1
|
Debeuf N, Deckers J, Lameire S, Bosteels C, Hammad H, Lambrecht BN. Inhaled GM-CSF administered during ongoing pneumovirus infection alters myeloid and CD8 T cell immunity without affecting disease outcome. Front Immunol 2024; 15:1439789. [PMID: 39439800 PMCID: PMC11493702 DOI: 10.3389/fimmu.2024.1439789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine, able to promote both myelopoiesis and activation of immune cells. Particularly in the lung, GM-CSF plays an important homeostatic role in the development and maintenance of alveolar macrophages, and is therefore considered to play a role in respiratory virus infections such as influenza and SARS-CoV-2, although the benefits of GM-CSF treatment in clinical studies remain inconclusive. To address this, we tested inhaled GM-CSF treatment in the Pneumonia Virus of Mice (PVM) mouse model. Our findings show that local GM-CSF therapy during PVM disease increased local neutrophilia and monocyte-derived cell influx, but diminished CD8+ T cells responses. Despite this, the observed effects on T cells and myeloid cells did not result in an altered clinical outcome during PVM infection. We conclude that inhaled GM-CSF therapy cannot be considered as a universal protective therapy in respiratory virus infections.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cedric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
2
|
Duran P, Zelus EI, Burnett LA, Christman KL, Alperin M. Repeated birth injuries lead to long-term pelvic floor muscle dysfunction in the preclinical rat model. Am J Obstet Gynecol 2024:S0002-9378(24)00877-9. [PMID: 39191364 DOI: 10.1016/j.ajog.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Vaginal childbirth is a key risk factor for pelvic floor muscle injury and dysfunction, and subsequent pelvic floor disorders. Multiparity further exacerbates these risks. Using the rat model, validated for the studies of the human pelvic floor muscles, we have previously identified that a single simulated birth injury results in pelvic floor muscle atrophy and fibrosis. OBJECTIVE To test the hypothesis that multiple birth injuries would further overwhelm the muscle regenerative capacity, leading to functionally relevant pathological alterations long-term. STUDY DESIGN Sprague-Dawley rats underwent simulated birth injury and were allowed to recover for 8 weeks before undergoing additional birth injury. Animals were sacrificed at acute (3 and 7 days postinjury), subacute (21, 28, and 35 days postinjury), and long-term (8 and 12 weeks postinjury) time points post second injury (N=3-8/time point), and the pubocaudalis portion of the rat levator ani complex was harvested to assess the impact of repeated birth injuries on muscle mechanical and histomorphological properties. The accompanying transcriptional changes were assessed by a customized NanoString panel. Uninjured animals were used as controls. Data with a parametric distribution were analyzed by a 2-way analysis of variance followed by post hoc pairwise comparisons using Tukey's or Sidak's tests; nonparametrically distributed data were compared with Kruskal-Wallis test followed by pairwise comparisons with Dunn's test. Data, analyzed using GraphPad Prism v8.0, San Diego, CA, are presented as mean ± standard error of the mean or median (range). RESULTS Following the first simulated birth injury, active muscle force decreased acutely relative to uninjured controls (12.9±0.9 vs 25.98±2.1 g/mm2, P<.01). At 4 weeks, muscle active force production recovered to baseline and remained unchanged at 8 weeks after birth injury (P>.99). Similarly, precipitous decrease in active force was observed immediately after repeated birth injury (18.07±1.2 vs 25.98±2.1 g/mm2, P<.05). In contrast to the functional recovery after a single birth injury, a long-term decrease in muscle contractile function was observed up to 12 weeks after repeated birth injuries (18.3±1.6 vs 25.98±2.1 g/mm2, P<.05). Fiber size was smaller at the long-term time points after second injury compared to the uninjured group (12 weeks vs uninjured control: 1485 (60.7-5000) vs 1989 (65.6-4702) μm2, P<.0001). The proportion of fibers with centralized nuclei, indicating active myofiber regeneration, returned to baseline at 8 weeks post-first birth injury, (P=.95), but remained elevated as far as 12 weeks post-second injury (12 weeks vs uninjured control: 7.1±1.5 vs 0.84±0.13%, P<0.0001). In contrast to the plateauing intramuscular collagen content after 4 weeks post-first injury, fibrotic degeneration increased progressively over 12 weeks after repeated injury (12 weeks vs uninjured control: 6. 7±1.1 vs 2.03±0.2%, P<.001). Prolonged expression of proinflammatory genes accompanied by a greater immune infiltrate was observed after repeated compared to a single birth injury. CONCLUSION Overall, repeated birth injuries lead to a greater magnitude of pathological alterations compared to a single injury, resulting in more pronounced pelvic floor muscle degeneration and muscle dysfunction in the rat model. The above provides a putative mechanistic link between multiparity and the increased risk of pelvic floor dysfunction in women.
Collapse
Affiliation(s)
- Pamela Duran
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Emma I Zelus
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Lindsey A Burnett
- Sanford Stem Cell Institute, La Jolla, CA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Urogynecology and Reconstructive Pelvic Surgery, University of California San Diego, La Jolla, CA
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA; Sanford Stem Cell Institute, La Jolla, CA.
| | - Marianna Alperin
- Sanford Consortium for Regenerative Medicine, La Jolla, CA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Urogynecology and Reconstructive Pelvic Surgery, University of California San Diego, La Jolla, CA.
| |
Collapse
|
3
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
4
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
5
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
6
|
Marín-Moraleda D, Muñoz-Basagoiti J, Tort-Miró A, Navas MJ, Muñoz M, Vidal E, Cobos À, Martín-Mur B, Meas S, Motuzova V, Chang CY, Gut M, Accensi F, Pina-Pedrero S, Núñez JI, Esteve-Codina A, Gavrilov B, Rodriguez F, Liu L, Argilaguet J. Elucidating the Onset of Cross-Protective Immunity after Intranasal Vaccination with the Attenuated African Swine Fever Vaccine Candidate BA71ΔCD2. Vaccines (Basel) 2024; 12:517. [PMID: 38793768 PMCID: PMC11125603 DOI: 10.3390/vaccines12050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
African swine fever (ASF) is a deadly disease of swine currently causing a worldwide pandemic, leading to severe economic consequences for the porcine industry. The control of disease spread is hampered by the limitation of available effective vaccines. Live attenuated vaccines (LAVs) are currently the most advanced vaccine prototypes, providing strong protection against ASF. However, the significant advances achieved using LAVs must be complemented with further studies to analyze vaccine-induced immunity. Here, we characterized the onset of cross-protective immunity triggered by the LAV candidate BA71ΔCD2. Intranasally vaccinated pigs were challenged with the virulent Georgia 2007/1 strain at days 3, 7 and 12 postvaccination. Only the animals vaccinated 12 days before the challenge had effectively controlled infection progression, showing low virus loads, minor clinical signs and a lack of the unbalanced inflammatory response characteristic of severe disease. Contrarily, the animals vaccinated 3 or 7 days before the challenge just showed a minor delay in disease progression. An analysis of the humoral response and whole blood transcriptome signatures demonstrated that the control of infection was associated with the presence of virus-specific IgG and a cytotoxic response before the challenge. These results contribute to our understanding of protective immunity induced by LAV-based vaccines, encouraging their use in emergency responses in ASF-affected areas.
Collapse
Affiliation(s)
- David Marín-Moraleda
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Jordana Muñoz-Basagoiti
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Aida Tort-Miró
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - María Jesús Navas
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Marta Muñoz
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Enric Vidal
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Àlex Cobos
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Beatriz Martín-Mur
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08034 Barcelona, Spain
| | - Sochanwattey Meas
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Veronika Motuzova
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Chia-Yu Chang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08034 Barcelona, Spain
| | - Francesc Accensi
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Sonia Pina-Pedrero
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - José Ignacio Núñez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08034 Barcelona, Spain
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, 1113 Sofia, Bulgaria
| | - Fernando Rodriguez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Lihong Liu
- Swedish Veterinary Agency (SVA), 751 89 Uppsala, Sweden
| | - Jordi Argilaguet
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (D.M.-M.); (J.M.-B.); (J.I.N.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Calligaris M, Spanò DP, Bonelli S, Müller SA, Carcione C, D'apolito D, Amico G, Miele M, Di Bella M, Zito G, Nuti E, Rossello A, Blobel CP, Lichtenthaler SF, Scilabra SD. iRhom2 regulates ectodomain shedding and surface expression of the major histocompatibility complex (MHC) class I. Cell Mol Life Sci 2024; 81:163. [PMID: 38570362 PMCID: PMC10991058 DOI: 10.1007/s00018-024-05201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.
Collapse
Affiliation(s)
- Matteo Calligaris
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Donatella P Spanò
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - Simone Bonelli
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Claudia Carcione
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Danilo D'apolito
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Giandomenico Amico
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Monica Miele
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Mariangela Di Bella
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127, Palermo, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, Program in Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simone D Scilabra
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, via Ernesto Tricomi 5, 90127, Palermo, Italy.
| |
Collapse
|
8
|
Storz P. Roles of differently polarized macrophages in the initiation and progressionof pancreatic cancer. Front Immunol 2023; 14:1237711. [PMID: 37638028 PMCID: PMC10450961 DOI: 10.3389/fimmu.2023.1237711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
During development of pancreatic cancer macrophage-mediated inflammatory processes and the formation of cancerous lesions are tightly connected. Based on insight from mouse models we provide an overview on the functions of classically-activated pro-inflammatory and alternatively-activated anti-inflammatory macrophages in the initiation and progression of pancreatic cancer. We highlight their roles in earliest events of tumor initiation such as acinar-to-ductal metaplasia (ADM), organization of the fibrotic lesion microenvironment, and growth of low-grade (LG) lesions. We then discuss their roles as tumor-associated macrophages (TAM) in progression to high-grade (HG) lesions with a cancerous invasive phenotype and an immunosuppressive microenvironment. Another focus is on how targeting these macrophage populations can affect immunosuppression, fibrosis and responses to chemotherapy, and eventually how this knowledge could be used for novel therapy approaches for patients with pancreatic ductal adenocarcinoma (PDA).
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
9
|
Arif M, Basu A, Wolf KM, Park JK, Pommerolle L, Behee M, Gochuico BR, Cinar R. An Integrative Multiomics Framework for Identification of Therapeutic Targets in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207454. [PMID: 37038090 PMCID: PMC10238219 DOI: 10.1002/advs.202207454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesses and identifies progressive alterations in pulmonary function, transcriptomics, and metabolomics in the mouse lung at 7, 14, 21, and 28 days after a single dose of oropharyngeal bleomycin. By integrating multi-omics data, this work identifies two central gene subnetworks associated with multiple critical pathological changes in transcriptomics and metabolomics as well as pulmonary function. This work presents a multi-omics-based framework to establish a translational link between the bleomycin-induced PF model in mice and human idiopathic pulmonary fibrosis to identify druggable targets and test therapeutic candidates. This work also indicates peripheral cannabinoid receptor 1 (CB1 R) antagonism as a rational therapeutic target for clinical translation in PF. Mouse Lung Fibrosis Atlas can be accessed freely at https://niaaa.nih.gov/mouselungfibrosisatlas.
Collapse
Affiliation(s)
- Muhammad Arif
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Abhishek Basu
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Kaelin M. Wolf
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Lenny Pommerolle
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Madeline Behee
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Bernadette R. Gochuico
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of Health (NIH)BethesdaMD20892USA
| | - Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| |
Collapse
|
10
|
Parlani M, Bedell ML, Mikos AG, Friedl P, Dondossola E. Dissecting the recruitment and self-organization of αSMA-positive fibroblasts in the foreign body response. SCIENCE ADVANCES 2022; 8:eadd0014. [PMID: 36542704 PMCID: PMC9770965 DOI: 10.1126/sciadv.add0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The foreign body response (FBR) is a clinically relevant issue that can cause malfunction of implanted medical devices by fibrotic encapsulation. Whereas inflammatory aspects of the FBR have been established, underlying fibroblast-dependent mechanisms remain unclear. We here combine multiphoton microscopy with ad hoc reporter mice expressing α-smooth muscle actin (αSMA) protein to determine the locoregional fibroblast dynamics, activation, and fibrotic encapsulation of polymeric materials. Fibroblasts invaded as individual cells and established a multicellular network, which transited to a two-compartment fibrotic response displaying an αSMA cold external capsule and a long-lasting, inner αSMA hot environment. The recruitment of fibroblasts and extent of fibrosis were only incompletely inhibited after depletion of macrophages, implicating coexistence of macrophage-dependent and macrophage-independent mediators. Furthermore, neither altering material type or porosity modulated αSMA+ cell recruitment and distribution. This identifies fibroblast activation and network formation toward a two-compartment FBR as a conserved, self-organizing process partially independent of macrophages.
Collapse
Affiliation(s)
- Maria Parlani
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthew L. Bedell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre (CGC.nl), 3584 Utrecht, Netherlands
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Liang C, Tang Y, Gao X, Lei N, Luo Y, Chen P, Duan S, Cao Y, Yang Y, Zhang Y. Depression Exacerbates Dextran Sulfate Sodium-Induced Colitis via IRF5-Mediated Macrophage Polarization. Dig Dis Sci 2022; 68:1269-1279. [PMID: 36088512 DOI: 10.1007/s10620-022-07679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Patients with inflammatory bowel disease (IBD) and concurrent depression are predisposed to severer disease activity and a worse prognosis. Macrophage polarization toward the M1 phenotype may contribute to the exacerbation of IBD with comorbid depression. Moreover, interferon regulatory factor 5 (IRF5) is involved in the pathogenesis of IBD. The aim of this study was to explore the role of IRF5 in macrophage polarization in the impact of depression upon colitis. METHODS Depressive-like behavior was induced by repeated forced swim stress. Colon length, disease activity index (DAI), colon morphology, histology, ultrastructure of epithelial barrier, lamina propria macrophage polarization, and expression of IRF5 were compared between DSS colitis rats with and without depressive-like behavior. IRF5 shRNA was constructed to affect the rat peritoneal macrophages polarization in vitro. After IRF5 shRNA lentivirus was introduced into colon by enema, the colitis severity, lamina propria macrophage polarization, and TNF-α, IL-1β, and IL-10 of colon tissues were measured. RESULTS The study found severer colonic inflammation in depressed versus non-depressed DSS-colitis rats. Depressed DSS-colitis rats exhibited smaller subepithelial macrophages size and reduced intracellular granule diversity compared with nondepressed DSS-colitis rats. Increased polarization toward the M1 phenotype, elevated expression of IRF5, and co-expression of IRF5 with CD86 were found in depressed versus nondepressed DSS-colitis rats. Lentivirus-mediated shRNA interference with IRF5 expression switched rat peritoneal macrophage polarization from the M1 to the M2 phenotype, downregulated TNF-α, IL-1β expression to a greater extent in depressed versus nondepressed colitis rats. CONCLUSIONS IRF5-mediated macrophage polarization may likely underlie the deterioration of DSS-induced colitis caused by depression.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yu Tang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Xin Gao
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Na Lei
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Ying Luo
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Pingrun Chen
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Shihao Duan
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yi Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther 2022; 30:2891-2908. [PMID: 35918892 PMCID: PMC9482022 DOI: 10.1016/j.ymthe.2022.07.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
13
|
Halimani N, Nesterchuk M, Andreichenko IN, Tsitrina AA, Elchaninov A, Lokhonina A, Fatkhudinov T, Dashenkova NO, Brezgina V, Zatsepin TS, Mikaelyan AS, Kotelevtsev YV. Phenotypic Alteration of BMDM In Vitro Using Small Interfering RNA. Cells 2022; 11:cells11162498. [PMID: 36010574 PMCID: PMC9406732 DOI: 10.3390/cells11162498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.7 monocyte/macrophage cell line and mouse-bone-marrow-derived macrophages (BMDMs). The impact of IRF5 knockdown was most pronounced, curtailing the expression of other inflammatory mediators such as IL-6 and NOS2, especially in M1-polarized macrophages. Contrary to IRF5, EGR2 knockdown potentiated M1-associated markers while altogether abolishing M2 marker expression, which is indicative of the principal role of EGR2 in the maintenance of alternative phenotypes. IRF3 knockdown suppressed M1 polarization but upregulated Arg 1, a canonical marker of alternative polarization in M1 macrophages. As anticipated, the knockdown of TLR4 also attenuated the M1 phenotype but, akin to IRF3, significantly induced Arginase 1 in M0 and M1, driving the phenotype towards M2. This study validates RNAi as a viable option for the alteration and maintenance of macrophage phenotypes.
Collapse
Affiliation(s)
- Noreen Halimani
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
- Correspondence: (N.H.); (Y.V.K.)
| | - Mikhail Nesterchuk
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Irina N. Andreichenko
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Anastasia Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Timur Fatkhudinov
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Nataliya O. Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Vera Brezgina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Timofei S. Zatsepin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Arsen S. Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Yuri V. Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
- Correspondence: (N.H.); (Y.V.K.)
| |
Collapse
|
14
|
Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210166. [PMID: 37323705 PMCID: PMC10190945 DOI: 10.1002/exp.20210166] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Reprogramming the immunosuppressive tumor microenvironment by modulating macrophages holds great promise in tumor immunotherapy. As a class of professional phagocytes and antigen-presenting cells in the innate immune system, macrophages can not only directly engulf and clear tumor cells, but also play roles in presenting tumor-specific antigen to initiate adaptive immunity. However, the tumor-associated macrophages (TAMs) usually display tumor-supportive M2 phenotype rather than anti-tumor M1 phenotype. They can support tumor cells to escape immunological surveillance, aggravate tumor progression, and impede tumor-specific T cell immunity. Although many TAMs-modulating agents have shown great success in therapy of multiple tumors, they face enormous challenges including poor tumor accumulation and off-target side effects. An alternative solution is the use of advanced nanostructures, which not only can deliver TAMs-modulating agents to augment therapeutic efficacy, but also can directly serve as modulators of TAMs. Another important strategy is the exploitation of macrophages and macrophage-derived components as tumor-targeting delivery vehicles. Herein, we summarize the recent advances in targeting and engineering macrophages for tumor immunotherapy, including (1) direct and indirect effects of macrophages on the augmentation of immunotherapy and (2) strategies for engineering macrophage-based drug carriers. The existing perspectives and challenges of macrophage-based tumor immunotherapies are also highlighted.
Collapse
Affiliation(s)
- Yanhui Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| |
Collapse
|
15
|
Edsfeldt A, Swart M, Singh P, Dib L, Sun J, Cole JE, Park I, Al-Sharify D, Persson A, Nitulescu M, Borges PDN, Kassiteridi C, Goddard ME, Lee R, Volkov P, Orho-Melander M, Maegdefessel L, Nilsson J, Udalova I, Goncalves I, Monaco C. Interferon regulatory factor-5-dependent CD11c+ macrophages contribute to the formation of rupture-prone atherosclerotic plaques. Eur Heart J 2022; 43:1864-1877. [PMID: 35567557 PMCID: PMC9113304 DOI: 10.1093/eurheartj/ehab920] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.
Collapse
Affiliation(s)
- Andreas Edsfeldt
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden,Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - Maarten Swart
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Pratibha Singh
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Dania Al-Sharify
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Ana Persson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Patricia Das Neves Borges
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Christina Kassiteridi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, Oxford, University of Oxford
| | - Petr Volkov
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden,Department of Vascular and Endovascular Surgery, Technical University Munich and DZHK Partner Site Munich, Munich, Germany
| | - Jan Nilsson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Irina Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | | | - Claudia Monaco
- Corresponding author. Tel: +44 1865 612636, Fax: +44 1865 612601,
| |
Collapse
|
16
|
Tang J, Cheng X, Yi S, Zhang Y, Tang Z, Zhong Y, Zhang Q, Pan B, Luo Y. Euphorbia Factor L2 ameliorates the Progression of K/BxN Serum-Induced Arthritis by Blocking TLR7 Mediated IRAK4/IKKβ/IRF5 and NF-kB Signaling Pathways. Front Pharmacol 2021; 12:773592. [PMID: 34950033 PMCID: PMC8691750 DOI: 10.3389/fphar.2021.773592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Abstract
Toll like receptor (TLR)s have a central role in regulating innate immunity and their activation have been highlighted in the pathogenesis of rheumatoid arthritis (RA). EFL2, one of diterpenoids derived from Euphorbia seeds, is nearly unknown expect for its improving effect on acute lung injury. Our present study aimed to investigate EFL2's pharmacokinetic features, its therapeutic effect on rheumatoid arthritis, and explored the potential anti-arthritic mechanisms. K/BxN serum transfer arthritis (STA) murine model was used to assess EFL2's anti-arthritic effects. We also applied UPLC-MS method to measure the concentrations of EFL2 in plasma. The inhibitory effects of this compound on inflammatory cells infiltration and activation were determined by flow cytometry analysis and quantitative real-time polymerase chain reaction (qRT-PCR) in vivo, and immunochemistry staining and ELISA in murine macrophages and human PBMCs in vitro, respectively. The mechanism of EFL2 on TLRs mediated signaling pathway was evaluated by PCR array, Western blot, plasmid transfection and confocal observation. Intraperitoneal (i.p.) injection of EFL2, instead of oral administration, could effectively ameliorate arthritis severity of STA mice. The inflammatory cells migration and infiltration into ankles were also significantly blocked by EFL2, accompanied with dramatically reduction of chemokines mRNA expression and pro-inflammatory cytokines production. In vivo PCR microarray indicated that EFL2 exerted anti-arthritis bioactivity by suppressing TLR7 mediated signaling pathway. In vitro study confirmed the inhibitory effects of EFL2 on TLR7 or TLR3/7 synergistically induced inflammatory cytokines secretion in murine macrophages and human PBMCs. In terms of molecular mechanism, we further verified that EFL2 robustly downregulated TLR7 mediated IRAK4-IKKβ-IRF5 and NF-κB signaling pathways activation, and blocked IRF5 and p65 phosphorylation and translocation activity. Taken together, our data indicate EFL2's therapeutic potential as a candidate for rheumatoid arthritis and other TLR7-dependent diseases.
Collapse
Affiliation(s)
- Jing Tang
- Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Sichuan, China.,Department of Rheumatology and Immunology, Luzhou's People's Hospital, Luzhou, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Yi
- Department of Rheumatology and Immunology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Yuanyuan Zhang
- Sichuan Food and Drug Inspection and Testing Institute, Chengdu, China
| | - Zhigang Tang
- Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Sichuan, China
| | - Yutong Zhong
- Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Sichuan, China
| | - Qiuping Zhang
- Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Sichuan, China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
17
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
18
|
Silicone Implants Immobilized with Interleukin-4 Promote the M2 Polarization of Macrophages and Inhibit the Formation of Fibrous Capsules. Polymers (Basel) 2021; 13:polym13162630. [PMID: 34451169 PMCID: PMC8400985 DOI: 10.3390/polym13162630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Breast augmentations with silicone implants can have adverse effects on tissues that, in turn, lead to capsular contracture (CC). One of the potential ways of overcoming CC is to control the implant/host interaction using immunomodulatory agents. Recently, a high ratio of anti-inflammatory (M2) macrophages to pro-inflammatory (M1) macrophages has been reported to be an effective tissue regeneration approach at the implant site. In this study, a biofunctionalized implant was coated with interleukin (IL)-4 to inhibit an adverse immune reaction and promoted tissue regeneration by promoting polarization of macrophages into the M2 pro-healing phenotype in the long term. Surface wettability, nitrogen content, and atomic force microscopy data clearly showed the successful immobilization of IL-4 on the silicone implant. Furthermore, in vitro results revealed that IL-4-coated implants were able to decrease the secretion of inflammatory cytokines (IL-6 and tumor necrosis factor-α) and induced the production of IL-10 and the upregulation of arginase-1 (mannose receptor expressed by M2 macrophage). The efficacy of this immunomodulatory implant was further demonstrated in an in vivo rat model. The animal study showed that the presence of IL-4 diminished the capsule thickness, the amount of collagen, tissue inflammation, and the infiltration of fibroblasts and myofibroblasts. These results suggest that macrophage phenotype modulation can effectively reduce inflammation and fibrous CC on a silicone implant conjugated with IL-4.
Collapse
|
19
|
Luque-Martin R, Angell DC, Kalxdorf M, Bernard S, Thompson W, Eberl HC, Ashby C, Freudenberg J, Sharp C, Van den Bossche J, de Jonge WJ, Rioja I, Prinjha RK, Neele AE, de Winther MPJ, Mander PK. IFN-γ Drives Human Monocyte Differentiation into Highly Proinflammatory Macrophages That Resemble a Phenotype Relevant to Psoriasis. THE JOURNAL OF IMMUNOLOGY 2021; 207:555-568. [PMID: 34233910 DOI: 10.4049/jimmunol.2001310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.
Collapse
Affiliation(s)
- Rosario Luque-Martin
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Davina C Angell
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Sharon Bernard
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - William Thompson
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Charlotte Ashby
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Catriona Sharp
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; and
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Inmaculada Rioja
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K Prinjha
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Annette E Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Palwinder K Mander
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom;
| |
Collapse
|
20
|
Combined Gemcitabine and Immune-Checkpoint Inhibition Conquers Anti-PD-L1 Resistance in Low-Immunogenic Mismatch Repair-Deficient Tumors. Int J Mol Sci 2021; 22:ijms22115990. [PMID: 34206051 PMCID: PMC8199186 DOI: 10.3390/ijms22115990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/11/2023] Open
Abstract
Tumors arising in the context of Lynch Syndrome or constitutional mismatch repair deficiency are hypermutated and have a good response towards immune-checkpoint inhibitors (ICIs), including α-PD-L1 antibodies. However, in most cases, resistance mechanisms evolve. To improve outcomes and prevent resistance development, combination approaches are warranted. Herein, we applied a combined regimen with an α-PD-L1 antibody and gemcitabine in a preclinical tumor model to activate endogenous antitumor immune responses. Mlh1−/− mice with established gastrointestinal tumors received the α-PD-L1 antibody (clone 6E11; 2.5 mg/kg bw, i.v., q2wx3) and gemcitabine (100 mg/kg bw, i.p., q4wx3) in mono- or combination therapy. Survival and tumor growth were recorded. Immunological changes in the blood were routinely examined via multi-color flow cytometry and complemented by ex vivo frameshift mutation analysis to identify alterations in Mlh1−/−-tumor-associated target genes. The combined therapy of α-PD-L1 and gemcitabine prolonged median overall survival of Mlh1−/− mice from four weeks in the untreated control group to 12 weeks, accompanied by therapy-induced tumor growth inhibition, as measured by [18F]-FDG PET/CT. Plasma cytokine levels of IL13, TNFα, and MIP1β were increased and also higher than in mice receiving either monotherapy. Circulating splenic and intratumoral myeloid-derived suppressor cells (MDSCs), as well as M2 macrophages, were markedly reduced. Besides, residual tumor specimens from combi-treated mice had increased numbers of infiltrating cytotoxic T-cells. Frameshift mutations in APC, Tmem60, and Casc3 were no longer detectable upon treatment, likely because of the successful eradication of single mutated cell clones. By contrast, novel mutations appeared. Collectively, we herein confirm the safe application of combined chemo-immunotherapy by long-term tumor growth control to prevent the development of resistance mechanisms.
Collapse
|
21
|
Te N, Rodon J, Ballester M, Pérez M, Pailler-García L, Segalés J, Vergara-Alert J, Bensaid A. Type I and III IFNs produced by the nasal epithelia and dimmed inflammation are features of alpacas resolving MERS-CoV infection. PLoS Pathog 2021; 17:e1009229. [PMID: 34029358 PMCID: PMC8195365 DOI: 10.1371/journal.ppat.1009229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient type I and III interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. Meanwhile, a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes was observed along the whole respiratory mucosa with a rapid clearance of the virus in tissues. Thus, innate immune responses occurring in the nasal mucosa might be key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Caldes de Montbui, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, Cerdanyola del Vallès, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- * E-mail:
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Vecellio M, Chen L, Cohen CJ, Cortes A, Li Y, Bonham S, Selmi C, Brown MA, Fischer R, Knight JC, Wordsworth BP. Functional Genomic Analysis of a RUNX3 Polymorphism Associated With Ankylosing Spondylitis. Arthritis Rheumatol 2021; 73:980-990. [PMID: 33369221 PMCID: PMC8251554 DOI: 10.1002/art.41628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS). METHODS Using nuclear extracts from Jurkat cells and primary human CD8+ T cells, the effects of rs4648889 on allele-specific transcription factor (TF) binding were investigated by DNA pull-down assay and quantitative mass spectrometry (qMS), with validation by electrophoretic mobility shift assay (EMSA), Western blotting of the pulled-down eluates, and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis. Further functional effects were tested by small interfering RNA knockdown of the gene for interferon regulatory factor 5 (IRF5), followed by reverse transcription-qPCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) to measure the levels of IFNγ messenger RNA (mRNA) and protein, respectively. RESULTS In nuclear extracts from CD8+ T cells, results of qMS showed that relative TF binding to the AS-risk A allele of rs4648889 was increased 3.7-fold (P < 0.03) for Ikaros family zinc-finger protein 3 (IKZF3; Aiolos) and components of the NuRD complex, including chromodomain helicase DNA binding protein 4 (CHD4) (3.6-fold increase; P < 0.05) and retinoblastoma binding protein 4 (RBBP4) (4.1-fold increase; P < 0.03). In contrast, IRF5 bound significantly more to the AS-protective G allele compared to the AS-risk A allele (fold change 8.2; P = 0.003). Validation with Western blotting, EMSA, and ChIP-qPCR confirmed the differential allelic binding of IKZF3, CHD4, RBBP4, and IRF5. Silencing of IRF5 in CD8+ T cells increased the levels of IFNγ mRNA as measured by RT-qPCR (P = 0.03) and IFNγ protein as measured by ELISA (P = 0.02). CONCLUSION These findings suggest that the association of rs4648889 with AS reflects allele-specific binding of this enhancer-like region to certain TFs, including IRF5, IKZF3, and members of the NuRD complex. IRF5 may have crucial influences on the functions of CD8+ lymphocytes, a finding that could reveal new therapeutic targets for the management of AS.
Collapse
Affiliation(s)
- Matteo Vecellio
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Liye Chen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Carla J Cohen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Adrian Cortes
- John Radcliffe Hospital, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yan Li
- The First Affiliated Hospital of Xiamen University and Xiamen University School of Medicine, Xiamen, China
| | - Sarah Bonham
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Carlo Selmi
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matthew A Brown
- NIHR Guy's and St. Thomas' Biomedical Research Centre, London, UK, and University of Queensland, Brisbane, Queensland, Australia
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Paul Wordsworth
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Albers GJ, Iwasaki J, McErlean P, Ogger PP, Ghai P, Khoyratty TE, Udalova IA, Lloyd CM, Byrne AJ. IRF5 regulates airway macrophage metabolic responses. Clin Exp Immunol 2021; 204:134-143. [PMID: 33423291 PMCID: PMC7944363 DOI: 10.1111/cei.13573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Interferon regulatory factor 5 (IRF5) is a master regulator of macrophage phenotype and a key transcription factor involved in expression of proinflammatory cytokine responses to microbial and viral infection. Here, we show that IRF5 controls cellular and metabolic responses. By integrating ChIP sequencing (ChIP-Seq) and assay for transposase-accessible chromatin using sequencing (ATAC)-seq data sets, we found that IRF5 directly regulates metabolic genes such as hexokinase-2 (Hk2). The interaction of IRF5 and metabolic genes had a functional consequence, as Irf5-/- airway macrophages but not bone marrow-derived macrophages (BMDMs) were characterized by a quiescent metabolic phenotype at baseline and had reduced ability to utilize oxidative phosphorylation after Toll-like receptor (TLR)-3 activation, in comparison to controls, ex vivo. In a murine model of influenza infection, IRF5 deficiency had no effect on viral load in comparison to wild-type controls but controlled metabolic responses to viral infection, as IRF5 deficiency led to reduced expression of Sirt6 and Hk2. Together, our data indicate that IRF5 is a key component of AM metabolic responses following influenza infection and TLR-3 activation.
Collapse
Affiliation(s)
- G. J. Albers
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - J. Iwasaki
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. McErlean
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. P. Ogger
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. Ghai
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - T. E. Khoyratty
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - I. A. Udalova
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - C. M. Lloyd
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - A. J. Byrne
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
26
|
Chen YC, Lai YS, Hsuuw YD, Chang KT. Withholding of M-CSF Supplement Reprograms Macrophages to M2-Like via Endogenous CSF-1 Activation. Int J Mol Sci 2021; 22:3532. [PMID: 33805444 PMCID: PMC8037162 DOI: 10.3390/ijms22073532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophage colony-stimulating factor (M-CSF or CSF-1) is known to have a broad range of actions on myeloid cells maturation, including the regulation of macrophage differentiation, proliferation and survival. Macrophages generated by M-CSF stimulus have been proposed to be alternatively activated or M2 phenotype. M-CSF is commonly overexpressed by tumors and is also known to enhance tumor growth and aggressiveness via stimulating pro-tumor activities of tumor-associated macrophages (TAMs). Currently, inhibition of CSF-1/CSF-1R interaction by therapeutic antibody to deplete TAMs and their pro-tumor functions is becoming a prevalent strategy in cancer therapy. However, its antitumor activity shows a limited single-agent effect. Therefore, macrophages in response to M-CSF interruption are pending for further investigation. To achieve this study, bone marrow derived macrophages were generated in vitro by M-CSF stimulation for 7 days and then continuously grown until day 21 in M-CSF absence. A selective pressure for cell survival was initiated after withdrawal of M-CSF. The surviving cells were more prone to M2-like phenotype, even after receiving interleukin-4 (IL-4) stimulation. The transcriptome analysis unveiled that endogenous CSF-1 level was dramatically up-regulated and numerous genes downstream to CSF-1 covering tumor necrosis factor (TNF), ras-related protein 1 (Rap1) and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway were significantly modulated, especially for proliferation, migration and adhesion. Moreover, the phenomenal increase of miR-21-5p and genes related to pro-tumor activity were observed in parallel. In summary, withholding of CSF-1/CSF-1R interaction would rather augment than suspend the M-CSF-driven pro-tumor activities of M2 macrophages in a long run.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; christian--
| | - Yin-Siew Lai
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, Pingtung 91201, Taiwan;
| | - Ko-Tung Chang
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
27
|
Arnold IC, Artola-Boran M, Gurtner A, Bertram K, Bauer M, Frangez Z, Becher B, Kopf M, Yousefi S, Simon HU, Tzankov A, Müller A. The GM-CSF-IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. J Exp Med 2021; 217:152117. [PMID: 32970801 PMCID: PMC7953737 DOI: 10.1084/jem.20190706] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/13/2020] [Accepted: 08/06/2020] [Indexed: 01/11/2023] Open
Abstract
The depletion of eosinophils represents an efficient strategy to alleviate allergic asthma, but the consequences of prolonged eosinophil deficiency for human health remain poorly understood. We show here that the ablation of eosinophils severely compromises antitumor immunity in syngeneic and genetic models of colorectal cancer (CRC), which can be attributed to defective Th1 and CD8+ T cell responses. The specific loss of GM-CSF signaling or IRF5 expression in the eosinophil compartment phenocopies the loss of the entire lineage. GM-CSF activates IRF5 in vitro and in vivo and can be administered recombinantly to improve tumor immunity. IL-10 counterregulates IRF5 activation by GM-CSF. CRC patients whose tumors are infiltrated by large numbers of eosinophils also exhibit robust CD8 T cell infiltrates and have a better prognosis than patients with eosinophillow tumors. The combined results demonstrate a critical role of eosinophils in tumor control in CRC and introduce the GM-CSF–IRF5 axis as a critical driver of the antitumor activities of this versatile cell type.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mariela Artola-Boran
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandra Gurtner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Katrin Bertram
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Michael Bauer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Ziva Frangez
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Mohamed Elashiry M, Tian F, Elashiry M, Zeitoun R, Elsayed R, Andrews ML, Bergeon BE, Cutler C, Tay F. Enterococcus faecalis shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. J Oral Microbiol 2021; 13:1868152. [PMID: 33488991 PMCID: PMC7801083 DOI: 10.1080/20002297.2020.1868152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: The macrophage is an innate immune defense cell involved in pathogen recognition and clearance. Aim: In view of the diversity of the macrophage phenotype and function, the present study investigated how Enterococcus faecalis infection affects the differentiation, phenotype and cytokine profile of macrophages. Methods: Murine bone marrow-derived stem cells were co-cultured with E. faecalis before and after differentiation. Macrophage M0 polarization towards M1 or M2 was initiated at day 6 by addition of LPS and INF-γ, or IL-4 and IL-13, respectively. Results: E. faecalis did not inhibit macrophage differentiation and were identified within macrophages. Viability of the macrophages infected with E. faecalis prior to differentiation was enhanced, evidenced by apoptosis inhibition, as was expression of CD38 and IRF5 proteins, indicators of M1-like polarization. These M1-like macrophages expressed an aberrant cytokine mRNA profile, with reduction in inflammatory cytokines IL-1β and IL-12 and increase in regulatory cytokine IL-10. No changes in TNF-α or TGF-β1 were detected, compared with the control groups. This atypical M1-like phenotype was retained even upon stimulation with growth factors that normally trigger their development into M2 macrophages. Conclusions: These findings suggested that E. faecalis infection of bone marrow-derived stem cells during differentiation into macrophages induces an atypical M1-like phenotype associated with intracellular bacterial survival.
Collapse
Affiliation(s)
- Mohamed Mohamed Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.,Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fucong Tian
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mahmoud Elashiry
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Rana Zeitoun
- Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.,Department of Oral Biology and Diagnostic Science, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Ranya Elsayed
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Matthew L Andrews
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Brian E Bergeon
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Christopher Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Franklin Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
29
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
31
|
ElTanbouly MA, Schaafsma E, Smits NC, Shah P, Cheng C, Burns C, Blazar BR, Noelle RJ, Mabaera R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways. Front Immunol 2020; 11:580187. [PMID: 33178206 PMCID: PMC7593571 DOI: 10.3389/fimmu.2020.580187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
We present the novel finding that V-domain Ig suppressor of T cell activation (VISTA) negatively regulates innate inflammation through the transcriptional and epigenetic re-programming of macrophages. Representative of VISTA re-programming is the ability of VISTA agonistic antibodies to augment LPS tolerance and reduce septic shock lethality in mice. This anti-inflammatory effect of anti-VISTA was mimicked in vitro demonstrating that anti-VISTA treatment caused a significant reduction in LPS-induced IL-12p40, IL-6, CXCL2, and TNF; all hallmark pro-inflammatory mediators of endotoxin shock. Even under conditions that typically "break" LPS tolerance, VISTA agonists sustained a macrophage anti-inflammatory profile. Analysis of the proteomic and transcriptional changes imposed by anti-VISTA show that macrophage re-programming was mediated by a composite profile of mediators involved in both macrophage tolerance induction (IRG1, miR221, A20, IL-10) as well as transcription factors central to driving an anti-inflammatory profile (e.g., IRF5, IRF8, NFKB1). These findings underscore a novel and new activity of VISTA as a negative checkpoint regulator that induces both tolerance and anti-inflammatory programs in macrophages and controls the magnitude of innate inflammation in vivo.
Collapse
Affiliation(s)
- Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Evelien Schaafsma
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Nicole C. Smits
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Parth Shah
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Christopher Burns
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Bruce R. Blazar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rodwell Mabaera
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
32
|
Struzik J, Szulc-Dąbrowska L, Mielcarska MB, Bossowska-Nowicka M, Koper M, Gieryńska M. First Insight into the Modulation of Noncanonical NF-κB Signaling Components by Poxviruses in Established Immune-Derived Cell Lines: An In Vitro Model of Ectromelia Virus Infection. Pathogens 2020; 9:pathogens9100814. [PMID: 33020446 PMCID: PMC7599462 DOI: 10.3390/pathogens9100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) and macrophages are the first line of antiviral immunity. Viral pathogens exploit these cell populations for their efficient replication and dissemination via the modulation of intracellular signaling pathways. Disruption of the noncanonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling has frequently been observed in lymphoid cells upon infection with oncogenic viruses. However, several nononcogenic viruses have been shown to manipulate the noncanonical NF-κB signaling in different cell types. This study demonstrates the modulating effect of ectromelia virus (ECTV) on the components of the noncanonical NF-κB signaling pathway in established murine cell lines: JAWS II DCs and RAW 264.7 macrophages. ECTV affected the activation of TRAF2, cIAP1, RelB, and p100 upon cell treatment with both canonical and noncanonical NF-κB stimuli and thus impeded DNA binding by RelB and p52. ECTV also inhibited the expression of numerous genes related to the noncanonical NF-κB pathway and RelB-dependent gene expression in the cells treated with canonical and noncanonical NF-κB activators. Thus, our data strongly suggest that ECTV influenced the noncanonical NF-κB signaling components in the in vitro models. These findings provide new insights into the noncanonical NF-κB signaling components and their manipulation by poxviruses in vitro.
Collapse
Affiliation(s)
- Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
- Correspondence: ; Tel.: +48-22-59-360-61
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Matylda B. Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, A. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| |
Collapse
|
33
|
Repetitive Intermittent Hyperglycemia Drives the M1 Polarization and Inflammatory Responses in THP-1 Macrophages Through the Mechanism Involving the TLR4-IRF5 Pathway. Cells 2020; 9:cells9081892. [PMID: 32806763 PMCID: PMC7463685 DOI: 10.3390/cells9081892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (p = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/p < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/p = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/p < 0.0001), interleukin (IL)-1β (r = 0.40/p = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/p < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (p < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L–25 mM/L), and RIH/glucose fluctuations (3–15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1β, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (p < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.
Collapse
|
34
|
Smith NC, Christian SL, Woldemariam NT, Clow KA, Rise ML, Andreassen R. Characterization of miRNAs in Cultured Atlantic Salmon Head Kidney Monocyte-Like and Macrophage-Like Cells. Int J Mol Sci 2020; 21:ijms21113989. [PMID: 32498303 PMCID: PMC7312525 DOI: 10.3390/ijms21113989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are among the first cells to respond to infection and disease. While microRNAs (miRNAs) are involved in the process of monocyte-to-macrophage differentiation in mammals, less is known in teleost fish. Here, Atlantic salmon head kidney leukocytes (HKLs) were used to study the expression of miRNAs in response to in vitro culture. The morphological analysis of cultures showed predominantly monocyte-like cells on Day 1 and macrophage-like cells on Day 5, suggesting that the HKLs had differentiated from monocytes to macrophages. Day 5 HKLs also contained a higher percentage of phagocytic cells. Small RNA sequencing and qPCR analysis were applied to examine the miRNA diversity and expression. There were 370 known mature Atlantic salmon miRNAs in HKLs. Twenty-two miRNAs (15 families) were downregulated while 44 miRNAs (25 families) were upregulated on Day 5 vs. Day 1. Mammalian orthologs of many of the differentially expressed (DE) miRNAs are known to regulate macrophage activation and differentiation, while the teleost-specific miR-2188, miR-462 and miR-731 were also DE and are associated with immune responses in fish. In silico predictions identified several putative target genes of qPCR-validated miRNAs associated with vertebrate macrophage differentiation. This study identified Atlantic salmon miRNAs likely to influence macrophage differentiation, providing important knowledge for future functional studies.
Collapse
Affiliation(s)
- Nicole C. Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
- Correspondence: ; Tel.: +1-709-864-7478
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
35
|
Sindhu S, Kochumon S, Thomas R, Bennakhi A, Al-Mulla F, Ahmad R. Enhanced Adipose Expression of Interferon Regulatory Factor (IRF)-5 Associates with the Signatures of Metabolic Inflammation in Diabetic Obese Patients. Cells 2020; 9:cells9030730. [PMID: 32188105 PMCID: PMC7140673 DOI: 10.3390/cells9030730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
: Interferon regulatory factors (IRFs) are emerging as the metabolic transcriptional regulators in obesity/type-2 diabetes (T2D). IRF5 is implicated with macrophage polarization toward the inflammatory M1-phenotype, nonetheless, changes in the adipose expression of IRF5 in T2D and relationship of these changes with other markers of adipose inflammation remain unclear. Therefore, we determined the IRF5 gene expression in subcutaneous adipose tissue samples from 46 T2D patients including 35 obese (Body Mass Index/BMI 33.83 ± 0.42kg/m2) and 11 lean/overweight individuals (BMI 27.55 ± 0.46kg/m2) using real-time qRT-PCR. IRF5 protein expression was assessed using immunohistochemistry and confocal microscopy. Fasting plasma glucose, insulin, HbA1c, C-reactive protein, cholesterol, low- and high-density lipoproteins (LDL/HDL), and triglycerides were measured using commercial kits. IRF5 gene expression was compared with that of signature inflammatory markers and several clinico-metabolic indicators. The data (mean ± SEM) show the enhanced adipose IRF5 gene (p = 0.03) and protein (p = 0.05) expression in obese compared to lean/overweight diabetic patients. Adipose IRF5 transcripts in diabetic obese individuals associated positively with those of TNF-α, IL-18, IL-23A, CXCL8, CCL2, CCL7, CCR1/5, CD11c, CD68, CD86, TLR4/7/10, Dectin-1, FGL-2, MyD88, NF-κB, IRF3, and AML1 (p < 0.05). In diabetic lean/overweight subjects, IRF5 expression associated with BMI, body fat %age, glucose, insulin, homeostatic model assessment of insulin resistance (HOMA-IR, C-reactive protein (CRP), IL-5, and IL-1RL1 expression; while in all T2D patients, IRF5 expression correlated with that of IRF4, TLR2/8, and CD163. In conclusion, upregulated adipose tissue IRF5 expression in diabetic obese patients concurs with the inflammatory signatures and it may represent a potential marker for metabolic inflammation in obesity/T2D.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait
- Correspondence: (S.S.); (R.A.); Tel.: +965-2224-2999 (ext. 4332) (S.S.); +965-2224-2999 (ext. 4311) (R.A.); Fax: +965-2249-2406 (S.S.); +965-2249-2406 (R.A.)
| | - Shihab Kochumon
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (S.K.); (R.T.)
| | - Reeby Thomas
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (S.K.); (R.T.)
| | - Abdullah Bennakhi
- Medical division, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (S.K.); (R.T.)
- Correspondence: (S.S.); (R.A.); Tel.: +965-2224-2999 (ext. 4332) (S.S.); +965-2224-2999 (ext. 4311) (R.A.); Fax: +965-2249-2406 (S.S.); +965-2249-2406 (R.A.)
| |
Collapse
|
36
|
McCarthy MK, Reynoso GV, Winkler ES, Mack M, Diamond MS, Hickman HD, Morrison TE. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathog 2020; 16:e1008292. [PMID: 31999809 PMCID: PMC7012455 DOI: 10.1371/journal.ppat.1008292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Humoral immune responses initiate in the lymph node draining the site of viral infection (dLN). Some viruses subvert LN B cell activation; however, our knowledge of viral hindrance of B cell responses of important human pathogens is lacking. Here, we define mechanisms whereby chikungunya virus (CHIKV), a mosquito-transmitted RNA virus that causes outbreaks of acute and chronic arthritis in humans, hinders dLN antiviral B cell responses. Infection of WT mice with pathogenic, but not acutely cleared CHIKV, induced MyD88-dependent recruitment of monocytes and neutrophils to the dLN. Blocking this influx improved lymphocyte accumulation, dLN organization, and CHIKV-specific B cell responses. Both inducible nitric oxide synthase (iNOS) and the phagocyte NADPH oxidase (Nox2) contributed to impaired dLN organization and function. Infiltrating monocytes expressed iNOS through a local IRF5- and IFNAR1-dependent pathway that was partially TLR7-dependent. Together, our data suggest that pathogenic CHIKV triggers the influx and activation of monocytes and neutrophils in the dLN that impairs virus-specific B cell responses. Elucidating mechanisms by which viruses subvert B cell immunity and establish persistent infection is essential for the development of new therapeutic strategies against chronic viral infections. The humoral immune response initiates in the lymph node draining the site of viral infection. However, how persistent viruses evade B cell responses is poorly understood. In this study, we find that infection with pathogenic, persistent chikungunya virus triggers rapid recruitment of neutrophils and monocytes to the draining lymph node, which impair structural organization, lymphocyte accumulation, and downstream virus-specific B cell responses that are important for control of infection. This work enhances our understanding of the pathogenesis of acute and chronic CHIKV disease and highlights how local innate immune responses in draining lymphoid tissue dictate the effectiveness of downstream adaptive immunity.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Emma S. Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bo M, Erre GL, Bach H, Slavin YN, Manchia PA, Passiu G, Sechi LA. PtpA and PknG Proteins Secreted by Mycobacterium avium subsp. paratuberculosis are Recognized by Sera from Patients with Rheumatoid Arthritis: A Case-Control Study. J Inflamm Res 2019; 12:301-308. [PMID: 31819587 PMCID: PMC6899068 DOI: 10.2147/jir.s220960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Rheumatoid arthritis (RA) can result from complex interactions between the affected person’s genetic background and environment. Viral and bacterial infections may play a pathogenetic role in RA through different mechanisms of action. We aimed to evaluate the presence of antibodies (Abs) directed against two proteins of Mycobacterium avium subsp. paratuberculosis (MAP) in sera of RA subjects, which are crucial for the survival of the pathogen within macrophages. Moreover, we analyzed the correlation of immune response to both proteins with the following homologous peptides: BOLF1305–320, MAP_402718–32 and IRF5424–434 to understand how the synergic role of Epstein–Barr virus (EBV) and MAP infection in genetically predisposed subjects may lead to a possible deregulation of interferon regulatory factor 5 (IRF5). Materials and methods The presence of Abs against protein tyrosine phosphatase A (PtpA) and protein kinase G (PknG) in sera from Sardinian RA patients (n=84) and healthy volunteers (HCs, n=79) was tested by indirect ELISA. Results RA sera showed a remarkably high frequency of reactivity against PtpA in comparison to HCs (48.8% vs 7.6%; p<0.001) and lower but statistically significant responses towards PknG (27.4% vs 10.1%; p=0.0054). We found a significant linear correlation between the number of swollen joints and the concentrations of antibodies against PtpA (p=0.018). Furthermore, a significant bivariate correlation between PtpA and MAP MAP_402718–32 peptide has been found, suggesting that MAP infection may induce a secondary immune response through cross-reaction with IRF5 (R2=0.5). Conclusion PtpA and PknG are strongly recognized in RA which supports the hypothesis that MAP infection may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yael N Slavin
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | | | - Giuseppe Passiu
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
38
|
Increased Adipose Tissue Expression of Interferon Regulatory Factor (IRF)-5 in Obesity: Association with Metabolic Inflammation. Cells 2019; 8:cells8111418. [PMID: 31718015 PMCID: PMC6912676 DOI: 10.3390/cells8111418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Interferon regulatory factor (IRF)-5 is known to be involved in M1 macrophage polarization, however, changes in the adipose expression of IRF5 in obesity and their relationship with the local expression of proinflammatory cytokines/chemokines are unknown. Therefore, IRF5 gene expression was determined in the subcutaneous adipose tissue samples from 53 non-diabetic individuals (6 lean, 18 overweight, and 29 obese), using real-time RT-PCR. IRF5 protein expression was also assessed using immunohistochemistry and/or confocal microscopy. Adipose gene expression of signature immune metabolic markers was also determined and compared with adipose IRF5 gene expression. Systemic levels of C-reactive protein and adiponectin were measured by ELISA. The data show that adipose IRF5 gene (P = 0.008) and protein (P = 0.004) expression was upregulated in obese compared with lean individuals. IRF5 expression changes correlated positively with body mass index (BMI; r = 0.37/P = 0.008) and body fat percentage (r = 0.51/P = 0.0004). In obese, IRF5 changes associated positively with HbA1c (r = 0.41/P = 0.02). A good agreement was found between gene and protein expression of IRF5 in obese subjects (r = 0.65/P = 0.001). IRF5 gene expression associated positively with adipose inflammatory signatures including local expression of TNF-α, IL-6, CXCL8, CCL-2/5, IL-1β, IL-18, CXCL-9/10, CCL7, CCR-1/2/5, TLR-2/7/8/9, IRF3, MyD88, IRAK-1, and inflammatory macrophage markers (P < 0.05). Interestingly, IRF5 gene expression correlated positively with CRP (r = 0.37, P = 0.03) and negatively with adiponectin levels (r = −0.43, P = 0.009). In conclusion, elevated adipose IRF5 expression in obesity concurs with the typical inflammatory signatures, locally and systemically. Hence, the IRF5 upregulation may represent a novel adipose tissue marker for metabolic inflammation.
Collapse
|
39
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
40
|
Paoletti A, Rohmer J, Ly B, Pascaud J, Rivière E, Seror R, Le Goff B, Nocturne G, Mariette X. Monocyte/Macrophage Abnormalities Specific to Rheumatoid Arthritis Are Linked to miR-155 and Are Differentially Modulated by Different TNF Inhibitors. THE JOURNAL OF IMMUNOLOGY 2019; 203:1766-1775. [PMID: 31484730 DOI: 10.4049/jimmunol.1900386] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
Proinflammatory macrophages and miR-155 are increased in patients with rheumatoid arthritis (RA). We studied membrane TNF (mTNF) expression on blood monocytes, polarization into macrophages, miR-155 expression, and the effect of anti-TNF on these biomarkers in RA patients. Sixty-seven RA patients and 109 controls (55 healthy, 54 with spondyloarthritis and connective tissue diseases) were studied. Monocytes were isolated and differentiated into macrophages with or without anti-TNF. mTNF expression was increased on monocytes from RA patients, but not from other inflammatory diseases, correlated with disease activity. Under human serum AB or M-CSF, only monocytes from RA had a defect of differentiation into M2-like macrophages and had a propensity for preferential maturation toward M1-like macrophages that contributed to synovial inflammation. This defect was correlated to mTNF expression and was partially reversed by monoclonal anti-TNF Abs but not by the TNF soluble receptor. miR-155 was increased in M2-macrophages except in adalimumab-treated patients. Transfection of healthy monocytes with miR-155 induced a decrease in M2-like markers, and transfection of RA monocytes with antagomir-155 allowed restoration of M2-like polarization. Defect in differentiation of monocytes into M2-like-macrophages linked to increased miR-155 and correlated with increased mTNF on monocytes could play a key role in RA pathogenesis. Monoclonal anti-TNF Abs but not the TNF soluble receptor partially restored this defect.
Collapse
Affiliation(s)
- Audrey Paoletti
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France;
| | - Julien Rohmer
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Bineta Ly
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Juliette Pascaud
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Elodie Rivière
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Raphaele Seror
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France.,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| | - Benoit Le Goff
- Rheumatology Department, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, Pays de la Loire, France
| | - Gaetane Nocturne
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France.,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| | - Xavier Mariette
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France; .,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| |
Collapse
|
41
|
Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 2019; 10:3974. [PMID: 31481662 PMCID: PMC6722139 DOI: 10.1038/s41467-019-11911-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) usually express an M2 phenotype, which enables them to perform immunosuppressive and tumor-promoting functions. Reprogramming these TAMs toward an M1 phenotype could thwart their pro-cancer activities and unleash anti-tumor immunity, but efforts to accomplish this are nonspecific and elicit systemic inflammation. Here we describe a targeted nanocarrier that can deliver in vitro-transcribed mRNA encoding M1-polarizing transcription factors to reprogram TAMs without causing systemic toxicity. We demonstrate in models of ovarian cancer, melanoma, and glioblastoma that infusions of nanoparticles formulated with mRNAs encoding interferon regulatory factor 5 in combination with its activating kinase IKKβ reverse the immunosuppressive, tumor-supporting state of TAMs and reprogram them to a phenotype that induces anti-tumor immunity and promotes tumor regression. We further establish that these nanoreagents are safe for repeated dosing. Implemented in the clinic, this immunotherapy could enable physicians to obviate suppressive tumors while avoiding systemic treatments that disrupt immune homeostasis.
Collapse
|
42
|
A promising role of interferon regulatory factor 5 as an early warning biomarker for the development of human non-small cell lung cancer. Lung Cancer 2019; 135:47-55. [PMID: 31447002 DOI: 10.1016/j.lungcan.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) accounts for 85%-90% of lung cancer cases and is a covert disease lacking early symptoms. Since cancer is recognised as an inflammation-associated condition, we analysed the relationship between the expression of interferon regulatory factor 5 (IRF5), a key transcription factor controlling inflammatory responses, and NSCLC development with the aim of identifying a warning biomarker for early diagnosis of the disease. MATERIALS AND METHODS The expression of IRF5 and its associated inflammatory factors IL-6, IL-10, IP-10, and TNF-α in the peripheral blood of NSCLC patients (n = 66) and healthy controls (n = 42) was analysed by quantitative RT-PCR, flow cytometry, and a cytometric bead array. IRF5 protein expression in NSCLC tissues (n = 102) was detected by Western blotting. The diagnostic value of IRF5 expression was determined by a receiver-operating characteristic (ROC) curve analysis. RESULTS The protein levels of IRF5, IL-6, and IP-10 were significantly higher in the peripheral blood of NSCLC patients than in that of healthy controls. IP-10 levels in plasma and IL-10 mRNA expression in white blood cells (WBCs) were significantly upregulated in early-stage NSCLC, whereas plasma IL-6 and IL-10 were elevated in the progressive stage. IRF5 protein levels in WBCs were positively correlated with plasma IP-10 but negatively correlated with plasma IL-10. Furthermore, the mRNA and protein levels of IRF5 in WBCs were significantly elevated in patients with early stage NSCLC compared to those in the progressive stage. Additionally, IRF5 protein levels were significantly lower in NSCLC tumour tissues than those in normal lung tissues. CONCLUSIONS IRF5 levels in WBCs can be significantly upregulated in early stage NSCLC and were shown to have diagnostic value as an early warning biomarker of NSCLC development.
Collapse
|
43
|
Wei J, Tang D, Lu C, Yang J, Lu Y, Wang Y, Jia L, Wang J, Ru W, Lu Y, Cai Z, Shu Q. Irf5 deficiency in myeloid cells prevents necrotizing enterocolitis by inhibiting M1 macrophage polarization. Mucosal Immunol 2019; 12:888-896. [PMID: 31086271 PMCID: PMC7746522 DOI: 10.1038/s41385-019-0169-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening inflammatory disease in newborns, but the mechanisms remain unclear. Interferon regulatory factor 5 (IRF5) is a master regulator of macrophage function and is essential for proinflammatory M1 macrophage polarization. Our previous data indicated that M1 macrophages promote NEC injury. Here, we investigated whether IRF5 is involved in the pathogenesis of NEC. First, we found that IRF5 was upregulated in infiltrated macrophages in human neonates with NEC compared to controls. We further confirmed IRF5 upregulation in macrophages in experimental murine NEC and that the infiltrated macrophages were predominantly polarized into the M1 but not the M2 phenotype. Myeloid-specific deficiency of Irf5, which was associated with reduced M1 macrophage polarization and systematic inflammation, dramatically prevented experimental NEC. Moreover, we found that the ablation of Irf5 in myeloid cells markedly suppressed intestinal epithelial cell apoptosis and further prevented intestinal barrier dysfunction in experimental NEC. Bioinformatic and chromatin immunoprecipitation analysis further showed that IRF5 binds to the promoters of the M1 macrophage-associated genes Ccl4, Ccl5, Tnf, and Il12b. Overall, our study provides evidence that IRF5 participates in the pathogenesis of NEC, while the deletion of Irf5 in myeloid cells prevents NEC via inhibiting M1 macrophage polarization.
Collapse
Affiliation(s)
- Jia Wei
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daxing Tang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Lu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Center for Translational Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yulei Lu
- Center for Translational Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Jia
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfang Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ru
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
44
|
Kang SA, Park MK, Park SK, Choi JH, Lee DI, Song SM, Yu HS. Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models. Sci Rep 2019; 9:6547. [PMID: 31024043 PMCID: PMC6484028 DOI: 10.1038/s41598-019-43057-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Trichinella spiralis is a zoonotic nematode and food borne parasite and infection with T. spiralis leads to suppression of the host immune response and other immunopathologies. Alternative activated macrophages (M2) as well as Treg cells, a target for immunomodulation by the helminth parasite, play a critical role in initiating and modulating the host immune response to parasite. The precise mechanism by which helminths modulate host immune response is not fully understood. To determine the functions of parasite-induced M2 macrophages, we compared the effects of M1 and M2 macrophages obtained from Trichinella spiralis-infected mice with those of T. spiralis excretory/secretory (ES) protein-treated macrophages on experimental intestinal inflammation and allergic airway inflammation. T. spiralis infection induced M2 macrophage polarization by increasing the expression of CD206, ARG1, and Fizz2. In a single application, we introduced macrophages obtained from T. spiralis-infected mice and T. spiralis ES protein-treated macrophages into mice tail veins before the induction of dextran sulfate sodium (DSS)-induced colitis, ovalbumin (OVA)-alum sensitization, and OVA challenge. Colitis severity was assessed by determining the severity of colitis symptoms, colon length, histopathologic parameters, and Th1-related inflammatory cytokine levels. Compared with the DSS-colitis group, T. spiralis-infected mice and T. spiralis ES protein-treated macrophages showed significantly lower disease activity index (DAI) at sacrifice and smaller reductions of body weight and proinflammatory cytokine level. The severity of allergic airway inflammation was assessed by determining the severity of symptoms of inflammation, airway hyperresponsiveness (AHR), differential cell counts, histopathologic parameters, and levels of Th2-related inflammatory cytokines. Severe allergic airway inflammation was induced after OVA-alum sensitization and OVA challenge, which significantly increased Th2-related cytokine levels, eosinophil infiltration, and goblet cell hyperplasia in the lung. However, these severe allergic symptoms were significantly decreased in T. spiralis-infected mice and T. spiralis ES protein-treated macrophages. Helminth infection and helminth ES proteins induce M2 macrophages. Adoptive transfer of macrophages obtained from helminth-infected mice and helminth ES protein-activated macrophages is an effective treatment for preventing and treating airway allergy in mice and is promising as a therapeutic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Sang Kyun Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Jun Ho Choi
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Da In Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - So Myong Song
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
45
|
Gu Z, Liu T, Tang J, Yang Y, Song H, Tuong ZK, Fu J, Yu C. Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. J Am Chem Soc 2019; 141:6122-6126. [PMID: 30933483 DOI: 10.1021/jacs.8b10904] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerging anticancer applications via polarizing tumor-associated macrophages from tumor-promoting phenotype (M2) to tumor-suppressing phenotype (M1). However, the underlying mechanism and structure-function relationship remain unclear. We report magnetite IONPs are more effective compared to hematite in M1 polarization and tumor suppression. Moreover, magnetite IONPs specifically rely on interferon regulatory factor 5 signaling pathway for M1 polarization and down-regulate M2-assoicated arginase-1. This study provides new understandings and paves the way for designing advanced iron-based anticancer technologies.
Collapse
Affiliation(s)
- Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , 300 Herston Road , Brisbane , QLD 4006 , Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute , Translational Research Institute, Woolloongabba , QLD 4102 , Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia.,School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| |
Collapse
|
46
|
Abstract
The Interferon regulatory factors (IRFs) are a family of transcription factors that play pivotal roles in many aspects of the immune response, including immune cell development and differentiation and regulating responses to pathogens. Three family members, IRF3, IRF5, and IRF7, are critical to production of type I interferons downstream of pathogen recognition receptors that detect viral RNA and DNA. A fourth family member, IRF9, regulates interferon-driven gene expression. In addition, IRF4, IRF8, and IRF5 regulate myeloid cell development and phenotype, thus playing important roles in regulating inflammatory responses. Thus, understanding how their levels and activity is regulated is of critical importance given that perturbations in either can result in dysregulated immune responses and potential autoimmune disease. This review will focus the role of IRF family members in regulating type I IFN production and responses and myeloid cell development or differentiation, with particular emphasis on how regulation of their levels and activity by ubiquitination and microRNAs may impact autoimmune disease.
Collapse
Affiliation(s)
- Caroline A Jefferies
- Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
47
|
Human macrophages survive and adopt activated genotypes in living zebrafish. Sci Rep 2019; 9:1759. [PMID: 30741975 PMCID: PMC6370805 DOI: 10.1038/s41598-018-38186-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammatory response, modulated both by tissue resident macrophages and recruited monocytes from peripheral blood, plays a critical role in human diseases such as cancer and neurodegenerative disorders. Here, we sought a model to interrogate human immune behavior in vivo. We determined that primary human monocytes and macrophages survive in zebrafish for up to two weeks. Flow cytometry revealed that human monocytes cultured at the physiological temperature of the zebrafish survive and differentiate comparable to cohorts cultured at human physiological temperature. Moreover, key genes that encode for proteins that play a role in tissue remodeling were also expressed. Human cells migrated within multiple tissues at speeds comparable to zebrafish macrophages. Analysis of gene expression of in vivo educated human macrophages confirmed expression of activated macrophage phenotypes. Here, human cells adopted phenotypes relevant to cancer progression, suggesting that we can define the real time immune modulation of human tumor cells during the establishment of a metastatic lesion in zebrafish.
Collapse
|
48
|
The influence of maternal obesity on macrophage subsets in the human decidua. Cell Immunol 2019; 336:75-82. [DOI: 10.1016/j.cellimm.2019.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023]
|
49
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|
50
|
Liu X, Durkes AC, Schrock W, Zheng W, Sivasankar MP. Subacute acrolein exposure to rat larynx in vivo. Laryngoscope 2018; 129:E313-E317. [PMID: 30582162 DOI: 10.1002/lary.27687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS Inhaled pollutants can contact vocal fold tissue and induce detrimental voice changes. Acrolein is a pollutant in cigarette smoke and can also be inhaled during the combustion of fossil fuels, animal fats, and plastics in the environment. However, the vocal fold pathological changes induced by acrolein and the underlying inflammatory pathways are not well understood. These biologic data are needed to understand why voice problems may result from pollutant exposure. STUDY DESIGN In vivo prospective design with experimental and control groups. METHODS Sprague-Dawley male rats (N = 36) were exposed to acrolein (3 ppm) or filtered air (control) through a whole-body exposure system for 5 hours/day, for 5 days/week, over 4 weeks. Histopathological changes, presence of edema, expression of proinflammatory cytokines and markers, and the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were investigated. RESULTS Histological evaluation and quantification demonstrated that subacute acrolein exposure induced significant vocal fold edema. Acrolein exposure also induced epithelial sloughing and cell death. Quantitative polymerase chain reaction showed a significant upregulation of genes encoding interferon regulatory factor and chitinase-3-like protein 3. Western blot revealed a 76.8% increase in phosphorylation of NF-κB P65 after subacute acrolein exposure. CONCLUSIONS These findings suggest that 4-week exposures to 3 ppm acrolein induce vocal fold inflammation manifested as edema, related to the activation of NF-κB signaling. The edema may underlie the voice changes reported in speakers exposed to pollutants. LEVEL OF EVIDENCE NA Laryngoscope, 129:E313-E317, 2019.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Health Sciences, Purdue University, West Lafayette, Indiana, U.S.A.,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, U.S.A
| | - William Schrock
- School of Health Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| |
Collapse
|