1
|
Dagnino PC, Galadí JA, Càmara E, Deco G, Escrichs A. Inducing a meditative state by artificial perturbations: A mechanistic understanding of brain dynamics underlying meditation. Netw Neurosci 2024; 8:517-540. [PMID: 38952817 PMCID: PMC11168722 DOI: 10.1162/netn_a_00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach by defining a probabilistic metastable substate (PMS) space for each condition, consisting of different probabilities of occurrence from a repertoire of dynamic patterns. Moreover, we implemented a model-based approach by adjusting the PMS of each condition to a whole-brain model, which enabled us to explore in silico perturbations to transition from resting-state to meditation and vice versa. Consequently, we assessed the sensitivity of different brain areas regarding their perturbability and their mechanistic local-global effects. Overall, our work reveals distinct whole-brain dynamics in meditation compared to rest, and how transitions can be induced with localized artificial perturbations. It motivates future work regarding meditation as a practice in health and as a potential therapy for brain disorders.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier A. Galadí
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Tian B, Chen Q, Zou M, Xu X, Liang Y, Liu Y, Hou M, Zhao J, Liu Z, Jiang L. Decreased resting-state functional connectivity and brain network abnormalities in the prefrontal cortex of elderly patients with Parkinson's disease accompanied by depressive symptoms. Glob Health Med 2024; 6:132-140. [PMID: 38690130 PMCID: PMC11043130 DOI: 10.35772/ghm.2023.01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 05/02/2024]
Abstract
This study aimed to explore the brain network characteristics in elderly patients with Parkinson's disease (PD) with depressive symptoms. Thirty elderly PD patients with depressive symptoms (PD-D) and 26 matched PD patients without depressive symptoms (PD-NOD) were recruited based on HAMD-24 with a cut-off of 7. The resting-state functional connectivity (RSFC) was conducted by 53-channel functional near-infrared spectroscopy (fNIRS). There were no statistically significant differences in MMSE scores, disease duration, Hoehn-Yahr stage, daily levodopa equivalent dose, and MDS-UPDRS III between the two groups. However, compared to the PD-NOD group, the PD-D group showed significantly higher MDS-UPDRS II, HAMA-14, and HAMD-24. The interhemispheric FC strength and the FC strength between the left dorsolateral prefrontal cortex (DLPFC-L) and the left frontal polar area (FPA-L) was significantly lower in the PD-D group (FDR p < 0.05). As for graph theoretic metrics, the PD-D group had significantly lower degree centrality (aDc) and node efficiency (aNe) in the DLPFC-L and the FPA-L (FDR, p < 0.05), as well as decreased global efficiency (aEg). Pearson correlation analysis indicated moderate negative correlations between HAMD-24 scores and the interhemispheric FC strength, FC between DLPFC-L and FPA-L, aEg, aDc in FPA-L, aNe in DLPFC-L and FPA-L. In conclusion, PD-D patients show decreased integration and efficiency in their brain networks. Furthermore, RSFC between DLPFC-L and FPA-L regions is negatively correlated with depressive symptoms. These findings propose that targeting DLPFC-L and FPA-L regions via non-invasive brain stimulation may be a potential intervention for alleviating depressive symptoms in elderly PD patients.
Collapse
Affiliation(s)
- Bingjie Tian
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Chen
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zou
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Nursing, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyan Liu
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Hou
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Jiang
- Department of Nursing, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Brugnoli MP. Spiritual healing in palliative care with clinical hypnosis: neuroscience and therapy. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2023:1-13. [PMID: 38117544 DOI: 10.1080/00029157.2023.2281466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
THIS PAPER REVIEWS The neuroscientific features of inner consciousness, including its role in suffering and in accessing states of mind that relieve suffering; details salient meditative and hypnotic approaches appropriate for palliative settings of care; discusses core principles and orientations shared by effective approaches; and proposes early integration of hypnotic training as a coping skill and a platform for spiritual exploration, as desired.
Collapse
Affiliation(s)
- Maria Paola Brugnoli
- Interdisciplinary Research Group in Neurobioethics (GdN) at the Pontifical Athenaeum Regina Apostolorum (APRA), Roma, Italy
- Chairperson Ethical Committee ISH International Society of Hypnosis, Verona, Italy
- President SIPMU Italian Scientific Society Clinical Hypnosis in Psychotherapy and Humanistic Medicine, Verona, Italy
| |
Collapse
|
4
|
Zhang Y, Chen S, Zhang Z, Duan W, Zhao L, Weinschenk G, Luh WM, Anderson AK, Dai W. Effect of Meditation on Brain Activity during an Attention Task: A Comparison Study of ASL and BOLD Task fMRI. Brain Sci 2023; 13:1653. [PMID: 38137100 PMCID: PMC10741430 DOI: 10.3390/brainsci13121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Focused attention meditation (FAM) training has been shown to improve attention, but the neural basis of FAM on attention has not been thoroughly understood. Here, we aim to investigate the neural effect of a 2-month FAM training on novice meditators in a visual oddball task (a frequently adopted task to evaluate attention), evaluated with both ASL and BOLD fMRI. Using ASL, activation was increased in the middle cingulate (part of the salience network, SN) and temporoparietal (part of the frontoparietal network, FPN) regions; the FAM practice time was negatively associated with the longitudinal changes in activation in the medial prefrontal (part of the default mode network, DMN) and middle frontal (part of the FPN) regions. Using BOLD, the FAM practice time was positively associated with the longitudinal changes of activation in the inferior parietal (part of the dorsal attention network, DAN), dorsolateral prefrontal (part of the FPN), and precentral (part of the DAN) regions. The effect sizes for the activation changes and their association with practice time using ASL are significantly larger than those using BOLD. Our study suggests that FAM training may improve attention via modulation of the DMN, DAN, SN, and FPN, and ASL may be a sensitive tool to study the FAM effect on attention.
Collapse
Affiliation(s)
- Yakun Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Shichun Chen
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - Adam K. Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA;
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| |
Collapse
|
5
|
Pan N, Qin K, Yu Y, Long Y, Zhang X, He M, Suo X, Zhang S, Sweeney JA, Wang S, Gong Q. Pre-COVID brain functional connectome features prospectively predict emergence of distress symptoms after onset of the COVID-19 pandemic. Psychol Med 2023; 53:5155-5166. [PMID: 36046918 PMCID: PMC9433719 DOI: 10.1017/s0033291722002173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
6
|
Han YMY, Chan MMY, Choi CXT, Law MCH, Ahorsu DK, Tsang HWH. The neurobiological effects of mind-body exercise: a systematic review and meta-analysis of neuroimaging studies. Sci Rep 2023; 13:10948. [PMID: 37415072 PMCID: PMC10326064 DOI: 10.1038/s41598-023-37309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
The neurobiological effects of mind-body exercise on brain activation, functional neural connections and structural changes in the brain remain elusive. This systematic review and coordinate-based meta-analysis investigated the changes in resting-state and task-based brain activation, as well as structural brain changes before and after mind-body exercise compared to waitlist or active controls based on published structural or functional magnetic resonance imaging randomized controlled trials or cross-sectional studies. Electronic database search and manual search in relevant publications yielded 34 empirical studies with low-to-moderate risk of bias (assessed by Cochrane risk-of-bias tool for randomized trials or Joanna Briggs Institute's critical appraisal checklist for analytical cross-sectional studies) that fulfilled the inclusion criteria, with 26 studies included in the narrative synthesis and 8 studies included in the meta-analysis. Coordinate-based meta-analysis showed that, while mind-body exercise enhanced the activation of the left anterior cingulate cortex within the default mode network (DMN), it induced more deactivation in the left supramarginal gyrus within the ventral attention network (uncorrected ps < 0.05). Meta-regression with duration of mind-body practice as a factor showed that, the activation of right inferior parietal gyrus within the DMN showed a positive association with increasing years of practice (voxel-corrected p < 0.005). Although mind-body exercise is shown to selectively modulate brain functional networks supporting attentional control and self-awareness, the overall certainty of evidence is limited by small number of studies. Further investigations are needed to understand the effects of both short-term and long-term mind-body exercise on structural changes in the brain.PROSPERO registration number: CRD42021248984.
Collapse
Affiliation(s)
- Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Maxwell C H Law
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Daniel Kwasi Ahorsu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong SAR, China
| | - Hector W H Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Nie Z, Xie X, Kang L, Wang W, Xu S, Chen M, Yao L, Gong Q, Zhou E, Li M, Wang H, Bu L, Liu Z. A Cross-Sectional Study: Structural and Related Functional Connectivity Changes in the Brain: Stigmata of Adverse Parenting in Patients with Major Depressive Disorder? Brain Sci 2023; 13:brainsci13040694. [PMID: 37190659 DOI: 10.3390/brainsci13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background: There is a high correlation between the risk of major depressive disorder (MDD) and adverse childhood experiences (ACEs) such as adverse parenting (AP). While there appears to be an association between ACEs and changes in brain structure and function, there have yet to be multimodal neuroimaging studies of associations between parenting style and brain developmental changes in MDD patients. To explore the effect of AP on brain structure and function. Methods: In this cross-sectional study, 125 MDD outpatients were included in the study and divided into the AP group and the optimal parenting (OP) group. Participants completed self-rating scales to assess depressive severity, symptoms, and their parents' styles. They also completed magnetic resonance imaging within one week of filling out the instruments. The differences between groups of gender, educational level, and medications were analyzed using the chi-squared test and those of age, duration of illness, and scores on scales using the independent samples t-test. Differences in gray matter volume (GMV) and resting-state functional connectivity (RS-FC) were assessed between groups. Results: AP was associated with a significant increase in GMV in the right superior parietal lobule (SPL) and FC between the right SPL and the bilateral medial superior frontal cortex in MDD patients. Limitations: The cross-cultural characteristics of AP will result in the lack of generalizability of the findings. Conclusions: The results support the hypothesis that AP during childhood may imprint the brain and affect depressive symptoms in adulthood. Parents should pay attention to the parenting style and avoid a style that lacks warmth.
Collapse
Affiliation(s)
- Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mianmian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Madhira A, Srinivasan N. Letting it go: The interplay between mind wandering, mindfulness, and creativity. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Garland EL, Hanley AW, Hudak J, Nakamura Y, Froeliger B. Mindfulness-induced endogenous theta stimulation occasions self-transcendence and inhibits addictive behavior. SCIENCE ADVANCES 2022; 8:eabo4455. [PMID: 36223472 PMCID: PMC9555770 DOI: 10.1126/sciadv.abo4455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Self-regulation is instantiated by theta oscillations (4 to 8 Hz) in neurons of frontal midline brain regions. Frontal midline theta (FMΘ) is inversely associated with default mode network (DMN) activation, which subserves self-referential processing. Addiction involves impaired self-regulation and DMN dysfunction. Mindfulness is an efficacious self-regulatory practice for treating addiction, but little is known about the mechanisms by which mindfulness reduces addictive behavior. In this mechanistic study of long-term opioid users (N = 165), we assessed meditation-induced FMΘ as a mediator of changes in opioid misuse. Relative to a supportive psychotherapy control, participants treated with Mindfulness-Oriented Recovery Enhancement (MORE) exhibited increased FMΘ during a laboratory-based meditation session. FMΘ during meditation was associated with self-transcendent experiences characterized by ego dissolution, nondual awareness, and bliss. MORE's effects on decreasing opioid misuse were mediated by increased FMΘ. Given the role of aberrant self-referential processing in addiction, mindfulness-induced endogenous theta stimulation might "reset" DMN dysfunction to inhibit addictive behavior.
Collapse
Affiliation(s)
- Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
- Veterans Health Care Administration VISN 19 Whole Health Flagship site located at the VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Adam W. Hanley
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Justin Hudak
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Yoshio Nakamura
- Department of Anesthesiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brett Froeliger
- Department of Psychology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Cooper AC, Ventura B, Northoff G. Beyond the veil of duality-topographic reorganization model of meditation. Neurosci Conscious 2022; 2022:niac013. [PMID: 36237370 PMCID: PMC9552929 DOI: 10.1093/nc/niac013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Meditation can exert a profound impact on our mental life, with proficient practitioners often reporting an experience free of boundaries between a separate self and the environment, suggesting an explicit experience of "nondual awareness." What are the neural correlates of such experiences and how do they relate to the idea of nondual awareness itself? In order to unravel the effects that meditation has on the brain's spatial topography, we review functional magnetic resonance imaging brain findings from studies specific to an array of meditation types and meditator experience levels. We also review findings from studies that directly probe the interaction between meditation and the experience of the self. The main results are (i) decreased posterior default mode network (DMN) activity, (ii) increased central executive network (CEN) activity, (iii) decreased connectivity within posterior DMN as well as between posterior and anterior DMN, (iv) increased connectivity within the anterior DMN and CEN, and (v) significantly impacted connectivity between the DMN and CEN (likely a nonlinear phenomenon). Together, these suggest a profound organizational shift of the brain's spatial topography in advanced meditators-we therefore propose a topographic reorganization model of meditation (TRoM). One core component of the TRoM is that the topographic reorganization of DMN and CEN is related to a decrease in the mental-self-processing along with a synchronization with the more nondual layers of self-processing, notably interoceptive and exteroceptive-self-processing. This reorganization of the functionality of both brain and self-processing can result in the explicit experience of nondual awareness. In conclusion, this review provides insight into the profound neural effects of advanced meditation and proposes a result-driven unifying model (TRoM) aimed at identifying the inextricably tied objective (neural) and subjective (experiential) effects of meditation.
Collapse
Affiliation(s)
- Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada
| | - Bianca Ventura
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
11
|
Chang YK, Erickson KI, Aghjayan SL, Chen FT, Li RH, Shih JR, Chang SH, Huang CM, Chu CH. The multi-domain exercise intervention for memory and brain function in late middle-aged and older adults at risk for Alzheimer's disease: A protocol for Western-Eastern Brain Fitness Integration Training trial. Front Aging Neurosci 2022; 14:929789. [PMID: 36062144 PMCID: PMC9435311 DOI: 10.3389/fnagi.2022.929789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Aging is associated with cognitive decline, increased risk for dementia, and deterioration of brain function. Modifiable lifestyle factors (e.g., exercise, meditation, and social interaction) have been proposed to benefit memory and brain function. However, previous studies have focused on a single exercise modality or a single lifestyle factor. Consequently, the effect of a more comprehensive exercise program that combines multiple exercise modalities and lifestyle factors, as well as examines potential mediators and moderators, on cognitive function and brain health in late middle-aged and older adults remains understudied. This study's primary aim is to examine the effect of a multi-domain exercise intervention on memory and brain function in cognitively healthy late middle-aged and older adults. In addition, we will examine whether apolipoprotein E (ApoE) genotypes, physical fitness (i.e., cardiovascular fitness, body composition, muscular fitness, flexibility, balance, and power), and brain-derived neurotrophic factor (BDNF) moderate and mediate the exercise intervention effects on memory and brain function. Methods The Western-Eastern Brain Fitness Integration Training (WE-BFit) is a single-blinded, double-arm, 6-month randomized controlled trial. One hundred cognitively healthy adults, aged 45-70 years, with different risks for Alzheimer's disease (i.e., ApoE genotype) will be recruited and randomized into either a multi-domain exercise group or an online educational course control group. The exercise intervention consists of one 90-min on-site and several online sessions up to 60 min per week for 6 months. Working memory, episodic memory, physical fitness, and BDNF will be assessed before and after the 6-month intervention. The effects of the WE-BFit on memory and brain function will be described and analyzed. We will further examine how ApoE genotype and changes in physical fitness and BDNF affect the effects of the intervention. Discussion WE-BFit is designed to improve memory and brain function using a multi-domain exercise intervention. The results will provide insight into the implementation of an exercise intervention with multiple domains to preserve memory and brain function in adults with genetic risk levels for Alzheimer's disease. Clinical trial registration ClinicalTrials.gov, identifier: NCT05068271.
Collapse
Affiliation(s)
- Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL, United States
| | - Sarah L. Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Feng-Tzu Chen
- Department of Sport Medicine, China Medical University, Taichung, Taiwan
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jia-Ru Shih
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Shao-Hsi Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
12
|
Rahrig H, Vago DR, Passarelli MA, Auten A, Lynn NA, Brown KW. Meta-analytic evidence that mindfulness training alters resting state default mode network connectivity. Sci Rep 2022; 12:12260. [PMID: 35851275 PMCID: PMC9293892 DOI: 10.1038/s41598-022-15195-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to control, with the hypothesis that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of mindfulness-based training interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge's g = .234, p = 0.0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger's test for publication bias was nonsignificant, bias = 2.17, p = 0.162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| | - David R Vago
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA, TN
| | - Matthew A Passarelli
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Allison Auten
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Nicholas A Lynn
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| |
Collapse
|
13
|
Meditation-induced effects on whole-brain structural and effective connectivity. Brain Struct Funct 2022; 227:2087-2102. [PMID: 35524072 PMCID: PMC9232427 DOI: 10.1007/s00429-022-02496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/04/2022] [Indexed: 12/26/2022]
Abstract
In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain’s structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals’ spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.
Collapse
|
14
|
Sezer I, Pizzagalli DA, Sacchet MD. Resting-state fMRI functional connectivity and mindfulness in clinical and non-clinical contexts: A review and synthesis. Neurosci Biobehav Rev 2022; 135:104583. [PMID: 35202647 PMCID: PMC9083081 DOI: 10.1016/j.neubiorev.2022.104583] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/07/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
This review synthesizes relations between mindfulness and resting-state fMRI functional connectivity of brain networks. Mindfulness is characterized by present-moment awareness and experiential acceptance, and relies on attention control, self-awareness, and emotion regulation. We integrate studies of functional connectivity and (1) trait mindfulness and (2) mindfulness meditation interventions. Mindfulness is related to functional connectivity in the default mode (DMN), frontoparietal (FPN), and salience (SN) networks. Specifically, mindfulness-mediated functional connectivity changes include (1) increased connectivity between posterior cingulate cortex (DMN) and dorsolateral prefrontal cortex (FPN), which may relate to attention control; (2) decreased connectivity between cuneus and SN, which may relate to self-awareness; (3) increased connectivity between rostral anterior cingulate cortex region and dorsomedial prefrontal cortex (DMN) and decreased connectivity between rostral anterior cingulate cortex region and amygdala region, both of which may relate to emotion regulation; and lastly, (4) increased connectivity between dorsal anterior cingulate cortex (SN) and anterior insula (SN) which may relate to pain relief. While further study of mindfulness is needed, neural signatures of mindfulness are emerging.
Collapse
Affiliation(s)
- Idil Sezer
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Paris Brain Institute, Sorbonne University/CNRS/INSERM, Paris, France.
| | - Diego A Pizzagalli
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
15
|
Wang F, Zhou T, Wang P, Li Z, Meng X, Jiang J. Study of extravisual resting-state networks in pituitary adenoma patients with vision restoration. BMC Neurosci 2022; 23:15. [PMID: 35300588 PMCID: PMC8932055 DOI: 10.1186/s12868-022-00701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pituitary adenoma (PA) may compress the optic apparatus, resulting in impaired vision. Some patients can experience improved vision rapidly after surgery. During the early period after surgery, however, the change in neurofunction in the extravisual cortex and higher cognitive cortex has yet to be explored. Objective Our study focused on the changes in the extravisual resting-state networks in patients with PA after vision restoration. Methods We recruited 14 patients with PA who experienced visual improvement after surgery. The functional connectivity (FC) of 6 seeds [auditory cortex (A1), Broca’s area, posterior cingulate cortex (PCC) for the default mode network (DMN), right caudal anterior cingulate cortex for the salience network (SN) and left dorsolateral prefrontal cortex for the executive control network (ECN)] were evaluated. A paired t test was conducted to identify the differences between two groups of patients. Results Compared with their preoperative counterparts, patients with PA with improved vision exhibited decreased FC with the right A1 in the left insula lobule, right middle temporal gyrus and left postcentral gyrus and increased FC in the right paracentral lobule; decreased FC with the Broca in the left middle temporal gyrus and increased FC in the left insula lobule and right thalamus; decreased FC with the DMN in the right declive and right precuneus; increased FC in right Brodmann area 17, the left cuneus and the right posterior cingulate; decreased FC with the ECN in the right posterior cingulate, right angular and right precuneus; decreased FC with the SN in the right middle temporal gyrus, right hippocampus, and right precuneus; and increased FC in the right fusiform gyrus, the left lingual gyrus and right Brodmann area 19. Conclusions Vision restoration may cause a response of cross-modal plasticity and multisensory systems related to A1 and the Broca. The DMN and SN may be involved in top-down control of the subareas within the visual cortex. The precuneus may be involved in the DMN, ECN and SN simultaneously.
Collapse
Affiliation(s)
- Fuyu Wang
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xianghui Meng
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinli Jiang
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
The Longitudinal Effect of Meditation on Resting-State Functional Connectivity Using Dynamic Arterial Spin Labeling: A Feasibility Study. Brain Sci 2021; 11:brainsci11101263. [PMID: 34679328 PMCID: PMC8533789 DOI: 10.3390/brainsci11101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.
Collapse
|
17
|
Garland EL. Mindful Positive Emotion Regulation as a Treatment for Addiction: From Hedonic Pleasure to Self-Transcendent Meaning. Curr Opin Behav Sci 2021; 39:168-177. [PMID: 34084873 PMCID: PMC8168946 DOI: 10.1016/j.cobeha.2021.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic drug use is theorized to induce cortico-striatal neuroplasticity, driving an allostatic process marked by increased sensitivity to drug-related cues and decreased sensitivity to natural rewards that results in anhedonia and a dearth of positive affect. As such, positive emotion regulation represents a key mechanistic target for addictions treatment. This paper provides a conceptual model detailing how mindfulness may synergize a range of positive affective mechanisms to reduce addictive behavior, from savoring the hedonic pleasure derived from natural rewards, to self-generating interoceptive reward responses, and ultimately to cultivating self-transcendent meaning. These therapeutic processes may restructure reward processing from over-valuation of drug-related rewards back to valuation of natural rewards, and hypothetically, "reset" the default mode network dysfunction that undergirds addiction.
Collapse
Affiliation(s)
- Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, USA
- College of Social Work, University of Utah, USA
| |
Collapse
|
18
|
Zhang Z, Luh WM, Duan W, Zhou GD, Weinschenk G, Anderson AK, Dai W. Longitudinal effects of meditation on brain resting-state functional connectivity. Sci Rep 2021; 11:11361. [PMID: 34059702 PMCID: PMC8166909 DOI: 10.1038/s41598-021-90729-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Changes in brain resting-state functional connectivity (rsFC) were investigated using a longitudinal design by following a 2-month focused attention meditation (FAM) practice and analyzing their association with FAM practice time. Ten novice meditators were recruited from a university meditation course. Participants were scanned with a resting-state fMRI sequence with multi-echo EPI acquisition at baseline and at the 2-month follow-up. Total FAM practice time was calculated from the daily log of the participants. We observed significantly increased rsFC between the posterior cingulate cortex (PCC) and dorsal attention network (DAN), the right middle temporal (RMT) region and default mode network (DMN), the left and right superior parietal lobules (LSPL/RSPL) and DMN, and the LSPL/RSPL and DAN. Furthermore, the rsFC between the LSPL and medial prefrontal cortex was significantly associated with the FAM practice time. These results demonstrate increased connectivity within the DAN, between the DMN and DAN, and between the DMN and visual cortex. These findings demonstrate that FAM can enhance the brain connection among and within brain networks, especially DMN and DAN, indicating potential effect of FAM on fast switching between mind wandering and focused attention and maintaining attention once in the attentive state.
Collapse
Affiliation(s)
- Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Wen-Ming Luh
- National Institute on Aging, National Institute of Health, Baltimore, MD, 21225, USA
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Grace D Zhou
- Department of Human Development, Cornell University, Ithaca, NY, 14853, USA
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Adam K Anderson
- Department of Human Development, Cornell University, Ithaca, NY, 14853, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA.
| |
Collapse
|
19
|
Psychosocial intervention and the reward system in pain and opioid misuse: new opportunities and directions. Pain 2021; 161:2659-2666. [PMID: 33197164 DOI: 10.1097/j.pain.0000000000001988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Ketai LH, Komesu YM, Schrader RM, Rogers RG, Sapien RE, Dodd AB, Mayer AR. Mind-body (hypnotherapy) treatment of women with urgency urinary incontinence: changes in brain attentional networks. Am J Obstet Gynecol 2021; 224:498.e1-498.e10. [PMID: 33122028 PMCID: PMC10739935 DOI: 10.1016/j.ajog.2020.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prior study of patients with urgency urinary incontinence by functional magnetic resonance imaging showed altered function in areas of the brain associated with interoception and salience and with attention. Our randomized controlled trial of hypnotherapy for urgency urinary incontinence demonstrated marked improvement in urgency urinary incontinence symptoms at 2 months. A subsample of these women with urgency urinary incontinence underwent functional magnetic resonance imaging before and after treatment. OBJECTIVE This study aimed to determine if hypnotherapy treatment of urgency urinary incontinence compared with pharmacotherapy was associated with altered brain activation or resting connectivity on functional magnetic resonance imaging. STUDY DESIGN A subsample of women participating in a randomized controlled trial comparing hypnotherapy vs pharmacotherapy for treatment of urgency urinary incontinence was evaluated with functional magnetic resonance imaging. Scans were obtained pretreatment and 8 to 12 weeks after treatment initiation. Brain activation during bladder filling and resting functional connectivity with an empty and partially filled bladder were assessed. Brain regions of interest were derived from those previously showing differences between healthy controls and participants with untreated urgency urinary incontinence in our prior work and included regions in the interoceptive and salience, ventral attentional, and dorsal attentional networks. RESULTS After treatment, participants in both groups demonstrated marked improvement in incontinence episodes (P<.001). Bladder-filling task functional magnetic resonance imaging data from the combined groups (n=64, 30 hypnotherapy, 34 pharmacotherapy) demonstrated decreased activation of the left temporoparietal junction, a component of the ventral attentional network (P<.01) compared with baseline. Resting functional connectivity differed only with the bladder partially filled (n=54). Compared with pharmacotherapy, hypnotherapy participants manifested increased functional connectivity between the anterior cingulate cortex and the left dorsolateral prefrontal cortex, a component of the dorsal attentional network (P<.001). CONCLUSION Successful treatment of urgency urinary incontinence with both pharmacotherapy and hypnotherapy was associated with decreased activation of the ventral (bottom-up) attentional network during bladder filling. This may be attributable to decreased afferent stimuli arising from the bladder in the pharmacotherapy group. In contrast, decreased ventral attentional network activation associated with hypnotherapy may be mediated by the counterbalancing effects of the dorsal (top-down) attentional network.
Collapse
Affiliation(s)
- Loren H Ketai
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Yuko M Komesu
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ronald M Schrader
- University of New Mexico Clinical and Translational Science Center, Albuquerque, New Mexico
| | - Rebecca G Rogers
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico; University of Texas Dell Medical School, Austin, TX
| | - Robert E Sapien
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | |
Collapse
|
21
|
Effects of Mind-Body Exercise on Brain Structure and Function: A Systematic Review on MRI Studies. Brain Sci 2021; 11:brainsci11020205. [PMID: 33562412 PMCID: PMC7915202 DOI: 10.3390/brainsci11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mind–body exercise has been proposed to confer both physical and mental health benefits. However, there is no clear consensus on the neural mechanisms underlying the improvements in health. Herein, we conducted a systematic review to reveal which brain region or network is regulated by mind–body exercise. PubMed, Web of Science, PsycINFO, SPORTDiscus, and China National Knowledge Infrastructure databases were systematically searched to identify cross-sectional and intervention studies using magnetic resonance imaging (MRI) to explore the effect of mind–body exercise on brain structure and function, from their inception to June 2020. The risk of bias for cross-sectional studies was assessed using the Joanna Briggs Institute (JBI) checklist, whereas that of interventional studies was analyzed using the Physiotherapy Evidence Database (PEDro) scale. A total of 15 studies met the inclusion criteria. Our analysis revealed that mind–body exercise modulated brain structure, brain neural activity, and functional connectivity, mainly in the prefrontal cortex, hippocampus/medial temporal lobe, lateral temporal lobe, insula, and the cingulate cortex, as well as the cognitive control and default mode networks, which might underlie the beneficial effects of such exercises on health. However, due to the heterogeneity of included studies, more randomized controlled trials with rigorous designs, similar measured outcomes, and whole-brain analyses are warranted.
Collapse
|
22
|
Eleftheriou ME, Thomas E. Examining the Potential Synergistic Effects Between Mindfulness Training and Psychedelic-Assisted Therapy. Front Psychiatry 2021; 12:707057. [PMID: 34456763 PMCID: PMC8386240 DOI: 10.3389/fpsyt.2021.707057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mindfulness-based interventions and psychedelic-assisted therapy have been experimentally utilised in recent years as alternative treatments for various psychopathologies with moderate to great success. Both have also demonstrated significant post-acute and long-term decreases in clinical symptoms and enhancements in well-being in healthy participants. These two therapeutic interventions share various postulated salutogenic mechanisms, such as the ability to alter present-moment awareness and anti-depressive action, via corresponding neuromodulatory effects. Recent preliminary evidence has also demonstrated that psychedelic administration can enhance mindfulness capacities which has already been demonstrated robustly as a result of mindfulness-based interventions. These shared mechanisms between mindfulness-based interventions and psychedelic therapy have led to scientists theorising, and recently demonstrating, synergistic effects when both are used in combination, in the form of potentiated therapeutic benefit. These synergistic results hold great promise but require replication in bigger sample groups and better controlled methodologies, to fully delineate the effect of set and setting, before they can be extended onto clinical populations.
Collapse
Affiliation(s)
- Maria Eleni Eleftheriou
- Department of Clinical Psychopharmacology, University College London, London, United Kingdom
| | - Emily Thomas
- Department of Clinical Psychopharmacology, University College London, London, United Kingdom
| |
Collapse
|
23
|
Berkovich-Ohana A, Furman-Haran E, Malach R, Arieli A, Harel M, Gilaie-Dotan S. Studying the precuneus reveals structure-function-affect correlation in long-term meditators. Soc Cogn Affect Neurosci 2020; 15:1203-1216. [PMID: 33210139 PMCID: PMC7745150 DOI: 10.1093/scan/nsaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aviva Berkovich-Ohana
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Faculty of Education, The Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Arieli
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Harel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Gilaie-Dotan
- School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, Israel.,UCL Institute of Cognitive Neuroscience, Faculty of Brain Sciences, London, UK
| |
Collapse
|
24
|
Garland EL, Bryan MA, Priddy SE, Riquino MR, Froeliger B, Howard MO. Effects of Mindfulness-Oriented Recovery Enhancement Versus Social Support on Negative Affective Interference During Inhibitory Control Among Opioid-Treated Chronic Pain Patients: A Pilot Mechanistic Study. Ann Behav Med 2020; 53:865-876. [PMID: 30668631 DOI: 10.1093/abm/kay096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among opioid-treated chronic pain patients, deficient response inhibition in the context of emotional distress may contribute to maladaptive pain coping and prescription opioid misuse. Interventions that aim to bolster cognitive control and reduce emotional reactivity (e.g., mindfulness) may remediate response inhibition deficits, with consequent clinical benefits. PURPOSE To test the hypothesis that a mindfulness-based intervention, Mindfulness-Oriented Recovery Enhancement (MORE), can reduce the impact of clinically relevant, negative affective interference on response inhibition function in an opioid-treated chronic pain sample. METHODS We examined data from a controlled trial comparing adults with chronic pain and long-term prescription opioid use randomized to either MORE (n = 27) treatment or to an active support group comparison condition (n = 30). Participants completed an Emotional Go/NoGo Task at pre- and post-treatment, which measured response inhibition in neutral and clinically relevant, negative affective contexts (i.e., exposure to pain-related visual stimuli). RESULTS Repeated-measures analysis of variance indicated that compared with the support group, participants in MORE evidenced significantly greater reductions from pre- to post-treatment in errors of commission on trials with pain-related distractors relative to trials with neutral distractors, group × time × condition F(1,55) = 4.14, p = .047, η2partial = .07. Mindfulness practice minutes and increased nonreactivity significantly predicted greater emotional response inhibition. A significant inverse association was observed between improvements in emotional response inhibition and treatment-related reductions in pain severity by 3-month follow-up. CONCLUSIONS Study results provide preliminary evidence that MORE enhances inhibitory control function in the context of negative emotional interference.
Collapse
Affiliation(s)
- Eric L Garland
- College of Social Work, University of Utah, Salt Lake City, UT, USA.,Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
| | - Myranda A Bryan
- College of Social Work, University of Utah, Salt Lake City, UT, USA.,Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
| | - Sarah E Priddy
- College of Social Work, University of Utah, Salt Lake City, UT, USA.,Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
| | - Michael R Riquino
- College of Social Work, University of Utah, Salt Lake City, UT, USA.,Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Matthew O Howard
- School of Social Work, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
van Aalst J, Ceccarini J, Demyttenaere K, Sunaert S, Van Laere K. What Has Neuroimaging Taught Us on the Neurobiology of Yoga? A Review. Front Integr Neurosci 2020; 14:34. [PMID: 32733213 PMCID: PMC7362763 DOI: 10.3389/fnint.2020.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Yoga is becoming increasingly popular worldwide, with several implicated physical and mental benefits. Here we provide a comprehensive and critical review of the research generated from the existing neuroimaging literature in studies of yoga practitioners. We reviewed 34 international peer-reviewed neuroimaging studies of yoga using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-photon emission computed tomography (SPECT): 11 morphological and 26 functional studies, including three studies that were classified as both morphological and functional. Consistent findings include increased gray matter volume in the insula and hippocampus, increased activation of prefrontal cortical regions, and functional connectivity changes mainly within the default mode network. There is quite some variability in the neuroimaging findings that partially reflects different yoga styles and approaches, as well as sample size limitations. Direct comparator groups such as physical activity are scarcely used so far. Finally, hypotheses on the underlying neurobiology derived from the imaging findings are discussed in the light of the potential beneficial effects of yoga.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Department of Neuroscience, University Psychiatry Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Brandmeyer T, Delorme A. Meditation and the Wandering Mind: A Theoretical Framework of Underlying Neurocognitive Mechanisms. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 16:39-66. [PMID: 32598855 DOI: 10.1177/1745691620917340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the practice of meditation, the tendency of the mind to wander away from the object of focus is ubiquitous. The occurrence of mind wandering in the context of meditation provides individuals a unique and intimate opportunity to closely examine the nature of the wandering mind by cultivating an awareness of ongoing thought patterns, while simultaneously aiming to cultivate equanimity (evenness of temper or disposition) and compassion toward the content of thoughts, interpretations, and bodily sensations. In this article we provide a theoretical framework that highlights the neurocognitive mechanisms by which contemplative practices influence the neural and phenomenological processes underlying spontaneous thought. Our theoretical model focuses on several converging mechanisms: the role of meta-awareness in facilitating an increased moment-to-moment awareness of spontaneous thought processes, the effects of meditation practice on key structures underlying both the top-down cognitive processes and bottom-up sensory processes implicated in attention and emotion regulation, and the influence of contemplative practice on the neural substrates underlying perception and perceptual decoupling.
Collapse
Affiliation(s)
- Tracy Brandmeyer
- Osher Center for Integrative Medicine, School of Medicine, University of California, San Francisco.,Centre de Recherche Cerveau et Cognition, Université Paul Sabatier.,Centre National de la Recherche Scientifique, UMR 5549
| | - Arnaud Delorme
- Centre de Recherche Cerveau et Cognition, Université Paul Sabatier.,Centre National de la Recherche Scientifique, UMR 5549.,Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of California, San Diego
| |
Collapse
|
27
|
Hanley AW, Dambrun M, Garland EL. Effects of Mindfulness Meditation on Self-Transcendent States: Perceived Body Boundaries and Spatial Frames of Reference. Mindfulness (N Y) 2020; 11:1194-1203. [PMID: 33747250 DOI: 10.1007/s12671-020-01330-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives Mindfulness training is believed to encourage self-transcendent states, but little research has examined this hypothesis. This study examined the effects of mindfulness training on two phenomenological features of self-transcendence: 1) perceived body boundary dissolution, and 2) more allocentric spatial frames of reference. Methods A sample of healthy, young adults (n=45) were randomized to five sessions of mindfulness training or an active listening control condition. Results Results indicated mindfulness training decreased perceived body boundaries (F 4,172=6.010, p<.001, η 2=.12) and encouraged more allocentric frames of reference (F 4,168=2.586, p=.039, η 2=.06). The expected inverse relationship was observed between perceived body boundaries and allocentric frames of reference ((β=-.58, p=.001)), and path analysis revealed the effect of mindfulness training on allocentric frames of reference was mediated by decreased perceived body boundaries (β=.24, se=.17, CI: 0.11 to 0.78). Conclusions Taken together, study results suggest that mindfulness training alters practitioners' experience of self, relaxing the boundaries of the self and extending the spatial frame of reference further beyond the physical body. Future studies are needed to explore the psychophysiological changes that co-occur with phenomenological reports of self-transcendence and the behavioral consequences following self-transcendent experiences.
Collapse
Affiliation(s)
- Adam W Hanley
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND), University of Utah.,College of Social Work, University of Utah
| | - Michael Dambrun
- Laboratory of Social and Cognitive Psychology, Université Clermont Auvergne
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND), University of Utah.,College of Social Work, University of Utah
| |
Collapse
|
28
|
Bauer CCC, Okano K, Gosh SS, Lee YJ, Melero H, de los Angeles C, Nestor PG, del Re EC, Northoff G, Niznikiewicz MA, Whitfield-Gabrieli S. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence. Psychiatry Res 2020; 284:112770. [PMID: 32004893 PMCID: PMC7046150 DOI: 10.1016/j.psychres.2020.112770] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 01/02/2023]
Abstract
Auditory hallucinations (AHs) are one of the most distressing symptoms of schizophrenia (SZ) and are often resistant to medication. Imaging studies of individuals with SZ show hyperactivation of the default mode network (DMN) and the superior temporal gyrus (STG). Studies in SZ show DMN hyperconnectivity and reduced anticorrelation between DMN and the central executive network (CEN). DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations with cognitive impairment. Using real-time fMRI neurofeedback (rt-fMRI-NFB) we trained SZ patients to modulate DMN and CEN networks. Meditation is effective in reducing AHs in SZ and to modulate brain network integration and increase DMN anticorrelations. Consequently, patients were provided with meditation strategies to enhance their abilities to modulate DMN/CEN. Results show a reduction of DMN hyperconnectivity and increase in DMNCEN anticorrelation. Furthermore, the change in individual DMN connectivity significantly correlated with reductions in AHs. This is the first time that meditation enhanced through rt-fMRI-NFB is used to reduce AHs in SZ. Moreover, it provides the first empirical evidence for a direct causal relation between meditation enhanced rt-fMRI-NFB modulation of DMNCEN activity and post-intervention modulation of resting state networks ensuing in reductions in frequency and severity of AHs.
Collapse
Affiliation(s)
- Clemens C. C. Bauer
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA,Northeastern University, Boston, MA 02139, USA,Please address correspondence to Clemens Bauer, Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, 43 Vassar St. 46-4037C Massachusetts Institute of Technology. Cambridge, MA 02139, USA Telephone: +1 (617) 324 5124,
| | - Kana Okano
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Satrajit S. Gosh
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Yoon Ji Lee
- Northeastern University, Boston, MA 02139, USA
| | - Helena Melero
- Northeastern University, Boston, MA 02139, USA,Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| | - Carlo de los Angeles
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Paul G. Nestor
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,University of Massachusetts, Boston, Boston MA 02215, USA
| | - Elisabetta C. del Re
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Margaret A. Niznikiewicz
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,Beth Israel Deaconess Medical Center. Boston, MA 02215, USA
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA,Northeastern University, Boston, MA 02139, USA
| |
Collapse
|
29
|
Meditation effect in changing functional integrations across large-scale brain networks: Preliminary evidence from a meta-analysis of seed-based functional connectivity. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2020. [DOI: 10.1017/prp.2020.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Meditation is a type of mental training commonly applied in clinical settings and also practiced for general well-being. Brain functional connectivity (FC) patterns associated with meditation have revealed its brain mechanisms. However, the variety of FC methods applied has made it difficult to identify brain communication patterns associated with meditation. Here we carried out a coordinate-based meta-analysis to get preliminary evidence of meditation effects on changing brain network interactions. Fourteen seed-based, voxel-wise FC studies reported in 13 publications were reviewed; 10 studies with seeds in the default mode network (DMN) were meta-analyzed. Seed coordinates and the effect sizes in statistically significant regions were extracted, based on 170 subjects in meditation groups and 163 subjects in control groups. Seed-based d-mapping was used to analyze meditation versus control FC differences with DMN seeds. Meditation was associated with increased connectivity within DMN and between DMN and somatomotor network and with decreased connectivity between DMN and frontoparietal network (FPN) as well as ventral attention network (VAN). The pattern of decreased within-DMN FC and increased between-network FC (FPN and DAN with DMN) was more robust in highly experienced meditators compared to less experienced individuals. The identified neural network interactions may also promote meditation’s effectiveness in clinical interventions for treating physical and mental disorders.
Collapse
|
30
|
Garland EL, Hanley AW, Riquino MR, Reese SE, Baker AK, Salas K, Yack BP, Bedford CE, Bryan MA, Atchley R, Nakamura Y, Froeliger B, Howard MO. Mindfulness-oriented recovery enhancement reduces opioid misuse risk via analgesic and positive psychological mechanisms: A randomized controlled trial. J Consult Clin Psychol 2019; 87:927-940. [PMID: 31556669 DOI: 10.1037/ccp0000390] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite the heightened urgency of the current prescription opioid crisis, few psychotherapies have been evaluated for chronic pain patients receiving long-term opioid analgesics. Current psychological pain treatments focus primarily on ameliorating negative affective processes, yet basic science suggests that risk for opioid misuse is linked with a dearth of positive affect. Interventions that modulate positive psychological processes may produce therapeutic benefits among patients with opioid-treated chronic pain. The aim of this study was to conduct a theory-driven mechanistic analysis of proximal outcome data from a Stage 2 randomized controlled trial of Mindfulness-Oriented Recovery Enhancement (MORE), an integrative intervention designed to promote positive psychological health. METHOD Patients with opioid-treated chronic pain (N = 95; age = 56.8 ± 11.7; 66% female) were randomized to 8 weeks of therapist-led MORE or support group (SG) interventions. A latent positive psychological health variable comprised of positive affect, meaning in life, and self-transcendence measures was examined as a mediator of the effect of MORE on changes in pain severity at posttreatment and opioid misuse risk by 3-month follow-up. RESULTS Participants in MORE reported significantly greater reductions in pain severity by posttreatment (p = .03) and opioid misuse risk by 3-month follow-up (p = .03) and significantly greater increases in positive psychological health (p < .001) than SG participants. Increases in positive psychological health mediated the effect of MORE on pain severity by posttreatment (p = .048), which in turn predicted decreases in opioid misuse risk by follow-up (p = .02). CONCLUSIONS Targeting positive psychological mechanisms via MORE and other psychological interventions may reduce opioid misuse risk among chronic pain patients receiving long-term opioid therapy. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Adam W Hanley
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Michael R Riquino
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Sarah E Reese
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Anne K Baker
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Karen Salas
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Brooke P Yack
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Carter E Bedford
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Myranda A Bryan
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Rachel Atchley
- Center on Mindfulness and Integrative Health Intervention Development and College of Social Work, University of Utah
| | - Yoshio Nakamura
- Center on Mindfulness and Integrative Health Intervention Development and Department of Anesthesiology, University of Utah
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina
| | - Matthew O Howard
- School of Social Work, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Xia R, Qiu P, Lin H, Ye B, Wan M, Li M, Tao J, Chen L, Zheng G. The Effect of Traditional Chinese Mind-Body Exercise (Baduanjin) and Brisk Walking on the Dorsal Attention Network in Older Adults With Mild Cognitive Impairment. Front Psychol 2019; 10:2075. [PMID: 31551895 PMCID: PMC6748214 DOI: 10.3389/fpsyg.2019.02075] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023] Open
Abstract
A growing number of studies have shown that mind-body exercise is beneficial to cognitive function, especially memory, in elderly MCI patients. However, few studies have explored the effect of mind-body exercise on the attention of MCI population. We recruited 69 participants and divided them equally into Baduanjin, brisk walking (BWK) exercise or usual physical activity (UAP) control groups. The two exercise groups performed 60 min of exercise three times per week for 24 weeks. All subjects underwent whole-brain functional MRI and assessment of attentional abilities, including selective, divided, and sustained attention, and processing speed at baseline and after 24 weeks. The results show that: Baduanjin exercise significantly increased the selective attention of MCI patients, and Dorsal attention network (DAN) of Baduanjin exercise group exhibited functional connectivity decreased in right rolandic operculum (ROL. R), right middle temporal gyrus (MTG. R), right supramarginal inferior parietal, angular gyri (IPL. R), right precuneus (PCUN. R), and right fusiform gyrus (FFG. R) regions compared with the other two groups. The BWK exercise group had obviously functional connectivity increased in IPL. R and decreased in the MTG. R region compared to that in the UAP group. But no significant association between the changes of functional connectivity of DAN and the change of attentional ability test was observed. Thus, our data indicated Baduanjin exercise may be a potential beneficial intervention to improve the attention of the elderly with MCI. Further study with more samples is necessary to elucidate its imaging mechanism.
Collapse
Affiliation(s)
- Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bingzhao Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingyue Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Moyi Li
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
32
|
Alterations in Brain Structure and Amplitude of Low-frequency after 8 weeks of Mindfulness Meditation Training in Meditation-Naïve Subjects. Sci Rep 2019; 9:10977. [PMID: 31358842 PMCID: PMC6662752 DOI: 10.1038/s41598-019-47470-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing neuroimaging evidence suggests that mindfulness meditation expertise is related to different functional and structural configurations of the default mode network (DMN), the salience network (SN) and the executive network at rest. However, longitudinal studies observing resting network plasticity effects in brains of novices who started to practice meditation are scarce and generally related to one dimension, such as structural or functional effects. The purpose of this study was to investigate structural and functional brain network changes (e.g. DMN) after 40 days of mindfulness meditation training in novices and set these in the context of potentially altered depression symptomatology and anxiety. We found overlapping structural and functional effects in precuneus, a posterior DMN region, where cortical thickness increased and low-frequency amplitudes (ALFF) decreased, while decreased ALFF in left precuneus/posterior cingulate cortex correlates with the reduction of (CES-D) depression scores. In conclusion, regional overlapping of structural and functional changes in precuneus may capture different components of the complex changes of mindfulness meditation training.
Collapse
|
33
|
Escrichs A, Sanjuán A, Atasoy S, López-González A, Garrido C, Càmara E, Deco G. Characterizing the Dynamical Complexity Underlying Meditation. Front Syst Neurosci 2019; 13:27. [PMID: 31354439 PMCID: PMC6637306 DOI: 10.3389/fnsys.2019.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023] Open
Abstract
Over the past 2,500 years, contemplative traditions have explored the nature of the mind using meditation. More recently, neuroimaging research on meditation has revealed differences in brain function and structure in meditators. Nevertheless, the underlying neural mechanisms are still unclear. In order to understand how meditation shapes global activity through the brain, we investigated the spatiotemporal dynamics across the whole-brain functional network using the Intrinsic Ignition Framework. Recent neuroimaging studies have demonstrated that different states of consciousness differ in their underlying dynamical complexity, i.e., how the broadness of communication is elicited and distributed through the brain over time and space. In this work, controls and experienced meditators were scanned using functional magnetic resonance imaging (fMRI) during resting-state and meditation (focused attention on breathing). Our results evidenced that the dynamical complexity underlying meditation shows less complexity than during resting-state in the meditator group but not in the control group. Furthermore, we report that during resting-state, the brain activity of experienced meditators showed higher metastability (i.e., a wider dynamical regime over time) than the one observed in the control group. Overall, these results indicate that the meditation state operates in a different dynamical regime compared to the resting-state.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Sanjuán
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Ane López-González
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - César Garrido
- Radiology Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
34
|
Kim HC, Tegethoff M, Meinlschmidt G, Stalujanis E, Belardi A, Jo S, Lee J, Kim DY, Yoo SS, Lee JH. Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback. Neuroimage 2019; 195:409-432. [DOI: 10.1016/j.neuroimage.2019.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
|
35
|
Parkinson TD, Kornelsen J, Smith SD. Trait Mindfulness and Functional Connectivity in Cognitive and Attentional Resting State Networks. Front Hum Neurosci 2019; 13:112. [PMID: 31031607 PMCID: PMC6473082 DOI: 10.3389/fnhum.2019.00112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 01/31/2023] Open
Abstract
Mindfulness has been described as an orienting of attention to the present moment, with openness and compassion. Individuals displaying high trait mindfulness exhibit this tendency as a more permanent personality attribute. Given the numerous physical and mental health benefits associated with mindfulness, there is a great interest in understanding the neural substrates of this trait. The purpose of the current research was to examine how individual differences in trait mindfulness associated with functional connectivity in five resting-state networks related to cognition and attention: the default mode network (DMN), the salience network (SN), the central executive network (CEN), and the dorsal and ventral attention networks (DAN and VAN). Twenty-eight undergraduate participants completed the Five-Facet Mindfulness Questionnaire (FFMQ), a self-report measure of trait mindfulness which also provides scores on five of its sub-categories (Observing, Describing, Acting with Awareness, Non-judging of Inner Experience, and Non-reactivity to Inner Experience). Participants then underwent a structural MRI scan and a 7-min resting state functional MRI scan. Resting-state data were analyzed using independent-component analyses. An analysis of covariance (ANCOVA) was performed to determine the relationship between each resting state network and each FFMQ score. These analyses indicated that: (1) trait mindfulness and its facets showed increased functional connectivity with neural regions related to attentional control, interoception, and executive function; and (2) trait mindfulness and its facets showed decreased functional connectivity with neural regions related to self-referential processing and mind wandering. These patterns of functional connectivity are consistent with some of the benefits of mindfulness-enhanced attention, self-regulation, and focus on present experience. This study provides support for the notion that non-judgmental attention to the present moment facilitates the integration of regions in neural networks that are related to cognition, attention, and sensation.
Collapse
Affiliation(s)
| | | | - Stephen D Smith
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada.,Department of Psychology, University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Garland EL, Fredrickson BL. Positive psychological states in the arc from mindfulness to self-transcendence: extensions of the Mindfulness-to-Meaning Theory and applications to addiction and chronic pain treatment. Curr Opin Psychol 2019; 28:184-191. [PMID: 30763873 DOI: 10.1016/j.copsyc.2019.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
Abstract
The Mindfulness-to-Meaning Theory (MMT) is a temporally dynamic process model of mindful positive emotion regulation that elucidates downstream cognitive-affective mechanisms by which mindfulness promotes health and resilience. Here we review and extend the MMT to explicate how mindfulness fosters self-transcendence by evoking upward spirals of decentering, attentional broadening, reappraisal, and savoring. Savoring is highlighted as a key, potential means of inducing absorptive experiences of oneness between subject and object, amplifying the salience of the object while imbuing the sensory-perceptual field with affective meaning. Finally, this article provides new evidence that inducing self-transcendent positive emotions and nondual states of awareness through mindfulness-based interventions may restructure reward processing and thereby produce therapeutic effects on addictive behavior (e.g. opioid misuse) and chronic pain syndromes.
Collapse
Affiliation(s)
- Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, United States; College of Social Work, University of Utah, United States.
| | - Barbara L Fredrickson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
37
|
Riquino MR, Priddy SE, Howard MO, Garland EL. Emotion dysregulation as a transdiagnostic mechanism of opioid misuse and suicidality among chronic pain patients. Borderline Personal Disord Emot Dysregul 2018; 5:11. [PMID: 29992025 PMCID: PMC5989346 DOI: 10.1186/s40479-018-0088-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Chronic pain is a prevalent condition that causes functional impairment and emotional suffering. To allay pain-induced suffering, opioids are often prescribed for chronic pain management. Yet, chronic pain patients on opioid therapy are at heightened risk for opioid misuse-behaviors that can lead to addiction and overdose. Relatedly, chronic pain patients are at elevated risk for suicidal ideation and suicidal behaviors. MAIN BODY Opioid misuse and suicidality are maladaptive processes aimed at alleviating the negative emotional hyperreactivity, hedonic hyporeactivity, and emotion dysregulation experienced by chronic pain patients on opioid therapy. In this review, we explore the role of emotion dysregulation in chronic pain. We then describe why emotionally dysregulated chronic pain patients are vulnerable to opioid misuse and suicidality in response to these negative affective states. CONCLUSION Emotion dysregulation is an important and malleable treatment target with the potential to reduce or prevent opioid misuse and suicidality among opioid-treated chronic pain patients.
Collapse
Affiliation(s)
- Michael R. Riquino
- University of Utah College of Social Work, 395 South 1500 East, Salt Lake City, UT 84112 USA
- Center on Mindfulness and Integrative Health Intervention Development, 395 South 1500 East, Salt Lake City, UT 84112 USA
| | - Sarah E. Priddy
- University of Utah College of Social Work, 395 South 1500 East, Salt Lake City, UT 84112 USA
- Center on Mindfulness and Integrative Health Intervention Development, 395 South 1500 East, Salt Lake City, UT 84112 USA
| | - Matthew O. Howard
- University of North Carolina at Chapel Hill, Tate Turner Kuralt Building, Chapel Hill, NC 25799 USA
| | - Eric L. Garland
- University of Utah College of Social Work, 395 South 1500 East, Salt Lake City, UT 84112 USA
- Center on Mindfulness and Integrative Health Intervention Development, 395 South 1500 East, Salt Lake City, UT 84112 USA
| |
Collapse
|
38
|
Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Review of the Neural Oscillations Underlying Meditation. Front Neurosci 2018; 12:178. [PMID: 29662434 PMCID: PMC5890111 DOI: 10.3389/fnins.2018.00178] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA), open-monitoring (OM), as well as transcendental meditation (TM), and loving-kindness (LK) meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation. Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults. Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions. Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their benefits.
Collapse
Affiliation(s)
- Darrin J Lee
- Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Edwin Kulubya
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Philippe Goldin
- Nursing, University of California, Davis, Davis, CA, United States
| | - Amir Goodarzi
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Fady Girgis
- Neurosurgery, University of California, Davis, Davis, CA, United States
| |
Collapse
|
39
|
Hernández SE, Barros-Loscertales A, Xiao Y, González-Mora JL, Rubia K. Gray Matter and Functional Connectivity in Anterior Cingulate Cortex are Associated with the State of Mental Silence During Sahaja Yoga Meditation. Neuroscience 2017; 371:395-406. [PMID: 29275207 DOI: 10.1016/j.neuroscience.2017.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Some meditation techniques teach the practitioner to achieve the state of mental silence. The aim of this study was to investigate brain regions that are associated with their volume and functional connectivity (FC) with the depth of mental silence in long-term practitioners of Sahaja Yoga Meditation. Twenty-three long-term practitioners of this meditation were scanned using Magnetic Resonance Imaging. In order to identify the neural correlates of the depth of mental silence, we tested which gray matter volumes (GMV) were correlated with the depth of mental silence and which regions these areas were functionally connected to under a meditation condition. GMV in medial prefrontal cortex including rostral anterior cingulate cortex were positively correlated with the subjective perception of the depth of mental silence inside the scanner. Furthermore, there was significantly increased FC between this area and bilateral anterior insula/putamen during a meditation-state specifically, while decreased connectivity with the right thalamus/parahippocampal gyrus was present during the meditation-state and the resting-state. The capacity of long-term meditators to establish a durable state of mental silence inside an MRI scanner was associated with larger gray matter volume in a medial frontal region that is crucial for top-down cognitive, emotion and attention control. This is furthermore corroborated by increased FC of this region during the meditation-state with bilateral anterior insula/putamen, which are important for interoception, emotion, and attention regulation. The findings hence suggest that the depth of mental silence is associated with medial fronto-insular-striatal networks that are crucial for top-down attention and emotional control.
Collapse
Affiliation(s)
| | | | - Yaqiong Xiao
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Katya Rubia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Sampedro F, de la Fuente Revenga M, Valle M, Roberto N, Domínguez-Clavé E, Elices M, Luna LE, Crippa JAS, Hallak JEC, de Araujo DB, Friedlander P, Barker SA, Álvarez E, Soler J, Pascual JC, Feilding A, Riba J. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities. Int J Neuropsychopharmacol 2017; 20:698-711. [PMID: 28525587 PMCID: PMC5581489 DOI: 10.1093/ijnp/pyx036] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca.
Collapse
Affiliation(s)
- Frederic Sampedro
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Mario de la Fuente Revenga
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Marta Valle
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Natalia Roberto
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Elisabet Domínguez-Clavé
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Matilde Elices
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Luís Eduardo Luna
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - José Alexandre S Crippa
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jaime E C Hallak
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Draulio B de Araujo
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Pablo Friedlander
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Steven A Barker
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Enrique Álvarez
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Joaquim Soler
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Juan C Pascual
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Amanda Feilding
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jordi Riba
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| |
Collapse
|
41
|
Vago DR, Zeidan F. The brain on silent: mind wandering, mindful awareness, and states of mental tranquility. Ann N Y Acad Sci 2017; 1373:96-113. [PMID: 27398642 DOI: 10.1111/nyas.13171] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/27/2022]
Abstract
Mind wandering and mindfulness are often described as divergent mental states with opposing effects on cognitive performance and mental health. Spontaneous mind wandering is typically associated with self-reflective states that contribute to negative processing of the past, worrying/fantasizing about the future, and disruption of primary task performance. On the other hand, mindful awareness is frequently described as a focus on present sensory input without cognitive elaboration or emotional reactivity, and is associated with improved task performance and decreased stress-related symptomology. Unfortunately, such distinctions fail to acknowledge similarities and interactions between the two states. Instead of an inverse relationship between mindfulness and mind wandering, a more nuanced characterization of mindfulness may involve skillful toggling back and forth between conceptual and nonconceptual processes and networks supporting each state, to meet the contextually specified demands of the situation. In this article, we present a theoretical analysis and plausible neurocognitive framework of the restful mind, in which we attempt to clarify potentially adaptive contributions of both mind wandering and mindful awareness through the lens of the extant neurocognitive literature on intrinsic network activity, meditation, and emerging descriptions of stillness and nonduality. A neurophenomenological approach to probing modality-specific forms of concentration and nonconceptual awareness is presented that may improve our understanding of the resting state. Implications for future research are discussed.
Collapse
Affiliation(s)
- David R Vago
- Functional Neuroimaging Laboratory, Brigham & Women's Hospital and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fadel Zeidan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
42
|
Tao J, Chen X, Egorova N, Liu J, Xue X, Wang Q, Zheng G, Li M, Hong W, Sun S, Chen L, Kong J. Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults. Sci Rep 2017; 7:41581. [PMID: 28169310 PMCID: PMC5294576 DOI: 10.1038/srep41581] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairment is one of the most common problem saffecting older adults. In this study, we investigated whether Tai Chi Chuan and Baduanjin practice can modulate mental control functionand the resting state functional connectivity (rsFC) of the cognitive control network in older adults. Participants in the two exercise groups practiced either Tai Chi Chuan or Baduanjin for 12 weeks, and those in the control group received basic health education. Memory tests and fMRI scans were conducted at baseline and at the end of the study. Seed-based (bilateral dorsolateral prefrontal cortex, DLPFC) rsFC analysis was performed. We found that compared to the controls, 1) both Tai Chi Chuan and Baduanjin groups demonstrated significant improvements in mental control function; 2) the Tai Chi Chuan group showed a significant decrease in rsFC between the DLPFC and the left superior frontal gyrus (SFG) and anterior cingulate cortex; and 3) the Baduanjin group showed a significant decrease in rsFC between the DLPFC and the left putamen and insula. Mental control improvement was negatively associated with rsFC DLPFC-putamen changes across all subjects. These findings demonstrate the potential of Tai Chi Chuan and Baduanjin exercises in preventing cognitive decline.
Collapse
Affiliation(s)
- Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, 350003, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiangli Chen
- The School of Social and Political Science, University of Edinburgh, Edinburgh, EH8,9LD, UK
| | - Natalia Egorova
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Qin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Moyi Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Wenjun Hong
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Sharon Sun
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, 350003, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
43
|
Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial. Psychosom Med 2017; 79:674-683. [PMID: 28323668 PMCID: PMC5489372 DOI: 10.1097/psy.0000000000000466] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. METHODS Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. RESULTS Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). CONCLUSIONS We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov,NCT01628809.
Collapse
|
44
|
King AP, Block SR, Sripada RK, Rauch S, Giardino N, Favorite T, Angstadt M, Kessler D, Welsh R, Liberzon I. ALTERED DEFAULT MODE NETWORK (DMN) RESTING STATE FUNCTIONAL CONNECTIVITY FOLLOWING A MINDFULNESS-BASED EXPOSURE THERAPY FOR POSTTRAUMATIC STRESS DISORDER (PTSD) IN COMBAT VETERANS OF AFGHANISTAN AND IRAQ. Depress Anxiety 2016; 33:289-99. [PMID: 27038410 DOI: 10.1002/da.22481] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Recent studies suggest that mindfulness may be an effective component for posttraumatic stress disorder (PTSD) treatment. Mindfulness involves practice in volitional shifting of attention from "mind wandering" to present-moment attention to sensations, and cultivating acceptance. We examined potential neural correlates of mindfulness training using a novel group therapy (mindfulness-based exposure therapy (MBET)) in combat veterans with PTSD deployed to Afghanistan (OEF) and/or Iraq (OIF). METHODS Twenty-three male OEF/OIF combat veterans with PTSD were treated with a mindfulness-based intervention (N = 14) or an active control group therapy (present-centered group therapy (PCGT), N = 9). Pre-post therapy functional magnetic resonance imaging (fMRI, 3 T) examined resting-state functional connectivity (rsFC) in default mode network (DMN) using posterior cingulate cortex (PCC) and ventral medial prefrontal cortex (vmPFC) seeds, and salience network (SN) with anatomical amygdala seeds. PTSD symptoms were assessed at pre- and posttherapy with Clinician Administered PTSD Scale (CAPS). RESULTS Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.46). Increased DMN rsFC (PCC seed) with dorsolateral dorsolateral prefrontal cortex (DLPFC) regions and dorsal anterior cingulate cortex (ACC) regions associated with executive control was seen following MBET. A group × time interaction found MBET showed increased connectivity with DLPFC and dorsal ACC following therapy; PCC-DLPFC connectivity was correlated with improvement in PTSD avoidant and hyperarousal symptoms. CONCLUSIONS Increased connectivity between DMN and executive control regions following mindfulness training could underlie increased capacity for volitional shifting of attention. The increased PCC-DLPFC rsFC following MBET was related to PTSD symptom improvement, pointing to a potential therapeutic mechanism of mindfulness-based therapies.
Collapse
Affiliation(s)
- Anthony P King
- VA Ann Arbor Health Care System, Ann Arbor, Michigan.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Stefanie R Block
- VA Ann Arbor Health Care System, Ann Arbor, Michigan.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Rebecca K Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,VA Serious Mental Illness Treatment Resource & Evaluation Center, Ann Arbor, Michigan
| | - Sheila Rauch
- Department of Psychiatry, Emory University, Atlanta, Georgia
| | - Nicholas Giardino
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Todd Favorite
- VA Ann Arbor Health Care System, Ann Arbor, Michigan.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Psychological Clinic, University of Michigan, Ann Arbor, Michigan
| | - Michael Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Daniel Kessler
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Robert Welsh
- VA Ann Arbor Health Care System, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Israel Liberzon
- VA Ann Arbor Health Care System, Ann Arbor, Michigan.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Manuello J, Vercelli U, Nani A, Costa T, Cauda F. Mindfulness meditation and consciousness: An integrative neuroscientific perspective. Conscious Cogn 2016; 40:67-78. [DOI: 10.1016/j.concog.2015.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
|
46
|
King AP, Block SR, Sripada RK, Rauch SAM, Porter KE, Favorite TK, Giardino N, Liberzon I. A Pilot Study of Mindfulness-Based Exposure Therapy in OEF/OIF Combat Veterans with PTSD: Altered Medial Frontal Cortex and Amygdala Responses in Social-Emotional Processing. Front Psychiatry 2016; 7:154. [PMID: 27703434 PMCID: PMC5028840 DOI: 10.3389/fpsyt.2016.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023] Open
Abstract
Combat-related posttraumatic stress disorder (PTSD) is common among returning veterans, and is a serious and debilitating disorder. While highly effective treatments involving trauma exposure exist, difficulties with engagement and early drop may lead to sub-optimal outcomes. Mindfulness training may provide a method for increasing emotional regulation skills that may improve engagement in trauma-focused therapy. Here, we examine potential neural correlates of mindfulness training and in vivo exposure (non-trauma focused) using a novel group therapy [mindfulness-based exposure therapy (MBET)] in Afghanistan (OEF) or Iraq (OIF) combat veterans with PTSD. OEF/OIF combat veterans with PTSD (N = 23) were treated with MBET (N = 14) or a comparison group therapy [Present-centered group therapy (PCGT), N = 9]. PTSD symptoms were assessed at pre- and post-therapy with Clinician Administered PTSD scale. Functional neuroimaging (3-T fMRI) before and after therapy examined responses to emotional faces (angry, fearful, and neutral faces). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.43). Improvement in PTSD symptoms from pre- to post-treatment in both treatment groups was correlated with increased activity in rostral anterior cingulate cortex, dorsal medial prefrontal cortex (mPFC), and left amygdala. The MBET group showed greater increases in amygdala and fusiform gyrus responses to Angry faces, as well as increased response in left mPFC to Fearful faces. These preliminary findings provide intriguing evidence that MBET group therapy for PTSD may lead to changes in neural processing of social-emotional threat related to symptom reduction.
Collapse
Affiliation(s)
- Anthony P King
- Mental Health Service, VA Ann Arbor Health System, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Stefanie R Block
- Department of Psychology, University of Michigan , Ann Arbor, MI , USA
| | - Rebecca K Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Sheila A M Rauch
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA; Mental Health Service, Atlanta VA Medical Center, Atlanta, GA, USA
| | | | - Todd K Favorite
- Mental Health Service, VA Ann Arbor Health System, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Mary A. Rackham Institute (MARI), University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Giardino
- Department of Psychiatry, University of Michigan , Ann Arbor, MI , USA
| | - Israel Liberzon
- Mental Health Service, VA Ann Arbor Health System, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Silveira S, Bao Y, Wang L, Pöppel E, Avram M, Simmank F, Zaytseva Y, Blautzik J. Does a bishop pray when he prays? And does his brain distinguish between different religions? Psych J 2015; 4:199-207. [PMID: 26663626 DOI: 10.1002/pchj.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/17/2015] [Indexed: 11/06/2022]
Abstract
Does a religion shape belief-related decisions and influence neural processing? We investigated an eminent bishop of the Catholic Church in Germany by using functional magnetic resonance imaging (fMRI) to assess neural processing while he was responding to short sentences of the Christian Bible, the Islamic Quran, and the Daodejing ascribed to Laozi in Experiment 1. In Experiment 2, continuous praying was further compared to the resting state activity. In contrast to explicit statements of agreeing or not agreeing to different statements from the Bible and the Quran, we found in Experiment 1 no difference in neural activation when the bishop was reading these statements from the two religions. However, compared to reading statements from the Bible, reading statements from the Daodejing resulted in significantly higher activation in the left inferior and middle frontal cortices and the left middle temporal gyrus, although he equally agreed to both statements explicitly. In Experiment 2, no difference during continuous praying and the resting state activity was observed. Our results confirm the difference between explicit and implicit processing, and they suggest that a highly religious person may pray always-or never. On a more general level this observation suggests that ritualized activities might be subliminally represented in resting state activities.
Collapse
Affiliation(s)
- Sarita Silveira
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Parmenides Center for Art and Science, Pullach, Germany.,Clinic for Psychiatry and Psychotherapy Department, Ludwig-Maximilians-University, Munich, Germany
| | - Yan Bao
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Parmenides Center for Art and Science, Pullach, Germany.,Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lingyan Wang
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ernst Pöppel
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Parmenides Center for Art and Science, Pullach, Germany.,Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Mihai Avram
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Department of Nuclear Medicine and Neuroimaging Center, Technical University, Munich, Germany
| | - Fabian Simmank
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Parmenides Center for Art and Science, Pullach, Germany
| | - Yuliya Zaytseva
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,Parmenides Center for Art and Science, Pullach, Germany.,National Institute of Mental Health, Klecany, Czech Republic.,Moscow Research Institute of Psychiatry, Moscow, Russian Federation
| | - Janusch Blautzik
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
48
|
McConnell PA, Froeliger B. Mindfulness, Mechanisms and Meaning: Perspectives from the Cognitive Neuroscience of Addiction. PSYCHOLOGICAL INQUIRY 2015; 26:349-357. [PMID: 26924915 DOI: 10.1080/1047840x.2015.1076701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- P A McConnell
- Department of Neuroscience, Medical University of South Carolina
| | - B Froeliger
- Department of Neuroscience, Medical University of South Carolina; Department of Psychiatry, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina
| |
Collapse
|
49
|
Abstract
OBJECTIVES To review and synthesize the existing literature on the effects of yoga on cognitive function by determining effect sizes that could serve as a platform to design, calculate statistical power, and implement future studies. METHODS Through electronic databases, we identified acute studies and randomized controlled trials (RCTs) of yoga that reported cognitive outcomes. Inclusion criteria included the following: use of an objective measure of cognition and sufficient data reported to estimate an effect size. The meta-analysis was conducted using Comprehensive Meta-Analysis software. A random-effects model was used to calculate the overall weighted effect sizes, expressed as Hedge g. RESULTS Fifteen RCTs and 7 acute exposure studies examined the effects of yoga on cognition. A moderate effect (g = 0.33, standard error = 0.08, 95% confidence interval = 0.18-0.48, p < .001) of yoga on cognition was observed for RCTs, with the strongest effect for attention and processing speed (g = 0.29, p < .001), followed by executive function (g = 0.27, p = .001) and memory (g = 0.18, p = .051). Acute studies showed a stronger overall effect of yoga on cognition (g = 0.56, standard error = 0.11, 95% confidence interval = 0.33-0.78, p < .001). The effect was strongest for memory (g = 0.78, p < .001), followed by attention and processing speed measures (g = 0.49, p < .001) and executive functions (g = 0.39, p < .003). CONCLUSIONS Yoga practice seems to be associated with moderate improvements in cognitive function. Although the studies are limited by sample size, heterogeneous population characteristics, varied doses of yoga interventions, and a myriad of cognitive tests, these findings warrant rigorous systematic RCTs and well-designed counterbalanced acute studies to comprehensively explore yoga as a means to improve or sustain cognitive abilities across the life span.
Collapse
|
50
|
Doll A, Hölzel BK, Boucard CC, Wohlschläger AM, Sorg C. Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Front Hum Neurosci 2015; 9:461. [PMID: 26379526 PMCID: PMC4548211 DOI: 10.3389/fnhum.2015.00461] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mindfulness is attention to present moment experience without judgment. Mindfulness practice is associated with brain activity in areas overlapping with the default mode, salience, and central executive networks (DMN, SN, CEN). We hypothesized that intrinsic functional connectivity (iFC; i.e., synchronized ongoing activity) across these networks is associated with mindfulness scores. After 2 weeks of daily 20 min attention to breath training, healthy participants were assessed by mindfulness questionnaires and resting-state functional MRI. Independent component analysis (ICA) of imaging data revealed networks of interest, whose activity time series defined inter-network intrinsic functional connectivity (inter-iFC) by temporal correlation. Inter-iFC between subnetworks of the DMN and SN-and inter-iFC between subnetworks of the SN and left CEN at trend-was correlated with mindfulness scores. Additional control analyses about visual networks' inter-iFC support the specificity of our findings. Results provide evidence that mindfulness is associated with iFC between DMN and SN. Data suggest that ongoing interactions among central intrinsic brain networks link with the ability to attend to current experience without judgment.
Collapse
Affiliation(s)
- Anselm Doll
- Department of Neuroradiology, Technische Universität München TUMMunich, Germany
- Department of Psychiatry, Technische Universität München TUMMunich, Germany
- TUM-Neuro Imaging Center of Klinikum Rechts der Isar, Technische Universität München TUMMunich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-UniversityMunich, Germany
| | - Britta K. Hölzel
- Department of Neuroradiology, Technische Universität München TUMMunich, Germany
| | - Christine C. Boucard
- TUM-Neuro Imaging Center of Klinikum Rechts der Isar, Technische Universität München TUMMunich, Germany
- Department of Neurology, Technische Universität München TUMMunich, Germany
| | - Afra M. Wohlschläger
- Department of Neuroradiology, Technische Universität München TUMMunich, Germany
- TUM-Neuro Imaging Center of Klinikum Rechts der Isar, Technische Universität München TUMMunich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-UniversityMunich, Germany
- Department of Neurology, Technische Universität München TUMMunich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Technische Universität München TUMMunich, Germany
- Department of Psychiatry, Technische Universität München TUMMunich, Germany
- TUM-Neuro Imaging Center of Klinikum Rechts der Isar, Technische Universität München TUMMunich, Germany
- Department of Nuclear Medicine, Technische Universität München TUMMunich, Germany
| |
Collapse
|