolian Medicine College, Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| | - Qinglan Bao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, 010000, PR China.
| | - Pengsigerexi Borzigin
- Mongolian Medicine College, Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| | - Hongyan Sheng
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, 010000, PR China.
| | - Xiaomei Han
- Mongolian Medicine College, Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| | - Yingsong Chen
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, 010000, PR China; Engineering of the Ministry of Education of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| | - Tegexibaiyin Wang
- Mongolian Medicine Functional Food Research and Development Center Laboratory, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| |
Collapse
|
29
|
Booijink R, Ramachandran P, Bansal R. Implications of innate immune sexual dimorphism for MASLD pathogenesis and treatment. Trends Pharmacol Sci 2024; 45:614-627. [PMID: 38853100 DOI: 10.1016/j.tips.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Growing evidence suggests that metabolic dysfunction-associated steatotic liver disease (MASLD) is significantly higher in men versus women. Increased prevalence is observed in postmenopausal women, suggesting that age and sex (hormones) influence MASLD development and progression. Molecular data further reveal that sex regulates the innate immune responses with an essential role in MASLD progression. To date, there has been limited focus on the role of innate immune sexual dimorphism in MASLD, and differences between men and women are not considered in the current drug discovery landscape. In this review, we summarize the sex disparities and innate immune sexual dimorphism in MASLD pathogenesis. We further highlight the importance of harnessing sexual dimorphism in identifying therapeutic targets, developing pharmacological therapies, and designing (pre-) clinical studies for the personalized treatment for MASLD.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, UK
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
30
|
Keen AC, Jörg M, Halls ML. The application of targeted protein degradation technologies to G protein-coupled receptors. Br J Pharmacol 2024; 181:2351-2358. [PMID: 36965004 DOI: 10.1111/bph.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
The ubiquitin-proteasome system is one of the major pathways for the degradation of cellular proteins. In recent years, methods have been developed to exploit the ubiquitin-proteasome system to artificially degrade target proteins. Targeted protein degraders are extremely useful as biological tools for discovery research. They have also been developed as novel therapeutics with several targeted protein degraders currently in clinical trials. However, almost all targeted protein degrader technologies have been developed for cytosolic proteins. The G protein-coupled receptor (GPCR) superfamily is one of the most important classes of drug targets, yet only limited examples of GPCR degradation exist. Here, we review these examples and provide a perspective on the different strategies that have been used to apply targeted protein degradation to GPCRs. We also discuss whether alternative approaches that have been used to degrade other integral membrane proteins could be applied to the degradation of GPCRs. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Manuela Jörg
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
- Newcastle University Centre for Cancer, Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
| |
Collapse
|
31
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
32
|
Mosconi L, Nerattini M, Matthews DC, Jett S, Andy C, Williams S, Yepez CB, Zarate C, Carlton C, Fauci F, Ajila T, Pahlajani S, Andrews R, Pupi A, Ballon D, Kelly J, Osborne JR, Nehmeh S, Fink M, Berti V, Dyke JP, Brinton RD. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep 2024; 14:12680. [PMID: 38902275 PMCID: PMC11190148 DOI: 10.1038/s41598-024-62820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
17β-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Alberto Pupi
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Roberta Diaz Brinton
- Department of Pharmacology and Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
33
|
Xu Y, Zhang Z, Wang R, Xue S, Ying Q, Jin L. Roles of estrogen and its receptors in polycystic ovary syndrome. Front Cell Dev Biol 2024; 12:1395331. [PMID: 38961865 PMCID: PMC11219844 DOI: 10.3389/fcell.2024.1395331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal steroid hormone levels in peripheral blood and poor-quality oocytes. In the ovary, androgen is produced by theca cells, and estrogen is produced by granulosa cells. Androgen is converted to estrogen in granulosa cells, with cytochrome P450 aromatase as the limiting enzyme during this process. Estrogen receptors (ER) include ER alpha, ER beta, and membrane receptor GPR30. Studies have demonstrated that the abnormal functions of estrogen and its receptors and estradiol synthesis-related enzymes are closely related to PCOS. In recent years, some estrogen-related drugs have made significant progress in clinical application for subfertility with PCOS, such as letrozole and clomiphene. This article will elaborate on the recent advances in PCOS caused by abnormal expression of estrogen and its receptors and the application of related targeted small molecule drugs in clinical research and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
35
|
Caerts D, Garmyn M, Güvenç C. A Narrative Review of the Role of Estrogen (Receptors) in Melanoma. Int J Mol Sci 2024; 25:6251. [PMID: 38892441 PMCID: PMC11173079 DOI: 10.3390/ijms25116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In this narrative review, we attempt to provide an overview of the evidence regarding the role of estrogen (receptors) in cutaneous melanoma (CM). We reviewed 68 studies and 4 systematic reviews and meta-analyses published from 2002 up to and including 2022. The prevailing presence of estrogen receptor β (ERβ) instead of estrogen receptor α (ERα) in CM is notable, with ERβ potentially playing a protective role and being less frequently detected in progressive cases. While men with CM generally experience a less favorable prognosis, this distinction may become negligible with advancing age. The role of oral contraceptives (OC) and hormone replacement therapy (HRT) in CM remains controversial. However, recent studies tend to associate the use of these exogenous hormones with a heightened risk of CM, mostly only when using estrogen therapy and not in combination with progesterone. On the contrary, the majority of studies find no substantial influence of in vitro fertilization (IVF) treatment on CM risk. Reproductive factors, including younger age at first childbirth, higher parity, and shorter reproductive life, show conflicting evidence, with some studies suggesting a lower CM risk. We suggest an important role for estrogens in CM. More research is needed, but the integration of estrogens and targeting the estrogen receptors in melanoma therapy holds promise for future developments in the field.
Collapse
Affiliation(s)
| | | | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, 3000 Leuven, Belgium; (D.C.); (M.G.)
| |
Collapse
|
36
|
Kos Z, Nielsen TO, Laenkholm AV. Breast Cancer Histopathology in the Age of Molecular Oncology. Cold Spring Harb Perspect Med 2024; 14:a041647. [PMID: 38151327 PMCID: PMC11146312 DOI: 10.1101/cshperspect.a041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
For more than a century, microscopic histology has been the cornerstone for cancer diagnosis, and breast carcinoma is no exception. In recent years, clinical biomarkers, gene expression profiles, and other molecular tests have shown increasing utility for identifying the key biological features that guide prognosis and treatment of breast cancer. Indeed, the most common histologic pattern-invasive ductal carcinoma of no special type-provides relatively little guidance to management beyond triggering grading, biomarker testing, and clinical staging. However, many less common histologic patterns can be recognized by trained pathologists, which in many cases can be linked to characteristic biomarker and gene expression patterns, underlying mutations, prognosis, and therapy. Herein we describe more than a dozen such histomorphologic subtypes (including lobular, metaplastic, salivary analog, and several good prognosis special types of breast cancer) in the context of their molecular and clinical features.
Collapse
Affiliation(s)
- Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- BC Cancer Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Molecular and Advanced Pathology Core, Vancouver, British Columbia V6H 3Z6, Canada
| | - Anne-Vibeke Laenkholm
- Department of Surgical Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
37
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
38
|
Ciou WS, Wang CC, Lin FJ, Chao TF, Lin SY. Comparison of different direct oral anticoagulant regimens in atrial fibrillation patients with high bleeding risk. Heart Rhythm 2024; 21:715-722. [PMID: 38266751 DOI: 10.1016/j.hrthm.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The optimal dose of direct oral anticoagulants (DOACs) to prevent ischemic stroke (IS) and systemic thromboembolism (STE) in atrial fibrillation (AF) patients with a predisposing bleeding risk remains unclear. OBJECTIVE The purpose of this study was to compare the effectiveness and safety of different DOAC dosage regimens in AF patients with high bleeding risk but low thrombosis risk. METHODS This retrospective observational study was conducted with the National Health Insurance claims database in Taiwan to include AF patients aged 20 up to 75 years, under DOAC therapy, with CHA2DS2-VASc score of 1 for males and 2 for females and HAS-BLED score ≥3. Standard-dose regimen was defined as dabigatran 300 mg, rivaroxaban 20 mg, apixaban 10 mg, or edoxaban 60 mg per day. Any other lower-dose regimen were defined as the low-dose regimen. The primary outcomes were IS and major bleeding (MB). The secondary outcomes were STE, gastrointestinal bleeding, intracranial hemorrhage, and cardiovascular death. RESULTS A total of 964 patients were included (52.1% standard-dose regimen). Median HAS-BLED score was 3 [interquartile range 3-3]. Compared with standard-dose group, patients in the low-dose group had a significantly increased risk of IS (adjusted hazard ratio [aHR] 5.13; 95% confidence interval 1.37-19.22) and STE (aHR 3.14 [1.05-9.37]) but similar risk of MB (aHR 0.45 [0.12-1.67]). The risks of other hemorrhage and cardiovascular death were similar between the 2 dose groups. CONCLUSION Among patients with a predominant bleeding risk but relatively low thrombosis risk, the low-dose DOAC regimen is not a more appropriate selection than standard-dose regimen.
Collapse
Affiliation(s)
- Wei-Siang Ciou
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Chuan Wang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Ju Lin
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Yi Lin
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Zahr T, Boda VK, Ge J, Yu L, Wu Z, Que J, Li W, Qiang L. Small molecule conjugates with selective estrogen receptor β agonism promote anti-aging benefits in metabolism and skin recovery. Acta Pharm Sin B 2024; 14:2137-2152. [PMID: 38799642 PMCID: PMC11119546 DOI: 10.1016/j.apsb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen is imperative to mammalian reproductivity, metabolism, and aging. However, the hormone activating estrogen receptor (ERs) α can cause major safety concerns due to the enrichment of ERα in female tissues and certain malignancies. In contrast, ERβ is more broadly expressed in metabolic tissues and the skin. Thus, it is desirable to generate selective ERβ agonist conjugates for maximizing the therapeutic effects of ERs while minimizing the risks of ERα activation. Here, we report the design and production of small molecule conjugates containing selective non-steroid ERβ agonists Gtx878 or genistein. Treatment of aged mice with our synthesized conjugates improved aging-associated declines in insulin sensitivity, visceral adipose integrity, skeletal muscle function, and skin health, with validation in vitro. We further uncovered the benefits of ERβ conjugates in the skin using two inducible skin injury mouse models, showing increased skin basal cell proliferation, epidermal thickness, and wound healing. Therefore, our ERβ-selective agonist conjugates offer novel therapeutic potential to improve aging-associated conditions and aid in rejuvenating skin health.
Collapse
Affiliation(s)
- Tarik Zahr
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - Vijay K. Boda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jian Ge
- Division of Digestive and Liver Diseases, Columbia University, New York, NY 10032, USA
- Center for Human Development, Columbia University, New York, NY 10027, USA
| | - Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Columbia University, New York, NY 10032, USA
- Center for Human Development, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
40
|
P A, Hayagreva Kumar M, Elshafey SH, S JC, Jones S, Sheriff D, Pramod Roy A, Ayyaswamy G, Tk B, K P. Evaluation of In-Vitro Studies of the Shalmali Extract on Human Endometrial Stromal Cells. Cureus 2024; 16:e60699. [PMID: 38910609 PMCID: PMC11190968 DOI: 10.7759/cureus.60699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
The utilization of herbal formulations for the management of reproductive tract disorders has been a longstanding practice in traditional medicine. In this study, we investigated the efficacy of a herbal extract, Shalmali (Bombax ceiba), in addressing uterine bleeding, a common concern in gynecological health. Through gene expression analysis, this study examined the impact of Shalmali extract on key genes associated with uterine bleeding, namely ESR1, CD56, and SDF-1, in the human endometrial stromal cell line (T HESC). Our findings revealed a dose-dependent decrease in ESR1 and CD56 gene expression levels following treatment with Shalmali extract, suggesting its potential to modulate hormonal and cellular processes involved in uterine bleeding. Notably, an increase in SDF-1 gene expression was observed, indicating a possible role of Shalmali extract in promoting tissue repair and regeneration. Comparison with the standard drug tranexamic acid demonstrated similar effects on gene expression levels, further validating the therapeutic potential of Shalmali extract. Agarose gel electrophoresis images supported these findings, showing reduced gene expression in cells treated with Shalmali extract comparable to those treated with tranexamic acid. These results underscore the promising efficacy of Shalmali extract as a natural alternative for managing uterine bleeding, potentially offering a safe and effective treatment option for individuals seeking traditional remedies for gynecological concerns. Further research is warranted to elucidate the underlying mechanisms of action and assess the long-term safety and efficacy of Shalmali extract in clinical settings.
Collapse
Affiliation(s)
- Anandhan P
- General Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | | | | | - Janaki C S
- Anatomy, Bhaarath Medical College and Hospital, Chennai, IND
| | - Sumathi Jones
- Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, Chennai, IND
| | | | | | - Gopi Ayyaswamy
- Ear, Nose, and Throat (ENT), Sree Balaji Medical College and Hospital, Chennai, IND
| | - Balaji Tk
- Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, IND
| | - Prabhu K
- Anatomy, Sree Balaji Medical College and Hospital, Chennai, IND
| |
Collapse
|
41
|
Sarf EA, Dyachenko EI, Bel’skaya LV. Salivary Tryptophan as a Metabolic Marker of HER2-Negative Molecular Subtypes of Breast Cancer. Metabolites 2024; 14:247. [PMID: 38786723 PMCID: PMC11123106 DOI: 10.3390/metabo14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Changes in the concentration of tryptophan (Trp) indicate a serious metabolic restructuring, which is both a cause and a consequence of many diseases. This work examines the upward change in salivary Trp concentrations among patients with breast cancer. This study involved volunteers divided into three groups: breast cancer (n = 104), non-malignant breast pathologies (n = 30) and healthy controls (n = 20). In all participants, before treatment, the quantitative content of Trp in saliva was determined by capillary electrophoresis. In 20 patients with breast cancer, Trp was re-tested four weeks after surgical removal of the tumor. An increase in the Trp content in saliva in breast cancer has been shown, which statistically significantly decreases after surgical removal of the tumor. A direct correlation was found between increased Trp levels with the degree of malignancy and aggressive molecular subtypes of breast cancer, namely triple negative and luminal B-like HER2-negative. These conclusions were based on an increase in Ki-67 and an increase in Trp in HER2-negative and progesterone-negative subtypes. Factors under which an increase in Trp concentration in saliva was observed were identified: advanced stage of breast cancer, the presence of regional metastasis, low tumor differentiation, a lack of expression of HER2, estrogen and progesterone receptors and the high proliferative activity of the tumor. Thus, the determination of salivary Trp may be a valuable tool in the study of metabolic changes associated with cancer, particularly breast cancer.
Collapse
Affiliation(s)
| | | | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia; (E.A.S.); (E.I.D.)
| |
Collapse
|
42
|
Rong J, Xie X, Niu Y, Su Z. Correlation between the RNA Expression and the DNA Methylation of Estrogen Receptor Genes in Normal and Malignant Human Tissues. Curr Issues Mol Biol 2024; 46:3610-3625. [PMID: 38666956 PMCID: PMC11049367 DOI: 10.3390/cimb46040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Estrogen plays a multifaceted function in humans via interacting with the estrogen receptors ERα, ERβ, and G protein-coupled estrogen receptor 1 (GPER1). Previous research has predominantly concentrated on elucidating the signaling route of estrogen. However, the comprehensive understanding of the expression profile and control of these estrogen receptors in various human tissues is not well known. In the present study, the RNA levels of estrogen receptors in various normal and malignant human tissues were retrieved from the human protein atlas, the cancer genome atlas (TCGA), and the genotype-tissue expression (GTEx) databases for analyzing the expression profile of estrogen receptors through gene expression profiling interactive analysis (GEPIA). The status of DNA methylation of estrogen receptor genes from TCGA were analyzed through the software Wanderer and cBioPortal. The MethSurv tool was utilized to estimate the relevance between specific cytosine-guanine (CG) methylation and tumor survival. The expression profile analysis revealed that ERα, ERβ, and GPER1 have unique expression patterns in diverse tissues and malignancies. The interesting results were the higher expression of ERβ RNA in the male testis than in females and the positive association between the RNA level of ERα and the androgen receptor in different human normal tissues. Especially, the significant changes in GPER1 expression in multiple malignancies showed a consistent decrease with no exception, which indicates the role of GPER1 in common tumor inhibition. The finding on the expression profile provides clues for exploring novel potential physiological and pathophysiological functions of estrogen. The DNA methylation analysis manifested that the expression of GPER1 and ERα showed a substantial correlation with the methylation of specific CG sites in the cis-regulating region of the gene. However, no such association was observed for ERβ. When comparing tumor tissues to normal tissues, the DNA methylation of certain CG sites of estrogen receptors showed a correlation with tumor survival but did not always correlate with the expression of that gene or with the expression of DNA methyltransferases. We proposed that the variation in DNA methylation at different CG sites in estrogen receptor genes had other functions beyond its regulatory role in its gene expression, and this might be associated with the progression and therapy efficiency of the tumor based on the modulation of the chromatin configuration.
Collapse
Affiliation(s)
- Ju Rong
- The First Clinical Institute, Shantou University Medical College, Shantou 515041, China
| | - Xiaojun Xie
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
43
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
44
|
Chanana V, Zafer D, Kintner DB, Chandrashekhar JH, Eickhoff J, Ferrazzano PA, Levine JE, Cengiz P. TrkB-mediated neuroprotection in female hippocampal neurons is autonomous, estrogen receptor alpha-dependent, and eliminated by testosterone: a proposed model for sex differences in neonatal hippocampal neuronal injury. Biol Sex Differ 2024; 15:30. [PMID: 38566248 PMCID: PMC10988865 DOI: 10.1186/s13293-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.
Collapse
Affiliation(s)
- Vishal Chanana
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Dila Zafer
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin, Madison, WI, USA
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jens Eickhoff
- Department of Statistics and Bioinformatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA.
| |
Collapse
|
45
|
Lemini C, Silveyra P, Segovia-Mendoza M. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: Review of toxicological and pharmacological mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104407. [PMID: 38428705 DOI: 10.1016/j.etap.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17β-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington, School of Public Health, Bloomington, IN, USA
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
46
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
47
|
He P, Yu H, Deng X, Xin L, Xu B, Zhou HB, Dong C. Novel estrogen receptor β/histone deacetylase dual-targeted near-infrared fluorescent probes as theranostic agents for imaging and treatment of prostate cancer. Eur J Med Chem 2024; 268:116236. [PMID: 38367494 DOI: 10.1016/j.ejmech.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Estrogen receptor (ER) β and histone deacetylases (HDACs), when overexpressed, are associated closely with the occurrence and development of prostate cancer and are, therefore, considered important targets and biomarkers used in the clinical treatment of prostate cancer. The present study involved the design and synthesis of the first ERβ and HDAC dual-target near-infrared fluorescent probe with both imaging capacity and antitumor activity for prostate cancer. Both P1 and P2 probes exhibited excellent ERβ selectivity, with P1 being almost exclusively selective for ERβ compared to ERα. In addition, P1 exhibited good optical properties, such as strong near-infrared emission, large Stokes shift, and better anti-interference ability, along with excellent imaging ability for living cells. P1 also exhibited potent inhibitory activity against HDAC6 and DU-145 cells, with IC50 values of 52 nM and 0.96 μM, respectively. Further, P1 was applied successfully for the in vivo imaging of prostate cancer in a mouse model, and significant in vivo antitumor efficacy was achieved. The developed dual-target NIR fluorescent probe is expected to serve as an effective tool in the research on prostate cancer, leading to novel insights for the theranostic study of diseases related to ERβ and HDACs.
Collapse
Affiliation(s)
- Pei He
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huiguang Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatiorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
48
|
Chen W, Wang X, Wan S, Yang Y, Zhang Y, Xu Z, Zhao J, Mi C, Zhang H. Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133035. [PMID: 38266585 DOI: 10.1016/j.jhazmat.2023.133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/26/2024]
Abstract
Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERβ) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERβ in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.
Collapse
Affiliation(s)
- Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
49
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
50
|
Macheroni C, Leite GGF, Souza DS, Vicente CM, Lacerda JT, Moraes MN, Juliano MA, Porto CS. Activation of estrogen receptor induces differential proteomic responses mainly involving migration, invasion, and tumor development pathways in human testicular embryonal carcinoma NT2/D1 cells. J Steroid Biochem Mol Biol 2024; 237:106443. [PMID: 38092129 DOI: 10.1016/j.jsbmb.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The aims of the present study were to investigate the global changes on proteome of human testicular embryonal carcinoma NT2/D1 cells treated with 17β-estradiol (E2), and the effects of this hormone on migration, invasion, and colony formation of these cells. A quantitative proteomic analysis identified the presence of 1230 proteins in both E2-treated and control cells. The analysis revealed 75 differentially abundant proteins (DAPs), out of which 43 proteins displayed a higher abundance and, 30 proteins showed a lower abundance in E2-treated NT2/D1 cancer cells. Functional analysis using IPA highlighted some activation processes such as migration, invasion, metastasis, and tumor growth. Interestingly, the treatment with E2 and ERβ-selective agonist DPN increased the migration of NT2/D1 cells. On the other hand, ERα-selective agonist PPT did not modify cell migration, indicating that ERβ is the upstream receptor involved in this process. The activation of ERβ increased the invasion and anchorage‑independent growth of NT2/D1 cells more intensely than ERα. ERα and ERβ may play overlapping roles on invasion and colony formation of these cells. Further studies are required to clarify the mechanism underlying these effects. The molecular mechanisms revealed by proteomic and functional studies might also guide the development of potential targets for a better understanding of the biology of these cells and novel treatments for non-seminoma in the future.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, SP 05508-090, Brazil
| | - Maria Nathália Moraes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Av. Conceição 515, Diadema, São Paulo, SP, 09920-000, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil.
| |
Collapse
|