1
|
Khomari F, Kiani B, Alizadeh-Fanalou S, Babaei M, Kalantari-Hesari A, Alipourfard I, Mirzaei F, Yarahmadi S, Bahreini E. Effectiveness of Hydroalcoholic Seed Extract of Securigera securidaca on Pancreatic Local Renin-Angiotensin System and Its Alternative Pathway in Streptozotocin-Induced Diabetic Animal Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7285036. [PMID: 36647426 PMCID: PMC9840543 DOI: 10.1155/2023/7285036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Background Available data suggest inhibition of the pancreatic local-renin-angiotensin system (RAS) reduces tissue complications of diabetes. The purpose of the present study was to investigate the effect of hydroalcoholic seed extract of Securigera securidaca (S. securidaca) (HESS) on the pancreatic local-RAS and its alternative pathway. Methods Three doses of HESS were orally administered to three groups of diabetic male Wistar rats, and the results were compared with both diabetic and healthy control groups. After 35 days of treatment, the groups were assessed for the levels of pancreatic local-RAS components, including renin, angiotensinogen, ACE, and Ang II, as well as ACE2 and Ang-(1-7) in the alternative pathway. The effect of herbal medicine treatment on tissue damage status was investigated by evaluating tissue levels of oxidative stress, proinflammatory and anti-inflammatory cytokines, and through histopathological examination of the pancreas. Results HESS showed a dose-dependent palliative effect on the tissue oxidative stress profile (P < 0.05) as well as the levels of pancreatic local-RAS components (P < 0.05), compared to diabetic control group. Considering the interrelationship between tissue oxidative stress and local-RAS activity, the moderating effect of HESS on this relationship could be attributed to the increase in total tissue antioxidant capacity (TAC) and pancreatic Ang-(1-7) concentration. Decrease in local-RAS activity was associated with decrease in the tissue levels of inflammatory cytokines (IL1, IL6, and TNFα) (P < 0.05) and increase in the levels of anti-inflammatory cytokine of IL-10 (P < 0.05). In addition, histological results were consistent with tissue biochemical results. Conclusions Due to the reduction of local pancreatic RAS activity as well as oxidative stress and proinflammatory cytokines following treatment with HESS, S. securidaca seed can be proposed as a suitable herbal supplement in the drug-treatment of diabetes.
Collapse
Affiliation(s)
- Fatemeh Khomari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Kiani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Nephrology and Kidney Transplant center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Kalantari-Hesari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007 Katow, Poland
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Esser N, Schmidt C, Barrow BM, Cronic L, Hackney DJ, Mongovin SM, Hogan MF, Templin AT, Castillo JJ, Hull RL, Zraika S. Insulinotropic Effects of Neprilysin and/or Angiotensin Receptor Inhibition in Mice. Front Endocrinol (Lausanne) 2022; 13:888867. [PMID: 35733766 PMCID: PMC9207331 DOI: 10.3389/fendo.2022.888867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.
Collapse
Affiliation(s)
- Nathalie Esser
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
- Laboratory of Immunometabolism and Nutrition, GIGA Infection, Immunity and Inflammation, University of Liège, Liège, Belgium
| | - Christine Schmidt
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Breanne M. Barrow
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Laura Cronic
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Daryl J. Hackney
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Stephen M. Mongovin
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Meghan F. Hogan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Andrew T. Templin
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joseph J. Castillo
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Rebecca L. Hull
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sakeneh Zraika
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
4
|
He S, Wu W, Wan Y, Nandakumar KS, Cai X, Tang X, Liu S, Yao X. GLP-1 Receptor Activation Abrogates β-Cell Dysfunction by PKA Cα-Mediated Degradation of Thioredoxin Interacting Protein. Front Pharmacol 2019; 10:1230. [PMID: 31708773 PMCID: PMC6824261 DOI: 10.3389/fphar.2019.01230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) agonist (Exendin-4) is a well-known agent used to improve β-cell dysfunctions via protein kinase A (PKA), but the detailed downstream molecular mechanisms are still elusive. We have now found that PKA Cα mediated- TXNIP phosphorylation and degradation played a vital role in the β-cell protective role of exendin-4. After PKA activator (Exendin-4 or FSK) treatment, PKA Cα could directly interact with TXNIP by bimolecular fluorescence complementation and Co-IP assays in INS-1 cells. And PKA Cα overexpression decreased TXNIP level, whereas TXNIP level was largely increased in PKA Cα-KO β-cells by CRISPR-Cas9. Interestingly, TXNIP overexpression or PKA Cα-KO has impaired β-cell functions, including loss of insulin secretion and activation of inflammation. PKA Cα directly phosphorylated TXNIP at Ser307 and Ser308 positions, leading to its degradation via activation of cellular proteasome pathway. Consistent with this observation, TXNIP (S307/308A) mutant resisted the degradation effects of PKA Cα. However, exendin-4 neither affected TXNIP level in TXNIP (S307/308A) mutant overexpressed β-cells nor in PKA Cα-KO β-cells. Moreover, exendin-4 treatment reduced the inflammation gene expression in TXNIP overexpressed β-cells, but exendin-4 treatment has no effect on the inflammation gene expression in TXNIP (S307/308A) overexpressed β-cells. In conclusion, our study reveals the integral role of PKA Cα/TXNIP signaling in pancreatic β-cells and suggests that PKA Cα-mediated TXNIP degradation is vital in β-cell protective effects of exendin-4.
Collapse
Affiliation(s)
- Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuchao Cai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Shoemaker R, AlSiraj Y, Chen J, Cassis LA. Pancreatic AT1aR Deficiency Decreases Insulin Secretion in Obese C57BL/6 Mice. Am J Hypertens 2019; 32:597-604. [PMID: 30903169 DOI: 10.1093/ajh/hpz042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Previously, we demonstrated that obese mice have marked elevations in systemic concentrations of angiotensin II (AngII). Drugs that inhibit the renin-angiotensin system (RAS), including angiotensin type 1 receptor (AT1R) antagonists, have been reported to delay the onset of type 2 diabetes (T2D), suggesting improvements in insulin sensitivity or regulation of pancreatic insulin secretion. Pancreatic islets possess components of the RAS, including AT1R, but it is unclear if AngII acts at islets to regulate insulin secretion during the development of T2D. METHODS We deleted AT1aR from pancreatic islets and examined effects on insulin secretion in mice fed a low-fat (LF) or high-fat (HF) diet. In separate studies, to exacerbate the system, we infused HF-fed mice of each genotype with AngII. RESULTS Pancreatic AT1aR deficiency impaired glucose tolerance and elevated plasma glucose concentrations in HF, but not LF-fed mice. In HF-fed mice, high glucose increased insulin secretion from islets of AT1aRfl/fl, but not AT1aRpdx mice. In AngII-infused mice, following glucose challenge, plasma glucose or insulin concentrations were not significantly different between genotypes. Moreover, high glucose stimulated insulin secretion from islets of AT1aRfl/fl and AT1aRpdx mice, presumably related to weight loss, and improved insulin sensitivity in both groups of AngII-infused HF-fed mice. CONCLUSIONS Our results suggest that during the adaptive response to insulin resistance from HF feeding, AngII promotes insulin secretion from islets through an AT1aR mechanism. These results suggest the timing of initiation of AT1R blockade may be important in the progression from prediabetes to T2D with β-cell failure.
Collapse
Affiliation(s)
- Robin Shoemaker
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, Kentucky, USA
| | - Yasir AlSiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeff Chen
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Graus-Nunes F, Souza-Mello V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomed Pharmacother 2018; 109:639-645. [PMID: 30404071 DOI: 10.1016/j.biopha.2018.10.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
Local renin-angiotensin system (RAS) in the pancreas is linked to the modulation of glucose-stimulated insulin secretion (GSIS) in beta cells and insulin sensitivity in target tissues, emerging as a promising tool in the prevention and/or treatment of obesity, diabetes, and systemic arterial hypertension. Insulin resistance alters pancreatic islet cell distribution and morphology and hypertrophied islets exhibit upregulated angiotensin II type 1 receptor, which drives oxidative stress, apoptosis, and fibrosis, configuring beta cell dysfunction and diminishing islet lifespan. Pharmacological modulation of RAS has shown beneficial effects in diet-induced obesity model, mainly related to the translational potential that angiotensin receptor blockers and ECA2/ANG (1-7)/MAS receptor axis modulation have when it comes to islet preservation and type 2 diabetes prevention and/or treatment. This review describes the existing evidence for different approaches to blocking RAS elements in the management of insulin resistance and diabetes and focuses on islet remodeling and GSIS in rodents and humans.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Rodriguez R, Minas JN, Vazquez-Medina JP, Nakano D, Parkes DG, Nishiyama A, Ortiz RM. Chronic AT1 blockade improves glucose homeostasis in obese OLETF rats. J Endocrinol 2018; 237:271-284. [PMID: 29643115 PMCID: PMC5945211 DOI: 10.1530/joe-17-0678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Obesity is associated with the inappropriate activation of the renin-angiotensin system (RAS), which increases arterial pressure, impairs insulin secretion and decreases peripheral tissue insulin sensitivity. RAS blockade reverses these detriments; however, it is not clear whether the disease state of the organism and treatment duration determine the beneficial effects of RAS inhibition on insulin secretion and insulin sensitivity. Therefore, the objective of this study was to compare the benefits of acute vs chronic angiotensin receptor type 1 (AT1) blockade started after the onset of obesity, hyperglycemia and hypertension on pancreatic function and peripheral insulin resistance. We assessed adipocyte morphology, glucose intolerance, pancreatic redox balance and insulin secretion after 2 and 11 weeks of AT1 blockade in the following groups of rats: (1) untreated Long-Evans Tokushima Otsuka (lean control; n = 10), (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF; n = 12) and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day by oral gavage; n = 12). Regardless of treatment duration, AT1 blockade decreased systolic blood pressure and fasting plasma triglycerides, whereas chronic AT1 blockade decreased fasting plasma glucose, glucose intolerance and the relative abundance of large adipocytes by 22, 36 and 70%, respectively. AT1 blockade, however, did not improve pancreatic oxidative stress or reverse impaired insulin secretion. Collectively, these data show that AT1 blockade after the onset of obesity, hyperglycemia and hypertension improves peripheral tissue insulin sensitivity, but cannot completely reverse the metabolic derangement characterized by impaired insulin secretion once it has been compromised.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| | - Jacqueline N Minas
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| | | | - Daisuke Nakano
- Department of PharmacologyKagawa University Medical School, Kagawa, Japan
| | | | - Akira Nishiyama
- Department of PharmacologyKagawa University Medical School, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| |
Collapse
|
8
|
Wu L, Chen G, Liu W, Yang X, Gao J, Huang L, Guan H, Li Z, Zheng Z, Li M, Gu W, Ge L. Intramuscular injection of exogenous leptin induces adiposity, glucose intolerance and fatty liver by repressing the JAK2-STAT3/PI3K pathway in a rat model. Gen Comp Endocrinol 2017; 252:88-96. [PMID: 28242305 DOI: 10.1016/j.ygcen.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
Obesity, diabetes and fatty liver disease are extremely common in leptin-resistant patients. Dysfunction of leptin or its receptor is associated with obesity. The present study aimed to assess the effects of intramuscular injection of exogenous leptin or its receptor on fat deposition and leptin-insulin feedback regulation. Forty-five 40-day old female Sprague Dawley (SD) rats were injected thrice with leptin or its receptor intramuscularly. Adiposity and fat deposition were assessed by assessing the Lee's index, body weight, food intake, and total cholesterol, high density lipoprotein, low density lipoprotein, and triglyceride levels, as well as histological properties (liver and adipose tissue). Serum glucose, leptin, and insulin amounts were evaluated, and glucose tolerance assessed to monitor glucose metabolism in SD rats; pancreas specimens were analyzed immunohistochemically. Hypothalamic phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphatidylinositol-3-kinase (PI3K) signaling, and hepatic sterol regulatory element binding protein-1 (SREBP-1) were qualified by Western blotting. Leptin receptor immunogen reduced fat deposition, increased appetite, and lowered serum leptin levels, enhancing STAT3 signaling in hypothalamus and down-regulating hepatic SREBP-1. In contrast, SD rats administered leptin immunogen displayed significantly increased body weight and fat deposition, with up-regulated SREBP-1, indicating adiposity occurrence. SD rats administered leptin immunogen also showed glucose intolerance, β- cell reduction in the pancreas, and deregulation of JAK2-STAT3/PI3K signaling, indicating that Lep rats were at risk of diabetes. In conclusion, intramuscular injection of exogenous leptin or its receptor, a novel rat model approach, can be used in obesity pathogenesis and therapeutic studies.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China; Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guoxiong Chen
- First Department of Orthopedics, The Affiliated Nanhai Hospital of Southern Medical University, Foshan 528200, China
| | - Wen Liu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xuechao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Jie Gao
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Meiling Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Weiwang Gu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Animal Science, Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
9
|
Kimura DC, Nagaoka MR, Borges DR, Kouyoumdjian M. Angiotensin II or epinephrine hemodynamic and metabolic responses in the liver of L-NAME induced hypertension and spontaneous hypertensive rats. World J Hepatol 2017; 9:781-790. [PMID: 28660012 PMCID: PMC5474724 DOI: 10.4254/wjh.v9.i17.781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/28/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study hepatic vasoconstriction and glucose release induced by angiotensin (Ang)II or Epi in rats with pharmacological hypertension and spontaneously hypertensive rat (SHR).
METHODS Isolated liver perfusion was performed following portal vein and vena cava cannulation; AngII or epinephrine (Epi) was injected in bolus and portal pressure monitored; glucose release was measured in perfusate aliquots.
RESULTS The portal hypertensive response (PHR) and the glucose release induced by AngII of L-NAME were similar to normal rats (WIS). On the other hand, the PHR induced by Epi in L-NAME was higher whereas the glucose release was lower compared to WIS. Despite the similar glycogen content, glucose release induced by AngII was lower in SHR compared to Wistar-Kyoto rats although both PHR and glucose release induced by Epi in were similar.
CONCLUSION AngII and Epi responses are altered in different ways in these hypertension models. Our results suggest that inhibition of NO production seems to be involved in the hepatic effects induced by Epi but not by AngII; the diminished glucose release induced by AngII in SHR is not related to glycogen content.
Collapse
|
10
|
Abstract
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Collapse
Affiliation(s)
- Cesar A. Romero
- grid.413103.40000 0001 2160 8953Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, E&R 7th Floor, Room 7112, Detroit, 48202 MI USA
| | - Marcelo Orias
- Section of Nephrology, Sanatorio Allende, Hipólito Irigoyen 301, Córdoba, 5000 Argentina
| | - Matthew R. Weir
- grid.411024.20000 0001 2175 4264Division of Nephrology, University of Maryland Medical School, 22 South Greene Street, Baltimore, 21201 MD USA
| |
Collapse
|
11
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
12
|
Ji W, Chen X, Lv J, Wang M, Ren S, Yuan B, Wang B, Chen L. Liraglutide Exerts Antidiabetic Effect via PTP1B and PI3K/Akt2 Signaling Pathway in Skeletal Muscle of KKAy Mice. Int J Endocrinol 2014; 2014:312452. [PMID: 25183970 PMCID: PMC4144308 DOI: 10.1155/2014/312452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background. Liraglutide (a glucagon-like peptide 1 analog) was used for the treatment of type 2 diabetes (T2DM) which could produce glucose-dependent insulin secretion. Aim. The aim was to investigate whether liraglutide could improve myofibril and mitochondria injury in skeletal muscle and the mechanisms in diabetic KKAy mice. Method. We divided the male KKAy mice into 2 groups: liraglutide group (250 μg/kg/day liraglutide subcutaneous injection) and model group; meanwhile, the male C57BL/6J mice were considered as the control. After 6 weeks, the ultrastructure of skeletal muscle was observed by electron microscope. The gene expressions of protein tyrosine phosphatase 1B (PTP1B), phosphatidylinositol 3-kinase (PI3K), and glucose transporter type 4 (GLUT4) were determined by real-time PCR. The protein levels of the above molecules and phospho-Akt2 (p-Akt2) were measured by Western blot. Results. Liraglutide significantly ameliorated the injury of mitochondria by increasing the number (+441%) and the area (+113%) of mitochondria and mitochondrial area/100 µm(2) (+396%) in skeletal muscle of KKAy mice. The results of real-time PCR and Western blot showed that liraglutide downregulated PTP1B while it upregulated PI3K and GLUT4 (P < 0.01). The protein level of p-Akt2/Akt2 was also increased (P < 0.01). Conclusion. These results revealed that liraglutide could improve myofibril and mitochondria injury in skeletal muscle against T2DM via PTP1B and PI3K/Akt2 signaling pathway.
Collapse
Affiliation(s)
- Wenjun Ji
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinlin Chen
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Juan Lv
- Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, China
| | - Meng Wang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuting Ren
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bingxiang Yuan
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bing Wang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lina Chen
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- *Lina Chen:
| |
Collapse
|