1
|
Masand M, Sharma S, Kumari S, Pal P, Majeed A, Singh G, Sharma RK. High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3262-3277. [PMID: 39283816 PMCID: PMC11606428 DOI: 10.1111/pbi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.
Collapse
Affiliation(s)
- Mamta Masand
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shikha Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sangeeta Kumari
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Poonam Pal
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aasim Majeed
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Gopal Singh
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ram Kumar Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
2
|
Soto Gomez M, Brown MJM, Pironon S, Bureš P, Verde Arregoitia LD, Veselý P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E, Leitch IJ. Genome size is positively correlated with extinction risk in herbaceous angiosperms. THE NEW PHYTOLOGIST 2024; 243:2470-2485. [PMID: 39080986 DOI: 10.1111/nph.19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.
Collapse
Affiliation(s)
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petr Bureš
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | | | - Pavel Veselý
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Tammy L Elliott
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - František Zedek
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Institut Botanic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
3
|
van Mazijk R, West AG, Verboom GA, Elliott TL, Bureš P, Muasya AM. Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences. AMERICAN JOURNAL OF BOTANY 2024; 111:e16315. [PMID: 38695147 DOI: 10.1002/ajb2.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Collapse
Affiliation(s)
- Ruan van Mazijk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- C4 EcoSolutions, Tokai, Cape Town, 7945, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - G Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Tammy L Elliott
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
4
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
5
|
Huang DQ, Ma XG, Sun H. Phylogenomic analyses and chromosome ploidy identification reveal multiple cryptic species in Allium sikkimense complex (Amaryllidaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1268546. [PMID: 38239226 PMCID: PMC10794568 DOI: 10.3389/fpls.2023.1268546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Polyploidization is a process that typically leads to instantaneous reproductive isolation and has, therefore, been considered as one of the major evolutionary forces in the species-rich Hengduan Mountains (HM), yet this topic remains poorly studied in the region. Allium sikkimense and its relatives (about eight species) compose a natural diploid-polyploid complex with the highest diversity in the HM and adjacent areas. A combination of nuclear ribosomal DNA (nrDNA), plastome, transcriptome, and ploidy identification through chromosome counting and flow cytometry is employed to reconstruct the phylogenetic relationships in this complex and to investigate the frequency and the evolutionary significance of polyploidy in the complex. The plastome failed to resolve the phylogenetic relationships of the different species in the A. sikkimense complex, and the phylogenetic tree based on nrDNA also has limited resolution. However, our study reveals a well-resolved phylogenetic framework for species in the A. sikkimense complex using more than 1,000 orthologous genes from the transcriptome data. Previously recognized morphospecies A. sikkimense are non-monophyletic and comprise at least two independently evolved lineages (i.e., cryptic species), each forming a clade with different diploid species in this complex. The embedded pattern of octoploid A. jichouense and tetraploid A. sp. nov. within different polyploid samples of A. sikkimense supports a possible scenario of budding speciation (via niche divergence). Furthermore, our results reveal that co-occurring species in the A. sikkimense complex usually have different ploidy levels, suggesting that polyploidy is an important process for reproductive isolation of sympatric Allium species. Phylogenetic network analyses suggested that the phylogenetic relationships of the A. sikkimense complex, allowing for reticulation events, always fit the dataset better than a simple bifurcating tree. In addition, the included or exserted filaments, which have long been used to delimit species, are highly unreliable taxonomically due to their extensive parallel and convergent evolution.
Collapse
Affiliation(s)
- De-Qing Huang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Huang Y, Guo X, Zhang K, Mandáková T, Cheng F, Lysak MA. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:446-466. [PMID: 37428465 DOI: 10.1111/tpj.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.
Collapse
Affiliation(s)
- Yile Huang
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Xinyi Guo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
7
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
Affiliation(s)
- Mark W Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | - John G Conran
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Felipe Nollet
- Universidade Federal Rural de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Rua Manuel de Medeiros, S/N, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Paul Fletcher
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Aljaž Jakob
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Gabriel Vignolle
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Maarten J M Christenhusz
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Maria Teresa Buril
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
8
|
Tian Z, Zeng P, Lu X, Zhou T, Han Y, Peng Y, Xiao Y, Zhou B, Liu X, Zhang Y, Yu Y, Li Q, Zong H, Zhang F, Jiang H, He J, Cai J. Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. PLANT COMMUNICATIONS 2022; 3:100464. [PMID: 36303430 PMCID: PMC9700207 DOI: 10.1016/j.xplc.2022.100464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dipterocarpoideae, the largest subfamily of the Dipterocarpaceae, is a dominant component of Southeast Asian rainforests and is widely used as a source of wood, damar resin, medicine, and essential oil. However, many Dipterocarpoideae species are currently on the IUCN Red List owing to severe degradation of their habitats under global climate change and human disturbance. Genetic information regarding these taxa has only recently been reported with the sequencing of four Dipterocarp genomes, providing clues to the function and evolution of these species. Here, we report on 13 high-quality Dipterocarpoideae genome assemblies, ranging in size from 302.6 to 494.8 Mb and representing the five most species-rich genera in Dipterocarpoideae. Molecular dating analyses support the Western Gondwanaland origin of Dipterocarpaceae. Based on evolutionary analysis, we propose a three-step chromosome evolution scenario to describe the karyotypic evolution from an ancestor with six chromosomes to present-day species with 11 and 7 chromosomes. We discovered an expansion of genes encoding cellulose synthase (CesA), which is essential for cellulose biosynthesis and secondary cell-wall formation. We functionally identified five bornyl diphosphate synthase (BPPS) genes, which specifically catalyze the biosynthesis of borneol, a natural medicinal compound extracted from damar resin and oils, thus providing a basis for large-scale production of natural borneol in vitro.
Collapse
Affiliation(s)
- Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoyun Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tinggan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuwei Han
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxue Xiao
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kuming 650223, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Feining Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
9
|
Li SF, She HB, Yang LL, Lan LN, Zhang XY, Wang LY, Zhang YL, Li N, Deng CL, Qian W, Gao WJ. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Int J Mol Sci 2022; 23:ijms231710158. [PMID: 36077556 PMCID: PMC9456015 DOI: 10.3390/ijms231710158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G.pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hong-Bing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long-Long Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xin-Yu Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (W.Q.); (W.-J.G.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Correspondence: (W.Q.); (W.-J.G.)
| |
Collapse
|
10
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
11
|
Wang FG, Wang AH, Bai CK, Jin DM, Nie LY, Harris AJ, Che L, Wang JJ, Li SY, Xu L, Shen H, Gu YF, Shang H, Duan L, Zhang XC, Chen HF, Yan YH. Genome size evolution of the extant lycophytes and ferns. PLANT DIVERSITY 2022; 44:141-152. [PMID: 35505989 PMCID: PMC9043363 DOI: 10.1016/j.pld.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/11/2023]
Abstract
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
Collapse
Affiliation(s)
- Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ai-Hua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Cheng-Ke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong-Mei Jin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Li-Yun Nie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Le Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan-Juan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shi-Yu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu-Feng Gu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Life Science and Technology College, Harbin Normal University, Harbin, 150025, China
| | - Hui Shang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Corresponding author.
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Corresponding author. The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Haas M, Kono T, Macchietto M, Millas R, McGilp L, Shao M, Duquette J, Qiu Y, Hirsch CN, Kimball J. Whole-genome assembly and annotation of northern wild rice, Zizania palustris L., supports a whole-genome duplication in the Zizania genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1802-1818. [PMID: 34310794 DOI: 10.1111/tpj.15419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Zizania palustris L. (northern wild rice, NWR) is an aquatic grass native to North America that is notable for its nutritious grain. This is an important species with ecological, cultural and agricultural significance, specifically in the Great Lakes region of the USA. Using flow cytometry, we first estimated the NWR genome size to be 1.8 Gb. Using long- and short-range sequencing, Hi-C scaffolding and RNA-seq data from eight tissues, we generated an annotated whole-genome de novo assembly of NWR. The assembly was 1.29 Gb in length, highly repetitive (approx. 76.0%) and contained 46 421 putative protein-coding genes. The expansion of retrotransposons within the genome and a whole-genome duplication (WGD) after the Zizania-Oryza speciation event have both led to an increase in the genome size of NWR in comparison with Oryza sativa L. and Zizania latifolia. Both events depict a genome rapidly undergoing change over a short evolutionary time. Comparative analyses revealed the conservation of large syntenic blocks between NWR and O. sativa, which were used to identify putative seed-shattering genes. Estimates of divergence times revealed that the Zizania genus diverged from Oryza approximately 26-30 million years ago (26-30 MYA), whereas NWR and Z. latifolia diverged from one another approximately 6-8 MYA. Comparative genomics confirmed evidence of a WGD in the Zizania genus and provided support that the event occurred prior to the NWR-Z. latifolia speciation event. This genome assembly and annotation provides a valuable resource for comparative genomics in the Oryzeae tribe and provides an important resource for future conservation and breeding efforts of NWR.
Collapse
Affiliation(s)
- Matthew Haas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reneth Millas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lillian McGilp
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mingqin Shao
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jacques Duquette
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN, 55744, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jennifer Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Baiakhmetov E, Guyomar C, Shelest E, Nobis M, Gudkova PD. The first draft genome of feather grasses using SMRT sequencing and its implications in molecular studies of Stipa. Sci Rep 2021; 11:15345. [PMID: 34321531 PMCID: PMC8319324 DOI: 10.1038/s41598-021-94068-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
The Eurasian plant Stipa capillata is the most widespread species within feather grasses. Many taxa of the genus are dominants in steppe plant communities and can be used for their classification and in studies related to climate change. Moreover, some species are of economic importance mainly as fodder plants and can be used for soil remediation processes. Although large-scale molecular data has begun to appear, there is still no complete or draft genome for any Stipa species. Thus, here we present a single-molecule long-read sequencing dataset generated using the Pacific Biosciences Sequel System. A draft genome of about 1004 Mb was obtained with a contig N50 length of 351 kb. Importantly, here we report 81,224 annotated protein-coding genes, present 77,614 perfect and 58 unique imperfect SSRs, reveal the putative allopolyploid nature of S. capillata, investigate the evolutionary history of the genus, demonstrate structural heteroplasmy of the chloroplast genome and announce for the first time the mitochondrial genome in Stipa. The assembled nuclear, mitochondrial and chloroplast genomes provide a significant source of genetic data for further works on phylogeny, hybridisation and population studies within Stipa and the grass family Poaceae.
Collapse
Affiliation(s)
- Evgenii Baiakhmetov
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland. .,Research Laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., Tomsk, 634050, Russia.
| | - Cervin Guyomar
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, INRAE, University of Rennes 1, 35650, Le Rheu, France
| | - Ekaterina Shelest
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103, Leipzig, Germany.,Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland. .,Research Laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., Tomsk, 634050, Russia.
| | - Polina D Gudkova
- Research Laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., Tomsk, 634050, Russia.,Department of Biology, Altai State University, Lenin 61 Ave., Barnaul, Russia, 656049
| |
Collapse
|
14
|
Chumová Z, Záveská E, Hloušková P, Ponert J, Schmidt PA, Čertner M, Mandáková T, Trávníček P. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:511-524. [PMID: 33960537 DOI: 10.1111/tpj.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 05/21/2023]
Abstract
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Eliška Záveská
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| | | | - Jan Ponert
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, CZ-17100, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ-12844, Czech Republic
| | - Philipp-André Schmidt
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Martin Čertner
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| |
Collapse
|
15
|
Brilhante M, Roxo G, Catarino S, dos Santos P, Reyes-Betancort JA, Caujapé-Castells J, Sequeira MM, Talhinhas P, Romeiras MM. Diversification of Aeonium Species Across Macaronesian Archipelagos: Correlations Between Genome-Size Variation and Their Conservation Status. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.607338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rich endemic flora of the Macaronesian Islands places these oceanic archipelagos among the top biodiversity hotspots worldwide. The radiations that have determined the evolution of many of these insular lineages resulted in a wealth of endemic species, many of which occur in a wide range of ecological niches, but show small distribution areas in each of them. Aeonium (Crassulaceae) is the most speciose lineage in the Canary Islands (ca. 40 taxa), and as such can be considered a good model system to understand the diversification dynamics of oceanic endemic floras. The present study aims to assess the genome size variation within Aeonium distribution, i.e., the Macaronesian archipelagos of Madeira, Canaries and Cabo Verde, and analyse it together with information on distribution (i.e., geography and conservation status), taxonomy (i.e., sections), morphological traits (i.e., growth-form), geological data (i.e., island's geological age), and environmental variables (i.e., altitude, annual mean temperature, and precipitation). Based on extensive fieldwork, a cytogeographic screening of 24 Aeonium species was performed. The conservation status of these species was assessed based on IUCN criteria. 61% of the taxa were found to be threatened (4% Endangered and 57% Vulnerable). For the first time, the genome size of a comprehensive sample of Aeonium across the Macaronesian archipelagos was estimated, and considerable differences in Cx-values were found, ranging from 0.984 pg (A. dodrantale) to 2.768 pg (A. gorgoneum). An overall positive correlation between genome size and conservation status was found, with the more endangered species having the larger genomes on average. However, only slight relationships were found between genome size, morphological traits, and environmental variables. These results underscore the importance of characterizing the cytogenomic diversity and conservation status of endemic plants found in Macaronesian Islands, providing, therefore, new data to establish conservation priorities.
Collapse
|
16
|
Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, Stelmach K, Koblížková A, Doležel J, Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. THE NEW PHYTOLOGIST 2021; 229:2365-2377. [PMID: 33090498 DOI: 10.1111/nph.17003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Katarzyna Stelmach
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
17
|
Čertnerová D, Škaloud P. Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences. ANNALS OF BOTANY 2020; 126:1077-1087. [PMID: 32686820 PMCID: PMC7596369 DOI: 10.1093/aob/mcaa133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. METHODS Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. KEY RESULTS Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. CONCLUSIONS Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.
Collapse
Affiliation(s)
- Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, Benátská, Prague, Czech Republic
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská, Prague, Czech Republic
| |
Collapse
|
18
|
Meng H, Feng J, Bai T, Jian Z, Chen Y, Wu G. Genome-wide analysis of short interspersed nuclear elements provides insight into gene and genome evolution in citrus. DNA Res 2020; 27:5818487. [PMID: 32271875 PMCID: PMC7315354 DOI: 10.1093/dnares/dsaa004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous retrotransposons that are highly abundant, but not well annotated, in plant genomes. In this study, we identified 41,573 copies of SINEs in seven citrus genomes, including 11,275 full-length copies. The citrus SINEs were distributed among 12 families, with an average full-length rate of 0.27, and were dispersed throughout the chromosomes, preferentially in AT-rich areas. Approximately 18.4% of citrus SINEs were found in close proximity (≤1 kb upstream) to genes, indicating a significant enrichment of SINEs in promoter regions. Citrus SINEs promote gene and genome evolution by offering exons as well as splice sites and start and stop codons, creating novel genes and forming tandem and dispersed repeat structures. Comparative analysis of unique homologous SINE-containing loci (HSCLs) revealed chromosome rearrangements in sweet orange, pummelo, and mandarin, suggesting that unique HSCLs might be valuable for understanding chromosomal abnormalities. This study of SINEs provides us with new perspectives and new avenues by which to understand the evolution of citrus genes and genomes.
Collapse
Affiliation(s)
- Haijun Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoliang Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
19
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
20
|
Burchardt P, Buddenhagen CE, Gaeta ML, Souza MD, Marques A, Vanzela ALL. Holocentric Karyotype Evolution in Rhynchospora Is Marked by Intense Numerical, Structural, and Genome Size Changes. FRONTIERS IN PLANT SCIENCE 2020; 11:536507. [PMID: 33072141 PMCID: PMC7533669 DOI: 10.3389/fpls.2020.536507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/21/2020] [Indexed: 05/07/2023]
Abstract
Cyperaceae is a family of Monocotyledons comprised of species with holocentric chromosomes that are associated with intense dysploidy and polyploidy events. Within this family the genus Rhynchospora has recently become the focus of several studies that characterize the organization of the holocentric karyotype and genome structures. To broaden our understanding of genome evolution in this genus, representatives of Rhynchospora were studied to contrast chromosome features, C-CMA/DAPI band distribution and genome sizes. Here, we carried out a comparative analysis for 35 taxa of Rhynchospora, and generated new genome size estimates for 20 taxa. The DNA 2C-values varied up to 22-fold, from 2C = 0.51 pg to 11.32 pg, and chromosome numbers ranged from 2n = 4 to 61. At least 37% of our sampling exhibited 2n different from the basic number x = 5, and chromosome rearrangements were also observed. A large variation in C-CMA/DAPI band accumulation and distribution was observed as well. We show that genome variation in Rhynchospora is much larger than previously reported. Phylogenetic analysis showed that most taxa were grouped in clades corresponding to previously described taxonomic sections. Basic chromosome numbers are the same within every section, however, changes appeared in all the clades. Ancestral chromosome number reconstruction revealed n = 5 as the most likely ancestral complements, but n = 10 appears as a new possibility. Chromosome evolution models point to polyploidy as the major driver of chromosome evolution in Rhynchospora, followed by dysploidy. A negative correlation between chromosome size and diploid number open the discussion for holokinetic drive-based genome evolution. This study explores relationships between karyotype differentiation and genome size variation in Rhynchospora, and contrasts it against the phylogeny of this holocentric group.
Collapse
Affiliation(s)
- Paula Burchardt
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcos L. Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - Murilo D. Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- *Correspondence: André L. L. Vanzela, ; André Marques,
| | - André L. L. Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: André L. L. Vanzela, ; André Marques,
| |
Collapse
|
21
|
Silva SR, Moraes AP, Penha HA, Julião MHM, Domingues DS, Michael TP, Miranda VFO, Varani AM. The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity. Int J Mol Sci 2019; 21:E3. [PMID: 31861318 PMCID: PMC6982007 DOI: 10.3390/ijms21010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
Utricularia belongs to Lentibulariaceae, a widespread family of carnivorous plants that possess ultra-small and highly dynamic nuclear genomes. It has been shown that the Lentibulariaceae genomes have been shaped by transposable elements expansion and loss, and multiple rounds of whole-genome duplications (WGD), making the family a platform for evolutionary and comparative genomics studies. To explore the evolution of Utricularia, we estimated the chromosome number and genome size, as well as sequenced the terrestrial bladderwort Utricularia reniformis (2n = 40, 1C = 317.1-Mpb). Here, we report a high quality 304 Mb draft genome, with a scaffold NG50 of 466-Kb, a BUSCO completeness of 87.8%, and 42,582 predicted genes. Compared to the smaller and aquatic U. gibba genome (101 Mb) that has a 32% repetitive sequence, the U. reniformis genome is highly repetitive (56%). The structural differences between the two genomes are the result of distinct fractionation and rearrangements after WGD, and massive proliferation of LTR-retrotransposons. Moreover, GO enrichment analyses suggest an ongoing gene birth-death-innovation process occurring among the tandem duplicated genes, shaping the evolution of carnivory-associated functions. We also identified unique patterns of developmentally related genes that support the terrestrial life-form and body plan of U. reniformis. Collectively, our results provided additional insights into the evolution of the plastic and specialized Lentibulariaceae genomes.
Collapse
Affiliation(s)
- Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; (S.R.S.); (H.A.P.); (M.H.M.J.)
| | - Ana Paula Moraes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, Brazil;
| | - Helen A. Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; (S.R.S.); (H.A.P.); (M.H.M.J.)
| | - Maria H. M. Julião
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; (S.R.S.); (H.A.P.); (M.H.M.J.)
| | - Douglas S. Domingues
- Departamento de Botânica, Instituto de Biociências, UNESP—Universidade Estadual Paulista, Rio Claro 13506-900, Brazil;
| | | | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; (S.R.S.); (H.A.P.); (M.H.M.J.)
| |
Collapse
|
22
|
Dobeš C, Steccari I, Köstenberger S, Lompo D. Relative genome size variation in the African agroforestry tree Parkia biglobosa (Fabaceae: Caesalpinioideae) and its relation to geography, population genetics, and morphology. Genome 2019; 62:665-676. [PMID: 31306046 DOI: 10.1139/gen-2019-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variation in genome size and in chromosome number can be linked to genetic, morphological, and ecological characteristics, and thus be taxonomically significant. We screened the relative genome size (RGS) and counted the number of mitotic chromosomes in the African agroforestry tree Parkia biglobosa, a widely distributed savannah species that shows conspicuous morphological clinal variation and strong genetic structure, and tested for linkage of RGS variation to geography, leaf morphology, and population genetic variation. An improved protocol for the preparation of chromosomes was developed. The study is based on 58 individuals from 15 populations covering most of the distribution range of the species. We observed differences in RGS among individuals of up to 10.2%, with some of the individuals differing statistically in RGS from the bulk of screened individuals. Most of the RGS variation was within populations, whereas variation was unrelated to any of the tested features of the species. Those chromosome numbers that could be exactly established were invariable 2n = 2x = 26. In conclusion, there was no evidence from the karyological data for structured intraspecific taxonomic heterogeneity.
Collapse
Affiliation(s)
- Christoph Dobeš
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Irene Steccari
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Selina Köstenberger
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Djingdia Lompo
- Centre National de Semences Forestieres, 01 BP 2682, Route de Kossodo, Ouagadougou, Burkina Faso
| |
Collapse
|
23
|
Barrett CF, McKain MR, Sinn BT, Ge XJ, Zhang Y, Antonelli A, Bacon CD. Ancient Polyploidy and Genome Evolution in Palms. Genome Biol Evol 2019; 11:1501-1511. [PMID: 31028709 PMCID: PMC6535811 DOI: 10.1093/gbe/evz092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanisms of genome evolution are fundamental to our understanding of adaptation and the generation and maintenance of biodiversity, yet genome dynamics are still poorly characterized in many clades. Strong correlations between variation in genomic attributes and species diversity across the plant tree of life suggest that polyploidy or other mechanisms of genome size change confer selective advantages due to the introduction of genomic novelty. Palms (order Arecales, family Arecaceae) are diverse, widespread, and dominant in tropical ecosystems, yet little is known about genome evolution in this ecologically and economically important clade. Here, we take a phylogenetic comparative approach to investigate palm genome dynamics using genomic and transcriptomic data in combination with a recent, densely sampled, phylogenetic tree. We find conclusive evidence of a paleopolyploid event shared by the ancestor of palms but not with the sister clade, Dasypogonales. We find evidence of incremental chromosome number change in the palms as opposed to one of recurrent polyploidy. We find strong phylogenetic signal in chromosome number, but no signal in genome size, and further no correlation between the two when correcting for phylogenetic relationships. Palms thus add to a growing number of diverse, ecologically successful clades with evidence of whole-genome duplication, sister to a species-poor clade with no evidence of such an event. Disentangling the causes of genome size variation in palms moves us closer to understanding the genomic conditions facilitating adaptive radiation and ecological dominance in an evolutionarily successful, emblematic tropical clade.
Collapse
Affiliation(s)
| | | | | | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yuqu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanical Gardens Kew, Richmond, United Kingdom
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
24
|
Liu Y, El-Kassaby YA. Novel Insights into Plant Genome Evolution and Adaptation as Revealed through Transposable Elements and Non-Coding RNAs in Conifers. Genes (Basel) 2019; 10:genes10030228. [PMID: 30889931 PMCID: PMC6470726 DOI: 10.3390/genes10030228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/03/2023] Open
Abstract
Plant genomes are punctuated by repeated bouts of proliferation of transposable elements (TEs), and these mobile bursts are followed by silencing and decay of most of the newly inserted elements. As such, plant genomes reflect TE-related genome expansion and shrinkage. In general, these genome activities involve two mechanisms: small RNA-mediated epigenetic repression and long-term mutational decay and deletion, that is, genome-purging. Furthermore, the spatial relationships between TE insertions and genes are an important force in shaping gene regulatory networks, their downstream metabolic and physiological outputs, and thus their phenotypes. Such cascading regulations finally set up a fitness differential among individuals. This brief review demonstrates factual evidence that unifies most updated conceptual frameworks covering genome size, architecture, epigenetic reprogramming, and gene expression. It aims to give an overview of the impact that TEs may have on genome and adaptive evolution and to provide novel insights into addressing possible causes and consequences of intimidating genome sizes (20⁻30 Gb) in a taxonomic group, conifers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
25
|
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 2019; 10:1. [PMID: 30622655 PMCID: PMC6317226 DOI: 10.1186/s13100-018-0144-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Nina Hoštáková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| |
Collapse
|
26
|
Grover CE, Arick MA, Thrash A, Conover JL, Sanders WS, Peterson DG, Frelichowski JE, Scheffler JA, Scheffler BE, Wendel JF. Insights into the Evolution of the New World Diploid Cottons (Gossypium, Subgenus Houzingenia) Based on Genome Sequencing. Genome Biol Evol 2019; 11:53-71. [PMID: 30476109 PMCID: PMC6320677 DOI: 10.1093/gbe/evy256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
We employed phylogenomic methods to study molecular evolutionary processes and phylogeny in the geographically widely dispersed New World diploid cottons (Gossypium, subg. Houzingenia). Whole genome resequencing data (average of 33× genomic coverage) were generated to reassess the phylogenetic history of the subgenus and provide a temporal framework for its diversification. Phylogenetic analyses indicate that the subgenus likely originated following transoceanic dispersal from Africa about 6.6 Ma, but that nearly all of the biodiversity evolved following rapid diversification in the mid-Pleistocene (0.5-2.0 Ma), with multiple long-distance dispersals required to account for range expansion to Arizona, the Galapagos Islands, and Peru. Comparative analyses of cpDNAversus nuclear data indicate that this history was accompanied by several clear cases of interspecific introgression. Repetitive DNAs contribute roughly half of the total 880 Mb genome, but most transposable element families are relatively old and stable among species. In the genic fraction, pairwise synonymous mutation rates average 1% per Myr, with nonsynonymous changes being about seven times less frequent. Over 1.1 million indels were detected and phylogenetically polarized, revealing a 2-fold bias toward deletions over small insertions. We suggest that this genome down-sizing bias counteracts genome size growth by TE amplification and insertions, and helps explain the relatively small genomes that are restricted to this subgenus. Compared with the rate of nucleotide substitution, the rate of indel occurrence is much lower averaging about 17 nucleotide substitutions per indel event.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - William S Sanders
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
- Department of Computer Science & Engineering, Mississippi State University
- The Jackson Laboratory, Connecticut
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | | | | | - Brian E Scheffler
- USDA, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| |
Collapse
|
27
|
Ren L, Huang W, Cannon EKS, Bertioli DJ, Cannon SB. A Mechanism for Genome Size Reduction Following Genomic Rearrangements. Front Genet 2018; 9:454. [PMID: 30356760 PMCID: PMC6189423 DOI: 10.3389/fgene.2018.00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
The factors behind genome size evolution have been of great interest, considering that eukaryotic genomes vary in size by more than three orders of magnitude. Using a model of two wild peanut relatives, Arachis duranensis and Arachis ipaensis, in which one genome experienced large rearrangements, we find that the main determinant in genome size reduction is a set of inversions that occurred in A. duranensis, and subsequent net sequence removal in the inverted regions. We observe a general pattern in which sequence is lost more rapidly at newly distal (telomeric) regions than it is gained at newly proximal (pericentromeric) regions - resulting in net sequence loss in the inverted regions. The major driver of this process is recombination, determined by the chromosomal location. Any type of genomic rearrangement that exposes proximal regions to higher recombination rates can cause genome size reduction by this mechanism. In comparisons between A. duranensis and A. ipaensis, we find that the inversions all occurred in A. duranensis. Sequence loss in those regions was primarily due to removal of transposable elements. Illegitimate recombination is likely the major mechanism responsible for the sequence removal, rather than unequal intrastrand recombination. We also measure the relative rate of genome size reduction in these two Arachis diploids. We also test our model in other plant species and find that it applies in all cases examined, suggesting our model is widely applicable.
Collapse
Affiliation(s)
- Longhui Ren
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States
| | - Wei Huang
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States.,Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Ethalinda K S Cannon
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States.,Department of Computer Science, Iowa State University, Ames, IA, United States
| | - David J Bertioli
- Institute of Biological Sciences, University of Brasiìlia, Brasiìlia, Brazil.,Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
28
|
de Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. ANNALS OF BOTANY 2018; 122:279-290. [PMID: 30084890 PMCID: PMC6070107 DOI: 10.1093/aob/mcy066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Long terminal repeat-retrotransposons (LTR-RTs) comprise a large portion of plant genomes, with massive repeat blocks distributed across the chromosomes. Eleocharis species have holocentric chromosomes, and show a positive correlation between chromosome numbers and the amount of nuclear DNA. To evaluate the role of LTR-RTs in karyotype diversity in members of Eleocharis (subgenus Eleocharis), the occurrence and location of different members of the Copia and Gypsy superfamilies were compared, covering interspecific variations in ploidy levels (considering chromosome numbers), DNA C-values and chromosomal arrangements. METHODS The DNA C-value was estimated by flow cytometry. Genomes of Eleocharis elegans and E. geniculata were partially sequenced using Illumina MiSeq assemblies, which were a source for searching for conserved proteins of LTR-RTs. POL domains were used for recognition, comparing families and for probe production, considering different families of Copia and Gypsy superfamilies. Probes were obtained by PCR and used in fluorescence in situ hybridization (FISH) against chromosomes of seven Eleocharis species. KEY RESULTS A positive correlation between ploidy levels and the amount of nuclear DNA was observed, but with significant variations between samples with the same ploidy levels, associated with repetitive DNA fractions. LTR-RTs were abundant in E. elegans and E. geniculata genomes, with a predominance of Copia Sirevirus and Gypsy Athila/Tat clades. FISH using LTR-RT probes exhibited scattered and clustered signals, but with differences in the chromosomal locations of Copia and Gypsy. The diversity in LTR-RT locations suggests that there is no typical chromosomal distribution pattern for retrotransposons in holocentric chromosomes, except the CRM family with signals distributed along chromatids. CONCLUSIONS These data indicate independent fates for each LTR-RT family, including accumulation between and within chromosomes and genomes. Differential activity and small changes in LTR-RTs suggest a secondary role in nuclear DNA variation, when compared with ploidy changes.
Collapse
Affiliation(s)
- Thaíssa B de Souza
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Lucas Johnen
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - André L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
29
|
Unruh SA, McKain MR, Lee YI, Yukawa T, McCormick MK, Shefferson RP, Smithson A, Leebens-Mack JH, Pires JC. Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). AMERICAN JOURNAL OF BOTANY 2018; 105:631-640. [PMID: 29608785 DOI: 10.1002/ajb2.1047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The slipper orchids (Cypripedioideae) are a morphologically distinct subfamily of Orchidaceae. They also have some of the largest genomes in the orchids, which may be due to polyploidy or some other mechanism of genome evolution. We generated 10 transcriptomes and incorporated existing RNA-seq data to infer a multilocus nuclear phylogeny of the Cypripedioideae and to determine whether a whole-genome duplication event (WGD) correlated with the large genome size of this subfamily. Knowing more about timing of ancient polyploidy events can help us understand the evolution of one of the most species-rich plant families. METHODS Transcriptome data were used to identify low-copy orthologous genes to infer a phylogeny of Orchidaceae and to identify paralogs to place any WGD events on the species tree. KEY RESULTS Our transcriptome phylogeny confirmed relationships published in previous studies that used fewer markers but incorporated more taxa. We did not find a WGD event at the base of the slipper orchids; however, we did identify one on the Orchidaceae stem lineage. We also confirmed the presence of a previously identified WGD event deeper in the monocot phylogeny. CONCLUSIONS Although WGD has played a role in the evolution of Orchidaceae, polyploidy does not appear to be responsible for the large genome size of slipper orchids. The conserved set of 775 largely single-copy nuclear genes identified in this study should prove useful in future studies of orchid evolution.
Collapse
Affiliation(s)
- Sarah A Unruh
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Yung-I Lee
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Science Museum, Amakubo, Tsukuba, 305-0005, Japan
| | | | - Richard P Shefferson
- Organization for Programs on Environmental Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Ann Smithson
- Smithson Environmental Consultancy & DNALabs Environmental Genetics Testing, Bassendean, Western Australia, 6054
| | | | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
30
|
Kalinka A, Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). PLANTA 2018; 247:807-829. [PMID: 29234880 PMCID: PMC5856900 DOI: 10.1007/s00425-017-2827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 06/01/2023]
Abstract
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
31
|
Kalinka A, Achrem M, Poter P. The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L. PeerJ 2017; 5:e2889. [PMID: 28149679 PMCID: PMC5267573 DOI: 10.7717/peerj.2889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Methylation of cytosine in DNA is one of the most important epigenetic modifications in eukaryotes and plays a crucial role in the regulation of gene activity and the maintenance of genomic integrity. DNA methylation and other epigenetic mechanisms affect the development, differentiation or the response of plants to biotic and abiotic stress. This study compared the level of methylation of cytosines on a global (ELISA) and genomic scale (MSAP) between the species of the genus Secale. We analyzed whether the interspecific variation of cytosine methylation was associated with the size of the genome (C-value) and the content of telomeric heterochromatin. MSAP analysis showed that S. sylvestre was the most distinct species among the studied rye taxa; however, the results clearly indicated that these differences were not statistically significant. The total methylation level of the studied loci was very similar in all taxa and ranged from 60% in S. strictum ssp. africanum to 66% in S. cereale ssp. segetale, which confirmed the lack of significant differences in the sequence methylation pattern between the pairs of rye taxa. The level of global cytosine methylation in the DNA was not significantly associated with the content of t-heterochromatin and did not overlap with the existing taxonomic rye relationships. The highest content of 5-methylcytosine was found in S. cereale ssp. segetale (83%), while very low in S. strictum ssp. strictum (53%), which was significantly different from the methylation state of all taxa, except for S. sylvestre. The other studied taxa of rye had a similar level of methylated cytosine ranging from 66.42% (S. vavilovii) to 74.41% in (S. cereale ssp. afghanicum). The results obtained in this study are evidence that the percentage of methylated cytosine cannot be inferred solely based on the genome size or t-heterochromatin. This is a significantly more complex issue.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Paulina Poter
- Department of Cell Biology, Faculty of Biology, University of Szczecin , Szczecin , Poland
| |
Collapse
|
32
|
Hoshi Y, Azumatani M, Suyama C, Adamec L. Determination of Ploidy Level and Nuclear DNA Content in the Droseraceae by Flow Cytometry. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yoshikazu Hoshi
- Department of Plant Science, School of Agriculture, Tokai University
| | | | - Chika Suyama
- Science Education (Biology), Faculty of Education, Gifu University
| | - Lubomίr Adamec
- Section of Plant Ecology, Institute of Botany of the Czech Academy of Sciences
| |
Collapse
|
33
|
Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. Testing the link between genome size and growth rate in maize. PeerJ 2016; 4:e2408. [PMID: 27651994 PMCID: PMC5018661 DOI: 10.7717/peerj.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022] Open
Abstract
Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LERmax) as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LERmax and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LERmax followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LERmax and GS exhibited a significantly negative correlation (r = − 0.27). However, this correlation was driven by among-group variation rather than within-group variation—it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.
Collapse
Affiliation(s)
- Maud I Tenaillon
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Domenica Manicacci
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Stéphane D Nicolas
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Francois Tardieu
- Ecophysiologie des Plantes sous Stress Environnementaux, INRA , Montpellier , France
| | - Claude Welcker
- Ecophysiologie des Plantes sous Stress Environnementaux, INRA , Montpellier , France
| |
Collapse
|
34
|
Gion JM, Hudson CJ, Lesur I, Vaillancourt RE, Potts BM, Freeman JS. Genome-wide variation in recombination rate in Eucalyptus. BMC Genomics 2016; 17:590. [PMID: 27507140 PMCID: PMC4979139 DOI: 10.1186/s12864-016-2884-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Results Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = −0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = −0.75). Conclusions The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst chromosomes in recombination rates appear stable across Eucalyptus species. Together with the strong correlations between recombination rate and features of the Eucalyptus reference genome, we maintain these findings provide further evidence for a broad conservation of genome architecture across the globally significant lineages of Eucalyptus.
Collapse
Affiliation(s)
| | - Corey J Hudson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,Present address: Tasmanian Alkaloids, P.O. Box 130, Westbury, TAS, 7303, Australia
| | | | - René E Vaillancourt
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Jules S Freeman
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
35
|
Liu Y, Peng R, Liu F, Wang X, Cui X, Zhou Z, Wang C, Cai X, Wang Y, Lin Z, Wang K. A Gossypium BAC clone contains key repeat components distinguishing sub-genome of allotetraploidy cottons. Mol Cytogenet 2016; 9:27. [PMID: 27006694 PMCID: PMC4802715 DOI: 10.1186/s13039-016-0235-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
Background Dissecting genome organization is indispensable for further functional and applied studies. As genome sequences data shown, cotton genomes contain more than 60 % repetitive sequences, so study on repetitive sequences composition, structure, and distribution is the key step to dissect cotton genome. Results In this study, a bacterial artificial chromosome (BAC) clone enriched in repetitive sequences, was discovered initiatively by fluorescence in situ hybridization (FISH). FISHing with allotetraploidy cotton as target DNA, dispersed signals on most regions of all A sub-genome chromosomes, and only middle regions of all D sub-genome chromosomes were detected. Further FISHing with other cotton species bearing A or D genome as target DNA, specific signals were viewed. After BAC sequencing and bioinformational analysis, 129 repeat elements, size about 57,172 bp were found, accounting for more than 62 % of the BAC sequence (91,238 bp). Among them, a type of long terminal repeat-retrotransposon (LTR-RT), LTR/Gypsy was the key element causing the specific FISH results. Using the fragments of BAC matching with the identified Gypsy-like LTR as probes, the BAC-57I23-like FISH signals were reappeared. Running BLASTN, the fragments had good match with all chromosomes of G. arboreum (A2) genome and A sub-genome of G. hirsutum (AD1), and had relatively inferior match with all chromosomes of D sub-genome of AD1, but had little match with the chromosomes of G. raimondii (D5) genome, which was consistent with the FISH results. Conclusion A repeats-enriched cytogenetic marker to identify A and D sub-genomes of Gossypium was discovered by FISH. Combined sequences analysis with FISH verification, the assembly quality of repetitive sequences in the allotetraploidy cotton draft genome was assessed, and better chromosome belonging was verified. We also found the genomic distribution of the identified Gypsy-LTR-RT was similar to the distribution of heterochromatin. The expansion of this type of Gypsy-LTR-RT in heterochromatic regions may be one of the major reasons for the size gap between A and D genome. The findings showed here will help to understand the composition, structure, and evolution of cotton genome, and contribute to the further perfection of the draft genomes of cotton.
Collapse
Affiliation(s)
- Yuling Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China ; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Renhai Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China ; Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xinglei Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Chunying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| |
Collapse
|
36
|
Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA. Genome size variation in the genus Avena. Genome 2016; 59:209-20. [PMID: 26881940 DOI: 10.1139/gen-2015-0132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.
Collapse
Affiliation(s)
- Honghai Yan
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada.,b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Sara L Martin
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Wubishet A Bekele
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Robert G Latta
- c Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Axel Diederichsen
- d Agriculture and Agri-Food Canada, Plant Gene Resources of Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Yuanying Peng
- b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Nicholas A Tinker
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
37
|
Realini MF, Poggio L, Cámara-Hernández J, González GE. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AOB PLANTS 2015; 8:plv138. [PMID: 26644343 PMCID: PMC4742330 DOI: 10.1093/aobpla/plv138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/07/2015] [Indexed: 05/15/2023]
Abstract
Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin.
Collapse
Affiliation(s)
- María Florencia Realini
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julián Cámara-Hernández
- Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
38
|
Kelly LJ, Renny‐Byfield S, Pellicer J, Macas J, Novák P, Neumann P, Lysak MA, Day PD, Berger M, Fay MF, Nichols RA, Leitch AR, Leitch IJ. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. THE NEW PHYTOLOGIST 2015; 208:596-607. [PMID: 26061193 PMCID: PMC4744688 DOI: 10.1111/nph.13471] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.
Collapse
Affiliation(s)
- Laura J. Kelly
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
| | - Simon Renny‐Byfield
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
- Department of Plant SciencesUniversity of California DavisDavisCA95616USA
| | - Jaume Pellicer
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
| | - Jiří Macas
- Biology Centre CASInstitute of Plant Molecular BiologyCZ‐37005České BudějoviceCzech Republic
| | - Petr Novák
- Biology Centre CASInstitute of Plant Molecular BiologyCZ‐37005České BudějoviceCzech Republic
| | - Pavel Neumann
- Biology Centre CASInstitute of Plant Molecular BiologyCZ‐37005České BudějoviceCzech Republic
| | - Martin A. Lysak
- Plant Cytogenomics Research GroupCEITEC – Central European Institute of TechnologyMasaryk UniversityKamenice 5CZ‐62500BrnoCzech Republic
| | - Peter D. Day
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
| | - Madeleine Berger
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
- School of Biological and Biomedical SciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
- Rothamsted ResearchWest CommonHarpendenHertfordshireAL5 2JQUK
| | - Michael F. Fay
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Ilia J. Leitch
- Jodrell LaboratoryRoyal Botanic GardensKewRichmondTW9 3DSUK
| |
Collapse
|
39
|
Ma L, Hatlen A, Kelly LJ, Becher H, Wang W, Kovarik A, Leitch IJ, Leitch AR. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biol Evol 2015; 7:2648-62. [PMID: 26338185 PMCID: PMC4607528 DOI: 10.1093/gbe/evv171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.
Collapse
Affiliation(s)
- Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Andrea Hatlen
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| |
Collapse
|
40
|
Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. THE NEW PHYTOLOGIST 2015; 206:381-396. [PMID: 25441621 PMCID: PMC4342287 DOI: 10.1111/nph.13188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 05/10/2023]
Abstract
The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Facultad de Ciencias Exactas y Naturales and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo & IBAM-CONICET, Chacras de Coria, 5500, Mendoza, Argentina
| | - Mikhajlo K Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
41
|
Bromham L, Hua X, Lanfear R, Cowman PF. Exploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants. Am Nat 2015; 185:507-24. [PMID: 25811085 DOI: 10.1086/680052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonymous substitution rate is correlated among genes from the mitochondrial, chloroplast, and nuclear genomes and linked to differences in traits among families (average height and genome size). Within each genome, synonymous rates are correlated to nonsynonymous substitution rates, suggesting that increasing the mutation rate results in a faster rate of genome evolution. Substitution rates are correlated with species richness in protein-coding sequences from the chloroplast and nuclear genomes. These data suggest that species traits contribute to lineage-specific differences in the mutation rate that drive both synonymous and nonsynonymous rates of change across all three genomes, which in turn contribute to greater rates of divergence between populations, generating higher rates of diversification. These observations link mutation in individuals to population-level processes and to patterns of lineage divergence.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
42
|
Alonso C, Pérez R, Bazaga P, Herrera CM. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet 2015; 6:4. [PMID: 25688257 PMCID: PMC4310347 DOI: 10.3389/fgene.2015.00004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/07/2015] [Indexed: 01/17/2023] Open
Abstract
DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.
Collapse
Affiliation(s)
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, CSIC Sevilla, Spain
| | | |
Collapse
|
43
|
Becher H, Ma L, Kelly LJ, Kovarik A, Leitch IJ, Leitch AR. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of Fritillaria imperialis L. (Liliaceae), a species with a giant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:823-33. [PMID: 25230921 DOI: 10.1111/tpj.12673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 05/25/2023]
Abstract
Endogenous pararetroviral sequences are the most commonly found virus sequences integrated into angiosperm genomes. We describe an endogenous pararetrovirus (EPRV) repeat in Fritillaria imperialis, a species that is under study as a result of its exceptionally large genome (1C = 42 096 Mbp, approximately 240 times bigger than Arabidopsis thaliana). The repeat (FriEPRV) was identified from Illumina reads using the RepeatExplorer pipeline, and exists in a complex genomic organization at the centromere of most, or all, chromosomes. The repeat was reconstructed into three consensus sequences that formed three interconnected loops, one of which carries sequence motifs expected of an EPRV (including the gag and pol domains). FriEPRV shows sequence similarity to members of the Caulimoviridae pararetrovirus family, with phylogenetic analysis indicating a close relationship to Petuvirus. It is possible that no complete EPRV sequence exists, although our data suggest an abundance that exceeds the genome size of Arabidopsis. Analysis of single nucleotide polymorphisms revealed elevated levels of C→T and G→A transitions, consistent with deamination of methylated cytosine. Bisulphite sequencing revealed high levels of methylation at CG and CHG motifs (up to 100%), and 15-20% methylation, on average, at CHH motifs. FriEPRV's centromeric location may suggest targeted insertion, perhaps associated with meiotic drive. We observed an abundance of 24 nt small RNAs that specifically target FriEPRV, potentially providing a signature of RNA-dependent DNA methylation. Such signatures of epigenetic regulation suggest that the huge genome of F. imperialis has not arisen as a consequence of a catastrophic breakdown in the regulation of repeat amplification.
Collapse
Affiliation(s)
- Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
44
|
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, Tichý L, Grulich V, Rotreklová O. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A 2014; 111:E4096-102. [PMID: 25225383 PMCID: PMC4191780 DOI: 10.1073/pnas.1321152111] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genomic DNA base composition (GC content) is predicted to significantly affect genome functioning and species ecology. Although several hypotheses have been put forward to address the biological impact of GC content variation in microbial and vertebrate organisms, the biological significance of GC content diversity in plants remains unclear because of a lack of sufficiently robust genomic data. Using flow cytometry, we report genomic GC contents for 239 species representing 70 of 78 monocot families and compare them with genomic characters, a suite of life history traits and climatic niche data using phylogeny-based statistics. GC content of monocots varied between 33.6% and 48.9%, with several groups exceeding the GC content known for any other vascular plant group, highlighting their unusual genome architecture and organization. GC content showed a quadratic relationship with genome size, with the decreases in GC content in larger genomes possibly being a consequence of the higher biochemical costs of GC base synthesis. Dramatic decreases in GC content were observed in species with holocentric chromosomes, whereas increased GC content was documented in species able to grow in seasonally cold and/or dry climates, possibly indicating an advantage of GC-rich DNA during cell freezing and desiccation. We also show that genomic adaptations associated with changing GC content might have played a significant role in the evolution of the Earth's contemporary biota, such as the rise of grass-dominated biomes during the mid-Tertiary. One of the major selective advantages of GC-rich DNA is hypothesized to be facilitating more complex gene regulation.
Collapse
Affiliation(s)
- Petr Šmarda
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic;
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW93DS, United Kingdom
| | - Ladislav Mucina
- School of Plant Biology, University of Western Australia, Perth, WA 6009, Australia; Centre for Geographic Analysis, Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch 7600, South Africa; and
| | - Ettore Pacini
- Department of Life Sciences, Siena University, 53100 Siena, Italy
| | - Lubomír Tichý
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Vít Grulich
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Olga Rotreklová
- Department of Botany and Zoology, Masaryk University, CZ-61137 Brno, Czech Republic
| |
Collapse
|
45
|
Burgess MB, Cushman KR, Doucette ET, Talent N, Frye CT, Campbell CS. Effects of apomixis and polyploidy on diversification and geographic distribution in Amelanchier (Rosaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1375-87. [PMID: 25156985 DOI: 10.3732/ajb.1400113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Amelanchier polyploid apomicts differ from sexual diploids in their more complex diversification, greater species problems, and geographic distribution. To understand these differences, we investigated the occurrence of polyploidy and frequency of apomixis. This research helps clarify species delimitation in an evolutionarily complex genus.• METHODS We used flow cytometry to estimate genome size of 1355 plants. We estimated the frequency of apomixis from flow-cytometrically determined ploidy levels of embryo and endosperm and from a progeny study using RAPD markers. We explored relationships of triploids to other ploidy levels and of ploidy levels to latitude plus elevation.• KEY RESULTS Diploids (32% of sample) and tetraploids (62%) were widespread. Triploids (6%) mostly occurred in small numbers with diploids from two or more species or with diploids and tetraploids. Seeds from diploids were 2% apomictic, the first report of apomixis in Amelanchier diploids. Seeds from triploids were 75% apomictic. We documented potential triploid bridge and triploid block from unbalanced endosperm and low pollen viability. Seeds from tetraploids were 97% apomictic, and tetraploids often formed microspecies. We did not find strong evidence for geographical parthenogenesis in North American Amelanchier. Most currently recognized species contained multiple ploidy levels that were morphologically semicryptic.• CONCLUSIONS Documentation of numerous transitions from diploidy to polyploidy helps clarify diversification, geographic distribution, and the species problem in Amelanchier. Despite the infrequent occurrence of triploids, their retention of 25% sexuality and capacity for triploid bridge may be important steps between sexual diploids and predominantly apomictic tetraploids.
Collapse
Affiliation(s)
- Michael B Burgess
- Department of Biological Sciences, State University of New York, Plattsburgh, Plattsburgh, New York 12901 USA
| | - Kevin R Cushman
- School of Biology and Ecology, University of Maine, Orono, Maine 04469 USA
| | - Eric T Doucette
- School of Biology and Ecology, University of Maine, Orono, Maine 04469 USA
| | - Nadia Talent
- Royal Ontario Museum, Department of Natural History, 100 Queen's Park, Toronto, M5S 2C6, Canada
| | - Christopher T Frye
- Maryland Department of Natural Resources, Natural Heritage Program, 909 Wye Mills Road, Wye Mills, Maryland 21679 USA
| | | |
Collapse
|
46
|
Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. THE NEW PHYTOLOGIST 2014; 203:22-8. [PMID: 24661198 DOI: 10.1111/nph.12790] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Adam Veleba
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
| | | | | | | | | | | |
Collapse
|
47
|
Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 2014; 75:24-40. [DOI: 10.1016/j.ympev.2014.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
|
48
|
Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. THE NEW PHYTOLOGIST 2014; 201:1484-1497. [PMID: 24299166 DOI: 10.1111/nph.12617] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/30/2013] [Indexed: 05/22/2023]
Abstract
• Since the occurrence of giant genomes in angiosperms is restricted to just a few lineages, identifying where shifts towards genome obesity have occurred is essential for understanding the evolutionary mechanisms triggering this process. • Genome sizes were assessed using flow cytometry in 79 species and new chromosome numbers were obtained. Phylogenetically based statistical methods were applied to infer ancestral character reconstructions of chromosome numbers and nuclear DNA contents. • Melanthiaceae are the most diverse family in terms of genome size, with C-values ranging more than 230-fold. Our data confirmed that giant genomes are restricted to tribe Parideae, with most extant species in the family characterized by small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor (MRCA) for the family had a relatively small genome (1C = 5.37 pg). Chromosome losses and polyploidy are recovered as the main evolutionary mechanisms generating chromosome number change. • Genome evolution in Melanthiaceae has been characterized by a trend towards genome size reduction, with just one episode of dramatic DNA accumulation in Parideae. Such extreme contrasting profiles of genome size evolution illustrate the key role of transposable elements and chromosome rearrangements in driving the evolution of plant genomes.
Collapse
Affiliation(s)
- Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Wendy B Zomlefer
- Department of Plant Biology, 2502 Plant Sciences, University of Georgia, Athens, GA, 30602-7271, USA
| | - Michael F Fay
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
49
|
Lomax BH, Hilton J, Bateman RM, Upchurch GR, Lake JA, Leitch IJ, Cromwell A, Knight CA. Reconstructing relative genome size of vascular plants through geological time. THE NEW PHYTOLOGIST 2014; 201:636-644. [PMID: 24117890 DOI: 10.1111/nph.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/22/2013] [Indexed: 06/02/2023]
Abstract
The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants.
Collapse
Affiliation(s)
- Barry H Lomax
- Division of Agricultural and Environmental Sciences, The School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Jason Hilton
- School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard M Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Garland R Upchurch
- Department of Biology, Texas State University San Marcos, San Marcos, TX, 78666, USA
| | - Janice A Lake
- Division of Agricultural and Environmental Sciences, The School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Avery Cromwell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Charles A Knight
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| |
Collapse
|
50
|
Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing. G3-GENES GENOMES GENETICS 2013; 3:1809-18. [PMID: 23979935 PMCID: PMC3789805 DOI: 10.1534/g3.113.007229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium raimondii) genomes. We conducted a comparative analysis using deep re-sequencing of multiple accessions of each diploid species and identified 24 million SNPs between the A-diploid and D-diploid genomes. These analyses facilitated the construction of a robust index of conserved SNPs between the A-genomes and D-genomes at all detected polymorphic loci. This index is widely applicable for read mapping efforts of other diploid and allopolyploid Gossypium accessions. Further analysis also revealed locations of putative duplications and deletions in the A-genome relative to the D-genome reference sequence. The approximately 25,400 deleted regions included more than 50% deletion of 978 genes, including many involved with starch synthesis. In the polyploid genome, we also detected 1,472 conversion events between homoeologous chromosomes, including events that overlapped 113 genes. Continued characterization of the Gossypium genomes will further enhance our ability to manipulate fiber and agronomic production of cotton.
Collapse
|