1
|
Sani A, Abdullahi IL, Khan MI, Cao C. Analyses of oxidative DNA damage among coal vendors via single cell gel electrophoresis and quantification of 8-hydroxy-2'-deoxyguanosine. Mol Cell Biochem 2024; 479:2291-2306. [PMID: 37594629 DOI: 10.1007/s11010-023-04826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 μm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 μm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.
Collapse
Affiliation(s)
- Ali Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria.
| | - Ibrahim Lawal Abdullahi
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria
| | - Muhammad Idrees Khan
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - ChengXi Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
2
|
Baeza-Morales A, Medina-García M, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, López-Jaén AB, Martínez-Espinosa RM, Sempere-Ortells JM. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1060. [PMID: 39334719 PMCID: PMC11428676 DOI: 10.3390/antiox13091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Collapse
Affiliation(s)
- Andrés Baeza-Morales
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Miguel Medina-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Pascual Martínez-Peinado
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Sandra Pascual-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Carolina Pujalte-Satorre
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Ana Belén López-Jaén
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - José Miguel Sempere-Ortells
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| |
Collapse
|
3
|
Ferdosnejad K, Zamani MS, Soroush E, Fateh A, Siadat SD, Tarashi S. Tuberculosis and lung cancer: metabolic pathways play a key role. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38305273 DOI: 10.1080/15257770.2024.2308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Despite the fact that some cases of tuberculosis (TB) are undiagnosed and untreated, it remains a serious global public health issue. In the diagnosis, treatment, and control of latent and active TB, there may be a lack of effectiveness. An understanding of metabolic pathways can be fundamental to treat latent TB infection and active TB disease. Rather than targeting Mycobacterium tuberculosis, the control strategies aim to strengthen host responses to infection and reduce chronic inflammation by effectively enhancing host resistance to infection. The pathogenesis and progression of TB are linked to several metabolites and metabolic pathways, and they are potential targets for host-directed therapies. Additionally, metabolic pathways can contribute to the progression of lung cancer in patients with latent or active TB. A comprehensive metabolic pathway analysis is conducted to highlight lung cancer development in latent and active TB. The current study aimed to emphasize the association between metabolic pathways of tumor development in patients with latent and active TB. Health control programs around the world are compromised by TB and lung cancer due to their special epidemiological and clinical characteristics. Therefore, presenting the importance of lung cancer progression through metabolic pathways occurring upon TB infection can open new doors to improving control of TB infection and active TB disease while stressing that further evaluations are required to uncover this correlation.
Collapse
Affiliation(s)
| | | | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Dong Y, Wu X, Xu C, Hameed Y, Abdel-Maksoud MA, Almanaa TN, Kotob MH, Al-Qahtani WH, Mahmoud AM, Cho WC, Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging (Albany NY) 2024; 16:2591-2616. [PMID: 38305808 PMCID: PMC10911378 DOI: 10.18632/aging.205499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Mounting studies indicate that oxidative stress (OS) significantly contributes to tumor progression. Our study focused on bladder urothelial cancer (BLCA), an escalating malignancy worldwide that is growing rapidly. Our objective was to verify the predictive precision of genes associated with overall survival (OS) by constructing a model that forecasts outcomes for bladder cancer and evaluates the prognostic importance of these genetic markers. METHODS Transcriptomic data were obtained from TCGA-BLCA and GSE31684, which are components of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. To delineate distinct molecular subtypes, we employed the non-negative matrix factorization (NMF)method. The significance of OS-associated genes in predicting outcomes was assessed using lasso regression, multivariate Cox analysis, and univariate Cox regression analysis. For external validation, we employed the GSE31684 dataset. CIBERSORT was utilized to examine the tumor immune microenvironment (TIME). A nomogram was created and verified using calibration and receiver operating characteristic (ROC) curves, which are based on risk signatures. We examined variations in clinical characteristics and tumor mutational burden (TMB) among groups classified as high-risk and low-risk. To evaluate the potential of immunotherapy, the immune phenomenon score (IPS) was computed based on the risk score. In the end, the pRRophetic algorithm was employed to forecast the IC50 values of chemotherapy medications. RESULTS In our research, we examined the expression of 275 genes associated with OS in 19 healthy and 414 cancerous tissues of the bladder obtained from the TCGA database. As a result, a new risk signature was created that includes 4 genes associated with OS (RBPMS, CRYAB, P4HB, and PDGFRA). We found two separate groups, C1 and C2, that showed notable variations in immune cells and stromal score. According to the Kaplan-Meier analysis, patients classified as high-risk experienced a considerably reduced overall survival in comparison to those categorized as low-risk (P<0.001). The predictive capability of the model was indicated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve surpassing 0.6. Our model showed consistent distribution of samples from both the GEO database and TCGA data. Both the univariate and multivariate Cox regression analyses validated the importance of the risk score in relation to overall survival (P < 0.001). According to our research, patients with a lower risk profile may experience greater advantages from using a CTLA4 inhibitor, whereas patients with a higher risk profile demonstrated a higher level of responsiveness to Paclitaxel and Cisplatin. In addition, methotrexate exhibited a more positive outcome in patients with low risk compared to those with high risk. CONCLUSIONS Our research introduces a novel model associated with OS gene signature in bladder cancer, which uncovers unique survival results. This model can assist in tailoring personalized treatment approaches and enhancing patient therapeutic effect in the management of bladder cancer.
Collapse
Affiliation(s)
- Ying Dong
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaoqing Wu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yasir Hameed
- Department of Biochemistry, Biotechnology, The Islamia University of Bahawalpur, Pakistan
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Taghreed N. Almanaa
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
6
|
Grębowski R, Saluk J, Bijak M, Szemraj J, Wigner-Jeziorska P. The role of SOD2 and NOS2 genes in the molecular aspect of bladder cancer pathophysiology. Sci Rep 2023; 13:14491. [PMID: 37660159 PMCID: PMC10475080 DOI: 10.1038/s41598-023-41752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Bladder cancer (BC) is a severe health problem of the genitourinary system and is characterised by a high risk of recurrence. According to the recent GLOBOCAN report, bladder cancer accounts for 3% of diagnosed cancers in the world, taking 10th place on the list of the most common cancers. Despite numerous studies, the full mechanism of BC development remains unknown. Nevertheless, precious results suggest a crucial role of oxidative stress in the development of BC. Therefore, this study explores whether the c. 47 C > T (rs4880)-SOD2, (c. 1823 C > T (rs2297518) and g.-1026 C > A (rs2779249)-NOS2(iNOS) polymorphisms are associated with BC occurrence and whether the bladder carcinogenesis induces changes in SOD2 and NOS2 expression and methylation status in peripheral blood mononuclear cells (PBMCs). In this aim, the TaqMan SNP genotyping assay, TaqMan Gene Expression Assay, and methylation-sensitive high-resolution melting techniques were used to genotype profiling and evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that heterozygote of the g.-1026 C > A SNP was associated with a decreased risk of BC. Moreover, we detected that BC development influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs. Concluding, our results confirmed that oxidative stress, especially NOS2 polymorphisms and changes in the expression and methylation of the promoters of SOD2 and NOS2 are involved in the cancer transformation initiation of the cell urinary bladder.
Collapse
Affiliation(s)
- Radosław Grębowski
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
- Department of Urology, Provincial Integrated Hospital in Plock, Plock, Poland, Medyczna 19, 09-400
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236.
| |
Collapse
|
7
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
8
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
9
|
Polymorphisms of Antioxidant Enzymes SOD2 (rs4880) and GPX1 (rs1050450) Are Associated with Bladder Cancer Risk or Its Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010131. [PMID: 36676755 PMCID: PMC9860962 DOI: 10.3390/medicina59010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Oxidative stress induced by increased reactive oxygen species (ROS) production plays an important role in carcinogenesis. The entire urinary tract is continuously exposed to numerous potentially mutagenic environmental agents which generate ROS during their biotransformation. In first line defense against free radicals, antioxidant enzymes superoxide dismutase (SOD2) and glutathione peroxidase (GPX1) both have essential roles. Altered enzyme activity and decreased ability of neutralizing free oxygen radicals as a consequence of genetic polymorphisms in genes encoding these two enzymes are well described so far. This study aimed to investigate the association of GPX1 (rs1050450) and SOD2 (rs4880) genetic variants with the urothelial bladder cancer (UBC) risk independently and in combination with smoking. Furthermore, we aimed to determine whether the UBC stage and pathological grade were influenced by GPX1 and SOD2 polymorphisms. Material and Methods: The study population included 330 patients with UBC (mean age 65 ± 10.3 years) and 227 respective controls (mean age 63.4 ± 7.9 years). Single nucleotide polymorphism (SNP) of GPX1 (rs1050450) was analyzed using the PCR-RFLP, while SOD2 (rs4880) SNP was analyzed using the q-PCR method. Results: Our results showed that UBC risk was significantly increased among carriers of at least one variant SOD2 Val allele compared to the SOD2 Ala16Ala homozygotes (OR = 1.55, p = 0.03). Moreover, this risk was even more pronounced in smokers with at least one variant SOD2 Val allele, since they have even 7.5 fold higher UBC risk (OR = 7.5, p < 0.001). Considering GPX1 polymorphism, we have not found an association with UBC risk. However, GPX1 genotypes distribution differed significantly according to the tumor stage (p ˂ 0.049) and pathohistological grade (p ˂ 0.018). Conclusion: We found that SOD2 genetic polymorphism is associated with the risk of UBC development independently and in combination with cigarette smoking. Furthermore, we showed that GPX1 genetic polymorphism is associated with the aggressiveness of the disease.
Collapse
|
10
|
Rios-Covian D, Butcher LD, Ablack AL, den Hartog G, Matsubara MT, Ly H, Oates AW, Xu G, Fisch KM, Ahrens ET, Toden S, Brown CC, Kim K, Le D, Eckmann L, Dhar B, Izumi T, Ernst PB, Crowe SE. A Novel Hypomorphic Apex1 Mouse Model Implicates Apurinic/Apyrimidinic Endonuclease 1 in Oxidative DNA Damage Repair in Gastric Epithelial Cells. Antioxid Redox Signal 2023; 38:183-197. [PMID: 35754343 PMCID: PMC10039277 DOI: 10.1089/ars.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/20/2023]
Abstract
Aims: Though best known for its role in oxidative DNA damage repair, apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that regulates multiple host responses during oxidative stress, including the reductive activation of transcription factors. As knockout of the APE1-encoding gene, Apex1, is embryonically lethal, we sought to create a viable model with generalized inhibition of APE1 expression. Results: A hypomorphic (HM) mouse with decreased APE1 expression throughout the body was generated using a construct containing a neomycin resistance (NeoR) cassette knocked into the Apex1 site. Offspring were assessed for APE1 expression, breeding efficiency, and morphology with a focused examination of DNA damage in the stomach. Heterozygotic breeding pairs yielded 50% fewer HM mice than predicted by Mendelian genetics. APE1 expression was reduced up to 90% in the lungs, heart, stomach, and spleen. The HM offspring were typically smaller, and most had a malformed tail. Oxidative DNA damage was increased spontaneously in the stomachs of HM mice. Further, all changes were reversed when the NeoR cassette was removed. Primary gastric epithelial cells from HM mice differentiated more quickly and had more evidence of oxidative DNA damage after stimulation with Helicobacter pylori or a chemical carcinogen than control lines from wildtype mice. Innovation: A HM mouse with decreased APE1 expression throughout the body was generated and extensively characterized. Conclusion: The results suggest that HM mice enable studies of APE1's multiple functions throughout the body. The detailed characterization of the stomach showed that gastric epithelial cells from HM were more susceptible to DNA damage. Antioxid. Redox Signal. 38, 183-197.
Collapse
Affiliation(s)
- David Rios-Covian
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Lindsay D. Butcher
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amber L. Ablack
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Gerco den Hartog
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mason T. Matsubara
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hong Ly
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Andrew W. Oates
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Guorong Xu
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric T. Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Shusuke Toden
- Molecular Stethoscope, Inc., San Diego, California, USA
| | - Corrie C. Brown
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Dzung Le
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bithika Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter B. Ernst
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California, USA
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Immunology, Chiba University, Chiba, Japan
| | - Sheila E. Crowe
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Zhang Y, Wu Y, Zhang Y, Cao D, He H, Cao X, Wang Y, Jia Z, Jiang J. Dietary inflammatory index, and depression and mortality risk associations in U.S. adults, with a special focus on cancer survivors. Front Nutr 2022; 9:1034323. [PMID: 36590206 PMCID: PMC9795013 DOI: 10.3389/fnut.2022.1034323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A higher risk for depression and mortality is associated with the inflammatory potential of diet measured through the Dietary Inflammatory Index (DII). The roles of DII in the risk of depression and death in cancer survivors were unclear. We aimed to examine the association between energy-adjusted DII (E-DII) score and risk of depression, and mortality using data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES), with a special focus on cancer survivors. Methods The 24-h dietary recall interview was used as a basis to calculate the E-DII score and the Patient Health Questionnaire-9 (PHQ-9) was used to measure the depressive outcomes. Logistic regression analyses were performed to determine the association between quartiles of E-DII score and depression. Cox proportional hazard regression and competing risk analyses were used to estimate the risks of quartiles of E-DII score or depression on mortality. Results A total of 27,447 participants were included; including 24,694 subjects without cancer and 2,753 cancer survivors. The E-DII score and depression were not distributed differently between the two groups. However, the E-DII scores were positively associated with within each group's depression (all P trend < 0.001) and participants with higher E-DII scores had a higher risk of depression (subjects without cancer: ORQ4 vs Q1: 2.17, 95% CI: 1.75-2.70; cancer survivors: ORQ4 vsQ1: 1.78, 95% CI: 1.09-2.92). The median follow-up time were 87 person-months, a total of 1,701 (4.8%) and 570 (15.2%) all-cause deaths in subjects without cancer and cancer survivors were identified by the end of 2019. The highest E-DII scores quartile was associated with the highest risk of all-cause (HRQ4 vsQ1: 1.90, 95% CI: 1.54-2.35) and cardiovascular disease (CVD) cause death (HRQ4 vsQ1: 2.50, 95% CI: 1.69-2.3.7) in the subjects without cancer. Moreover, participants with depressive symptoms had higher all-cause mortality (HR: 1.29, 95% CI: 1.04-1.59). No significant correlation was found for E-DII scores or depression with all-cause, cancer-cause or CVD-cause mortality in cancer survivors. Conclusion Our findings demonstrate that E-DII score was positively associated with depression risk. A higher E-DII score or depressive symptom may increase the risks of all-cause and CVD-cause mortality only among general subjects.
Collapse
Affiliation(s)
- Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yanhua Wu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Hua He
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China,Zhifang Jia,
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China,*Correspondence: Jing Jiang,
| |
Collapse
|
12
|
Anticancer therapeutic potential of phosphorylated galactosylated chitosan against N-nitrosodiethyl amine-induced hepatocarcinogenesis. Arch Biochem Biophys 2022; 728:109375. [PMID: 35970414 DOI: 10.1016/j.abb.2022.109375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
Chitosan is a natural polyfunctional polymer that can be modified to achieve compounds with tailored properties for targeting and treating different cancers. In this study, we report the development and anticancer potential of phosphorylated galactosylated chitosan (PGC). The synthesized compound was characterized by FT-IR, NMR, and mass spectroscopy. The interaction of PGC with asialoglycoprotein receptors (ASGPR) and cellular internalization in HepG2 cells was studied using in silico and uptake studies respectively. PGC was evaluated for its metal chelating, ferric ion reducing, superoxide, and lipid peroxide (LPO) inhibiting potential. Further, anticancer therapeutic potential of PGC was evaluated against N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma in a mice model. After development of cancer, PGC was administered to the treatment group (0.5 mg/kg bw, intravenously), once a week for 4 weeks. Characterization studies of PGC revealed successful phosphorylation and galactosylation of chitosan. A strong interaction of PGC with ASGP-receptors was predicted by computational studies and cellular internalization studies demonstrated 98.76 ± 0.53% uptake of PGC in the HepG2 cells. A good metal chelating, ferric ion reducing, and free radical scavenging activity was demonstrated by PGC. The anticancer therapeutic potential of PGC was evident from the observation that PGC treatment increased number of tumor free animals (50%) (6/12) and significantly (p ≤ 0.05) lowered tumor multiplicity as compared to untreated tumor group.
Collapse
|
13
|
Kharaeva Z, Trakhtman P, Trakhtman I, De Luca C, Mayer W, Chung J, Ibragimova G, Korkina L. Fermented Mangosteen (Garcinia mangostana L.) Supplementation in the Prevention of HPV-Induced Cervical Cancer: From Mechanisms to Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14194707. [PMID: 36230630 PMCID: PMC9564137 DOI: 10.3390/cancers14194707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Human papillomavirus (HPV) is connected with virtually all cases of cervical cancer. The viral infection-associated chronic inflammation, oxidative stress, and alterations in apoptosis have been considered as leading risk factors for carcinogenesis in humans. In an observational clinical study, we identified oxidative markers and the cervical/circulating ligands of TNF-alpha-induced apoptosis involved in HPV-associated cervical carcinogenesis. In the following clinical trial, 250 females infected with high-cancer-risk HPV16/18 (healthy and pre-cancerous) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Our findings indicate that FM, and not a placebo, in combination with routine anti-viral therapy, could prevent, slow down, or even interrupt HPV-associated cervical carcinogenesis, mainly through the suppression of leukocyte recruitment into infected tissue, through anti-inflammatory effects, and through the restoration of nitric oxide metabolite-initiated TRAIL-dependent apoptosis. Abstract In the observational clinical study, we identified the oxidative markers of HPV-associated cervical carcinogenesis and the local/circulating ligands of TNF-alpha-induced apoptosis. Cervical biopsies of 196 females infected with low-cancer-risk HPV10/13 or high-cancer-risk HPV16/18 (healthy, pre-cancerous CIN I and CIN II, and CIN III carcinoma) were analysed for OH radical scavenging, catalase, GSH-peroxidase, myeloperoxidase (MPO), nitrate/nitrite, nitrotyrosine, and isoprostane. Ligands of TNF-alpha-dependent apoptosis (TNF-alpha, TRAIL, IL-2, and sFAS) were determined in cervical fluid, biopsies, and serum. Cervical MPO was highly enhanced, while nitrotyrosine decreased in CIN III. Local/circulating TRAIL was remarkably decreased, and higher-than-control serum TNF-alpha and IL-2 levels were found in the CIN I and CIN III groups. Then, 250 females infected with HPV16/18 (healthy and with CIN I and CIN II) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Post-trial colposcopy revealed normal patterns in 100% of the FM group versus 62% of the placebo group. Inflammatory cells in cervical fluid were found in 21% of the FM group versus 40% of the placebo group. Locally, FM drastically diminished MPO and NO2/NO3, while it remarkably increased TRAIL. Additionally, FM supplementation normalised serum TRAIL, TNF-alpha, and IL-2.
Collapse
Affiliation(s)
- Zaira Kharaeva
- Microbiology, Immunology, and Virology Department, Berbekov’s Kabardino-Balkar State Medical University, Chernishevskiy Str. 176, 360000 Nalchik, Russia
| | - Pavel Trakhtman
- Blood Bank, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Mashela Str. 1, 117988 Moscow, Russia
| | - Ilya Trakhtman
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
| | - Chiara De Luca
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Wolfgang Mayer
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Jessie Chung
- Natural Health Farm Ltd., 39 Jalan Pengacara U1/48, Temasya Industrial Park, Shah Alam 40150, Selangor, Malaysia
| | - Galina Ibragimova
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
| | - Liudmila Korkina
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
- Correspondence: or ; Tel.: +39-3497364787
| |
Collapse
|
14
|
Xiong H, Xi Y, Yuan Z, Wang B, Hu S, Fang C, Cai Y, Fu X, Li L. IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation. Oncoimmunology 2022; 11:2044103. [PMID: 35273829 PMCID: PMC8903773 DOI: 10.1080/2162402x.2022.2044103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stimulator of interferon genes (STING) pathway activation predicts the effectiveness of targeting the PD-1/PD-L1 axis in lung cancer. Active IFN-γ signaling is a common feature in tumors that respond to PD-1/PD-L1 blockade. The connection between IFN-γ and STING signaling in cancer cells has not been documented. We showed that IFN-γ caused DNA damage and the accumulation of cytosolic dsDNA, leading to the activation of the cGAS- and IFI16-dependent STING pathway in lung adenocarcinoma cells. IFN-γ-induced iNOS expression and nitric oxide production were responsible for DNA damage and STING activation. Additional etoposide treatment enhanced IFN-γ-induced IFN-β and CCL5 expression. Tumor-infiltrating T cells stimulated with a combination of anti-CD3 and anti-PD-1 antibodies caused STING activation and increased IFN-β and CCL5 expression in lung adenocarcinoma. These effects were abrogated by the addition of an IFN-γ neutralizing antibody. Our results suggest that the activation of tumor-infiltrating T cells could alter the tumor microenvironment via the IFN-γ-mediated activation of STING signaling in cancer cells.
Collapse
Affiliation(s)
- Hui Xiong
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Fang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixin Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Cho E, Allemang A, Audebert M, Chauhan V, Dertinger S, Hendriks G, Luijten M, Marchetti F, Minocherhomji S, Pfuhler S, Roberts DJ, Trenz K, Yauk CL. AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:118-134. [PMID: 35315142 PMCID: PMC9322445 DOI: 10.1002/em.22479] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | | | | | - Vinita Chauhan
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioCanada
| | | | | | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Sheroy Minocherhomji
- Amgen Research, Translational Safety and Bioanalytical SciencesAmgen Inc.Thousand OaksCaliforniaUSA
| | | | | | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
16
|
Mori Y, Kobayashi H, Fujita Y, Yatagawa M, Kato S, Kawanishi S, Murata M, Oikawa S. Mechanism of reactive oxygen species generation and oxidative DNA damage induced by acrylohydroxamic acid, a putative metabolite of acrylamide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503420. [PMID: 35094805 DOI: 10.1016/j.mrgentox.2021.503420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Acrylamide is formed during the heating of food and is also found in cigarette smoke. It is classified by the International Agency for Research on Cancer as a probable human carcinogen (Group 2A). Glycidamide, an epoxide metabolite of acrylamide, is implicated in the mechanism of acrylamide carcinogenicity. Acrylamide causes oxidative DNA damage in target organs. We sought to clarify the mechanism of acrylamide-induced oxidative DNA damage by investigating site-specific DNA damage and reactive oxygen species (ROS) generation by a putative metabolite of acrylamide, acrylohydroxamic acid (AA). Our results, using 32P-5'-end-labeled DNA fragments, indicated that, although AA alone did not damage DNA, AA treated with amidase induced DNA damage in the presence of Cu(II). DNA cleavage occurred preferentially at T and C, and particularly at T in 5'-TG-3' sequences, and the DNA cleavage pattern was similar to that of hydroxylamine. The DNA damage was inhibited by methional, catalase, and Cu(I)-chelator bathocuproine, suggesting that H2O2 and Cu(I) are involved in the mechanism of DNA damage induced by AA treated with amidase. In addition, amidase-treated AA increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in calf thymus DNA, an indicator of oxidative DNA damage, in a dose-dependent manner. In conclusion, hydroxylamine, possibly produced from AA treated with amidase, was autoxidized via the Cu(II)/Cu(I) redox cycle and H2O2 generation, suggesting that oxidative DNA damage induced by ROS plays an important role in acrylamide-related carcinogenesis.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan; Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Yoshio Fujita
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Minami Yatagawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
17
|
Dynamic switch of immunity and antitumor effects of metformin in rat spontaneous esophageal carcinogenesis. Cancer Immunol Immunother 2021; 71:777-789. [PMID: 34398301 PMCID: PMC8921146 DOI: 10.1007/s00262-021-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
Chronic inflammation contributes to tumor development by creating a local microenvironment that facilitates neoplastic transformation and potentiates the progression of cancer. Esophageal cancer (EC) is an inflammation-associated malignancy with a poor prognosis. The nature of the switch between chronic inflammation of the esophagus and EC-related immunological changes remains unclear. Here, we examined the dynamic alterations of immune cells at different stages of chronic esophagitis, Barrett’s esophagus (BE) and EC using an esophageal spontaneous carcinogenesis rat model. We also investigated the anticancer effects of metformin. To stimulate EC carcinogenesis, chronic gastroduodenal reflux esophagitis via esophagojejunostomy was induced in 120 rats in metformin-treated and non-treated (control) groups. After 40 weeks, BE and EC developed in 96.7% and 63.3% of the control group, and in 66.7% and 23.3% of the metformin-treated group, respectively. Flow cytometric analysis demonstrated that the balance of M1/M2-polarized or phospho-Stat3-positive macrophages, regulatory T, cytotoxic T, natural killer (NK), NK T cells, and Th17 T cells was dynamically changed at each stage of the disease and were resolved by metformin treatment. These findings clarify the immunity in esophageal carcinogenesis and suggest that metformin could suppress this disease by improving the immunosuppressive tumor microenvironment and immune evasion.
Collapse
|
18
|
Kuraishi Y, Uehara T, Muraki T, Iwaya M, Kinugawa Y, Nakajima T, Watanabe T, Miyagawa Y, Umemura T. Impact of DNA double-strand breaks on pancreaticobiliary maljunction carcinogenesis. Diagn Pathol 2021; 16:72. [PMID: 34372868 PMCID: PMC8353780 DOI: 10.1186/s13000-021-01132-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreaticobiliary maljunction (PBM) is a condition characterized by chronic inflammation due to refluxed pancreatic juice into the biliary tract that is associated with an elevated risk of biliary tract cancer. DNA double-strand breaks (DSBs) are considered the most serious form of DNA damage. DSBs are provoked by inflammatory cell damage and are recognized as an important oncogenic event in several cancers. This study used γ-H2AX, an established marker of DSB formation, to evaluate the impact of DNA damage on carcinogenesis in PBM. METHODS We investigated γ-H2AX expression immunohistochemically in gallbladder epithelium samples obtained from 71 PBM cases and 19 control cases. RESULTS Fourteen PBM cases with gallbladder adenocarcinoma were evaluated at non-neoplastic regions. A wide range of nuclear γ-H2AX staining was detected in all PBM and control specimens. γ-H2AX expression was significantly higher in PBM cases versus controls (median γ-H2AX-positive proportion: 14.4 % vs. 4.4 %, p = 0.001). Among the PBM cases, γ-H2AX expression was significantly higher in patients with carcinoma than in those without (median γ-H2AX-positive proportion: 21.4 % vs. 11.0 %, p = 0.031). CONCLUSIONS DSBs occurred significantly more abundantly in the PBM gallbladder mucosa, especially in the context of cancer, indicating an involvement in PBM-related carcinogenesis.
Collapse
Affiliation(s)
- Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takashi Muraki
- Department of Gastroenterology, North Alps Medical Center Azumi Hospital, Ikeda, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Watanabe
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yusuke Miyagawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
19
|
Kim YJ, Kim BK, Park SJ, Kim JH. Impact of Fusobacterium nucleatum in the gastrointestinal tract on natural killer cells. World J Gastroenterol 2021; 27:4879-4889. [PMID: 34447232 PMCID: PMC8371507 DOI: 10.3748/wjg.v27.i29.4879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbial dysbiosis contributes to the development and progression of colorectal cancer (CRC). Natural killer (NK) cells are involved in early defense mechanisms to kill infective pathogens and tumor cells by releasing chemokines and cytokines. To better understand the relationship between the gut microbiome and CRC, it was hypothesized here that a high abundance of Fusobacterium nucleatum (F. nucleatum) in the gastrointestinal tract could cause reduced NK cell activity.
AIM To identify associations between gastrointestinal tract F. nucleatum levels and NK cell activity.
METHODS In vitro experiments were performed on NK cells treated with F. nucleatum, Peptostreptococcus anaerobius, and Parvimonas micra to identify the effects of gut microbiome species on NK cells. Following 24 and 48 h of treatment, NK cell counts were measured. In parallel studies, C57BL/6 mice were given broad-spectrum antibiotics in their drinking water to reduce resident gut flora. After 3 wk, the mice received the various bacterial species or phosphate-buffered saline (PBS) via oral gavage every 2 d for 6 wk. At the study end, blood samples were acquired to perform NK cell activity assessment and cytokine analysis. Intestinal tissues were collected and analyzed via immunohistochemistry (IHC).
RESULTS The data show that after 3 wk of broad-spectrum antibiotic treatment, levels of total bacteria and F. nucleatum were markedly decreased in mice. Gavage of F. nucleatum significantly decreased NK cell activity relative to the activities of cells from mice treated with antibiotics only and PBS. The administration of F. nucleatum decreased the proportion of NK46+ cells based on IHC staining and increased the production of interleukin-1β and tumor necrosis factor-α.
CONCLUSION High levels of F. nucleatum in the gastrointestinal tract reduced NK cell activity in mice, and the decrease in NK cell activity might be affected by increased pro-inflammatory cytokines after F. nucleatum treatment.
Collapse
Affiliation(s)
- Yeon Ji Kim
- Institute of Gastroenterology, Kosin University College of Medicine, Busan 49267, Spain
| | - Bu Kyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| |
Collapse
|
20
|
Hargreaves CE, Salatino S, Sasson SC, Charlesworth JEG, Bateman E, Patel AM, Anzilotti C, Broxholme J, Knight JC, Patel SY. Decreased ATM Function Causes Delayed DNA Repair and Apoptosis in Common Variable Immunodeficiency Disorders. J Clin Immunol 2021; 41:1315-1330. [PMID: 34009545 PMCID: PMC8310859 DOI: 10.1007/s10875-021-01050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Common variable immunodeficiency disorders (CVID) is characterized by low/absent serum immunoglobulins and susceptibility to bacterial infection. Patients can develop an infections-only phenotype or a complex disease course with inflammatory, autoimmune, and/or malignant complications. We hypothesized that deficient DNA repair mechanisms may be responsible for the antibody deficiency and susceptibility to inflammation and cancer in some patients. METHODS Germline variants were identified following targeted sequencing of n = 252 genes related to DNA repair in n = 38 patients. NanoString nCounter PlexSet assay measured gene expression in n = 20 CVID patients and n = 7 controls. DNA damage and apoptosis were assessed by flow cytometry in n = 34 CVID patients and n = 11 controls. RESULTS Targeted sequencing supported enrichment of rare genetic variants in genes related to DNA repair pathways with novel and rare likely pathogenic variants identified and an altered gene expression signature that distinguished patients from controls and complex patients from those with an infections-only phenotype. Consistent with this, flow cytometric analyses of lymphocytes following DNA damage revealed a subset of CVID patients whose immune cells have downregulated ATM, impairing the recruitment of other repair factors, delaying repair and promoting apoptosis. CONCLUSION These data suggest that germline genetics and altered gene expression predispose a subset of CVID patients to increased sensitivity to DNA damage and reduced DNA repair capacity.
Collapse
Affiliation(s)
- Chantal E Hargreaves
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 9DU, UK.
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Sarah C Sasson
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 9DU, UK
| | - James E G Charlesworth
- Oxford University Clinical Academic Graduate School, Medical Sciences Office, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, UK
| | - Elizabeth Bateman
- Department of Immunology, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 7LE, UK
| | - Arzoo M Patel
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 9DU, UK
| | - Consuelo Anzilotti
- Clinical Immunology Department, Oxford University Hospitals Trust, Oxford, OX3 9DU, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Smita Y Patel
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 9DU, UK
- Clinical Immunology Department, Oxford University Hospitals Trust, Oxford, OX3 9DU, UK
| |
Collapse
|
21
|
Buranarom A, Navasumrit P, Ngaotepprutaram T, Ruchirawat M. Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem Biol Interact 2021; 346:109580. [PMID: 34280354 DOI: 10.1016/j.cbi.2021.109580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Dichloromethane (DCM), a widely used chlorinated solvent, is classified by IARC (2017) as probably carcinogenic to humans. Exposure to DCM has been associated with increased incidence of cholangiocarcinoma (CCA) in humans. This study aimed to investigate how DCM could contribute to CCA development by investigating the effects of DCM on DNA damage and cell transformation in cholangiocytes (MMNK-1) and on metastatic potential as measured by invasion and cell migration in malignant CCA cell lines (HuCCA-1 and RMCCA-1). MMNK-1 cells treated with the non-cytotoxic concentration of DCM (25 μM, 24 h) significantly increased the levels of mutagenic DNA adducts including 8-hydroxydeoxyguanosine, 8-OHdG, (1.84-fold, p < 0.01) and 8-nitroguanine (1.96-fold, p < 0.01) and enhanced cell transformation by 1.47-fold (p < 0.01). In addition, the expression of various genes involved in carcinogenesis, namely, NFE2L2 (antioxidative response), CXCL8 (inflammation), CDH1 (cell adhesion), MMP9 (tissue remodeling) and MKI67 (cell proliferation) were altered in cholangiocytes treated with DCM. When MMNK-1 cells were transformed by DCM, the expression of all the aforementioned genes was also increased. In malignant cell lines (HuCCA-1 and RMCCA-1), DCM treatment resulted in increased CXCL8 and MMP9 transcription and decreased CDH1 transcription accompanied by increased invasion and migration capabilities of these cells. Taken together, this study demonstrated that DCM exposure could be linked to the development of CCA.
Collapse
Affiliation(s)
- Angkhameen Buranarom
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand
| | | | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand.
| |
Collapse
|
22
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
23
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
24
|
Guo S, Wu X, Zheng J, Smith SA, Dong P, Xiao H. Identification of 4'-Demethyltangeretin as a Major Urinary Metabolite of Tangeretin in Mice and Its Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4381-4391. [PMID: 33787243 DOI: 10.1021/acs.jafc.0c06334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study showed that oral administration of tangeretin (TAN) in mice resulted in the production of 4'-demethyltangeretin (4DT) as a major urinary metabolite. The anti-inflammatory efficacy of TAN and 4DT was determined in RAW 264.7 macrophages stimulated by lipopolysaccharides (LPS). 4DT produced considerably stronger inhibition on the overproduction of prostaglandin E2 and nitric oxide than TAN did at the same concentrations. Western blot and quantitative polymerase chain reaction analyses indicated that 4DT exerted more potent suppressive activity on the over-expression of interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2 than TAN. Treatments with TAN and 4DT diminished LPS-stimulated nuclear factor κB (NFκB) translocation via suppressing the degradation of inhibitor κB (IκBα). Furthermore, both compounds attenuated mitogen-activated protein kinases (MAPKs) and Akt signaling upregulated by LPS. Overall, our findings showed that TAN and 4DT inhibited the LPS-stimulated inflammatory response in macrophages by suppressing Akt/MAPKs/NFκB proinflammatory pathways, while 4DT showed more potent activity than TAN, its parent compound.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Food Science, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
- Department of Food Science and Nutrition, University of Jinan, Jinan 250022, Shandong, China
| | - Xian Wu
- Department of Food Science, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford 45056, Ohio, United States
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sarah A Smith
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford 45056, Ohio, United States
| | - Ping Dong
- Department of Food Science, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| |
Collapse
|
25
|
Wang G, Hiramoto K, Ma N, Yoshikawa N, Ohnishi S, Murata M, Kawanishi S. Glycyrrhizin Attenuates Carcinogenesis by Inhibiting the Inflammatory Response in a Murine Model of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052609. [PMID: 33807620 PMCID: PMC7961658 DOI: 10.3390/ijms22052609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Sakuranomori Shiroko Home, Social Service Elderly Facilities, Suzuka University of Medical Science, Suzuka, Mie 513-0816, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan;
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| | - Shosuke Kawanishi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| |
Collapse
|
26
|
Bakhti SZ, Latifi-Navid S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next? BMC Microbiol 2021; 21:71. [PMID: 33663382 PMCID: PMC7934379 DOI: 10.1186/s12866-021-02130-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies causing death worldwide, and Helicobacter pylori is a powerful inducer of precancerous lesions and GC. The oral microbiota is a complex ecosystem and is responsible for maintaining homeostasis, modulating the immune system, and resisting pathogens. It has been proposed that the gastric microbiota of oral origin is involved in the development and progression of GC. Nevertheless, the causal relationship between oral microbiota and GC and the role of H. pylori in this relationship is still controversial. This study was set to review the investigations done on oral microbiota and analyze various lines of evidence regarding the role of oral microbiota in GC, to date. Also, we discussed the interaction and relationship between H. pylori and oral microbiota in GC and the current understanding with regard to the underlying mechanisms of oral microbiota in carcinogenesis. More importantly, detecting the patterns of interaction between the oral cavity microbiota and H. pylori may render new clues for the diagnosis or screening of cancer. Integration of oral microbiota and H. pylori might manifest a potential method for the assessment of GC risk. Hence it needs to be specified the patterns of bacterial transmission from the oral cavity to the stomach and their interaction. Further evidence on the mechanisms underlying the oral microbiota communities and how they trigger GC may contribute to the identification of new prevention methods for GC. We may then modulate the oral microbiota by intervening with oral-gastric bacterial transmission or controlling certain bacteria in the oral cavity.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
| |
Collapse
|
27
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Shimamura Y, Sei S, Nomura S, Masuda S. Protective effects of dried mature Citrus unshiu peel (Chenpi) and hesperidin on aspirin-induced oxidative damage. J Clin Biochem Nutr 2020; 68:149-155. [PMID: 33879966 DOI: 10.3164/jcbn.20-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/12/2020] [Indexed: 01/18/2023] Open
Abstract
Here we investigated the inhibitory effects in rats of mature Citrus unshiu peel (Chenpi) and its component hesperidin on aspirin-induced oxidative damage. The content of hesperidin in Chenpi extract was approximately 11.4%. Wistar rats were orally administered Chenpi extract or hesperidin (20 mg/kg body weight) and then were orally administered aspirin (200 mg/kg body weight) to induce oxidative damage to the stomach, liver, and kidneys. Such damage was evaluated using the formamidopyrimidine DNA glycosylase-modified comet assay. We also measured the amount of the oxidative marker 8-oxo-7,8-dihydroguanine (8-oxodG) in the stomach. Aspirin-induced damage to the gastric mucosa was evaluated using a bleeding score. Chenpi extract and hesperidin significantly inhibited aspirin-induced oxidative DNA damage. The bleeding score of the aspirin-induced gastric mucosa was significantly reduced by treatment with Chenpi extract and hesperidin. To investigate the effects of Chenpi extract and hesperidin on the analgesic effect of aspirin on ddY mice, we employed the acetic acid-induced writhing response test. Chenpi extract and hesperidin did not significantly affect the analgesic effect of aspirin. These results suggest that Chenpi extract and hesperidin significantly inhibit aspirin-induced gastric mucosal damage.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shunsuke Sei
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Saori Nomura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
29
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
30
|
Yu Y, Luo Y, Fang Z, Teng W, Yu Y, Tian J, Guo P, Xu R, Wu J, Li Y. Mechanism of Sanguinarine in Inhibiting Macrophages to Promote Metastasis and Proliferation of Lung Cancer via Modulating the Exosomes in A549 Cells. Onco Targets Ther 2020; 13:8989-9003. [PMID: 32982290 PMCID: PMC7490052 DOI: 10.2147/ott.s261054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Sanguinarine (SNG) is a benzophenanthridine alkaloid obtained from the roots of Sanguinaria canadensis and has an anticancer effect. The aim of this study was to explore the mechanism of SNG in inhibiting macrophages via regulating the exosomes derived from lung carcinoma cells to reduce metastasis and proliferation of lung carcinoma. Methods Human lung cancer cells (A549 cells) were treated with 4μM of SNG. Exosomes of A549 cells were extracted from A549 cells supernatant, and THP-1 cells were cultured with exosomes. Then, the supernatant of THP-1 cells was collected and cultured with A549 cells. Cell proliferation was measured via plate clone formation and CCK-8 assays. Migration was assessed by using Transwell assay and scratch test. Cellular invasion was detected by Transwell assay. Apoptosis was determined using flow cytometry. Moreover, the protein expressions of GAPDH, P65 and P-P65 in THP-1 cells were measured by Western blot. Levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and chemotactic cytokines ligand 2 (CCL-2) extracted from THP-1 cells were determined by reverse transcription-polymerase chain reaction (RT-PCR). Results Compared to the control group, exosomes could activate THP-1 cells, and the invasion, migration, and proliferation of A549 cells were consequently enhanced. Exosomes could increase the protein expression of p-p65 and the RNA expression levels of TNF-α, IL-6, and CCL-2 in THP-1 cells. Compared with the exosome group, SNG-treated exosomes inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were attenuated and apoptosis was promoted. In THP-1 cells, SNG-treated exosomes inhibited P-P65 expression and the RNA expression levels of TNF-α, IL-6, and CCL-2. Conclusion Exosomes treated by SNG inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were inhibited, and the apoptosis was promoted. The mechanism is possibly associated with the inhibition of NF-κB pathway in THP-1 cells.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jianhui Tian
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, People's Republic of China
| | - Peng Guo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| |
Collapse
|
31
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
32
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
33
|
Staszek P, Gniazdowska A. Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. PLANTA 2020; 252:5. [PMID: 32535658 PMCID: PMC7293691 DOI: 10.1007/s00425-020-03411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/06/2020] [Indexed: 05/02/2023]
Abstract
Nitro/oxidative modifications of proteins and RNA nitration resulted from altered peroxynitrite generation are elements of the indirect mode of action of canavanine and meta-tyrosine in plants Environmental conditions and stresses, including supplementation with toxic compounds, are known to impair reactive oxygen (ROS) and reactive nitrogen species (RNS) homeostasis, leading to modification in production of oxidized and nitrated derivatives. The role of nitrated and/or oxidized biotargets differs depending on the stress factors and developmental stage of plants. Canavanine (CAN) and meta-tyrosine (m-Tyr) are non-proteinogenic amino acids (NPAAs). CAN, the structural analog of arginine, is found mostly in seeds of Fabaceae species, as a storage form of nitrogen. In mammalian cells, CAN is used as an anticancer agent due to its inhibitory action on nitric oxide synthesis. m-Tyr is a structural analogue of phenylalanine and an allelochemical found in root exudates of fescues. In animals, m-Tyr is recognized as a marker of oxidative stress. Supplementation of plants with CAN or m-Tyr modify ROS and RNS metabolism. Over the last few years of our research, we have collected the complex data on ROS and RNS metabolism in tomato (Solanum lycopersicum L.) plants exposed to CAN or m-Tyr. In addition, we have shown the level of nitrated RNA (8-Nitro-guanine) in roots of seedlings, stressed by the tested NPAAs. In this review, we describe the model of CAN and m-Tyr mode of action in plants based on modifications of signaling pathways induced by ROS/RNS with a special focus on peroxynitrite induced RNA and protein modifications.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
34
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
35
|
Sawicka E, Kratz EM, Szymańska B, Guzik A, Wesołowski A, Kowal P, Pawlik-Sobecka L, Piwowar A. Preliminary Study on Selected Markers of Oxidative Stress, Inflammation and Angiogenesis in Patients with Bladder Cancer. Pathol Oncol Res 2020; 26:821-831. [PMID: 30828780 PMCID: PMC7242270 DOI: 10.1007/s12253-019-00620-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
In recent years, bladder cancer (BC) has been reported as one of the most commonly occurring cancers among older people, and its detection is still difficult. Therefore, there is a need to search for additional useful markers of disease. Some studies indicate the important roles of inflammation and oxidative stress (OS) in bladder tumour pathogenesis. The aim of this study was to examine the levels of selected markers of OS, inflammation and angiogenesis in blood plasma/serum samples derived from patients with BC, and a healthy control group. Moreover the degrees of change and strength of correlation between values of the analysed markers and tumour stage or grade were estimated. Concentrations of: malondialdehyde (MDA) and advanced oxidation protein products (AOPP), and total antioxidant status (TAS) divided into slow (TAS-s) and fast (TAS-f) antioxidants (spectrophotometric measurement), angiogenin (ANG) (immunoenzymatic method) and C-reactive protein (CRP) (immunoturbidimetric method) were determined in both the studied groups. The majority of values of the examined parameters were significantly higher among patients, while subfractions of TAS were significantly lower in comparison to the control group. Moreover, different values and different strengths of correlation between the examined parameters and cancer stage or grade were noticed. The most significant changes for CRP were observed in T2 and for MDA in G3, while the lowest TAS-f activity was revealed in G1 patients. Increased values of OS parameters, angiogenesis and inflammation markers, in combination with reduced TAS subfractions activity in BC are important in its pathogenesis and will be helpful in estimation of patients' condition.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211, 50-556, Wrocław, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211a, 50-556, Wrocław, Poland.
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211, 50-556, Wrocław, Poland
| | - Anna Guzik
- Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211, 50-556, Wrocław, Poland
| | - Artur Wesołowski
- Students Scientific Society at the Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211, 50-556, Wrocław, Poland
| | - Paweł Kowal
- Department and Clinic of Urology and Urological Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, H. M. Kamieńskiego Street 73a, 51-124, Wrocław, Poland
| | - Lilla Pawlik-Sobecka
- Department of Laboratory Diagnostics, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211a, 50-556, Wrocław, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska Street 211, 50-556, Wrocław, Poland
| |
Collapse
|
36
|
Alkadi H. A Review on Free Radicals and Antioxidants. Infect Disord Drug Targets 2020; 20:16-26. [PMID: 29952268 DOI: 10.2174/1871526518666180628124323] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 05/16/2023]
Abstract
Free radicals are generated in our body by several systems. A balance among free radicals and antioxidants is an important matter for appropriate physiological function. If free radicals become greater than the ability of the body to control them, a case known as oxidative stress appears, as a result of that, a number of human diseases spread in the body. Antioxidants can contribute to facingthis oxidative stress. The present review provides a brief overview of free radicals, oxidative stress, some natural antioxidants and the relationship between them.
Collapse
Affiliation(s)
- Hourieh Alkadi
- Department of Pharmaceutical Chemistry & Drug Control, Faculty of Pharmacy, Arab International University, Daraa, Syrian Arab Republic
| |
Collapse
|
37
|
Bagheri A, Nachvak SM, Abdollahzad H, Rezaei M. Inflammatory Potential of Diet and the Risk of Prostate Cancer: A Casecontrol Study in the West of Iran. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180620141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Prostate cancer is one of the most common cancer in worldwide and inflammatory
reactions may be the major risk factors for it. Diet has a potential role in the running of inflammatory
reactions. Dietary Inflammatory Index (DII) is a tool that can assess the inflammatory potential
of a diet.
Objective:
Study of the effect of Dietary Inflammatory Index (DII) and body composition on the risk
of prostate cancer was the aim of this research.
Methods:
We assessed the ability of Dietary Inflammatory Index (DII) to predict prostate cancer in a
case-control study conducted in Kermanshah, Iran in 2016. The study included 50 cases with primary
prostate cancer and 150 healthy controls. Anthropometric indices were measured by Bioelectric Impedance
Analysis (BIA). The DII was computed based on the intake of 32 nutrients assessed using a
147-items food frequency questionnaire. The multivariate logistic regression was used to evaluate the
odds ratio, with DII expressed as a dichotomous variable.
Results:
There were no statistically significant differences in body composition between case and control
groups, but participants with DII > 0.80 had significant differences in BMI, LBM, SLM, MBF and TBW
versus participant with DII ≤ 0.80. Also, men with higher DII scores were at increased risk of prostate
cancer [OR: 1.77; 95% confidence interval 1.28-2.44] and categorical variable [OR DII>0.80 vs ≤ 0.80:
3.81; 95% confidence interval: 1.49-9.75].
Conclusion:
These findings suggest that a pro-inflammatory diet is a risk factor for prostate cancer
and also can have the impact on body composition.
Collapse
Affiliation(s)
- Amir Bagheri
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M. Nachvak
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Nutritional Science Department, School of Nutritional Science & Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Rezaei
- Department of Biostatistics, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Asadi-Samani M, Kaffash Farkhad N, Reza Mahmoudian-Sani M, Shirzad H. Antioxidants as a Double-Edged Sword in the Treatment of Cancer. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Becaria Coquet J, Caballero VR, Camisasso MC, González MF, Niclis C, Román MD, Muñoz SE, Leone CM, Procino F, Osella AR, Aballay LR. Diet Quality, Obesity and Breast Cancer Risk: An Epidemiologic Study in Córdoba, Argentina. Nutr Cancer 2019; 72:1026-1035. [DOI: 10.1080/01635581.2019.1664601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Julia Becaria Coquet
- Institute of Health Sciences Research (INICSA), National University of Córdoba (UNC), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - Victor Ramón Caballero
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - María Cecilia Camisasso
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - María Florencia González
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - Camila Niclis
- Institute of Health Sciences Research (INICSA), National University of Córdoba (UNC), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - María Dolores Román
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| | - Sonia Edith Muñoz
- Institute of Health Sciences Research (INICSA), National University of Córdoba (UNC), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Carla M. Leone
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Filippo Procino
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Alberto Rubén Osella
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Laura Rosana Aballay
- School of Nutrition, Faculty of Medical Sciences (FCM), National University of Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
40
|
Oleson BJ, Broniowska KA, Yeo CT, Flancher M, Naatz A, Hogg N, Tarakanova VL, Corbett JA. The Role of Metabolic Flexibility in the Regulation of the DNA Damage Response by Nitric Oxide. Mol Cell Biol 2019; 39:e00153-19. [PMID: 31235477 PMCID: PMC6712938 DOI: 10.1128/mcb.00153-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
In this report, we show that nitric oxide suppresses DNA damage response (DDR) signaling in the pancreatic β-cell line INS 832/13 and rat islets by inhibiting intermediary metabolism. Nitric oxide is known to inhibit complex IV of the electron transport chain and aconitase of the Krebs cycle. Non-β cells compensate by increasing glycolytic metabolism to maintain ATP levels; however, β cells lack this metabolic flexibility, resulting in a nitric oxide-dependent decrease in ATP and NAD+ Like nitric oxide, mitochondrial toxins inhibit DDR signaling in β cells by a mechanism that is associated with a decrease in ATP. Non-β cells compensate for the effects of mitochondrial toxins with an adaptive shift to glycolytic ATP generation that allows for DDR signaling. Forcing non-β cells to derive ATP via mitochondrial respiration (replacing glucose with galactose in the medium) and glucose deprivation sensitizes these cells to nitric oxide-mediated inhibition of DDR signaling. These findings indicate that metabolic flexibility is necessary to maintain DDR signaling under conditions in which mitochondrial oxidative metabolism is inhibited and support the inhibition of oxidative metabolism (decreased ATP) as one protective mechanism by which nitric oxide attenuates DDR-dependent β-cell apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Flancher
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Functions of Exosomes in the Triangular Relationship between the Tumor, Inflammation, and Immunity in the Tumor Microenvironment. J Immunol Res 2019; 2019:4197829. [PMID: 31467934 PMCID: PMC6701352 DOI: 10.1155/2019/4197829] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles that contain diverse components such as genetic materials, proteins, and lipids. Owing to their distinct derivation and tissue specificity, exosomes act as double-edged swords during the development of neoplasms. On the one hand, tumor-derived exosomes can modulate the immune system during tumorigenesis by regulating inflammatory cell infiltration and oxidative stress and by promoting epithelial-to-mesenchymal transition and immune-induced tumor dormancy. On the other hand, components of specific immune cell-derived exosomes may contribute to the efficacy of antitumor immunotherapy. In this review, we demonstrate the pivotal role of exosomes in the triangular relationship in the tumor microenvironment between the tumor, inflammation, and immunity, which may provide potential strategies for tumor immunotherapy at genetic and cellular levels.
Collapse
|
42
|
Chaiprasert T, Armartmuntree N, Techasen A, Sakonsinsiri C, Pinlaor S, Ungarreevittaya P, Khuntikeo N, Namwat N, Thanan R. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules 2019; 9:biom9070263. [PMID: 31284679 PMCID: PMC6681239 DOI: 10.3390/biom9070263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 423 (ZNF423) is a transcriptional factor involved in the development and progression of cancers but has not yet been examined in cholangiocarcinoma (CCA), an oxidative stress-driven cancer of biliary epithelium. In this study, we hypothesized that oxidative stress mediated ZNF423 expression regulates its downstream genes resulting in CCA genesis. ZNF423 protein expression patterns and 8-oxodG (an oxidative stress marker) formation in CCA tissues were investigated using immunohistochemical analysis. The results showed that ZNF423 was overexpressed in CCA cells compared to normal bile duct cells adjacent of the tumor. Notably, ZNF423 expression was positively correlated with 8-oxodG formation. Moreover, ZNF423 expression in an immortalized cholangiocyte cell line (MMNK1) was increased by hydrogen peroxide-treatment, suggesting that oxidative stress induces ZNF423 expression. To investigate the roles of ZNF423 in CCA progression, ZNF423 mRNA was silenced using specific siRNA in CCA cell lines, KKU-100 and KKU-213. Silencing of ZNF423 significantly inhibits cell proliferation and invasion of both CCA cell lines. Taking all these results together, the present study denoted that ZNF423 is an oxidative stress-responsive gene with an oncogenic property contributing to the regulation of CCA genesis.
Collapse
Affiliation(s)
- Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
43
|
Catino A, de Gennaro G, Di Gilio A, Facchini L, Galetta D, Palmisani J, Porcelli F, Varesano N. Breath Analysis: A Systematic Review of Volatile Organic Compounds (VOCs) in Diagnostic and Therapeutic Management of Pleural Mesothelioma. Cancers (Basel) 2019; 11:E831. [PMID: 31207975 PMCID: PMC6627570 DOI: 10.3390/cancers11060831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm related to asbestos exposure and with high mortality rate. The management of patients with MPM is complex and controversial, particularly with regard to early diagnosis. In the last few years, breath analysis has been greatly implemented with this aim. In this review the strengths of breath analysis and preliminary results in searching breath biomarkers of MPM are highlighted and discussed, respectively. Through a systematic electronic literature search, collecting papers published from 2000 until December 2018, fifteen relevant scientific papers were selected. All papers considered were prospective, comparative, observational case-control studies although every single one pilot and based on a relatively small number of samples. The identification of diagnostic VOCs pattern, through breath sample characterization and the statistical data treatment, allows to obtain a strategic information for clinical diagnostics. To date the collected data provide just preliminary information and, despite the promising results and diagnostic accuracy, conclusions cannot be generalized due to the limited number of individuals included in each cohort study. Furthermore none of studies was externally validated, although validation process is a necessary step towards clinical implementation. Breathomics-based biomarker approach should be further explored to confirm and validate preliminary findings and to evaluate its potential role in monitoring the therapeutic response.
Collapse
Affiliation(s)
- Annamaria Catino
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| | | | | | - Laura Facchini
- Department of Biology, University of Bari, 70125 Bari, Italy.
| | - Domenico Galetta
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| | | | | | - Niccolò Varesano
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
44
|
Zhang ZM, Wang YC, Chen L, Li Z. Protective effects of the suppressed NF-κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat with acute lung injury. Kaohsiung J Med Sci 2019; 35:265-276. [PMID: 31001923 DOI: 10.1002/kjm2.12065] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of acute lung injury (ALI) is characterized by lung inflammation and lung oxidative stress. The study was conducted in order to investigate the effect toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) exhibited on oxidative stress in ALI. After the rats had been assigned into different groups, arterial blood, white blood cell (WBC), lung permeability index (LPI), wet/dry (W/D) ratio, TLR4 and NF-κB expression and superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) were examined. Afterward, the correlation between the levels of TLR4 and NF-κB was determined. Decreased levels of PaO2 , SOD, MPO, and GSH accompanied by increased levels of PaCO2 , WBC number, LPI and W/D ratio, MDA and ROS, as well as TLR4 and NF-κB expressions in the ALI, ALI + NF-κB inhibitor, and ALI + phosphate buffer saline groups were found. Inhibition of NF-κB resulted in increased PaO2 and decreased PaCO2 levels, WBC number, and LPI and W/D ratio. Decreased expression of NF-κB increased SOD, GSH, and MPO, but decreased MDA and ROS. We also found that NF-κB inhibition resulted in the improvement of ALI in rats. TLR4 and NF-κB expressions were negatively correlated with levels of SOD, MPO, and GSH, and positively correlated with MDA and ROS levels. In summary, our findings provided evidence that inhibition of the TLR4/NF-κB signaling pathway decreases oxidative stress, thereby improving ALI. As a result, NF-κB signaling pathway has shown potential as a therapeutic target in ALI therapy.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Department of Respiratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yan-Cun Wang
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| | - Zheng Li
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
45
|
Perina EA, Ivanov VV, Pershina AG, Perekucha NA, Dzyuman AN, Kaminskii IP, Saltykova IV, Sazonov AE, Ogorodova LM. Imbalance in the glutathione system in Opisthorchis felineus infected liver promotes hepatic fibrosis. Acta Trop 2019; 192:41-48. [PMID: 30684449 DOI: 10.1016/j.actatropica.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
Although data on oxidative stress during liver fluke infection have been previously presented, a comprehensive study of the glutathione system that plays a crucial role in scavenging of reactive oxygen species (ROS) and detoxification of primary and secondary oxidation products has not been addressed yet. In the present study, the hepatic glutathione system was investigated in a hamster model of experimental opisthorchiasis infection. It was shown that chronic oxidative stress in an Opisthorchis felineus infected liver, evidenced by abundant hydroperoxide accumulation, leads to strong imbalance in the hepatic glutathione system, namely the depletion of reduced form of glutathione (GSH), lowering of the GSH/GSSG ratio, and a decrease in the glutathione peroxidase and glyoxalase 1 activity. O. felineus infection provokes hepatocellular damage that results in the progression of liver fibrosis, accompanied by an increase in collagen deposition in the hepatic tissue. Modulation of hepatic GSH levels in the O. felineus infected liver through N-acetylcysteine (NAC) or l-buthionine-S, R-sulfoxinine (BSO) treatments lead to changes in expression and activity of glutathione S-transferase and glyoxalase I as well as markedly decreases or increases collagen content in the O. felineus infected liver and the severity of liver fibrosis, respectively. Thus, the glutathione system can be considered as a target for liver protection from O. felineus-induced injury.
Collapse
Affiliation(s)
- Ekaterina A Perina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Vladimir V Ivanov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexandra G Pershina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia.
| | - Natalya A Perekucha
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia
| | - Anna N Dzyuman
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ilya P Kaminskii
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Irina V Saltykova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexey E Sazonov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ludmila M Ogorodova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| |
Collapse
|
46
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
47
|
Debelec-Butuner B, Bostancı A, Ozcan F, Singin O, Karamil S, Aslan M, Roggenbuck D, Korkmaz KS. Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer. Cancer Invest 2019; 37:113-126. [PMID: 30836777 DOI: 10.1080/07357907.2019.1576192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 8-hydroxy-2'-deoxyguanosine (8-OHdG) damages are base damages induced by reactive oxygen species. We aimed to investigate the role of Androgen Receptor and NKX3.1 in 8-OHdG formation and repair activation by quantitating the DNA damage using Aklides.NUK system. The data demonstrated that the loss of NKX3.1 resulted in increased oxidative DNA damage and its overexpression contributes to the removal of menadione-induced 8-OHdG damage even under oxidative stress conditions. Moreover, 8-oxoguanine DNA glycosylase-1 (OGG1) expression level positively correlates to NKX3.1 expression. Also in this study, first time a reliable cell-based quantitation method for 8-OHdG damages is reported and used for data collection.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- a Department of Pharmaceutical Biotechnology, Faculty of Pharmacy , Ege University , Izmir , Turkey
| | - Aykut Bostancı
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Filiz Ozcan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Oznur Singin
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Selda Karamil
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Mutay Aslan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Dirk Roggenbuck
- d Medipan GmBH , Dahlewitz , Germany.,e Faculty Environment and Natural Sciences , Brandenburg University of Technology Cottbus-Senftenberg , Senftenberg , Germany
| | - Kemal Sami Korkmaz
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| |
Collapse
|
48
|
Pérez-González A, Castañeda-Arriaga R, Álvarez-Idaboy JR, Reiter RJ, Galano A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res 2019; 66:e12539. [PMID: 30417425 DOI: 10.1111/jpi.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Oxidative stress mediates chemical damage to DNA yielding a wide variety of products. In this work, the potential capability of melatonin and several of its metabolites to repair directly (chemically) oxidative lesions in DNA was explored. It was found that all the investigated molecules are capable of repairing guanine-centered radical cations by electron transfer at very high rates, that is, diffusion-limited. They are also capable of repairing C-centered radicals in the sugar moiety of 2'-deoxyguanosine (2dG) by hydrogen atom transfer. Although this was identified as a rather slow process, with rate constants ranging from 1.75 to 5.32 × 102 M-1 s-1 , it is expected to be fast enough to prevent propagation of the DNA damage. Melatonin metabolites 6-hydroxymelatonin (6OHM) and 4-hydroxymelatonin (4OHM) are also predicted to repair OH adducts in the imidazole ring. In particular, the rate constants corresponding to the repair of 8-OH-G adducts were found to be in the order of 104 M-1 s-1 and are assisted by a water molecule. The results presented here strongly suggest that the role of melatonin in preventing DNA damage might be mediated by its capability, combined with that of its metabolites, to directly repair oxidized sites in DNA through different chemical routes.
Collapse
Affiliation(s)
- Adriana Pérez-González
- CONACYT, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, México City, México
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| | - Juan Raúl Álvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| |
Collapse
|
49
|
Oral Administration of Fermented Papaya (FPP ®) Controls the Growth of a Murine Melanoma through the In Vivo Induction of a Natural Antioxidant Response. Cancers (Basel) 2019; 11:cancers11010118. [PMID: 30669508 PMCID: PMC6356895 DOI: 10.3390/cancers11010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Prolonged oxidative stress may play a key role in tumor development. Antioxidant molecules are contained in many foods and seem to have a potential role in future anti-tumor strategies. Among the natural antioxidants the beneficial effect of Fermented Papaya (FPP®) is well known. The aim of this study was to investigate the effects of orally administered FPP® in either the prevention or treatment of a murine model of melanoma. The tumor growth was analyzed together with the blood levels of both oxidants (ROS) and anti-oxidants (SOD-1 and GSH). The results showed that FPP® controlled tumor growth, reducing the tumor mass of about three to seven times vs. untreated mice. The most significant effect was obtained with sublingual administration of FPP® close to the inoculation of melanoma. At the time of the sacrifice none of mice treated with FPP® had metastases and the subcutaneous tumors were significantly smaller and amelanotic, compared to untreated mice. Moreover, the FPP® anti-tumor effect was consistent with the decrease of total ROS levels and the increase in the blood levels of GSH and SOD-1. This study shows that a potent anti-oxidant treatment through FPP® may contribute to both preventing and inhibiting tumors growth.
Collapse
|
50
|
Karpiński TM. Role of Oral Microbiota in Cancer Development. Microorganisms 2019; 7:microorganisms7010020. [PMID: 30642137 PMCID: PMC6352272 DOI: 10.3390/microorganisms7010020] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Nowadays cancer is the second main cause of death in the world. The most known bacterial carcinogen is Helicobacter pylori. Pathogens that can have an impact on cancer development in the gastrointestinal tract are also found in the oral cavity. Some specific species have been identified that correlate strongly with oral cancer, such as Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Fusobacterium sp., Porphyromonas gingivalis, and Capnocytophaga gingivalis. Many works have also shown that the oral periopathogens Fusobacterium nucleatum and Porphyromonas gingivalis play an important role in the development of colorectal and pancreatic cancer. Three mechanisms of action have been suggested in regard to the role of oral microbiota in the pathogenesis of cancer. The first is bacterial stimulation of chronic inflammation. Inflammatory mediators produced in this process cause or facilitate cell proliferation, mutagenesis, oncogene activation, and angiogenesis. The second mechanism attributed to bacteria that may influence the pathogenesis of cancers by affecting cell proliferation is the activation of NF-κB and inhibition of cellular apoptosis. In the third mechanism, bacteria produce some substances that act in a carcinogenic manner. This review presents potentially oncogenic oral bacteria and possible mechanisms of their action on the carcinogenesis of human cells.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|