1
|
Sahu B, Sahu M, Sahu M, Yadav M, Sahu R, Sahu C. An Updated Review on Nelumbo Nucifera Gaertn: Chemical Composition, Nutritional Value and Pharmacological Activities. Chem Biodivers 2024; 21:e202301493. [PMID: 38327030 DOI: 10.1002/cbdv.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nelumbo nucifera Gaertn is a recognised herbal plant in ancient medical sciences. Each portion of the plant leaf, flower, seed and rhizome is utilised for nutritional and medicinal purposes. The chemical compositions like phenol, alkaloids, glycoside, terpenoids and steroids have been isolated. The plant contains various nutritional values like lipids, proteins, amino acids, minerals, carbohydrates, and fatty acids. Traditional medicine confirms that the phytochemicals of plants give significant benefits to the treatment of various diseases such as leukoderma, smallpox, dysentery, haematemesis, coughing, haemorrhage, metrorrhagia, haematuria, fever, hyperlipidaemia, cholera, hepatopathy and hyperdipsia. To verify the traditional claims, researchers have conducted scientific biological in vivo and in vitro screenings, which have exhibited that the plant keeps various notable pharmacological activities such as anticancer, hepatoprotective, antioxidant, antiviral, hypolipidemic, anti-obesity, antipyretic, hypoglycaemic, antifungal, anti-inflammatory and antibacterial activities. This review, summaries the nutritional composition, chemical constituents and biological activities substantiated by the researchers done in vivo and in vitro.
Collapse
Affiliation(s)
- Bhaskar Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mahendra Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mukesh Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Megha Yadav
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Rakesh Sahu
- Sanjivani Institute of Pharmacy, Bilaspur, Chhattisgarh, 497101, India
| | - Chandana Sahu
- Columbia College of Nursing, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
2
|
On-nom N, Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Chupeerach C, Pruesapan K, Trisonthi P, Siriwan D, Suttisansanee U. Seasonal Effects on Phenolic Contents and In Vitro Health-Promoting Bioactivities of Sacred Lotus ( Nelumbo nucifera). PLANTS (BASEL, SWITZERLAND) 2023; 12:1441. [PMID: 37050065 PMCID: PMC10097295 DOI: 10.3390/plants12071441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Sacred lotus (Nelumbo nucifera) is a commercial product in Asian countries. Almost all parts of the lotus plant are consumed as food or used as traditional medicine due to their high contents of secondary metabolites such as phenolics and alkaloids. However, agricultural management of the sacred lotus occurs during the rainy season, and the plant enters a resting stage during the dry season. Thus, seasonal variation (beginning, middle and end of the rainy season) was investigated for total phenolic contents (TPCs), antioxidant capacities and inhibitions of the key enzymes relevant to chronic diseases including Alzheimer's disease (β-secretase, acetylcholinesterase and butyrylcholinesterase), hypertension (angiotensin-converting enzyme), obesity (lipase) and diabetes (α-glucosidase) of different sacred lotus parts (seed embryo, petal, stamen, old leaf, leaf stalk and flower stalk). Results indicated that an aqueous extract of stamen in all harvesting seasons exhibited potentially high TPCs, which led to high antioxidant activities and most enzyme inhibitions (up to 53.7-fold higher) than the others collected in the same harvesting period. The phenolic content and biochemical activities in stamen harvested at the beginning of the rainy season were up to 4-fold higher than during other harvesting periods. This information benefits the agricultural management of sacred lotus and supports consumption of different sacred lotus parts for health promotion. Results can be used as an initial database for future product development from different sacred lotus parts.
Collapse
Affiliation(s)
- Nattira On-nom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chaowanee Chupeerach
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kanchana Pruesapan
- Plant Varieties Protection Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
3
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
4
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Devecchi A, Demasi S, Saba F, Rosato R, Gambino R, Ponzo V, De Francesco A, Massarenti P, Bo S, Scariot V. Compositional Characteristics and Antioxidant Activity of Edible Rose Flowers and Their Effect on Phenolic Urinary Excretion. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/142639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Chen L, Li Z, He Q, Gao M, Sun Q, Zeng W. Effect of lotus (
Nelumbo
nucifera
) petals extract on the quality of yogurt and its action mechanism. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Chen
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu P.R. China
| | - Zi‐Yi Li
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu P.R. China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P.R. China
| | - Mai‐Rui Gao
- Department of Animal Science University of Connecticut Storrs CT USA
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P.R. China
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu P.R. China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P.R. China
| |
Collapse
|
7
|
Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. Int J Mol Sci 2019; 20:ijms20184556. [PMID: 31540021 PMCID: PMC6770307 DOI: 10.3390/ijms20184556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.
Collapse
|
8
|
Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter Orange (Citrus aurantium Linné) Improves Obesity by Regulating Adipogenesis and Thermogenesis through AMPK Activation. Nutrients 2019; 11:nu11091988. [PMID: 31443565 PMCID: PMC6770725 DOI: 10.3390/nu11091988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.
Collapse
Affiliation(s)
- Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yunu Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hyun Jeong Kwak
- Life science major, Division of Bio-convergence, College of convergence and integrate science, Kyonggi University, Suwon 16227, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
9
|
Marinovic MP, Campeiro JD, Lima SC, Rocha AL, Nering MB, Oliveira EB, Mori MA, Hayashi MAF. Crotamine induces browning of adipose tissue and increases energy expenditure in mice. Sci Rep 2018; 8:5057. [PMID: 29567992 PMCID: PMC5864908 DOI: 10.1038/s41598-018-22988-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Crotamine, originally isolated from rattlesnake venom, has been extensively studied due to its pleiotropic biological properties, and special attention has been paid to its antitumor activity. However, long-term treatment with crotamine was accompanied by a reduction in animal body weight gain and by increases in glucose tolerance. As cancer is commonly associated with cachexia, to preclude the possible cancer cachexia-like effect of crotamine, herein this polypeptide was administered in healthy wild-type C57/BL6 mice by the oral route daily, for 21 days. Reduced body weight gain, in addition to decreased white adipose tissue (WAT) and increased brown adipose tissue (BAT) mass were observed in healthy animals in the absence of tumor. In addition, we observed improved glucose tolerance and increased insulin sensitivity, accompanied by a reduction of plasma lipid levels and decreased levels of biomarkers of liver damage and kidney disfunctions. Importantly, long-term treatment with crotamine increased the basal metabolic rate in vivo, which was consistent with the increased expression of thermogenic markers in BAT and WAT. Interestingly, cultured brown adipocyte cells induced to differentiation in the presence of crotamine also showed increases in some of these markers and in lipid droplets number and size, indicating increased brown adipocyte maturation.
Collapse
Affiliation(s)
- Marcelo P Marinovic
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sunamita C Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrea L Rocha
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Marcela B Nering
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Marcelo A Mori
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil.,Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Limwachiranon J, Huang H, Shi Z, Li L, Luo Z. Lotus Flavonoids and Phenolic Acids: Health Promotion and Safe Consumption Dosages. Compr Rev Food Sci Food Saf 2018; 17:458-471. [PMID: 33350075 DOI: 10.1111/1541-4337.12333] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 02/02/2023]
Abstract
Nelumbo nucifera Gaertn., also known as the sacred lotus, is extensively cultivated in Southeast Asia, primarily for food and as an herbal medicine. This article reviews studies published between 1995 and 2017, on flavonoid and phenolic acid profiles and contents of 154 different cultivars of lotus. So far, some 12 phenolic acids and 89 to 90 flavonoids (47 flavonols, 25 to 26 flavons, 8 flavan-3-ols, 4 flavanons, and 5 anthocyanins) have been isolated from different parts of the lotus plant, including its leaves (whole leaf, leaf pulp, leaf vein, and leaf stalk), seeds (seedpod, epicarp, coat, kernel, and embryo), and flowers (stamen, petal, pistil, and stalk), although not all of them have been quantified. Factors affecting flavonoids and phenolic acid profiles, including types of tissues and extracting factors, are discussed in this review, in order to maximize the application of the lotus and its polyphenols in the food industry. Health promotion activities, attributed to the presence of flavonoids and phenolic acids, are described along with toxicology studies, illustrating appropriate usage and safe consumption dosages of lotus extracts. This review also presents the controversies and discusses the research gaps that limit our ability to obtain a thorough understanding of the bioactivities of lotus extracts.
Collapse
Affiliation(s)
- Jarukitt Limwachiranon
- Zhejiang Univ., College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People's Republic of China
| | - Hao Huang
- Zhejiang Univ., College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People's Republic of China
| | - Zhenghan Shi
- Zhejiang Univ., College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People's Republic of China
| | - Li Li
- Zhejiang Univ., College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People's Republic of China
| | - Zisheng Luo
- Zhejiang Univ., College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
11
|
Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytother Res 2017; 31:591-623. [DOI: 10.1002/ptr.5792] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Pratibha Anchi
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Swarna Bale
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| |
Collapse
|
12
|
Lu B, Li M, Yin R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000-2015). Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S130-48. [PMID: 26462418 DOI: 10.1080/10408398.2015.1078276] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible flowers contain numerous phytochemicals which contribute to their health benefits, and consumption of edible flowers has increased significantly in recent years. While many researchers have been conducted, no literature review of the health benefits of common edible flowers and their phytochemicals has been compiled. This review aimed to present the findings of research conducted from 2000 to 2015 on the species, traditional application, phytochemicals, health benefits, and the toxicology of common edible flowers. It was found in 15 species of common edible flowers that four flavonols, three flavones, four flavanols, three anthocyanins, three phenolic acids and their derivatives were common phytochemicals and they contributed to the health benefits such as anti-oxidant, anti-inflammatory, anti-cancer, anti-obesity, and neuroprotective effect. Toxicology studies have been conducted to evaluate the safety of common edible flowers and provide information on their dosages and usages.
Collapse
Affiliation(s)
- Baiyi Lu
- a Zhejiang University, College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture , Hangzhou , China
| | - Maiquan Li
- a Zhejiang University, College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture , Hangzhou , China
| | - Ran Yin
- b Cornell University , Department of Food Science , Ithaca , New York USA
| |
Collapse
|
13
|
Sharma BR, Gautam LNS, Adhikari D, Karki R. A Comprehensive Review on Chemical Profiling ofNelumbo Nucifera: Potential for Drug Development. Phytother Res 2016; 31:3-26. [DOI: 10.1002/ptr.5732] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/28/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| | - Lekh Nath S. Gautam
- C. Eugene Bennett Department of Chemistry; West Virginia University; Morgantown WV 26506 USA
| | | | - Rajendra Karki
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| |
Collapse
|
14
|
Codonopsis lanceolata and Nelumbo nucifera Gaertn. root extracts for functional food: metabolic profiling by MS, FTIR and fluorescence and evaluation of cytotoxicity and anti-obesity properties on 3T3-L1 cell line. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2782-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Park KM, Yoo YJ, Ryu S, Lee SH. Nelumbo Nucifera leaf protects against UVB-induced wrinkle formation and loss of subcutaneous fat through suppression of MCP3, IL-6 and IL-8 expression. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:211-6. [DOI: 10.1016/j.jphotobiol.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
|
16
|
Phytochemical Profile and Biological Activity of Nelumbo nucifera. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:789124. [PMID: 27057194 PMCID: PMC4710907 DOI: 10.1155/2015/789124] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
Abstract
Nelumbo nucifera Gaertn. (Nymphaeaceae) is a potential aquatic crop grown and consumed throughout Asia. All parts of N. nucifera have been used for various medicinal purposes in various systems of medicine including folk medicines, Ayurveda, Chinese traditional medicine, and oriental medicine. Many chemical constituents have been isolated till the date. However, the bioactive constituents of lotus are mainly alkaloids and flavonoids. Traditionally, the whole plant of lotus was used as astringent, emollient, and diuretic. It was used in the treatment of diarrhea, tissue inflammation, and homeostasis. The rhizome extract was used as antidiabetic and anti-inflammatory properties due to the presence of asteroidal triterpenoid. Leaves were used as an effective drug for hematemesis, epistaxis, hemoptysis, hematuria, and metrorrhagia. Flowers were used to treat diarrhea, cholera, fever, and hyperdipsia. In traditional medicine practice, seeds are used in the treatment of tissue inflammation, cancer and skin diseases, leprosy, and poison antidote. Embryo of lotus seeds is used in traditional Chinese medicine as Lian Zi Xin, which primarily helps to overcome nervous disorders, insomnia, and cardiovascular diseases (hypertension and arrhythmia). Nutritional value of lotus is as important as pharmaceutical value. These days' different parts of lotus have been consumed as functional foods. Thus, lotus can be regarded as a potential nutraceutical source.
Collapse
|
17
|
Sharma C, Sadek B, Goyal SN, Sinha S, Kamal MA, Ojha S. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:238482. [PMID: 26664449 PMCID: PMC4664820 DOI: 10.1155/2015/238482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Mahrastra 425405, India
| | - Satyesh Sinha
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
18
|
Kumarihamy M, León F, Pettaway S, Wilson L, Lambert JA, Wang M, Hill C, McCurdy CR, ElSohly MA, Cutler SJ, Muhammad I. In vitro opioid receptor affinity and in vivo behavioral studies of Nelumbo nucifera flower. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:57-65. [PMID: 26260436 PMCID: PMC4636954 DOI: 10.1016/j.jep.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nelumbo nucifera Geartn., known as sacred lotus, has been used traditionally in South East Asia as a traditional medicine for various CNS disorders including stress, fever, depression, insomnia, and cognitive conditions. AIM OF THE STUDY To investigate the in vitro cannabinoid and opioid receptor binding affinities, and in vivo behavioral actions of Nelumbo flower extracts and to isolate the potential compounds to treat CNS associated disorders. MATERIALS AND METHODS The white and pink flowers of N. nucifera were extracted with 95% EtOH, followed by acid-base partitioning using CHCl3 to give acidic and basic partitions. These partitions were subjected to Centrifugal Preparative TLC (CPTLC) to yield benzyltetrahydroisoquinoline (BTIQ) alkaloids and long chain fatty acids, identified by physical and spectroscopic methods. In addition, EtOH extracts and partitions were analyzed for chemical markers by UHPLC/MS and GC/MS. In vitro neuropharmacological effects were evaluated by cannabinoid (CB1 and CB2) and opioid [delta (δ), kappa (ĸ), and mu (µ)] competitive radioligand binding and GTPγS functional assays. The in vivo behavioral effect was studied through the use of the mouse tetrad assay at 10, 30, 75 and 100mg/kg/ip doses that revealed the effect on locomotion, catalepsy, body temperature, and nociception of acidic and basic CHCl3 partitions, fractions, and compounds. RESULTS Three aporphines, nuciferine (1), N-nor-nuciferine (2), asimilobine (3), and five BTIQs, armepavine (4), O-methylcoclaurine (5), N-methylcoclaurine (6), coclaurine (7), neferine (10), and a mixture of linoleic and palmitic acids (LA and PA), were identified and evaluated for cannabinoid and opioid receptor displacement activities. Compounds 5-7 showed binding affinities for the ĸ opioid receptor with equilibrium dissociation constant (Ki) values of 3.5 ± 0.3, 0.9 ± 0.1, 2.2 ± 0.2 μM, respectively. Compound 10 displayed affinities for δ-and µ- opioid receptors with Ki values of 0.7 ± 0.1 and 1.8 ± 0.2 μM, respectively, and was determined to be a weak δ agonist by GTPγS functional assay. The mixture of LA and PA (1:1) showed an affinity for δ opioid receptor with a Ki value of 9.2 ± 1.1 μM. The acidic and basic CHCl3 partitions, compounds 1 and 7, and 5-7 mixture were subjected to the tetrad assay, of which the acidic partition displayed decreased locomotion and increased catalepsy, antinociception, and hypothermia in animal at doses of 75-100 mg/kg/ip, and also showed clonic-tonic seizures upon touch at 100mg/kg. CONCLUSION Bioassay-guided isolation revealed compounds 5-7, 10, and the mixture of LA and PA displayed various degrees of opioid receptor radioligand displacement affinities. The in vivo tetrad assay of acidic CHCl3 partition, enriched with aporphines 1 and 2, displayed actions on all four points of behavioral parameters. It can be concluded that the in vivo mild canabimimetic-type effect observed for the CHCl3 partition is likely mediated through other CNS mechanisms since the extracts, partitions, and isolated compounds had no affinity for the in vitro CB1 and CB2 receptors. This work, along with traditional use and the reported bioactivities of the BTIQ alkaloids, suggested further studies on N. nucifera are needed to understand the roles that the extracts and/or individual compounds might contribute to the behavioral effects.
Collapse
Affiliation(s)
- Mallika Kumarihamy
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Francisco León
- Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Sara Pettaway
- Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Lisa Wilson
- Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Janet A Lambert
- Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Christopher Hill
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Christopher R McCurdy
- Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Stephen J Cutler
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Ilias Muhammad
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
19
|
Rathore K, Singh VK, Jain P, Rao SP, Ahmed Z, Singh VD. In-vitro and in-vivo antiadipogenic, hypolipidemic and antidiabetic activity of Diospyros melanoxylon (Roxb). JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1171-1176. [PMID: 25010927 DOI: 10.1016/j.jep.2014.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant Diospyros melanoxylon (Roxb) belongs to the family Ebenaceae that is native to India and Sri-lanka. This is a medium-sized tree, reaching a height of 15 m and is well known for its beedi making leaves throughout the world. The purpose of the present study is to assess the effect of Diospyros melanoxylon leaves petroleum ether extract on blood glucose level, lipid level, insulin level, body weight, water and food intake in Streptozotocin (STZ) induced diabetic rats. MATERIALS AND METHODS Two different doses of extract AK001 (250 mg/kg) and AK002 (500 mg/kg) of Diospyros melanoxylon leaves were taken to evaluate different activities. The animals were divided into five groups namely normal control, diabetic control, reference group, AK001 and AK002 each containing six animals for in-vivo study. In-vitro study for antiadipogen activity was performed on 3T3-L1 cell line. RESULTS The extract showed dose dependent fall in Fasting Glucose Level (FSG) in experimental diabetic animals with significant reduction in food and water intake and increase in body weight. The extract exhibited hypocholesterolemic and hypotriglyceridemic effects while increased level of HDL in diabetes induced rats. In-vitro activity showed more than 75% viability of cells and significant inhibition in differentiated cells as compared to non-differentiate cells in 3T3-L1 cell line. The extract exhibited the concentration-dependent inhibitory effect with an IC50 value of 689.22 μg/ml. CONCLUSIONS The extract exhibited significant results for antiadipogenic, antidiabetic and hypolipidemic activity both in-vivo and in-vitro and it may prove to be effective for the treatment of both types of diabetes, i.e. Insulin Dependent Diabetes Mellitus (IDDM) and Noninsulin Dependent Diabetes Mellitus (NIDDM).
Collapse
Affiliation(s)
- Kalpana Rathore
- University Teaching Department, Sarguja University, Amibakpur, Chhattisgarh, India.
| | - Vijay Kumar Singh
- Columbia Institute of Pharmacy, Village Tekari, Raipur, Chhattisgarh, India.
| | - Parag Jain
- Columbia Institute of Pharmacy, Village Tekari, Raipur, Chhattisgarh, India.
| | - S Prakash Rao
- Columbia Institute of Pharmacy, Village Tekari, Raipur, Chhattisgarh, India.
| | - Zabeer Ahmed
- Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.
| | - Veena D Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India.
| |
Collapse
|
20
|
Seo H, Lee NH, Ryu S. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats. J Exerc Nutrition Biochem 2014; 18:301-9. [PMID: 25566467 PMCID: PMC4241895 DOI: 10.5717/jenb.2014.18.3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
[Purpose] Pine needle is a kind of medicinal plant ingested traditionally for a variety of purposes. Therefore, we examined the antioxidant and antiapoptotic capacities of pine needle ingestion in high cholesterol-fed and endurance exercise-trained rats. [Methods] Animals were divided into six groups as; CON: normal diet control group; EX: normal diet and exercise training group; HC: high cholesterol diet group; HCE: high cholesterol diet and exercise training group; HCP: high cholesterol and pine needle group; HCPE: high-cholesterol and pine needle diet with exercise training group, respectively. Each group consisted of seven Sprague-Dawley male rats. The swim-training groups, EX, HCE, and HCPE swam in the swim pool 60 min/d and 5 d/week for 5 weeks. During the rearing periods, freeze-dried pine needle powder mix with 5% of the high cholesterol diet was supplied to the HCP and HCPE groups. Gastrocnemius muscle was used as the skeletal muscle. Malondialdehyde (MDA), Mn-containing superoxide dismutase (Mn-SOD), Cu, Zn containing superoxide dismutase (Cu,Zn-SOD), and glutathione peroxidase (GPx) were analyzed for their antioxidant capacities. Finally, p53, Bcl-2 (B-cell lymphoma 2), caspase-3 protein expression was analyzed to determine antiapoptotic ability. [Results] MDA showed low content in HCPE compared to the HC. Mn-SOD, Cu,Zn-SOD, and GPx protein expression was significantly increased by pine needle ingestion and/or exercise training. In addition, suppression of p53 protein expression resulted in Bcl-2 increase followed by caspase-3 decrease with/without pine needle ingestion and exercise training. [Conclusion] When exercise training in addition to pine needle powder ingestion may be a helpful nutritional regimen to athletes and exercisers.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| | - Nam-Ho Lee
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea
| | - Sungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|