1
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. FUNCTION 2024; 5:zqae027. [PMID: 38984978 PMCID: PMC11388097 DOI: 10.1093/function/zqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .
Collapse
Affiliation(s)
- Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Sarah Colijn
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber N Stratman
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Bertero E, Popoiu TA, Maack C. Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res Cardiol 2024; 119:569-585. [PMID: 38890208 PMCID: PMC11319510 DOI: 10.1007/s00395-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Mitochondrial calcium (Ca2+) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca2+ levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca2+ in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca2+ handling by regulating the activity of the main Ca2+ influx and efflux pathways, i.e., the mitochondrial Ca2+ uniporter and sodium/Ca2+ exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
3
|
Gao J, Ververi A, Thompson E, Tryon R, Sotiriadis A, Rouvalis F, Grange DK, Giannios C, Nichols CG. A novel ABCC9 variant in a Greek family with Cantu syndrome affecting multiple generations highlights the functional role of the SUR2B NBD1. Am J Med Genet A 2024:e63815. [PMID: 39031464 DOI: 10.1002/ajmg.a.63815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Cantu syndrome (CS) (OMIM #239850) is an autosomal dominant multiorgan system condition, associated with a characteristic facial phenotype, hypertrichosis, and multiple cardiovascular complications. CS is caused by gain-of-function (GOF) variants in KCNJ8 or ABCC9 that encode pore-forming Kir6.1 and regulatory SUR2 subunits of ATP-sensitive potassium (KATP) channels. A novel heterozygous ABCC9 variant, c.2440G>T; p.Gly814Trp, was identified in three individuals from a four generation Greek family. The membrane potential in cells stably expressing hKir6.1 and hSUR2B with p.Gly814Trp was hyperpolarized compared to cells expressing WT channels, and inside-out patch-clamp assays of KATP channels formed with hSUR2B p.Gly814Trp demonstrated a decreased sensitivity to ATP inhibition, confirming a relatively mild GOF effect of this variant. The specific location of the variant reveals an unrecognized functional role of the first glycine in the signature motif of the nucleotide binding domains in ATP-binding cassette (ABC) protein ion channels.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Athina Ververi
- Department for Genetics of Rare Diseases, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ellen Thompson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rob Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Ippokrateio Hospital, Thessaloniki, Greece
| | | | - Dorothy K Grange
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christos Giannios
- Department of Developmental Paediatrics, Naval Hospital of Athens, Athens, Greece
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Efthymiou S, Scala M, Nagaraj V, Ochenkowska K, Komdeur FL, Liang RA, Abdel-Hamid MS, Sultan T, Barøy T, Van Ghelue M, Vona B, Maroofian R, Zafar F, Alkuraya FS, Zaki MS, Severino M, Duru KC, Tryon RC, Brauteset LV, Ansari M, Hamilton M, van Haelst MM, van Haaften G, Zara F, Houlden H, Samarut É, Nichols CG, Smeland MF, McClenaghan C. Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome. Brain 2024; 147:1822-1836. [PMID: 38217872 PMCID: PMC11068106 DOI: 10.1093/brain/awae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/22/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marcello Scala
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Vini Nagaraj
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Fenne L Komdeur
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Robin A Liang
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Barbara Vona
- Institute of Human Genetics and Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children’s Hospital and Institute of Child Health, Multan, Punjab 60000, Pakistan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Lin Vigdis Brauteset
- Division of Habilitation for Children, Innlandet Hospital Sanderud, Hamar 2312, Norway
| | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Mieke M van Haelst
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center, Utrecht, 3584 CX, The Netherlands
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Marie F Smeland
- Department of Pediatric Rehabilitation, University Hospital of North Norway, 9019 Tromsø, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| |
Collapse
|
6
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
7
|
Hou T, Chen L. Sulfonylurea receptor 2 (SUR2), intricate sensors for intracellular Mg-nucleotides. Bioessays 2024; 46:e2300151. [PMID: 38227376 DOI: 10.1002/bies.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
SUR2, similar to SUR1, is a regulatory subunit of the ATP-sensitive potassium channel (KATP), which plays a key role in numerous important physiological processes and is implicated in various diseases. Recent structural studies have revealed that, like SUR1, SUR2 can undergo ligand-dependent dynamic conformational changes, transitioning between an inhibitory inward-facing conformation and an activating occluded conformation. In addition, SUR2 possesses a unique inhibitory Regulatory helix (R helix) that is absent in SUR1. The binding of the activating Mg-ADP to NBD2 of SUR2 competes with the inhibitory Mg-ATP, thereby promoting the release of the R helix and initiating the activation process. Moreover, the signal generated by Mg-ADP binding to NBD2 might be directly transmitted to the TMD of SUR2, prior to NBD dimerization. Furthermore, the C-terminal 42 residues (C42) of SUR2 might allosterically regulate the kinetics of Mg-nucleotide binding on NBD2. These distinctive properties render SUR2 intricate sensors for intracellular Mg-nucleotides.
Collapse
Affiliation(s)
- Tianyi Hou
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, Beijing, China
| |
Collapse
|
8
|
Cruz R, Tramontin AF, Oliveira AS, Caputo F, Denadai BS, Greco CC. Ischemic preconditioning increases spinal excitability and voluntary activation during maximal plantar flexion contractions in men. Scand J Med Sci Sports 2024; 34:e14591. [PMID: 38429941 DOI: 10.1111/sms.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The enigmatic benefits of acute limb ischemic preconditioning (IP) in enhancing muscle force and exercise performance have intrigued researchers. This study sought to unravel the underlying mechanisms, focusing on increased neural drive and the role of spinal excitability while excluding peripheral factors. Soleus Hoffmann (H)-reflex /M-wave recruitment curves and unpotentiated supramaximal responses were recorded before and after IP or a low-pressure control intervention. Subsequently, the twitch interpolation technique was applied during maximal voluntary contractions to assess conventional parameters of neural output. Following IP, there was an increase in both maximum normalized force and voluntary activation (VA) for the plantar flexor group, with negligible peripheral alterations. Greater benefits were observed in participants with lower VA levels. Despite greater H-reflex gains, soleus volitional (V)-wave and sEMG amplitudes remained unchanged. In conclusion, IP improves muscle force via enhanced neural drive to the muscles. This effect appears associated, at least in part, to reduced presynaptic inhibition and/or increased motoneuron excitability. Furthermore, the magnitude of the benefit is inversely proportional to the skeletal muscle's functional reserve, making it particularly noticeable in under-recruited muscles. These findings have implications for the strategic application of the IP procedure across diverse populations.
Collapse
Affiliation(s)
- Rogério Cruz
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
- Human Performance Research Group, Santa Catarina State University, Florianópolis, Brazil
| | | | | | - Fabrizio Caputo
- Human Performance Research Group, Santa Catarina State University, Florianópolis, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
| |
Collapse
|
9
|
Yang Y, Chen L. Functional dissection of KATP channel structures reveals the importance of a conserved interface. Structure 2024; 32:168-176.e2. [PMID: 38101402 DOI: 10.1016/j.str.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
ElSheikh A, Driggers CM, Shyng SL. Non-radioactive Rb + Efflux Assay for Screening K ATP Channel Modulators. Methods Mol Biol 2024; 2796:191-210. [PMID: 38856903 DOI: 10.1007/978-1-0716-3818-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt.
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
11
|
Mata-Pacheco V, Hernandez J, Varma N, Xu J, Sayers S, Le N, Wagner EJ. Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J Neuroendocrinol 2024; 36:e13357. [PMID: 38056947 DOI: 10.1111/jne.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.
Collapse
Affiliation(s)
- Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nandini Varma
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jenny Xu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Sayers
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nikki Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
12
|
You TY, Dong Q, Cui M. Emerging Links between Cerebral Blood Flow Regulation and Cognitive Decline: A Role for Brain Microvascular Pericytes. Aging Dis 2023:AD.2022.1204. [PMID: 37163446 PMCID: PMC10389833 DOI: 10.14336/ad.2022.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 05/12/2023] Open
Abstract
Cognitive impairment associated with vascular etiology has been of considerable interest in the development of dementia. Recent studies have started to uncover cerebral blood flow deficits in initiating cognitive deterioration. Brain microvascular pericytes, the only type of contractile cells in capillaries, are involved in the precise modulation of vascular hemodynamics due to their ability to regulate resistance in the capillaries. They exhibit potential in maintaining the capillary network geometry and basal vascular tone. In addition, pericytes can facilitate better blood flow supply in response to neurovascular coupling. Their dysfunction is thought to disturb cerebral blood flow causing metabolic imbalances or structural injuries, leading to consequent cognitive decline. In this review, we summarize the characteristics of microvascular pericytes in brain blood flow regulation and outline the framework of a two-hit hypothesis in cognitive decline, where we emphasize how pericytes serve as targets of cerebral blood flow dysregulation that occurs with neurological challenges, ranging from genetic factors, aging, and pathological proteins to ischemic stress.
Collapse
Affiliation(s)
- Tong-Yao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K ATP Channel Mutations in Intact Cells. J Pharmacol Exp Ther 2023; 386:298-309. [PMID: 37527933 PMCID: PMC10449099 DOI: 10.1124/jpet.123.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023] Open
Abstract
Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Conor McClenaghan
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Kenneth A Matreyek
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Dorothy K Grange
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| |
Collapse
|
14
|
Wang Z, Pan T, Shen M, Liao J, Tian Y. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection. SENSORS AND ACTUATORS B: CHEMICAL 2023; 390:134008. [DOI: 10.1016/j.snb.2023.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
15
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
16
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of human iPSC-derived vascular smooth muscle cells and cell autonomous consequences of Cantu Syndrome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547088. [PMID: 37425756 PMCID: PMC10327170 DOI: 10.1101/2023.06.29.547088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.
Collapse
|
17
|
Ding D, Hou T, Wei M, Wu JX, Chen L. The inhibition mechanism of the SUR2A-containing K ATP channel by a regulatory helix. Nat Commun 2023; 14:3608. [PMID: 37330603 PMCID: PMC10276813 DOI: 10.1038/s41467-023-39379-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
KATP channels are metabolic sensors for intracellular ATP/ADP ratios, play essential roles in many physiological processes, and are implicated in a spectrum of pathological conditions. SUR2A-containing KATP channels differ from other subtypes in their sensitivity to Mg-ADP activation. However, the underlying structural mechanism remains poorly understood. Here we present a series of cryo-EM structures of SUR2A in the presence of different combinations of Mg-nucleotides and the allosteric inhibitor repaglinide. These structures uncover regulatory helix (R helix) on the NBD1-TMD2 linker, which wedges between NBD1 and NBD2. R helix stabilizes SUR2A in the NBD-separated conformation to inhibit channel activation. The competitive binding of Mg-ADP with Mg-ATP to NBD2 mobilizes the R helix to relieve such inhibition, allowing channel activation. The structures of SUR2B in similar conditions suggest that the C-terminal 42 residues of SUR2B enhance the structural dynamics of NBD2 and facilitate the dissociation of the R helix and the binding of Mg-ADP to NBD2, promoting NBD dimerization and subsequent channel activation.
Collapse
Affiliation(s)
- Dian Ding
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Tianyi Hou
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Miao Wei
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
18
|
Maqoud F, Zizzo N, Attimonelli M, Tinelli A, Passantino G, Antonacci M, Ranieri G, Tricarico D. Immunohistochemical, pharmacovigilance, and omics analyses reveal the involvement of ATP-sensitive K + channel subunits in cancers: role in drug-disease interactions. Front Pharmacol 2023; 14:1115543. [PMID: 37180726 PMCID: PMC10167295 DOI: 10.3389/fphar.2023.1115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background: ATP-sensitive-K+ channels (KATP) are involved in diseases, but their role in cancer is poorly described. Pituitary macroadenoma has been observed in Cantu' syndrome (C.S.), which is associated with the gain-of-function mutations of the ABCC9 and KCNJ8 genes. We tested the role of the ABCC8/Sur1, ABCC9/Sur2A/B, KCNJ11/Kir6.2, and KCNJ8/Kir6.1 genes experimentally in a minoxidil-induced renal tumor in male rats and in the female canine breast cancer, a spontaneous animal model of disease, and in the pharmacovigilance and omics databases. Methods: We performed biopsies from renal tissues of male rats (N = 5) following a sub-chronic high dosing topical administration of minoxidil (0.777-77.7 mg/kg/day) and from breast tissues of female dogs for diagnosis (N = 23) that were analyzed by immunohistochemistry. Pharmacovigilance and omics data were extracted from EudraVigilance and omics databases, respectively. Results: An elevated immunohistochemical reactivity to Sur2A-mAb was detected in the cytosol of the Ki67+/G3 cells other than in the surface membrane in the minoxidil-induced renal tumor and the breast tumor samples. KCNJ11, KCNJ8, and ABCC9 genes are upregulated in cancers but ABCC8 is downregulated. The Kir6.2-Sur2A/B-channel opener minoxidil showed 23 case reports of breast cancer and one case of ovarian cancer in line with omics data reporting, respectively, and the negative and positive prognostic roles of the ABCC9 gene in these cancers. Sulfonylureas and glinides blocking the pancreatic Kir6.2-Sur1 subunits showed a higher risk for pancreatic cancer in line with the positive prognostic role of the ABCC8 gene but low risks for common cancers. Glibenclamide, repaglinide, and glimepiride show a lower cancer risk within the KATP channel blockers. The Kir6.2-Sur1 opener diazoxide shows no cancer reactions. Conclusion: An elevated expression of the Sur2A subunit was found in proliferating cells in two animal models of cancer. Immunohistochemistry/omics/pharmacovigilance data reveal the role of the Kir6.1/2-Sur2A/B subunits as a drug target in breast/renal cancers and in C.S.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology Saverio de Bellis, I.R.C.C.S. Research Hospital, Milan, Italy
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University "Aldo Moro" Bari, Bari, Italy
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Girolamo Ranieri
- Department of Interventional Radiology and Integrated Medical Oncology, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
19
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
20
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
22
|
Lemminger AK, Fiorenza M, Eibye K, Bangsbo J, Hostrup M. High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men. Antioxidants (Basel) 2022; 12:antiox12010053. [PMID: 36670915 PMCID: PMC9855150 DOI: 10.3390/antiox12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated whether high-intensity exercise training alters the effect of N-acetylcysteine (a precursor of antioxidant glutathione) on exercise-related muscle ionic shifts. We assigned 20 recreationally-active men to 6 weeks of high-intensity exercise training, comprising three weekly sessions of 4-10 × 20-s all-out bouts interspersed by 2 min recovery (SET, n = 10), or habitual lifestyle maintenance (n = 10). Before and after SET, we measured ionic shifts across the working muscle, using leg arteriovenous balance technique, during one-legged knee-extensor exercise to exhaustion with and without N-acetylcysteine infusion. Furthermore, we sampled vastus lateralis muscle biopsies for analyses of metabolites, mitochondrial respiratory function, and proteins regulating ion transport and antioxidant defense. SET lowered exercise-related H+, K+, lactate-, and Na+ shifts and enhanced exercise performance by ≈45%. While N-acetylcysteine did not affect exercise-related ionic shifts before SET, it lowered H+, HCO3-, and Na+ shifts after SET. SET enhanced muscle mitochondrial respiratory capacity and augmented the abundance of Na+/K+-ATPase subunits (α1 and β1), ATP-sensitive K+ channel subunit (Kir6.2), and monocarboxylate transporter-1, as well as superoxide dismutase-2 and glutathione peroxidase-1. Collectively, these findings demonstrate that high-intensity exercise training not only induces multiple adaptations that enhance the ability to counter exercise-related ionic shifts but also potentiates the effect of N-acetylcysteine on ionic shifts during exercise.
Collapse
|
23
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
24
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
25
|
Wdowiak K, Walkowiak J, Pietrzak R, Bazan-Woźniak A, Cielecka-Piontek J. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022; 14:nu14132647. [PMID: 35807828 PMCID: PMC9268531 DOI: 10.3390/nu14132647] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hesperidin and hesperetin are polyphenols that can be found predominantly in citrus fruits. They possess a variety of pharmacological properties such as neuroprotective and antidiabetic activity. However, the bioavailability of these compounds is limited due to low solubility and restricts their use as pro-healthy agents. This paper described the limitations resulting from the low bioavailability of the presented compounds and gathered the methods aiming at its improvement. Moreover, this work reviewed studies providing pieces of evidence for neuroprotective and antidiabetic properties of hesperidin and hesperetin as well as providing a detailed look into the significance of reported modes of action in chronic diseases. On account of a well-documented pro-healthy activity, it is important to look for ways to overcome the problem of poor bioavailability.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Aleksandra Bazan-Woźniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
26
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
27
|
Ando K, Tong L, Peng D, Vázquez-Liébanas E, Chiyoda H, He L, Liu J, Kawakami K, Mochizuki N, Fukuhara S, Grutzendler J, Betsholtz C. KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling. Dev Cell 2022; 57:1383-1399.e7. [PMID: 35588738 DOI: 10.1016/j.devcel.2022.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Loss- or gain-of-function mutations in ATP-sensitive potassium channel (K-ATP)-encoding genes, KCNJ8 and ABCC9, cause human central nervous system disorders with unknown pathogenesis. Here, using mice, zebrafish, and cell culture models, we investigated cellular and molecular causes of brain dysfunctions derived from altered K-ATP channel function. We show that genetic/chemical inhibition or activation of KCNJ8/ABCC9-containing K-ATP channel function leads to brain-selective suppression or promotion of arterial/arteriolar vascular smooth muscle cell (VSMC) differentiation, respectively. We further show that brain VSMCs develop from KCNJ8/ABCC9-containing K-ATP channel-expressing mural cell progenitor and that K-ATP channel cell autonomously regulates VSMC differentiation through modulation of intracellular Ca2+ oscillation via voltage-dependent calcium channels. Consistent with defective VSMC development, Kcnj8 knockout mice showed deficiency in vasoconstrictive capacity and neuronal-evoked vasodilation leading to local hyperemia. Our results demonstrate a role for KCNJ8/ABCC9-containing K-ATP channels in the differentiation of brain VSMC, which in turn is necessary for fine-tuning of cerebral blood flow.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden; Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan; Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka 564-8565, Japan.
| | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Elisa Vázquez-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Hirohisa Chiyoda
- Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan; Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka 564-8565, Japan
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge (MedH), Karolinska Institute, Campus Flemingsburg, Neo, Blickagången 16, 141 57 Huddinge, Sweden
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka 564-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden; Department of Medicine Huddinge (MedH), Karolinska Institute, Campus Flemingsburg, Neo, Blickagången 16, 141 57 Huddinge, Sweden.
| |
Collapse
|
28
|
Arrell DK, Park S, Yamada S, Alekseev AE, Garmany A, Jeon R, Vuckovic I, Lindor JZ, Terzic A. K ATP channel dependent heart multiome atlas. Sci Rep 2022; 12:7314. [PMID: 35513538 PMCID: PMC9072320 DOI: 10.1038/s41598-022-11323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Sungjo Park
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Satsuki Yamada
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexey E Alekseev
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - Armin Garmany
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ryounghoon Jeon
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Metabolomics Core, Mayo Clinic, Rochester, MN, USA
| | - Jelena Zlatkovic Lindor
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Zhang F, Zhou GH, An Q, Yang J, Wang YH, Zhu JQ, Jin SN, Wen JF. Decreased gene expression of K ACh and K ATP channels in hyperthyroid rabbit atria. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:145-151. [PMID: 35414842 PMCID: PMC8986473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cardiac hypertrophy is a common myocardial structural abnormality which may cause heart failure. Many studies have shown that cardiac hypertrophy can be induced by hyperthyroidism. Ligand-gated potassium channels have been reported to be involved in various biological processes in the cardiovascular system, such as GPCR coupled KACh and metabolism sensor KATP channel. It is unclear whether the gene expression of KACh and KATP was altered in hyperthyroid rabbit atria. We aimed to investigate the expression of KACh and KATP genes in rabbit atria in our experimental model. We established an effective hyperthyroidism-induced cardiac hypertrophy animal model through an injection of T4. H&E staining and RT-PCR were used to observe the histomorphological damages and alteration of gene expression. The results showed that the heart weight, heart rate significantly increased in T4-treated rabbits. The systolic pressure increased from 115.60 mmHg to 152.6 mmHg in T4-treated rabbits. The expression of KACh and KATP genes was decreased in the atria of hyperthyroidism-induced cardiac hypertrophied rabbits. These findings indicated that the decreased gene expression of KACh and KATP may be related to hyperthyroidism-induced cardiac hypertrophy and atrial fibrillation.
Collapse
Affiliation(s)
- Feng Zhang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical ScienceJinan 250117, Shandong, China
| | - Guang Hai Zhou
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical ScienceJinan 250117, Shandong, China
| | - Qi An
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical SciencesTaian 271000, Shandong, China
| | - Jie Yang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical SciencesTaian 271000, Shandong, China
| | - Yu Hao Wang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical SciencesTaian 271000, Shandong, China
| | - Jia Quan Zhu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical SciencesTaian 271000, Shandong, China
| | - Song Nan Jin
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical SciencesTaian 271000, Shandong, China
| | - Jin Fu Wen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical ScienceJinan 250117, Shandong, China
| |
Collapse
|
30
|
Bertero E, Maack C. Rethinking Mitchell's Chemiosmotic Theory: Potassium Dominates Over Proton Flux to Drive Mitochondrial F 1F o-ATP Synthase. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac012. [PMID: 35399493 PMCID: PMC8991028 DOI: 10.1093/function/zqac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany,San Martino Policlinic Hospital, University of Genova, Genova, Italy
| | | |
Collapse
|
31
|
Le Ribeuz H, Masson B, Capuano V, Dutheil M, Gooroochurn H, Boët A, Ghigna MR, De Montpreville V, Girerd B, Lambert M, Mercier O, Chung WK, Humbert M, Montani D, Antigny F. SUR1 as a New Therapeutic Target for Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2022; 66:539-554. [PMID: 35175177 DOI: 10.1165/rcmb.2021-0180oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive-potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analysed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells (hPAECs and hPASMCs) from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by 3 different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. Additionally, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still presented. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof-of-concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.
Collapse
Affiliation(s)
| | | | | | - Mary Dutheil
- INSERM U999, 130034, Le Plessis Robinson, France
| | | | - Angèle Boët
- INSERM U999, 130034, Le Plessis Robinson, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Sud / Université Paris Saclay, Le Kremlin-Bicêtre, France
| | | | - Barbara Girerd
- INSERM U999, 130034, pneumolgie, Le Plessis Robinson, France
| | - Mélanie Lambert
- INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Olaf Mercier
- INSERM U999, 130034, Thoracic Surgery , Le Plessis Robinson, France
| | - Wendy K Chung
- Departments of Pediatrics and Medicine Columbia University, New York, New York, United States
| | - Marc Humbert
- INSERM U999, 130034, Le Plessis Robinson, France
| | - David Montani
- CHU de Bicetre, Service de Pneumologie, Le Kremlin Bicetre, France.,INSERM UMRS 999, Hôpital Marie Lannelongue, Le plessis robinson, France
| | | |
Collapse
|
32
|
Singareddy SS, Roessler HI, McClenaghan C, Ikle JM, Tryon RC, van Haaften G, Nichols CG. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2021; 600:299-312. [PMID: 34820842 DOI: 10.1113/jp282157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) are hetero-octameric nucleotide-gated ion channels that couple cellular metabolism to excitability in various tissues. In the heart, KATP channels are activated during ischaemia and potentially during adrenergic stimulation. In the vasculature, they are normally active at a low level, reducing vascular tone, but the ubiquitous nature of these channels leads to complex and poorly understood channelopathies as a result of gain- or loss-of-function mutations. Zebrafish (ZF) models of these channelopathies may provide insights to the link between molecular dysfunction and complex pathophysiology, but this requires understanding the tissue dependence of channel activity and subunit specificity. Thus far, direct analysis of ZF KATP expression and functional properties has only been performed in pancreatic β-cells. Using a comprehensive combination of genetically modified fish, electrophysiology and gene expression analysis, we demonstrate that ZF cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. However, in contrast to mammalian cardiovascular KATP channels, ZF channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. The results provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome. KEY POINTS: Zebrafish cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. In contrast to mammalian cardiovascular KATP channels, zebrafish channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. We provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome.
Collapse
Affiliation(s)
- Soma S Singareddy
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Jennifer M Ikle
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
33
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
34
|
Scala R, Maqoud F, Zizzo N, Passantino G, Mele A, Camerino GM, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Consequences of SUR2[A478V] Mutation in Skeletal Muscle of Murine Model of Cantu Syndrome. Cells 2021; 10:cells10071791. [PMID: 34359961 PMCID: PMC8307364 DOI: 10.3390/cells10071791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
- Correspondence:
| |
Collapse
|
35
|
Colburn TD, Weber RE, Schulze KM, Sue Hageman K, Horn AG, Behnke BJ, Poole DC, Musch TI. Sexual dimorphism in vascular ATP-sensitive K + channel function supporting interstitial PO2 via convective and/or diffusive O 2 transport. J Physiol 2021; 599:3279-3293. [PMID: 34101850 PMCID: PMC8451062 DOI: 10.1113/jp281120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( P O 2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial P O 2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial P O 2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q ̇ m ), interstitial O2 delivery ( Q ̇ O 2 )-utilization ( V ̇ O 2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; P O 2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q ̇ m (15 μm microspheres) and P O 2 is (phosphorescence quenching), resulting from more compromised convective ( Q ̇ O 2 ) and diffusive ( D O 2 ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V ̇ O 2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q ̇ m (male: ↓31%, female: ↓35%, both P < 0.020), Q ̇ O 2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2 min-1 100 g tissue-1 , P < 0.022) and the resulting P O 2 is, with females also demonstrating a reduced D O 2 (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2 min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of P O 2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q ̇ m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.
Collapse
Affiliation(s)
- Trenton D. Colburn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E. Weber
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M. Schulze
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K. Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Andrew G. Horn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J. Behnke
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C. Poole
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I. Musch
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
36
|
Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc Natl Acad Sci U S A 2021; 118:2023749118. [PMID: 34155102 DOI: 10.1073/pnas.2023749118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rises in local neural activity trigger local increases of cerebral blood flow, which is essential to match local energy demands. However, the specific location of microvascular flow control is incompletely understood. Here, we used two-photon microscopy to observe brain microvasculature in vivo. Small spatial movement of a three-dimensional (3D) vasculature makes it challenging to precisely measure vessel diameter at a single x-y plane. To overcome this problem, we carried out four-dimensional (x-y-z-t) imaging of brain microvessels during exposure to vasoactive molecules in order to constrain the impact of brain movements on the recordings. We demonstrate that rises in synaptic activity, acetylcholine, nitric oxide, cyclic guanosine monophosphate, ATP-sensitive potassium channels, and endothelin-1 exert far greater effects on brain precapillary sphincters and first-order capillaries than on penetrating arterioles or downstream capillaries, but with similar kinetics. The high level of responsiveness at precapillary sphincters and first-order capillaries was matched by a higher level of α-smooth muscle actin in pericytes as compared to penetrating arterioles and downstream capillaries. Mathematical modeling based on 3D vasculature reconstruction showed that precapillary sphincters predominantly regulate capillary blood flow and pressure as compared to penetrating arterioles and downstream capillaries. Our results confirm a key role for precapillary sphincters and pericytes on first-order capillaries as sensors and effectors of endothelium- or brain-derived vascular signals.
Collapse
|
37
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
38
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
39
|
Structure based analysis of K ATP channel with a DEND syndrome mutation in murine skeletal muscle. Sci Rep 2021; 11:6668. [PMID: 33758250 PMCID: PMC7988048 DOI: 10.1038/s41598-021-86121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, the most severe end of neonatal diabetes mellitus, is caused by mutation in the ATP-sensitive potassium (KATP) channel. In addition to diabetes, DEND patients present muscle weakness as one of the symptoms, and although the muscle weakness is considered to originate in the brain, the pathological effects of mutated KATP channels in skeletal muscle remain elusive. Here, we describe the local effects of the KATP channel on muscle by expressing the mutation present in the KATP channels of the DEND syndrome in the murine skeletal muscle cell line C2C12 in combination with computer simulation. The present study revealed that the DEND mutation can lead to a hyperpolarized state of the muscle cell membrane, and molecular dynamics simulations based on a recently reported high-resolution structure provide an explanation as to why the mutation reduces ATP sensitivity and reveal the changes in the local interactions between ATP molecules and the channel.
Collapse
|
40
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
41
|
Geiger R, Fatima N, Schooley JF, Smyth JT, Haigney MC, Flagg TP. Novel cholesterol-dependent regulation of cardiac K ATP subunit expression revealed using histone deacetylase inhibitors. Physiol Rep 2021; 8:e14675. [PMID: 33356020 PMCID: PMC7757372 DOI: 10.14814/phy2.14675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
We recently discovered that the histone deacetylase inhibitor, trichostatin A (TSA), increases expression of the sulfonylurea receptor 2 (SUR2; Abcc9) subunit of the ATP-sensitive K+ (KATP ) channel in HL-1 cardiomyocytes. Interestingly, the increase in SUR2 was abolished with exogenous cholesterol, suggesting that cholesterol may regulate channel expression. In the present study, we tested the hypothesis that TSA increases SUR2 by depleting cholesterol and activating the sterol response element binding protein (SREBP) family of transcription factors. Treatment of HL-1 cardiomyocytes with TSA (30 ng/ml) caused a time-dependent increase in SUR2 mRNA expression that correlates with the time course of cholesterol depletion assessed by filipin staining. Consistent with the cholesterol-dependent regulation of SREBP increasing SUR2 mRNA expression, we observe a significant increase in SREBP cleavage and translocation to the nucleus following TSA treatment that is inhibited by exogenous cholesterol. Further supporting the role of SREBP in mediating the effect of TSA on KATP subunit expression, SREBP1 significantly increased luciferase reporter gene expression driven by the upstream SUR2 promoter. Lastly, HL-1 cardiomyocytes treated with the SREBP inhibitor PF429242 significantly suppresses the effect of TSA on SUR2 gene expression. These results demonstrate that SREBP is an important regulator of KATP channel expression and suggest a novel method by which hypercholesterolemia may exert negative effects on the cardiovascular system, namely, by suppressing expression of the KATP channel.
Collapse
Affiliation(s)
- Robert Geiger
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Naheed Fatima
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - James F. Schooley
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Mark C. Haigney
- Department of MedicineUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Thomas P. Flagg
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| |
Collapse
|
42
|
Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM, Zito FA, Ranieri G, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front Pharmacol 2020; 11:604885. [PMID: 33329006 PMCID: PMC7734337 DOI: 10.3389/fphar.2020.604885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa M Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
43
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
44
|
Yang M, Dart C, Kamishima T, Quayle JM. Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ 2020; 8:e10344. [PMID: 33240653 PMCID: PMC7664465 DOI: 10.7717/peerj.10344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels couple cellular metabolism to excitability, making them ideal candidate sensors for hypoxic vasodilation. However, it is still unknown whether cellular nucleotide levels are affected sufficiently to activate vascular KATP channels during hypoxia. To address this fundamental issue, we measured changes in the intracellular ATP:ADP ratio using the biosensors Perceval/PercevalHR, and membrane potential using the fluorescent probe DiBAC4(3) in human coronary artery smooth muscle cells (HCASMCs). ATP:ADP ratio was significantly reduced by exposure to hypoxia. Application of metabolic inhibitors for oxidative phosphorylation also reduced ATP:ADP ratio. Hyperpolarization caused by inhibiting oxidative phosphorylation was blocked by either 10 µM glibenclamide or 60 mM K+. Hyperpolarization caused by hypoxia was abolished by 60 mM K+ but not by individual K+ channel inhibitors. Taken together, these results suggest hypoxia causes hyperpolarization in part by modulating K+ channels in SMCs.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Institute of Integrative Biology, Liverpool, UK
| | - Tomoko Kamishima
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| | - John M. Quayle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| |
Collapse
|
45
|
York NW, Parker H, Xie Z, Tyus D, Waheed MA, Yan Z, Grange DK, Remedi MS, England SK, Hu H, Nichols CG. Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome. JCI Insight 2020; 5:141443. [PMID: 33170808 PMCID: PMC7714409 DOI: 10.1172/jci.insight.141443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cantύ Syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe one CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle, and to model the consequences of altered KATP channels in CS gut. We show that Kir6.1/SUR2 subunits underlie smooth muscle KATP channels throughout the small intestine and colon. Knock-in mice, carrying human KCNJ8 and ABCC9 CS mutations in the endogenous loci, exhibit reduced intrinsic contractility throughout the intestine, resulting in death when weaned onto solid food in the most severely affected animals. Death is avoided by weaning onto a liquid gel diet, implicating intestinal insufficiency and bowel impaction as the underlying cause, and GI transit is normalized by treatment with the KATP inhibitor glibenclamide. We thus define the molecular basis of intestinal KATP channel activity, the mechanism by which overactivity results in GI insufficiency, and a viable approach to therapy.
Collapse
Affiliation(s)
- Nathaniel W York
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Helen Parker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zili Xie
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - David Tyus
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Maham A Waheed
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zihan Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Dorothy K Grange
- Divison of Clinical Genetics, Washington University School of Medicine, St. Louis, United States of America
| | - Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
46
|
McClenaghan C, Huang Y, Yan Z, Harter TM, Halabi CM, Chalk R, Kovacs A, van Haaften G, Remedi MS, Nichols CG. Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity. J Clin Invest 2020; 130:1116-1121. [PMID: 31821173 DOI: 10.1172/jci130571] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology.,Department of Physiology
| | - Yan Huang
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology.,Department of Physiology
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases.,Division of Endocrinology, Department of Medicine, and
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology.,Department of Physiology
| | - Carmen M Halabi
- Center for the Investigation of Membrane Excitability Diseases.,Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases.,Division of Endocrinology, Department of Medicine, and
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology.,Department of Physiology
| |
Collapse
|
47
|
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, Behnke BJ, Poole DC, Musch TI. Vascular ATP-sensitive K + channels support maximal aerobic capacity and critical speed via convective and diffusive O 2 transport. J Physiol 2020; 598:4843-4858. [PMID: 32798233 PMCID: PMC7874302 DOI: 10.1113/jp280232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V ̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V ̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V ̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V ̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V ̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q ̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V ̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V ̇ O2 was reduced via impaired Q ̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
48
|
Lee SE, Kim DH, Son SM, Choi SY, You RY, Kim CH, Choi W, Kim HS, Lim YJ, Han JY, Kim HW, Yang IJ, Xu WX, Lee SJ, Kim YC, Yun HY. Physiological function and molecular composition of ATP-sensitive K + channels in human gastric smooth muscle. J Smooth Muscle Res 2020; 56:29-45. [PMID: 32581184 PMCID: PMC7324727 DOI: 10.1540/jsmr.56.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gastric motility is controlled by slow waves. In general, the activation of the
ATP-sensitive K+ (KATP) channels in the smooth muscle
opposes the membrane excitability and produces relaxation. Since metabolic
inhibition and/or diabetes mellitus are accompanied by dysfunctions of gastric
smooth muscle, we examined the possible roles of KATP channels in
human gastric motility. We used human gastric corpus and antrum smooth muscle
preparations and recorded the mechanical activities with a conventional
contractile measuring system. We also identified the subunits of the
KATP channels using Western blot. Pinacidil (10 μM), a
KATP channel opener, suppressed contractions to 30% (basal tone
to −0.2 g) of the control. The inhibitory effect of pinacidil on contraction was
reversed to 59% of the control by glibenclamide (20 μM), a KATP
channel blocker. The relaxation by pinacidil was not affected by a pretreatment
with L-arginine methyl ester, tetraethylammonium, or 4-aminopyridine. Pinacidil
also inhibited the acetylcholine (ACh)-induced tonic and phasic contractions in
a glibenclamide-sensitive manner (42% and 6% of the control, respectively).
Other KATP channel openers such as diazoxide, cromakalim and
nicorandil also inhibited the spontaneous and ACh-induced contractions.
Calcitonin gene-related peptide (CGRP), a gastric neuropeptide, induced muscle
relaxation by the activation of KATP channels in human gastric smooth
muscle. Finally, we have found with Western blot studies, that human gastric
smooth muscle expressed KATP channels which were composed of Kir 6.2
and SUR2B subunits.
Collapse
Affiliation(s)
- Sang Eok Lee
- Department of Surgery, College of Medicine, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Dae Hoon Kim
- Department of Surgery, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Seung Myeung Son
- Department of Pathology, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Song-Yi Choi
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, Chungnam 35015, Korea
| | - Ra Young You
- Department of Physiology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Chan Hyung Kim
- Department of Pharmacology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Woong Choi
- Department of Pharmacology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Hun Sik Kim
- Department of Pharmacology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Yung Ji Lim
- College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Ji Young Han
- CheongDam I Plastic surgery, 21, Sinheung-ro 240, Uijeonbu-si, Gyronggido 11651, Korea
| | - Hyun Woo Kim
- College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - In Jun Yang
- Department of Surgery, Seoul Nantional University Bundang Hospital, 166 Gumi-ro, Bundang-gu 13620, Seongnam, Korea
| | - Wen-Xie Xu
- Department of Physiology, College of Medcine, Shanghai Jiaotong University, 800 Dongchun Rd. Shanghai, 200240, P.R. China
| | - Sang Jin Lee
- Department of Physiology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Young Chul Kim
- Department of Physiology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| | - Hyo-Yung Yun
- Department of Surgery, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Korea
| |
Collapse
|
49
|
Grange DK, Roessler HI, McClenaghan C, Duran K, Shields K, Remedi MS, Knoers NVAM, Lee JM, Kirk EP, Scurr I, Smithson SF, Singh GK, van Haelst MM, Nichols CG, van Haaften G. Cantú syndrome: Findings from 74 patients in the International Cantú Syndrome Registry. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 181:658-681. [PMID: 31828977 DOI: 10.1002/ajmg.c.31753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022]
Abstract
Cantú syndrome (CS), first described in 1982, is caused by pathogenic variants in ABCC9 and KCNJ8, which encode the regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. Multiple case reports of affected individuals have described the various clinical features of CS, but systematic studies are lacking. To define the effects of genetic variants on CS phenotypes and clinical outcomes, we have developed a standardized REDCap-based registry for CS. We report phenotypic features and associated genotypes on 74 CS subjects, with confirmed ABCC9 variants in 72 of the individuals. Hypertrichosis and a characteristic facial appearance are present in all individuals. Polyhydramnios during fetal life, hyperflexibility, edema, patent ductus arteriosus (PDA), cardiomegaly, dilated aortic root, vascular tortuosity of cerebral arteries, and migraine headaches are common features, although even with this large group of subjects, there is incomplete penetrance of CS-associated features, without clear correlation to genotype.
Collapse
Affiliation(s)
- Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Karen Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kathleen Shields
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, Missouri
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Jin-Moo Lee
- Department of Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Gautam K Singh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Mieke M van Haelst
- Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Lipofundin MCT/LCT Inhibits Levcromakalim-Induced Vasodilation by Inhibiting Endothelial Nitric Oxide Release. Int J Mol Sci 2020; 21:ijms21051763. [PMID: 32143531 PMCID: PMC7084418 DOI: 10.3390/ijms21051763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to examine the effect of lipid emulsion on the vasodilation induced by ATP-sensitive potassium (KATP) channels in isolated rat aortae and the underlying mechanism. The effects of Intralipid, containing 100% long-chain fatty acids, and Lipofundin MCT/LCT, containing 50% long-chain fatty acids plus 50% medium-chain fatty acids, on the vasodilation induced by levcromakalim in endothelium-intact aorta with or without NW-nitro-L-arginine methyl ester (L-NAME) and in endothelium-denuded aorta were examined. The effects of L-arginine, L-NAME, glibenclamide, and Lipofundin MCT/LCT, alone or combined, on the levcromakalim-induced vasodilation were examined. Lipofundin MCT/LCT inhibited the levcromakalim-induced vasodilation of isolated endothelium-intact aortae, whereas Intralipid did not. In addition, Lipofundin MCT/LCT had no effect on the levcromakalim-induced vasodilation of endothelium-denuded rat aortae and endothelium-intact aortae with L-NAME. L-arginine and Lipofundin MCT/LCT produced more levcromakalim-induced vasodilation than Lipofundin MCT/LCT alone. Glibenclamide inhibited levcromakalim-induced vasodilation. Levcromakalim did not significantly alter endothelial nitric oxide synthase phosphorylation, whereas Lipofundin MCT/LCT decreased cyclic guanosine monophosphate. Lipofundin MCT/LCT did not significantly alter levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that Lipofundin MCT/LCT inhibits the vasodilation induced by levcromakalim by inhibiting basally released endothelial nitric oxide, which seems to occur through medium-chain fatty acids.
Collapse
|