1
|
Santos-Neves PS, Bezerra-Silva A, Gomes MTD, A C A F, M I U O, Voeks RA, E M CN, Funch LS. Biocultural heritage of the Caatinga: a systematic review of Myrtaceae and its multiple uses. Biol Rev Camb Philos Soc 2024; 99:1791-1805. [PMID: 38700131 DOI: 10.1111/brv.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
The Caatinga, an exclusively Brazilian biome, stands as a reservoir of remarkable biodiversity. Its significance transcends ecological dimensions, given the direct reliance of the local population on its resources for sustenance and healthcare. While Myrtaceae, a pivotal botanical family within the Brazilian flora, has been extensively explored for its medicinal and nutritional attributes, scant attention has been directed towards its contextual relevance within the Caatinga's local communities. Consequently, this inaugural systematic review addresses the ethnobotanical roles of Myrtaceae within the Caatinga, meticulously anchored in the PRISMA 2020 guidelines. We searched Scopus, MEDLINE/Pubmed, Scielo, and LILIACS. No date-range filter was applied. An initial pool of 203 articles was carefully scrutinized, ultimately yielding 31 pertinent ethnobotanical studies elucidating the utility of Myrtaceae amongst the Caatinga's indigenous populations. Collectively, they revealed seven distinct utilization categories spanning ~54 species and 11 genera. Psidium and Eugenia were the genera with the most applications. The most cited categories of use were food (27 species) and medicinal (22 species). The importance of accurate species identification was highlighted, as many studies did not provide enough information for reliable identification. Additionally, the potential contribution of Myrtaceae fruits to food security and human health was explored. The diversity of uses demonstrates how this family is a valuable resource for local communities, providing sources of food, medicine, energy, and construction materials. This systematic review also highlights the need for more ethnobotanical studies to understand fully the relevance of Myrtaceae species in the Caatinga, promoting biodiversity conservation, as well as support for local populations.
Collapse
Affiliation(s)
- P S Santos-Neves
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Alexsandro Bezerra-Silva
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Maria Thereza Dantas Gomes
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Fagundes A C A
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Oliveira M I U
- Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Av. Marcelo Deda Chagas, s/n, Rosa Elze, São Cristóvão, Sergipe, 49107-230, Brazil
| | - Robert A Voeks
- Department of Geography & the Environment, California State University, Fullerton 800 N. State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Costa Neto E M
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Ligia Silveira Funch
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| |
Collapse
|
2
|
Kar P, Oriola AO, Oyedeji AO. Toward Understanding the Anticancer Activity of the Phytocompounds from Eugenia uniflora Using Molecular Docking, in silico Toxicity and Dynamics Studies. Adv Appl Bioinform Chem 2024; 17:71-82. [PMID: 39318425 PMCID: PMC11421442 DOI: 10.2147/aabc.s473928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Background The Surinam cherry, Eugenia uniflora belongs to the family Myrtaceae, an edible fruit-bearing medicinal plant with various biological properties. Several anticancer studies have been conducted on its essential oils while the non-essential oil compounds including phenolics, flavonoids, and carotenoids have not been fully investigated. Purpose Therefore, the study evaluated the in silico anticancer potentials of phenolic, flavonoid, and carotenoid compounds of E. uniflora against the MDM2 and Bcl-xL proteins, which are known to promote cancer cell growth and malignancy. The physicochemical parameters, validation, cytotoxicity, and mutagenicity of the polyphenols were determined using the SwissADME, pkCSM, ProTox-II, and vNN-ADMET online servers respectively. Lastly, the promising phytocompounds were validated using molecular dynamics (MD) simulation. Results An extensive literature search resulted in the compilation of forty-four (44) polyphenols from E. uniflora. Top-rank among the screened polyphenols is galloylastragalin, which exhibited a binding energy score of -8.7 and -8.5 kcal/mol with the hydrophobic interactions (Ala93, Val141) and (Leu54, Val93, Ile99), as well as hydrogen bond interactions (Tyr195) and (Gln72) of the proteins Bcl-xL and MDM2 respectively. A complete in silico toxicity assessment revealed that the compounds, galloylastragalin, followed by myricetin, resveratrol, p-Coumaroylquinic acid, and cyanidin-3-O-glucoside, were potentially non-mutagenic, non-carcinogenic, non-cytotoxic, and non-hepatotoxic. During the 120 ns MD simulations, the RMSF analysis of galloylastragalin- MDM2 (complex 1) and galloylastragalin- Bcl-xL (complex 2) showed the fewest fluctuations, indicating the conformational stability of the respective complexes. Conclusion This study has shown that polyphenol compounds of E. uniflora led by galloylastragalin, are potent inhibitors of the MDM2 and Bcl-xL cancer proteins. Thus, they may be considered as candidate polyphenols for further anticancer studies.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Ayodeji O Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Adebola O Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| |
Collapse
|
3
|
Mirahmad A, Hafez Ghoran S, Alipour P, Taktaz F, Hassan S, Naderian M, Moradalipour A, Faizi M, Kobarfard F, Ayatollahi SA. Oliveria decumbens Vent. (Apiaceae): Biological screening and chemical compositions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117053. [PMID: 37595813 DOI: 10.1016/j.jep.2023.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oliveria decumbens Vent. (Apiaceae), a single aromatic species in Iran, is traditionally used for healing inflammation, gastrointestinal disorders, and infections. AIM OF THE STUDY Regarding the importance of O. decumbens in traditional medicine, we aimed to set out the plant's biological screening and analyze the chemical components of the active fractions. MATERIALS AND METHODS Air-dried O. decumbens aerial parts were macerated by ethanol:water (70:30). Using a liquid-liquid extraction (LLE) technique, n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and water were successively used to fractionate the crude extract into different portions. Various biological activities were performed on the crude extract, fractions, and some experiments on pure compounds. The bioassays were as follows: antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi (using microplate alamar blue assay; MABA), antifungal activity against Aspergillus niger, A. fumigatus, Candida albicans, C. glabarate, Fusarium lini, Microspurum canis, and Trichophyton rubrum (using agar tube dilution method), antileishmanial activity against Leishmania major and L. tropica using a 96-well serial dilution protocol, anti-inflammatory activity using the respiratory burst assay, cytotoxicity against HeLa (cervical cancer) and BJ (normal fibroblast) cells using MTT assay, insecticidal activity against Tribolium castaneum, Sitophilus oryzae, and Rhyzopertha dominica (using the contact toxicity method), larvicidal activity against Aedes aegypti, anti-DPPH• activity, and cytotoxicity against brine shrimp (Artemia salina) in a lethality assay. Eventually, the phytochemicals from the active fractions were studied by gas chromatography coupled with mass spectrometry (GC-MS). RESULTS Interestingly, the DCM fraction was the most active, followed by the n-hexane fraction in the biological assays, including antibacterial (>80% inhibition), leishmanicidal (IC50 (L.major) = 29.4 μg/mL, and IC50 (L.tropica) = 30.0 μg/mL), anti-inflammatory (IC50 = 15.8 μg/mL), insecticidal (>80% inhibition), and larvicidal (100% inhibition of A. aegypti) assays. Further GC-MS analysis of the DCM and n-hexane fractions resulted in the characterization of 12 and 14 phytoconstituents, respectively, compared with the NIST library. Thymol and carvacrol were abundant in both fractions. To lesser quantities, the presence of monoterpenoids (p-cymen-8-ol, thymoquinone, 3-hydroxy-β-damascone, and 3-hydroxy-7,8-dihydro-β-ionol), phenylpropanoids (methoxyeugenol, elemicin, and 4-[(1E)-3-hydroxy-1-propenyl]-2-methoxyphanol, simple phenolics (salicylic acid and 4-methoxy-2,3,6-trimethyl-phenol), and a coumarin (6,7-dimethoxy-coumarin) were detected in the DCM fraction. On the other hand, besides a coumarin and monoterpenoids, the fatty acids (tetradecanoid acid, n-hexadecanoic acid, and linolenic acid) and a sesquiterpene (spathulenol) were observed in the n-hexane fraction. The EtOAc fraction scavenged the DPPH• radicals better than other fractions (IC50 = 41.4 μg/mL), while in brine shrimp lethality assay, the crude extract was more active than n-hexane and DCM fractions with LD50 = 385.20, 660.28, and 699.74 μg/mL, respectively. Surprisingly, the crude extract and fractions were ineffective against assayed fungal strains and tested cancer and non-cancer cell lines. CONCLUSIONS Our findings showed that O. decumbens deserves to be a multi-bioactive medicinal plant, besides its ability for cereal protection against pests. To understand the principal mechanism of action, in silico, in vitro, and in vivo experiments may clarify the ambiguities and even figure out the synergistic behavior of the minor secondary metabolites.
Collapse
Affiliation(s)
- Arezoo Mirahmad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran.
| | - Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Pouya Alipour
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran.
| | - Fatemeh Taktaz
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran; Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Sohail Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Moslem Naderian
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Asma Moradalipour
- Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 16666-63111, Tehran, Iran.
| |
Collapse
|
4
|
Mohamadi N, Sharifi I, Afgar A, Sharififar F, Sharifi F. Antileishmanial Effects of Bunium Persicum Crude Extract, Essential Oil, and Cuminaldehyde on Leishmania Major: In Silico and In Vitro Properties. Acta Parasitol 2023; 68:103-113. [PMID: 36434380 DOI: 10.1007/s11686-022-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Cuminaldehyde (CA), an oxidized aldehyde monoterpene, is a major essential oil component in cumin seeds, which has shown different promising medical effects. In this study, we comprehensively evaluated the antileishmanial potential of Bunium persicum (Boiss) B. Fedtsch (Apiaceae) and one of its main essential oil constituents, CA, focus on the mechanisms of action. METHODS We used a molecular docking approach to examine the capability of CA for binding to IL-12P40 and TNF-α. The colorimetric assay was performed to assess the effect of B. persicum crude extract, essential oil, and CA, against Leishmania major promastigotes and intracellular amastigotes. The expression of IFN-γ, IL-12P40, TNF-α, and IL-10 genes was detected using quantitative real-time polymerase chain reaction qPCR. RESULTS Docking analyses in the current study indicated CA binds to IL-12P40 and TNF-α. These products were safe, extremely antileishmanial, and significantly promoted Th1-related cytokines (IFN-γ, IL-12P40, TNF-α), while downregulating the Th2 phenotype (IL-10). CONCLUSION Cumin essential oil and its major component, CA, possessed powerful antileishmanial activity. The primary mechanism of activity involves an immunomodulatory role toward Th1 cytokine response. Therefore, cumin essential oil and CA deserve further explorations as promising medications for treating leishmaniasis.
Collapse
Affiliation(s)
- Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Anjos da Silva L, Santos da Silva R, Rodrigues de Oliveira M, Guimarães AC, Takeara R. Chemical composition and biological activities of essential oils from Myrtaceae species growing in Amazon: an updated review. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Laenir Anjos da Silva
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Brazil
| | - Roosalyn Santos da Silva
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Brazil
| | | | | | - Renata Takeara
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Brazil
| |
Collapse
|
6
|
Correa-Barbosa J, Sodré DF, Nascimento PHC, Dolabela MF. Activity of the genus Zanthoxylum against diseases caused by protozoa: A systematic review. Front Pharmacol 2023; 13:873208. [PMID: 36699053 PMCID: PMC9868958 DOI: 10.3389/fphar.2022.873208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/15/2022] [Indexed: 01/12/2023] Open
Abstract
Neglected diseases (NDs) are treated with a less varied range of drugs, with high cost and toxicity, which makes the search for therapeutic alternatives important. In this context, plants, such as those from the genus Zanthoxylum, can be promising due to active substances in their composition. This study evaluates the potential of species from this genus to treat NDs. Initially, a protocol was developed to carry out a systematic review approved by Prospero (CRD42020200438). The databases PubMed, BVS, Scopus, Science Direct, and Web of Science were used with the following keywords: "zanthoxylum," "xanthoxylums," "fagaras," "leishmaniasis," "chagas disease," "malaria," and "African trypanosomiasis." Two independent evaluators analyzed the title and abstract of 166 articles, and 122 were excluded due to duplicity or for not meeting the inclusion criteria. From the 44 selected articles, results of in vitro/in vivo tests were extracted. In vitro studies showed that Z. rhoifolium, through the alkaloid nitidine, was active against Plasmodium (IC50 <1 μg/ml) and Leishmania (IC50 <8 μg/ml), and selective for both (>10 and >30, respectively). For Chagas disease, the promising species (IC50 <2 μg/ml) were Z. naranjillo and Z. minutiflorum, and for sleeping sickness, the species Z. zanthoxyloides (IC50 <4 μg/ml) stood out. In the in vivo analysis, the most promising species were Z. rhoifolium and Z. chiloperone. In summary, the species Z. rhoifolium, Z. naranjillo, Z. minutiflorum, Z. zanthoxyloides, and Z. chiloperone are promising sources of active molecules for the treatment of NDs.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Maria Fâni Dolabela
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil,Faculty of Pharmacy, Federal University of Pará, Belém, Brazil,*Correspondence: Maria Fâni Dolabela,
| |
Collapse
|
7
|
Evaluation of the inhibitory effects and the mechanism of terpenoids on Toxoplasma gondii tachyzoites. Acta Trop 2023; 237:106741. [DOI: 10.1016/j.actatropica.2022.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Lopes IS, Cassas F, Veiga TAM, de Oliveira Silva FR, Courrol LC. Synthesis and Characterization of Eugenia uniflora L. Silver Nanoparticles and L-Cysteine Sensor Application. Chem Biodivers 2023; 20:e202200787. [PMID: 36420909 DOI: 10.1002/cbdv.202200787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
L-Cysteine (Cys) is a non-essential sulfur-containing amino acid, crucial for protein synthesis, detoxification, and several metabolic functions. Cys is widely used in the agricultural, food, cosmetic, and pharmaceutical industries. So, a suitable sensitive and selective sensing approach is of great interest, and a low-cost sensor would be necessary. This article presents silver nanoparticles (EuAgNPs) synthesized by a green synthesis method using Eugenia uniflora L. extracts and photoreduction. The nanoparticles were characterized by UV/VIS, transmission electron microscopy, high-performance liquid chromatography (HPLC), FTIR, and Zeta potential. With the addition of Cys in the EuAgNPs solution, the terminal thiol part of L-cysteine binds on the surface of nanoparticles through Ag-S bond. The EuAgNPs and CysAgNPs coexist until flavonoids bound the amino group of Cys, enhancing the red color of solutions. The EuAgNPs provided selectivity to detect Cys among other amino acids, and its detection limit was found to be 3.8 nM. The sensor has the advantages of low-cost synthesis, fast response, high selectivity, and sensitivity.
Collapse
Affiliation(s)
- Isabela Santos Lopes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Fernando Cassas
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Thiago André Moura Veiga
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
9
|
Franzolin MR, Courrol DDS, de Souza Barreto S, Courrol LC. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms 2022; 10:microorganisms10050999. [PMID: 35630442 PMCID: PMC9147378 DOI: 10.3390/microorganisms10050999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eugenia uniflora linnaeus, known as Brazilian cherry, is widely distributed in Brazil, Argentina, Uruguay, and Paraguay. E. uniflora L. extracts contain phenolic compounds, such as flavonoids, tannins, triterpenes, and sesquiterpenes. The antimicrobial action of essential oils has been attributed to their compositions of bioactive compounds, such as sesquiterpenes. In this paper, the fruit extract of E. uniflora was used to synthesize silver and gold nanoparticles. The nanoparticles were characterized by UV–Vis, transmission electron microscopy, elemental analysis, FTIR, and Zeta potential measurement. The silver and gold nanoparticles prepared with fruit extracts presented sizes of ~32 nm and 11 nm (diameter), respectively, and Zeta potentials of −22 mV and −14 mV. The antimicrobial tests were performed with Gram-negative and Gram-positive bacteria and Candida albicans. The growth inhibition of EuAgNPs prepared with and without photoreduction showed the important functional groups in the antimicrobial activity.
Collapse
Affiliation(s)
- Marcia Regina Franzolin
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Daniella dos Santos Courrol
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Susana de Souza Barreto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Lilia Coronato Courrol
- Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
- Correspondence:
| |
Collapse
|
10
|
Fidelis EM, Savall ASP, de Oliveira Pereira F, Quines CB, Ávila DS, Pinton S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
12
|
Nunes TADL, Costa LH, De Sousa JMS, De Souza VMR, Rodrigues RRL, Val MDCA, Pereira ACTDC, Ferreira GP, Da Silva MV, Da Costa JMAR, Véras LMC, Diniz RC, Rodrigues KADF. Eugenia piauhiensis Vellaff. essential oil and γ-elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation. Chem Biol Interact 2021; 339:109429. [PMID: 33713644 DOI: 10.1016/j.cbi.2021.109429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 02/27/2021] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is considered as one of the most Neglected Tropical Diseases (NTDs) in the world, caused by protozoan parasites of the genus Leishmania. Treatment of leishmaniasis by chemotherapy remains a challenge because of limited efficacy, toxic side effects, and drug resistance. The search for new therapeutic agents from natural sources has been a constant for the treatment of diseases such as leishmaniasis. The objective of this study was to evaluate the biological activity of Eugenia piauhiensis Vellaff. essential oil (EpEO) and its major constituent γ-elemene on promastigote and amastigote forms of Leishmania (Leishmania) amazonensis, its cytotoxicity, and possible mechanisms of action. EpEO was more active (IC50 6.43 ± 0.18 μg/mL) against promastigotes than γ-elemene [9.82 ± 0.15 μg/mL (48.05 ± 0.73 μM)] and the reference drug miltefosine [IC50 17.25 ± 0.26 μg/mL (42.32 ± 0.64 μM)]. EpEO and γ-elemene exhibited low cytotoxicity against J774.A1 macrophages, with CC50 225.8 ± 3.57 μg/mL and 213.21 ± 3.3 μg/mL (1043 ± 16.15 μM), respectively. Additionally, EpEO and γ-elemene present direct activity against the parasite, decreasing plasma membrane integrity. EpEO and γ-elemene also proved to be even more active against intracellular amastigotes of the parasite [IC50 4.59 ± 0.07 μg/mL and 8.06 ± 0.12 μg/mL (39.44 ± 0.59 μM)], respectively), presenting indirect effects through macrophage activity modulation. Anti-amastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels. In conclusion, our results suggest EpEO and γ-elemene as promising candidates for new drug development against leishmaniasis.
Collapse
Affiliation(s)
- Thaís Amanda de Lima Nunes
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Lellis Henrique Costa
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Julyanne Maria Saraiva De Sousa
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Vanessa Maria Rodrigues De Souza
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Maria da Conceição Albuquerque Val
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | | | - Gustavo Portela Ferreira
- Laboratório de Biologia de Microrganismos, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil
| | - Marcos Vinícius Da Silva
- Laboratório de Imunologia, Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, 38025-180, Uberaba, MG, Brazil
| | | | - Leiz Maria Costa Véras
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Campus Ministro Reis Velloso, Universidade Federal do Piauí, 64202-020, Parnaíba, PI, Brazil
| | - Roseane Costa Diniz
- Department of Pharmacy, Federal University of Maranhão, São Luís, 65080-805, Maranhão, Brazil
| | - Klinger Antonio da Franca Rodrigues
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020, Parnaíba, PI, Brazil.
| |
Collapse
|
13
|
de Veras BO, de Oliveira JRS, de Menezes Lima VL, do Amaral Ferraz Navarro DM, de Oliveira Farias de Aguiar JCR, de Medeiros Moura GM, da Silva JW, de Assis CRD, Gorlach-Lira K, de Assis PAC, de Souza Barbosa JI, de Melo MRCS, de Oliveira MBM, da Silva MV, de Souza Lopes AC. The essential oil of the leaves of Verbesina macrophylla (Cass.) S.F.Blake has antimicrobial, anti-inflammatory and antipyretic activities and is toxicologically safe. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113248. [PMID: 32805356 DOI: 10.1016/j.jep.2020.113248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Verbesina macrophylla (Cass.) S.F.Blake is a medicinal plant from South America, popularly known as "asa de peixe", "asa de peixe branco", "cambará branco" or "cambará guaçu", being used by traditional communities for its healing powers in the form of teas, infusions, liqueurs and extracts, for the treatment of bacterial and fungal infections of the urinary and respiratory tracts, such as kidney problems, bronchitis, inflammation and fever. However, none of the ethnopharmacological properties has been scientifically evaluated. AIM OF THE STUDY Based on the ethnopharmacological use of the species, this study investigated the chemical composition, and for the first time acute toxicity, hemolytic, antimicrobial, anti-inflammatory and antipyretic activities of the essential oil from leaves of V. macrophylla. MATERIAL AND METHODS The essential oil was obtained from the leaves by hydrodistillation (HD), being characterized by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography coupled to flame ionization detection (GC-FID). The antimicrobial activity was evaluated by the broth microdilution technique in bacteria and fungi that cause infections of the respiratory and urinary tract, and toxicological safety regarding hemolytic activity on human red blood cells (hRBCs), and acute toxicity in mice. The anti-inflammatory activity was evaluated by the model carrageenan-induced peritonitis with quantification of the levels of TNF-α and IL-1β in the intraperitoneal fluid, and ear edema induced by croton oil. The antipyretic activity evaluated in mice with pyrexia induced by yeast. RESULTS The extraction of essential oil by hydrodistillation (HD) showed a yield of 0.33 ± 0.04%, with its composition constituted mainly by sesquiterpenes of hydrocarbons (94.00%). The essential oil demonstrated antibacterial and antifungal activity, with a low rate of hemolysis in human red blood cells (hRBCs) and no clinical signs of toxicity were observed in animals after acute treatment, which suggested that the LD50 is greater than 5000 mg/kg; p.o. The essential oil demonstrated anti-inflammatory activity reducing levels of pro-inflammatory cytokines TNF-α (38.83%, 72.42% and 73.52%) and IL-1β (37.70%, 75.92% and 87.71%), and ear edema by 49.53%, 85.04% and 94.39% at concentrations of 4, 40 and 400 mg/kg, respectively. The antipyretic activity presented by the essential oil is statistically similar to dipyrone. CONCLUSION The set of results obtained, validates the main activities attributed to the traditional use of Verbesina macrophylla (Cass.) S.F.Blake. These data add industrial value to the species, considering that the antimicrobial, anti-inflammatory and antipyretic activities present results similar to the drugs already used also presenting safety. The results suggest that essential oil from V. macrophylla may be used by industry for the development of drugs with natural antimicrobial, anti-inflammatory and antipyretic effect.
Collapse
Affiliation(s)
- Bruno Oliveira de Veras
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | | | - Vera Lúcia de Menezes Lima
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | | | | | - Geovanna Maria de Medeiros Moura
- Department of Biochemistry, Laboratory Chemistry and Function of Bioactive Proteins, Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil
| | - José Wellinton da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Caio Rodrigo Dias de Assis
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Krystyna Gorlach-Lira
- Department of Molecular and Cellular Biology, Laboratory of Biology Molecular of Microorganisms, Federal University of Paraiba, 58059-900, João Pessoa, Paraiba, Brazil
| | - Priscilla Anne Castro de Assis
- Department of Physiology and Pathology, Laboratory of Immunology and Cell Biology, Federal University of Paraiba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Jorge Irapuan de Souza Barbosa
- Department of Biology, Herbarium Professor Vasconcelos Sobrinho, Rural Federal University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Maria Rita Cabral Sales de Melo
- Department of Biology, Herbarium Professor Vasconcelos Sobrinho, Rural Federal University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Maria Betânia Melo de Oliveira
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina de Souza Lopes
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| |
Collapse
|
14
|
Cabral RSC, Fernandes CC, Dias ALB, Batista HRF, Magalhães LG, Pagotti MC, Miranda MLD. Essential oils from Protium heptaphyllum fresh young and adult leaves (Burseraceae): chemical composition, in vitro leishmanicidal and cytotoxic effects. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2020.1848651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | | | | | - Mariana Cintra Pagotti
- Centro De Pesquisa Em Ciências Exatas E Tecnologia, Universidade De Franca, Franca, Brazil
| | | |
Collapse
|
15
|
Mondêgo-Oliveira R, de Sá Sousa JC, Moragas-Tellis CJ, de Souza PVR, dos Santos Chagas MDS, Behrens MD, Jesús Hardoim DD, Taniwaki NN, Chometon TQ, Bertho AL, Calabrese KDS, Almeida-Souza F, Abreu-Silva AL. Vernonia brasiliana (L.) Druce induces ultrastructural changes and apoptosis-like death of Leishmania infantum promastigotes. Biomed Pharmacother 2021; 133:111025. [DOI: 10.1016/j.biopha.2020.111025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
|
16
|
Riaz A, Rasul A, Kanwal N, Hussain G, Shah MA, Sarfraz I, Ishfaq R, Batool R, Rukhsar F, Adem Ş. Germacrone: A Potent Secondary Metabolite with Therapeutic Potential in Metabolic Diseases, Cancer and Viral Infections. Curr Drug Metab 2020; 21:1079-1090. [PMID: 32723267 DOI: 10.2174/1389200221999200728144801] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nazia Kanwal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rubab Ishfaq
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Batool
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin Üniversitesi Çankırı, 18100, Turkey
| |
Collapse
|
17
|
Essentials Oils from Brazilian Eugenia and Syzygium Species and Their Biological Activities. Biomolecules 2020; 10:biom10081155. [PMID: 32781744 PMCID: PMC7466042 DOI: 10.3390/biom10081155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.
Collapse
|
18
|
Santos LS, Alves Filho EG, Ribeiro PR, Zocolo GJ, Silva SM, de Lucena EM, Alves RE, de Brito ES. Chemotaxonomic evaluation of different species from the Myrtaceae family by UPLC-qToF/MS-MS coupled to supervised classification based on genus. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
The Antitumor Efficacy of β-Elemene by Changing Tumor Inflammatory Environment and Tumor Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6892961. [PMID: 32149121 PMCID: PMC7054771 DOI: 10.1155/2020/6892961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune escape. The monomeric active ingredient β-elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2 polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-κB and STAT3 to alter inflammation, tumorigenesis, and development. In addition, β-elemene regulates not only different inflammatory factors (such as TNF-α, IFN, TGF-β, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and antitumor effects of β-elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed after β-elemene.
Collapse
|
20
|
Gomes Vidal Sampaio M, Bezerra Dos Santos CR, Cortez Sombra Vandesmet L, Souza Dos Santos B, Bianca Da Silva Santos I, Correia MTDS, Lima de Berrêdo Martins A, Nascimento da Silva LC, De Alencar Menezes IR, Veja Gomez MC, Da Silva MV. Chemical composition, antioxidant and antiprotozoal activity of Eugenia gracillima Kiaersk. leaves essential oil. Nat Prod Res 2019; 35:1914-1918. [PMID: 31328548 DOI: 10.1080/14786419.2019.1644506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work evaluated the volatile composition, antioxidant and antiprotozoal activities of the essential oil obtained from leaves of Eugenia gracillima Kiaersk. (EGEO) grown in Brazilian Northeast area (Araripe, Brazil). The volatile compounds of EGEO were analyzed by GC and GC-MS and its chemical composition is mainly composed of sesquiterpene hydrocarbons (91.22%), oxygenated sesquiterpenes (7.45%) and monoterpene (1.01%). The most abundant volatile constituents of the EGEO were germacrene D (16.10%), γ-muurolene (15.60%), bicyclogermacrene (8.53%), germacrene B (7.43%), and Δ-elemene (6.06%). The oil showed weak to moderate antioxidant activity. EGEO was highly selective to Leishmania braziliensis and Leishmania infantum promastigotes with selective indexes of 73.66 and 71.41, respectively. EGEO did not inhibit Trypanosoma cruzi. These data suggest that the E. gracillima essential oil is a relevant source of lead compounds for development of anti-Leishmania drugs.
Collapse
Affiliation(s)
- Mariana Gomes Vidal Sampaio
- Biochemistry Departament, Bioscience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | | | | | - Bruno Souza Dos Santos
- Biochemistry Departament, Bioscience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | | | | | | | | | | | - Maria Celeste Veja Gomez
- Center for the Development of Scientific Investigation - CEDIC, Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Márcia Vanusa Da Silva
- Biochemistry Departament, Bioscience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
21
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
22
|
Ethnopharmacology Study of Plants from Atlantic Forest with Leishmanicidal Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8780914. [PMID: 30867670 PMCID: PMC6379840 DOI: 10.1155/2019/8780914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/18/2018] [Accepted: 12/10/2018] [Indexed: 02/04/2023]
Abstract
Leishmaniasis is an infectious disease caused by a protozoan belonging to Leishmania genus. Different clinical outcomes can be observed depending on the parasite species and patient's health condition. The outcomes can range from single cutaneous lesions to lethal visceral form. The treatment of all forms of leishmaniasis is based on pentavalent antimonials, and, in some cases, the second-line drug, amphotericin B, is used. Beside the toxicity of both classes of drugs, in some areas of the world, parasites are resistant to antimonial. These detrimental features make fundamental the discovery and characterization of new drugs or plant extracts with leishmanicidal effects. Brazil is a well-known country for its biodiversity. Additionally, the common knowledge inherited for generations in small villages makes Brazil a source of new information and resources for the discovery and development of new drugs. Based on ethnopharmacology, elderlies were interviewed about plants they commonly used for skin diseases and infections. Five native plants from Atlantic forest were indicated; EtOH and n-hexane extracts were prepared with the vegetative organs of the plants and assayed against promastigote and amastigote forms of L. (L.) amazonensis. The major molecules of each extract were detected using qualitative nuclear magnetic resonance. Among all tested extracts, the n-hexane extract from the leave of Eugenia uniflora (Myrtaceae), enriched in myricitrin and quercitrin flavonoids, was the most effective against L. (L.) amazonensis amastigotes. This data supports the ethnopharmacology approach as a successful tool for the discovery of new drugs with leishmanicidal effects.
Collapse
|
23
|
Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules 2018; 23:molecules23102418. [PMID: 30241381 PMCID: PMC6222389 DOI: 10.3390/molecules23102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the influence of the extract of Eugenia uniflora in adhesion to human buccal epithelial cells (HBEC) biofilm formation and cell surface hydrophobicity (CSH) of Candida spp. isolated from the oral cavity of kidney transplant patients. To evaluate virulence attributes in vitro, nine yeasts were grown in the presence and absence of 1000 μg/mL of the extract. Adhesion was quantified using the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilm formation was evaluated using two methodologies: XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and crystal violet assay, and further analyzed by electronic scan microscopy. CSH was quantified with the microbial adhesion to hydrocarbons test. We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC and CSH for both Candida albicans and non-Candida albicansCandida species. We also observed a statistically significant reduced ability to form biofilms in biofilm-producing strains using both methods of quantification. However, two highly biofilm-producing strains of Candida tropicalis had a very large reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp. and may be possibly applied in the future as a novel antifungal agent.
Collapse
|
24
|
Simões RR, Kraus SI, Coelho IS, Dal-Secco D, Siebert DA, Micke GA, Alberton MD, Santos ARS. Eugenia brasiliensis leaves extract attenuates visceral and somatic inflammatory pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:178-186. [PMID: 29462700 DOI: 10.1016/j.jep.2018.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia brasiliensis Lam. (Myrtaceae) is a Brazilian tree distributed throughout Atlantic rain forest, since Bahia until Santa Catarina state, and is popularly known as "grumixaba, grumixameira, cumbixaba, ibaporoiti, and cereja-brasileira". The bark and leaves of Eugenia brasiliensis are used in folk medicine as adstringent, diuretic, energizing, anti-rheumatic and anti-inflammatory. This study aimed at investigating the chemical composition, antinociceptive and anti-inflammatory effect of the hydroalcoholic extract of Eugenia brasiliensis (HEEb). MATERIAL AND METHODS Chemical composition of the HEEb was determined by High Performance Liquid Chromatography/ESI-Mass Spectrometry (HPLC-ESI-MS/MS). The antinociceptive and anti-inflammatory effects of HEEb (30-300 mg/kg) was verified in mice after oral administration by intra-gastric gavage (i.g.) 60 min prior to experimentation. It was investigated whether HEEb decreases visceral pain and leukocyte migration induced by an intraperitoneal (i.p.) injection of acetic acid (0.6%). We also evaluated whether HEEb decreases nociceptive behavior induced by formalin (including paw edema and temperature), prostaglandin E2 (PGE2), histamine, and compound 48/80. Finally, we evaluated the effect of HEEb in the chronic inflammatory (mechanical and thermal hypersensitivity) pain induced by complete Freund's adjuvant (CFA), as well as quantifying the concentration of the pro-inflammatory cytokines TNF-α and IL-6 in the paw by ELISA method. RESULTS Seven polyphenols were identified in HEEb by HPLC-ESI-MS/MS analysis. HEEb treatment alleviated nocifensive behavior and leukocyte migration caused by acetic acid. Moreover, HEEb also reduced the inflammatory pain and paw temperature induced by formalin, as well as it decreased nociceptive behavior induced by histamine and compound 48/80. Finally, acute and repeated treatment of animals with HEEb (100 mg/kg, i.g.) markedly reduced the mechanical and thermal (heat) hypersensitivity, besides decrease paw edema and temperature induced by CFA, and this effect was evident until the day 7. Moreover, repeated treatment with HEEb (100 mg/kg, i.g.) significantly reduced the levels of IL-6 and TNF-α in the paw when compared to the CFA group. CONCLUSIONS This is the first report showing that HEEb presents antinociceptive and anti-inflammatory effects in the visceral and somatic inflammatory pain in mice, possibly involving the inhibition of histamine receptors and pro-inflammatory cytokines activated pathways. Our results are of interest because they support the use of Eugenia brasiliensis as a potential source of phytomedicine for inflammatory diseases and pain.
Collapse
Affiliation(s)
- Róli R Simões
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil; Faculdade Avantis, Balneário Camboriú, SC, Brazil.
| | - Scheila I Kraus
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Igor S Coelho
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Daniela Dal-Secco
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Diogo A Siebert
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - Gustavo A Micke
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michele D Alberton
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - Adair R S Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
25
|
Mesquita LSSD, Luz TRSA, Mesquita JWCD, Coutinho DF, Amaral FMMD, Ribeiro MNDS, Malik S. Exploring the anticancer properties of essential oils from family Lamiaceae. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1467443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | - Denise Fernandes Coutinho
- Department of Pharmacy, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Sonia Malik
- Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
26
|
Rodrigues de Santana F, de Paula Coelho C, Cardoso TN, Perez Hurtado EC, Roberti Benites N, Dalastra Laurenti M, Villano Bonamin L. Modulation of inflammation response to murine cutaneous Leishmaniasis by homeopathic medicines: Antimonium crudum 30cH. HOMEOPATHY 2018; 103:264-74. [DOI: 10.1016/j.homp.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 07/25/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Background: Leishmaniasis is a zoonotic disease caused by protozoan parasites of the mononuclear phagocytic system. The modulation activity of these cells can interfere in the host/parasite relationship and influences the prognosis.Methods: We evaluated the effects of the homeopathic preparation Antimonium crudum 30cH on experimental infection induced by Leishmania (L.) amazonensis. Male Balb/c mice were inoculated with 2 × 106 Leishmania (L.) amazonensis promastigotes into the footpad and, after 48 h (acute phase) or 60 days (chronic phase), cell population of lymphocytes and phagocytes present in the peritoneal washing fluid and spleen were analyzed by flow cytometry and histopathology, with histometry of the subcutaneous primary lesion, local lymph node and spleen. Immunohistochemistry was performed to quantify CD3 (T lymphocyte), CD45RA (B lymphocyte) and CD11b (phagocytes) positive cells.Results: In treated mice, during the acute phase, there was significant increase of the macroscopic lesion, associated to inflammatory edema, as well increase in the number of free amastigotes and B lymphocytes inside the lesion. Increase of B lymphocytes (predominantly B-2 cells) was also seen in the local lymph node, spleen and peritoneum. In the chronic phase, the inflammatory process in the infection focus was reduced, with reduced phagocyte migration and peritoneal increase of B-1a cells (precursors of B-2 immunoglobulin producers cells) and T CD8+ cells.Conclusion: The treatment of mice with Antimonium crudum 30cH induced a predominantly B cell pattern of immune response in Leishmania (L.) amazonensis experimental infection, alongside the increase of free amastigote forms number in the infection site. The clinical significance of this study is discussed, further studies are suggested.
Collapse
Affiliation(s)
- Fabiana Rodrigues de Santana
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
| | - Cidéli de Paula Coelho
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
| | - Thayná Neves Cardoso
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
| | - Elizabeth Cristina Perez Hurtado
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Immunology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Leoni Villano Bonamin
- Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
- Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
| |
Collapse
|
27
|
Sarges FN, Cascaes MM, Moraes LS, Guilhon GMSP, Silva EO, Zoghbi MDGB, Andrade EHA, Rodrigues APD, Costa BF, Figueiredo RNM. Chemical characterisation of the constituents of Eugenia protenta McVaugh and leishmanicidal activity of dimethylxanthoxylin. Nat Prod Res 2017; 33:879-883. [PMID: 29212369 DOI: 10.1080/14786419.2017.1410804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemical study of Eugenia protenta McVaugh extracts performed by classical and high-performance liquid chromatography techniques and spectral methods has led to the identification of known triterpenoids, flavonoids and an acetophenone derivative (dimethylxanthoxylin). The effect of dimethylxanthoxylin on Leishmania (Leishmania) amazonensis was evaluated against the promastigotes forms after 96 h of treatment. Dimethylxanthoxylin reduced 57 and 59% of the promastigotes growth when treated with 50 and 100 μg/mL solutions, respectively (IC50 117.35 μg/mL or 52.3 μM). Cytotoxicity experiments using MTT assays showed that this substance did not promote cell death after 24 h of treatment. Dimethylxanthoxylin was active on the promastigotes and could be a promising agent for treating leishmaniasis.
Collapse
Affiliation(s)
- Flávio N Sarges
- a Programa de Pós-Graduação em Química , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , Belém , Brazil
| | - Márcia M Cascaes
- a Programa de Pós-Graduação em Química , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , Belém , Brazil.,b Programa de Capacitação Institucional , Museu Paraense Emílio Goeldi, Coordenação de Botânica , Belém , Brazil
| | - Lienne S Moraes
- c Laboratório de Protozoologia e Biologia Estrutural , Universidade Federal do Pará , Belém , Brazil.,d Instituto de Ciência e Tecnologia em Biologia Estrutural e Bioimagem , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Giselle M S P Guilhon
- a Programa de Pós-Graduação em Química , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , Belém , Brazil
| | - Edilene O Silva
- c Laboratório de Protozoologia e Biologia Estrutural , Universidade Federal do Pará , Belém , Brazil.,d Instituto de Ciência e Tecnologia em Biologia Estrutural e Bioimagem , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Eloisa H A Andrade
- a Programa de Pós-Graduação em Química , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , Belém , Brazil.,e Museu Paraense Emílio Goeldi , Belém , Brazil
| | - Ana Paula D Rodrigues
- d Instituto de Ciência e Tecnologia em Biologia Estrutural e Bioimagem , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil.,f Laboratório de Microscopia Eletrônica , Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde , Belém , Brazil
| | - Brenda F Costa
- f Laboratório de Microscopia Eletrônica , Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde , Belém , Brazil
| | - Rayssa N M Figueiredo
- f Laboratório de Microscopia Eletrônica , Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde , Belém , Brazil
| |
Collapse
|
28
|
LC–MS characterization, anti-kinetoplastide and cytotoxic activities of natural products from Eugenia jambolana Lam. and Eugenia uniflora. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Platonia insignis Mart., a Brazilian Amazonian Plant: The Stem Barks Extract and Its Main Constituent Lupeol Exert Antileishmanial Effects Involving Macrophages Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3126458. [PMID: 28852412 PMCID: PMC5567447 DOI: 10.1155/2017/3126458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/14/2017] [Accepted: 07/10/2017] [Indexed: 12/04/2022]
Abstract
Platonia insignis Mart., popularly known as “bacurizeiro,” is used in traditional medical practices based on its diverse biological properties. This study was aimed at evaluating the antileishmanial effects of the ethanol extract (EtOH-Ext), hexane fraction (Hex-F), and its main isolated Lupeol obtained from stem barks of P. insignis against Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. The EtOH-Ext, Hex-F, and Lupeol inhibited the growth of L. amazonensis promastigote forms at IC50 of 174.24, 45.23, and 39.06 µg/mL, respectively, as well as L. amazonensis axenic amastigote forms at IC50 of 40.58, 35.87, and 44.10 µg/mL, respectively. The mean cytotoxic concentrations for macrophages (CC50) were higher than those for amastigotes (341.95, 71.65, and 144.0 µg/mL, resp.), indicating a selective cytotoxicity towards the parasite rather than the macrophages. Interestingly, all treatments promoted antileishmanial effect against macrophage-internalized amastigotes at concentrations lower than CC50. Furthermore, increases of lysosomal volume of macrophages treated with EtOH-Ext, Hex-F, and Lupeol were observed. On the other hand, only Lupeol stimulated increase of phagocytic capability of macrophages, suggesting this compound might be characterized as the biomarker for the antileishmanial effect of P. insignis stem bark, as well as the involvement of immunomodulatory mechanisms in this effect.
Collapse
|
30
|
Murakami C, Cordeiro I, Scotti MT, Moreno PRH, Young MCM. Chemical Composition, Antifungal and Antioxidant Activities of Hedyosmum brasiliense Mart. ex Miq. (Chloranthaceae) Essential Oils. MEDICINES 2017; 4:medicines4030055. [PMID: 28930269 PMCID: PMC5622390 DOI: 10.3390/medicines4030055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
Abstract
Background: Hedyosmum brasiliense Mart. ex Miq. (Chloranthaceae) is a dioecious shrub popularly used in Brazil to treat foot fungi and rheumatism. This work investigated the chemical composition, antifungal, and antioxidant activities of flowers and leaves of H. brasiliense essential oils; Methods: H. brasiliense male and female flowers and leaves were collected at Ilha do Cardoso (São Paulo) and the essential oils were extracted by hydrodistillation and analyzed by GC/MS and their similarity compared by Principal Component Analysis. Antifungal activity was performed by bioautography and antioxidant potential by 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) free radical scavenging and β-carotene/linoleic acid system; Results: The major compounds for all oils were sabinene, curzerene, and carotol, but some differences in their chemical composition were discriminated by Principal Component Analysis (PCA) analysis. Bioautography showed two antifungal bands at Rf's 0.67 and 0.12 in all samples, the first one was identified as curzerene. The oils presented stronger antioxidant potential in β-carotene/linoleic acid bioassay, with IC50's from 80 to 180 μg/mL, than in DPPH assay, with IC50's from 2516.18 to 3783.49 μg/mL; Conclusions: These results suggested that curzerene might be responsible for the antifungal activity of H. brasiliense essential oils. Besides, these essential oils exhibited potential to prevent lipoperoxidation, but they have a weak radical scavenger activity.
Collapse
Affiliation(s)
- Cynthia Murakami
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica de São Paulo, São Paulo 04301-902, Brazil.
- Instituto de Botânica de São Paulo, São Paulo 04301-902, Brazil.
| | - Inês Cordeiro
- Instituto de Botânica de São Paulo, São Paulo 04301-902, Brazil.
| | - Marcus Tullius Scotti
- Laboratório de Quimioinformática, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil.
| | | | | |
Collapse
|
31
|
de Carvalho NR, Rodrigues NR, Macedo GE, Bristot IJ, Boligon AA, de Campos MM, Cunha FAB, Coutinho HD, Klamt F, Merritt TJS, Posser T, Franco JL. Eugenia uniflora leaf essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol Res (Camb) 2017; 6:526-534. [PMID: 30090521 PMCID: PMC6060740 DOI: 10.1039/c7tx00072c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023] Open
Abstract
Eugenia uniflora L. (Myrtaceae family) has demonstrated several properties of human interest, including insecticide potential, due to its pro-oxidant properties. These properties likely result from the effects on its mitochondria, but the mechanism of this action is unclear. The aim of this work was to evaluate the mitochondrial bioenergetics function in Drosophila melanogaster exposed to E. uniflora leaf essential oil. For this, we used a high-resolution respirometry (HRR) protocol. We found that E. uniflora promoted a collapse of the mitochondrial transmembrane potential (ΔΨm). In addition the essential oil was able to promote the disruption of respiration coupled to oxidative phosphorylation (OXPHOS) and inhibit the respiratory electron transfer system (ETS) established with an uncoupler. In addition, exposure led to decreases of respiratory control ratio (RCR), bioenergetics capacity and OXPHOS coupling efficiency, and induced changes in the substrate control ratio. Altogether, our results suggested that E. uniflora impairs the mitochondrial function/viability and promotes the uncoupling of OXPHOS, which appears to play an important role in the cellular bioenergetics failure induced by essential oil in D. melanogaster.
Collapse
Affiliation(s)
- Nélson R de Carvalho
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Nathane R Rodrigues
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Giulianna E Macedo
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Ivi J Bristot
- Departamento de Bioquímica , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS CEP 90035-003 , Brasil
| | - Aline A Boligon
- Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Marli M de Campos
- Departmento de Análises Clínicas e Toxicológicas , Universidade Federal de Santa Maria , RS , Brasil
| | - Francisco A B Cunha
- Department of Chemistry & Biochemistry , Laurentian University , Sudbury , ON , Canada P3E 2C6
| | - Henrique D Coutinho
- Department of Chemistry & Biochemistry , Laurentian University , Sudbury , ON , Canada P3E 2C6
| | - Fabio Klamt
- Departamento de Bioquímica , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS CEP 90035-003 , Brasil
| | - Thomas J S Merritt
- Departamento de Ciências Biológicas da Universidade Regional do Cariri - URCA , Crato , CE , Brasil
| | - Thaís Posser
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Jeferson L Franco
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| |
Collapse
|
32
|
Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Arch Pharmacol 2017. [DOI: 10.1007/s00210-017-1387-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Oliveira M, João Rodrigues M, Pereira C, Neto RLDM, Junior PAS, Neng NDR, Nogueira JMF, Varela J, Barreira L, Custódio L. First report of the in vitro antileishmanial properties of extremophile plants from the Algarve Coast. Nat Prod Res 2017; 32:600-604. [DOI: 10.1080/14786419.2017.1326489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marta Oliveira
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Maria João Rodrigues
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Catarina Pereira
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | | | - Nuno da Rosa Neng
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - João Varela
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Luísa Barreira
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Luísa Custódio
- Faculty of Sciences and Technology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
34
|
Araromi DO, Alade AO, Bello MO, Bakare T, Akinwande BA, Jameel AT, Adegbola SA. Optimization of oil extraction from Pitanga (Eugenia uniflora L.) leaves using simplex centroid design. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1287199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dauda O. Araromi
- Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Science and Engineering Research Group, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abass O. Alade
- Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Science and Engineering Research Group, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Muibat O. Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Taofiq Bakare
- University Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bolanle A. Akinwande
- Department of Food Science and Engineering, Ladoke Akintola University of Technology Ogbomoso, Nigeria
| | - Ahmed T. Jameel
- Department of Biotechnology Engineering, International Islamic University, Malaysia, Kuala Lumpur, Malaysia
| | - Samuel A. Adegbola
- Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
35
|
Nascimento AM, Maria-Ferreira D, de Souza EFJ, de Souza LM, Sassaki GL, Iacomini M, de P. Werner MF, Cipriani TR. Gastroprotective effect and chemical characterization of a polysaccharide fraction from leaves of Croton cajucara. Int J Biol Macromol 2017; 95:153-159. [DOI: 10.1016/j.ijbiomac.2016.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022]
|
36
|
Mesquita PR, Nunes EC, Santos FND, Bastos LP, Costa MA, de M. Rodrigues F, de Andrade JB. Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchem J 2017. [DOI: 10.1016/j.microc.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Ramos RTM, Bezerra ICF, Ferreira MRA, Soares LAL. Spectrophotometric Quantification of Flavonoids in Herbal Material, Crude Extract, and Fractions from Leaves of Eugenia uniflora Linn. Pharmacognosy Res 2017; 9:253-260. [PMID: 28827966 PMCID: PMC5541481 DOI: 10.4103/pr.pr_143_16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The traditional use of Eugenia uniflora L. ("Pitanga") is reported due to several properties, which have often been related to its flavonoid content. OBJECTIVE The aim was to evaluate analytical procedures for quantification of total flavonoids content (TFCs) by ultraviolet-visible (UV-Vis) spectrophotometry in the herbal material (HM), crude extract (CE), and fractions from leaves of E. uniflora. MATERIALS AND METHODS The method for quantification of flavonoids after complexation with aluminum chloride (AlCl3) was evaluated: amount of sample (0.25-1.5 g); solvent (40%-80% ethanol); reaction time and AlCl3 concentration (2.5%-7.5%). The procedures by direct dilution (DD) and after acid hydrolysis (AH) were used and validated for HM and CE and applied to the aqueous fraction (AqF), hexane fraction, and ethyl acetate fractions (EAF). RESULTS The ideal conditions of analysis were ethanol 80% as solvent; 0.5 g of sample; λmax of 408 (DD) and 425 nm (AH); 25 min after addition of AlCl3 5%. The procedures validated for standards and samples showed linearity (R2 > 0.99) with limit of detection and limit of quantification between 0.01 and 0.17 mg/mL (rutin and quercetin); and 0.03 and 0.09 mg/mL (quercetin), for DD and AH, respectively. The procedures were accurate (detect, practice, and repair < 5% and recovery >90%), and stable under robustness conditions (luminosity, storage, reagents, and equipment). The TFCs in AqF and EAF were 0.65 g% and 17.72 g%, calculated as rutin. CONCLUSIONS UV-Vis methods for quantification of TFC in HM, CE, and fractions from leaves of E. uniflora were suitably validated. Regarding the analysis of fractions, the EAF achieved enrichment of about nine times in the content of flavonoids. SUMMARY The total flavonoids content (TFCs) of herbal material, crude extract, and fractions from Eugenia uniflora can be quantified by ultraviolet-visibleThe spectrophotometric methods (direct dilution and acid hydrolysis) were reproducible and able to quantify TFC in raw material and derivatives from leaves of E. unifloraHigher flavonoids content was observed in ethyl acetate fractions after enrichment. Abbreviations Used: HM: Herbal material, CE: Crude extract, AqF: Aqueous fraction, HF: Hexanic fraction, EAF: Ethyl acetate fraction, TFC: Total flavonoids content, HCl: Hydrochloric acid, DD: Direct dilution, AH: After hydrolysis, RSD: Relative standard, A.U.: Absorption units.
Collapse
Affiliation(s)
- Rhayanne T M Ramos
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, UFPE, Recife, Pernambuco, Brazil
| | - Isabelle C F Bezerra
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, UFPE, Recife, Pernambuco, Brazil.,PPGIT, Centre of Biosciences, UFPE, Recife, Pernambuco, Brazil
| | - Magda R A Ferreira
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, UFPE, Recife, Pernambuco, Brazil.,PPGIT, Centre of Biosciences, UFPE, Recife, Pernambuco, Brazil
| | - Luiz Alberto Lira Soares
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, UFPE, Recife, Pernambuco, Brazil.,PPGIT, Centre of Biosciences, UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
38
|
Arcanjo DDR, Mafud AC, Vasconcelos AG, da Silva-Filho JC, Amaral MPM, Brito LM, Bemquerer MP, Kückelhaus SAS, Plácido A, Delerue-Matos C, Vale N, Mascarenhas YP, Carvalho FAA, Oliveira AP, Leite JRSA. In Silico, In Vitro and In Vivo Toxicological Assessment of BPP-BrachyNH2, A Vasoactive Proline-Rich Oligopeptide from Brachycephalus ephippium. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9564-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Sobeh M, Braun MS, Krstin S, Youssef FS, Ashour ML, Wink M. Chemical Profiling of the Essential Oils of Syzygium aqueum, Syzygium samarangense and Eugenia uniflora and Their Discrimination Using Chemometric Analysis. Chem Biodivers 2016; 13:1537-1550. [PMID: 27447784 DOI: 10.1002/cbdv.201600089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
The essential oil compositions of the leaves of three related Myrtaceae species, namely Syzygium aqueum, Syzygium samarangense and Eugenia uniflora, were investigated using GLC/MS and GLC/FID. Altogether, 125 compounds were identified: α-Selinene (13.85%), β-caryophyllene (12.72%) and β-selinene constitute the most abundant constituents in S. aqueum. Germacrene D (21.62%) represents the major compound in S. samarangense whereas in E. uniflora, spathulenol (15.80%) represents the predominant component. Multivariate chemometric analyses were used to discriminate the essential oils using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the chromatographic results. The antimicrobial activity of the popularly used E. uniflora essential oil was assessed using broth microdilution method against six Gram-positive, three Gram-negative bacteria and two fungi. The oil showed moderate antimicrobial activity against Bacillus licheniformis exhibiting MIC and MMC of 0.63 mg/ml. The cytotoxic activity of E. uniflora essential oil was investigated against Trypanosoma brucei brucei (T. b. brucei) and MCF-7 cancer cell line using MTT assay. It showed moderate activity against MCF-7 cells with an IC50 value of 76.40 μg/ml. On the other hand, T. brucei was highly susceptible to E. uniflora essential oil with IC50 of 11.20 μg/ml, and a selectivity index of 6.82.
Collapse
Affiliation(s)
- Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, DE-69120, Heidelberg, Germany
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, DE-69120, Heidelberg, Germany
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, DE-69120, Heidelberg, Germany
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University Abbassia, 11566, Cairo, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University Abbassia, 11566, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, DE-69120, Heidelberg, Germany
| |
Collapse
|
40
|
Meireles DR, Fernandes HM, Rolim TL, Batista TM, Mangueira VM, Sousa TKD, Pita JC, Xavier AL, Beltrão DM, Tavares JF, Silva MS, Medeiros KK, Sobral MV. Toxicity and antitumor efficacy of Croton polyandrus oil against Ehrlich ascites carcinoma cells. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
de Castro Oliveira LG, Brito LM, de Moraes Alves MM, Amorim LV, Sobrinho-Júnior EPC, de Carvalho CES, da Franca Rodrigues KA, Arcanjo DDR, das Graças Lopes Citó AM, de Amorim Carvalho FA. In VitroEffects of the Neolignan 2,3-Dihydrobenzofuran AgainstLeishmania Amazonensis. Basic Clin Pharmacol Toxicol 2016; 120:52-58. [DOI: 10.1111/bcpt.12639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lucas Moreira Brito
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
| | | | | | | | | | | | - Daniel Dias Rufino Arcanjo
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
- Department of Biophysics and Physiology; Federal University of Piauí; Teresina PI Brazil
| | | | - Fernando Aécio de Amorim Carvalho
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
- Department of Biochemistry and Pharmacology; Federal University of Piauí; Teresina PI Brazil
| |
Collapse
|
42
|
Santos FA, Serra CG, Bezerra RJ, Figueredo FG, Edinardo, Matias F, Menezes IR, Costa JG, Coutinho HD. Antibacterial activity of Plectranthus amboinicus Lour (Lamiaceae) essential oil against Streptococcus mutans. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2015.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Sutili FJ, Gatlin DM, Rossi W, Heinzmann BM, Baldisserotto B. In vitro effects of plant essential oils on non-specific immune parameters of red drum, Sciaenops ocellatus L. J Anim Physiol Anim Nutr (Berl) 2016; 100:1113-1120. [PMID: 26898359 DOI: 10.1111/jpn.12488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Abstract
Phytochemicals such as plant essential oils (EOs) have been reported to favour various activities in the innate immune system of fish. Thus, the aim of this study was to verify the in vitro effect of three different plant EOs (Ocimum americanum, Cymbopogon flexuosus and Melaleuca alternifolia) on non-specific immune parameters and erythrocyte osmotic fragility of red drum, Sciaenops ocellatus. Concentrations of each plant EO evaluated in preparations of head-kidney macrophages, blood leucocytes and blood plasma were as follows: 0.0 (control), 1.0, 2.0, 4.0, 8.0, and 16.0 μg/ml. Red drum head-kidney macrophages significantly increased extracellular superoxide anion production when exposed (20 h) to O. americanum EO (1.0-8.0 μg/ml) and C. flexuosus EO (2.0 and 4.0 μg/ml). The respiratory burst of blood leucocytes (NBT test) significantly increased in all concentrations when compared to the respective control group, for all EOs. At the highest concentration (16.0 μg/ml), C. flexuosus EO significantly inhibited the haemolytic activity of complement system in red drum blood after 1 h exposure. None of the tested concentrations significantly altered plasma lysozyme activity or erythrocyte osmotic fragility after exposing (1 h) red drum whole blood to each EO. This study demonstrated that these plant EOs are capable of triggering superoxide anion production in red drum leucocytes (head-kidney macrophages and/or blood leucocytes). In vivo studies are warranted to address their potential as immunostimulants in the diet of red drum and other aquacultured species.
Collapse
Affiliation(s)
- F J Sutili
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - D M Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System College Station, TX, USA
| | - W Rossi
- Department of Wildlife and Fisheries Sciences, Texas A&M University System College Station, TX, USA
| | - B M Heinzmann
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
44
|
Tenfen A, Siebert DA, Yamanaka CN, Mendes de Córdova CM, Scharf DR, Simionatto EL, Alberton MD. Chemical composition and evaluation of the antimicrobial activity of the essential oil from leaves of Eugenia platysema. Nat Prod Res 2015; 30:2007-11. [PMID: 26595394 DOI: 10.1080/14786419.2015.1107056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study describes the qualitative and quantitative chemical composition and evaluates the antibacterial activity of essential oil from Eugenia platysema leaves. Analysis by GC-FID and GC-MS allowed the identification of 22 compounds. Different from the other species of the Eugenia genus, the major compound found in the essential oil was the diterpene phytol (66.05%), being this the first report of the presence of this compound in the essential oils from Eugenia genus. The sesquiterpene elixene was the second most concentrated compound in the studied essential oil (9.16%). The essential oil from E. platysema was tested for its antibacterial activity against cell-walled bacteria and mollicute strains of clinical interest using the microdilution broth assay. The results showed that the essential oil of E. platysema was inactive until 1000 μg mL(-1) against tested bacteria.
Collapse
Affiliation(s)
- Adrielli Tenfen
- a Departamento de Ciências Farmacêuticas , Universidade Regional de Blumenau , Blumenau , Brazil
| | - Diogo Alexandre Siebert
- a Departamento de Ciências Farmacêuticas , Universidade Regional de Blumenau , Blumenau , Brazil
| | - Celina Noriko Yamanaka
- a Departamento de Ciências Farmacêuticas , Universidade Regional de Blumenau , Blumenau , Brazil
| | | | - Dilamara Riva Scharf
- b Instituto de Pesquisas Tecnológicas , Universidade Regional de Blumenau , Blumenau , Brazil
| | - Edésio Luiz Simionatto
- b Instituto de Pesquisas Tecnológicas , Universidade Regional de Blumenau , Blumenau , Brazil
| | - Michele Debiasi Alberton
- a Departamento de Ciências Farmacêuticas , Universidade Regional de Blumenau , Blumenau , Brazil
| |
Collapse
|
45
|
Houël E, Gonzalez G, Bessière JM, Odonne G, Eparvier V, Deharo E, Stien D. Therapeutic switching: from antidermatophytic essential oils to new leishmanicidal products. Mem Inst Oswaldo Cruz 2015; 110:106-13. [PMID: 25742270 PMCID: PMC4371224 DOI: 10.1590/0074-02760140332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
This study examined whether the antidermatophytic activity of essential oils (EOs)
can be used as an indicator for the discovery of active natural products against
Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using
broth microdilution techniques, the obtained EOs were tested against three strains of
dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum
canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities
against axenic amastigotes of L. amazonensis were concurrently evaluated. For the
most promising EOs, their antileishmanial activities against parasites infecting
peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal
candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium
heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited
the lowest 50% inhibitory concentration (IC50) values against axenic
amastigotes, thus revealing a certain correspondence between both activities. The P.
hispidum EO was identified as the most promising product in the results from the
infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most
abundant compounds found in this EO were sesquiterpenes, notably curzerene and
furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs
appears to be an efficient method for identifying new potential drugs for the
treatment of L. amazonensis.
Collapse
Affiliation(s)
- Emeline Houël
- Centre National de la Recherche Scientifique, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - German Gonzalez
- Faculté des Sciences Pharmaceutiques, Université de Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Guillaume Odonne
- Centre National de la Recherche Scientifique-Guyane, Cayenne, French Guiana
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Eric Deharo
- Faculté des Sciences Pharmaceutiques, Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Didier Stien
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
46
|
Silva-Rocha WP, de Brito Lemos VL, Ferreira MRA, Soares LAL, Svidzisnki TIE, Milan EP, Chaves GM. Effect of the crude extract of Eugenia uniflora in morphogenesis and secretion of hydrolytic enzymes in Candida albicans from the oral cavity of kidney transplant recipients. Altern Ther Health Med 2015; 15:6. [PMID: 25651849 PMCID: PMC4324049 DOI: 10.1186/s12906-015-0522-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022]
Abstract
Background Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. Yeasts virulence factors contribute for both the maintenance of colonizing strains in addition to damage and cause tissue invasion, thus the establishment of infection occurs. The limited arsenal of antifungal drugs for the treatment of candidiasis turn the investigation of natural products mandatory for the discovery of new targets for antifungal drug development. Therefore, tropical countries emerge as important providers of natural products with potential antimicrobial activity. This study aimed to investigate morphogenesis and secretion of hydrolytic enzymes (phospholipase and proteinase) in the presence of the CE of Eugenia uniflora. Methods The isolates were tested for their ability to form hyphae in both solid and liquid media under three different conditions: YPD + 20% FBS, Spider medium and GlcNac and the ability to secrete phospholipase and proteinase in the presence of 2000 μg/mL of E. uniflora. Results The CE of E. uniflora inhibited hypha formation in both liquid and solid media tested. It also impaired hydrolytic enzymes production. Conclusions This was the first study to describe the interaction of a natural product with the full expression of three different factors in C. albicans. E. uniflora may be an alternative therapeutic for oral candidiasis in the future.
Collapse
|
47
|
Guzman F, Kulcheski FR, Turchetto-Zolet AC, Margis R. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:238-246. [PMID: 25443850 DOI: 10.1016/j.plantsci.2014.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 05/06/2023]
Abstract
Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues.
Collapse
Affiliation(s)
- Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Islamuddin M, Chouhan G, Tyagi M, Abdin MZ, Sahal D, Afrin F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front Microbiol 2014; 5:626. [PMID: 25505453 PMCID: PMC4243575 DOI: 10.3389/fmicb.2014.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml(-1) and 7.3 ± 1.85 μg ml(-1), respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0-G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml(-1). Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Maujiram Tyagi
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Malik Z Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Dinkar Sahal
- Malaria Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Farhat Afrin
- Department of Medical Laboratories Technology, Faculty of Applied Sciences, Taibah University Medina, Saudi Arabia
| |
Collapse
|
49
|
Monzote L, Piñón A, Setzer WN. Antileishmanial Potential of Tropical Rainforest Plant Extracts. MEDICINES (BASEL, SWITZERLAND) 2014; 1:32-55. [PMID: 28933376 PMCID: PMC5532977 DOI: 10.3390/medicines1010032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 05/02/2023]
Abstract
A total of 115 different plant extracts from our collection, representing 96 plant species, have been evaluated for in vitro antileishmanial activity against L. amazonensis promastigotes. In addition, the extracts were screened for cytotoxic activity against BALB/c mouse macrophages in order to assess a selectivity index. Crude extracts that showed a selectivity index (CC50 for macrophage / IC50 for promastigotes) ³ 5 or with IC50 < 12.5 μg/mL against promastigotes, a total of 28 extracts, were further screened for anti-amastigote activity. A total of 25 extracts showed promising activity against L. amazonensis promastigotes with low cytotoxic activity. Ten of these extracts showed selectivity indices, (CC50 for macrophages / IC50 for amastigotes) greater than 10 and are considered "hits", worthy candidates for further phytochemical exploration: Conostegia xalapensis methanol bark extract, Endiandra palmerstonii bark extract, Eugenia monteverdensis acetone bark extract, Eugenia sp. "fine leaf" acetone bark extract, Exothea paniculata chloroform bark extract, Mallotus paniculatus ethanol bark extract, Matelea pseudobarbata ethanol extract, Quercus insignis ethanol bark extract, Sassafras albidum dichloromethane bark extract, and Stemmadenia donnell-smithii acetone bark extract.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Abel Piñón
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
50
|
Monção NBN, Costa LM, Arcanjo DDR, Araújo BQ, Lustosa MDCG, Rodrigues KADF, Carvalho FADA, Costa APR, Lopes Citó AMDG. Chemical constituents and toxicological studies of leaves from Mimosa caesalpiniifolia Benth., a Brazilian honey plant. Pharmacogn Mag 2014; 10:S456-62. [PMID: 25298660 PMCID: PMC4189258 DOI: 10.4103/0973-1296.139773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/05/2014] [Accepted: 08/30/2014] [Indexed: 11/04/2022] Open
Abstract
Background: Mimosa caesalpiniifolia Benth. (Leguminosae) is widely found in the Brazilian Northeast region and markedly contributes to production of pollen and honey, being considered an important honey plant in this region. Objective: To investigate the chemical composition of the ethanol extract of leaves from M. caesalpiniifolia by GC-MS after derivatization (silylation), as well as to evaluate the in vitro and in vivo toxicological effects and androgenic activity in rats. Materials and Methods: The ethanol extract of leaves from Mimosa caesalpiniifolia was submitted to derivatization by silylation and analyzed by gas chromatography-mass spectrometry (GC-MS) to identification of chemical constituents. In vitro toxicological evaluation was performed by MTT assay in murine macrophages and by Artemia salina lethality assay, and the in vivo acute oral toxicity and androgenic evaluation in rats. Results: Totally, 32 components were detected: Phytol-TMS (11.66%), lactic acid-2TMS (9.16%), α-tocopherol-TMS (7.34%) and β-sitosterol-TMS (6.80%) were the major constituents. At the concentrations analyzed, the ethanol extract showed low cytotoxicity against brine shrimp (Artemia salina) and murine macrophages. In addition, the extract did not exhibit any toxicological effect or androgenic activity in rats. Conclusions: The derivatization by silylation allowed a rapid identification of chemical compounds from the M. caesalpiniifolia leaves extract. Besides, this species presents a good safety profile as observed in toxicological studies, and possess a great potential in the production of herbal medicines or as for food consumption.
Collapse
|