1
|
Zhang K, Zhu J, Wang P, Chen Y, Wang Z, Ge X, Wu J, Chen L, Lu Y, Xu P, Yao J. Plasma metabolites as mediators in immune cell-pancreatic cancer risk: insights from Mendelian randomization. Front Immunol 2024; 15:1402113. [PMID: 38933268 PMCID: PMC11199692 DOI: 10.3389/fimmu.2024.1402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Immune cells play a crucial role in the development and progression of pancreatic cancer, yet the causal relationship remains uncertain due to complex immune microenvironments and conflicting research findings. Mendelian randomization (MR), this study aims to delineate the causal relationships between immune cells and pancreatic cancer while identifying intermediary factors. Methods The genome-wide association study (GWAS) data on immune cells, pancreatic cancer, and plasma metabolites are derived from public databases. In this investigation, inverse variance weighting (IVW) as the primary analytical approach to investigate the causal relationship between exposure and outcome. Furthermore, this study incorporates MR-Egger, simple mode, weighted median, and weighted mode as supplementary analytical approaches. To ensure the reliability of our findings, we further assessed horizontal pleiotropy and heterogeneity and evaluated the stability of MR results using the Leave-one-out method. In conclusion, this study employed mediation analysis to elucidate the potential mediating effects of plasma metabolites. Results Our investigation revealed a causal relationship between immune cells and pancreatic cancer, highlighting the pivotal roles of CD11c+ monocytes (odds ratio, ORIVW=1.105; 95% confidence interval, 95%CI: 1.002-1.218; P=0.045), HLA DR+ CD4+ antigen-presenting cells (ORIVW=0.920; 95%CI: 0.873-0.968; P=0.001), and HLA DR+ CD8br T cells (ORIVW=1.058; 95%CI: 1.002-1.117; P=0.041) in pancreatic cancer progression. Further mediation analysis indicated that oxalate (proportion of mediation effect in total effect: -11.6%, 95% CI: -89.7%, 66.6%) and the mannose to trans-4-hydroxyproline ratio (-19.4, 95% CI: -136%, 96.8%) partially mediate the relationship between HLA DR+ CD8br T cells and pancreatic cancer in nature. In addition, our analysis indicates that adrenate (-8.39%, 95% CI: -18.3%, 1.54%) plays a partial mediating role in the association between CD11c+ monocyte and pancreatic cancer, while cortisone (-26.6%, 95% CI: 138%, -84.8%) acts as a partial mediator between HLA DR+ CD4+ AC and pancreatic cancer. Conclusion This MR investigation provides evidence supporting the causal relationship between immune cell and pancreatic cancer, with plasma metabolites serving as mediators. Identifying immune cell phenotypes with potential causal effects on pancreatic cancer sheds light on its underlying mechanisms and suggests novel therapeutic targets.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Long Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yipin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
3
|
Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024; 14:7434. [PMID: 38548778 PMCID: PMC10978894 DOI: 10.1038/s41598-024-57300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
- Department of Pharmacology, Faculty of Medicine, Merit University, Sohâg, Egypt.
| | | | | | - Hanan H Abd-Elhafeez
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
4
|
Wang L, Zhang X, Shen J, Wei Y, Zhao T, Xiao N, Lv X, Qin D, Xu Y, Zhou Y, Xie J, Li Z, Xie Z. Models of gouty nephropathy: exploring disease mechanisms and identifying potential therapeutic targets. Front Med (Lausanne) 2024; 11:1305431. [PMID: 38487029 PMCID: PMC10937455 DOI: 10.3389/fmed.2024.1305431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Gouty nephropathy (GN) is a metabolic disease with persistently elevated blood uric acid levels. The main manifestations of GN are crystalline kidney stones, chronic interstitial nephritis, and renal fibrosis. Understanding the mechanism of the occurrence and development of GN is crucial to the development of new drugs for prevention and treatment of GN. Currently, most studies exploring the pathogenesis of GN are primarily based on animal and cell models. Numerous studies have shown that inflammation, oxidative stress, and programmed cell death mediated by uric acid and sodium urate are involved in the pathogenesis of GN. In this article, we first review the mechanisms underlying the abnormal intrinsic immune activation and programmed cell death in GN and then describe the characteristics and methods used to develop animal and cell models of GN caused by elevated uric acid and deposited sodium urate crystals. Finally, we propose potential animal models for GN caused by abnormally high uric acid levels, thereby provide a reference for further investigating the methods and mechanisms of GN and developing better prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jing Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Liu J, Huang J, Gong B, Cheng S, Liu Y, Chen Y, Feng Q, Li J, Qiu M, Yu G, Liao Y. Polydatin protects against calcium oxalate crystal-induced renal injury through the cytoplasmic/mitochondrial reactive oxygen species-NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 167:115621. [PMID: 37793278 DOI: 10.1016/j.biopha.2023.115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Oxidative stress and inflammatory responses are critical factors in calcium oxalate (CaOx) crystal-induced renal injury. Reactive oxygen species (ROS) are usually produced in the cytoplasm and mitochondria and trigger the priming and activation of the NLRP3 inflammasome, thereby regulating cytokines and inflammation. Polydatin is a plant rhizome extract with anti-inflammatory, antioxidant, and antitumor effects. However, it remains not clear whether and how these pathophysiological processes exists in CaOx crystal-induced renal inflammatory injury. METHODS Here, we measured the expression of the NLRP3 inflammasome, IL-18, IL-1β, intracellular and mitochondrial ROS (mtROS) levels and relevant morphological changes in treated renal tubular epithelial cells (TECs) and stone-forming rats. The study further explored the action of intracellular ROS and mtROS on these inflammatory damage, and the beneficial effects and pathway of polydatin. RESULTS We verified that CaOx crystal-induced cytoplasmic ROS and mtROS upregulation promoted the priming and activation of the NLRP3 inflammasome, thereby stimulating IL-18/1β maturation and activation. Polydatin can relieve oxidative stress and inflammatory damage by decreasing ROS. We further demonstrated that mtROS is the main target for polydatin to exert the NLRP3 inflammasome-regulating function. The inhibition of mtROS can effectively relieve the inflammatory damage to TECs and kidney caused by CaOx crystal. CONCLUSION These findings provide new insight into the relationship between mitochondrial damage and inflammation in nephrolithiasis and show that polydatin-mediated anti-inflammatory and antioxidative protection is a therapeutic strategy for, but not limited to, crystalline nephropathy.
Collapse
Affiliation(s)
- Jiannan Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianlin Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Gong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Songtao Cheng
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yadong Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Urology, Ningbo First Hospital, Zhejiang 315000, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, The First Affiliated Hospital of Shanxi Medical University, Shanxi 030001, China
| | - Qiang Feng
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Li
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gui Yu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yong Liao
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Hong SY, Qin BL. The Protective Role of Dietary Polyphenols in Urolithiasis: Insights into Antioxidant Effects and Mechanisms of Action. Nutrients 2023; 15:3753. [PMID: 37686790 PMCID: PMC10490426 DOI: 10.3390/nu15173753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing prevalence and high recurrence rates around the world. Numerous studies have indicated reactive oxygen species (ROS) and oxidative stress (OS) were crucial pathogenic factors in stone formation. Dietary polyphenols are a large group of natural antioxidant compounds widely distributed in plant-based foods and beverages. Their diverse health benefits have attracted growing scientific attention in recent decades. Many literatures have reported the effectiveness of dietary polyphenols against stone formation. The antiurolithiatic mechanisms of polyphenols have been explained by their antioxidant potential to scavenge free radicals and ROS, modulate the expression and the activity of endogenous antioxidant and prooxidant enzymes, regulate signaling pathways associated with OS, and maintain cell morphology and function. In this review, we first describe OS and its pathogenic effects in urolithiasis and summarize the classification and sources of dietary polyphenols. Then, we focus on the current evidence defining their antioxidant potential against stone formation and put forward challenges and future perspectives of dietary polyphenols. To conclude, dietary polyphenols offer potential applications in the treatment and prevention of urolithiasis.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
8
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Huang L, Shi Y, Hu J, Ding J, Guo Z, Yu B. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease. Urolithiasis 2022; 51:13. [PMID: 36484839 DOI: 10.1007/s00240-022-01384-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. The molecular mechanism of kidney stone formation is complex and remains to be illustrated. Transcript factors (TFs) that influenced the expression pattern of multiple genes, as well as microRNAs, important posttranscriptional modulators, play vital roles in this disease progression. Datasets of nephrolithiasis mice and kidney stone patients were acquired from Gene Expression Omnibus repository. TFs were predicted from differentially expressed genes by RcisTarget. The target genes of differential-expressed microRNAs were predicted by miRWalk. MicroRNA-mRNA network and PPI network were constructed. Functional enrichment analysis was performed via Metascape and Cytoscape identified hub genes. The assay of quantitative real-time PCR (q-PCR) and immunochemistry and the datasets of oxalate diet-induced nephrolithiasis mice kidneys and kidney stone patients' samples were utilized to validate the bioinformatic results. We identified three potential key TFs (Egr1, Rxra, Max), which can be modulated by miR-181a-5p, miR-7b-3p and miR-22-3p, respectively. The TFs and their regulated hub genes influenced the progression of nephrolithiasis via altering the expression of genes enriched in the functions of fibrosis, cell proliferation and molecular transportation and metabolism. The expression changes of transcription factors were consistent in q-PCR and immunochemistry results. For regulated hub genes, they showed consistent expression changes in oxalate diet-induced nephrolithiasis mice model and human kidneys with stones. The identified and verified three TFs, which may be modulated by microRNAs in nephrolithiasis disease progression, mainly influence biological processes responding to fibrosis, proliferation and molecular transportation and metabolism. The transcript influence showed consistency in multiple nephrolithiasis mice models and kidney stone patients.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yuxuan Shi
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Junjie Hu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
10
|
Probiotic Oxalate-Degrading Bacteria: New Insight of Environmental Variables and Expression of the oxc and frc Genes on Oxalate Degradation Activity. Foods 2022; 11:foods11182876. [PMID: 36141002 PMCID: PMC9498451 DOI: 10.3390/foods11182876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Oxalate, a compound produced by many edible plants and as a terminal metabolite in the liver of mammals, is a toxin that has a detrimental role to human health. Humans and other mammals do possess enzymatic systems to degrade oxalate. Moreover, numerous oxalate-degrading bacteria reside in the mammalian gut and, thus, provide an important function for hosts. The current review focuses on the environmental factors that influence the efficacy of probiotic oxalate-degrading bacteria, relative to oxalate metabolism. We describe the mechanism of oxalate catabolism and its consumption by obligate and facultative anaerobic oxalate-degrading bacteria, in both in vitro and in vivo environments. We also explore the environmental variables that impact oxalate degradation. Studies on single species degrade oxalate have not shown a strong impact on oxalate metabolism, especially in high oxalate conditions such as consumption of foods high in oxalate (such as coffee and chocolate for humans or halogeton in animal feed). Considering effective variables which enhance oxalate degradation could be used in application of effective probiotic as a therapeutic tool in individuals with hyperoxaluria. This study indicates probiotics can be considered a good source of naturally occurring oxalate degrading agent in human colon.
Collapse
|
11
|
Lee JA, Lee SH, Shin MR, Park HJ, Roh SS. Gardeniae Fructus Extract Alleviates Dexamethasone-Induced Muscle Atrophy in Mice. J Med Food 2022; 25:882-891. [PMID: 36084316 DOI: 10.1089/jmf.2022.k.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle atrophy (MA) is a case in which protein degeneration occurs excessively due to an imbalance between protein synthesis and breakdown, and is characterized by decreased muscle mass and weakened muscle strength. Despite mounting concern about MA, the number of patients with MA is increasing every year. The aim of the present study was to assess the impact of Gardeniae Fructus (GF) hot water extract on dexamethasone (DEX)-induced MA in mice. C57BL/6N mice were grouped (n = 8) as follows: Normal mice (Normal), MA mice were treated with distilled water (Control), MA mice were treated with GF 100 mg/kg (GF100), MA mice were treated with GF 200 mg/kg (GF200). For 10 days, DEX (25 mg/kg body weight, i.p.) injection was used to induce MA, and GF was administered. GF treatment restored the muscle weight decreased due to MA, and in particular, the weights of EDL+TA and Sol were significantly increased in the GF200 group. Also, it was confirmed that the swimming time was improved in the GF200 group. In addition, the expression of NADPH oxidase related to oxidative stress was significantly reduced, and protective (insulin-like growth factor I/phosphoinositide 3-kinase/protein kinase B pathway) and catabolic (AMP-activated kinase [AMPK]/sirtuin 1 [SIRT1]/proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-forkhead box O (FOXO) pathway) pathways were significantly modulated. These results demonstrate that GF regulates muscle protein synthesis and catabolic pathways, and in particular, it is judged to improve MA by regulating the proteolytic AMPK/SIRT1/PGC-1α-FOXO pathway.
Collapse
Affiliation(s)
- Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Se Hui Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, Gyeongsan, Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| |
Collapse
|
12
|
Zeng Z, Xu S, Wang F, Peng X, Zhang W, Zhan Y, Ding Y, Liu Z, Liang L. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps. Oncogene 2022; 41:3719-3731. [PMID: 35739335 PMCID: PMC9287177 DOI: 10.1038/s41388-022-02248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Metabolic reprogramming has been shown to be involved in cancer-induced pre-metastatic niche (PMN) formation, but the underlying mechanisms have been insufficiently explored. Here, we showed that hydroxyacid oxidase 1 (HAO1), a rate-limiting enzyme of oxalate synthesis, was upregulated in the alveolar epithelial cells of mice bearing metastatic breast cancer cells at the pre-metastatic stage, leading to oxalate accumulation in lung tissue. Lung oxalate accumulation induced neutrophil extracellular trap (NET) formation by activating NADPH oxidase, which facilitated the formation of pre-metastatic niche. In addition, lung oxalate accumulation promoted the proliferation of metastatic cancer cells by activating the MAPK signaling pathway. Pharmacologic inhibition of HAO1 could effectively suppress the lung oxalate accumulation induced by primary cancer, consequently dampening lung metastasis of breast cancer. Breast cancer cells induced HAO1 expression and oxalate accumulation in alveolar epithelial cells by activating TLR3-IRF3 signaling. Collectively, these findings underscore the role of HAO1-mediated oxalate metabolism in cancer-induced lung PMN formation and metastasis. HAO1 could be an appealing therapeutic target for preventing lung metastasis of cancer.
Collapse
Affiliation(s)
- Zhicheng Zeng
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), foshan, Guangdong, PR China.,Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Shaowan Xu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Xin Peng
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Wanning Zhang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Ziguang Liu
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), foshan, Guangdong, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
13
|
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis. Front Immunol 2022; 13:818625. [PMID: 35154136 PMCID: PMC8828488 DOI: 10.3389/fimmu.2022.818625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology; however, its precise pathogenesis is still unknown. Recent research has shown that renal inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the development of calcium oxalate kidney stones. An increasing amount of research have confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory injury of renal cells, promote the intracellular expression of NADPH oxidase, induce extensive production of reactive oxygen species, activate NLRP3 inflammasome, discharge a great number of inflammatory factors, trigger inflammatory cascading reactions, promote the aggregation, nucleation and growth process of calcium salt crystals, and ultimately lead to the development of intrarenal crystals and even stones. The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction, calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other regulatory factors and mechanisms are involved in this process.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Sun
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Wu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wusheng She
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
The role of reactive oxygen species derived from different NADPH oxidase isoforms and mitochondria in oxalate-induced oxidative stress and cell injury. Urolithiasis 2022; 50:149-158. [DOI: 10.1007/s00240-022-01309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
AbstractHyperoxaluria is a risk factor for urolithiasis and can cause renal epithelial cell injury secondary to oxidative stress. Reactive oxygen species (ROS) produced during cell damage originate from different sources and play different roles. Here, we explored the potential sources of ROS production and investigated the role of ROS from various sources in oxalate-induced oxidative stress and cell injury in normal rat kidney-52 epithelial (NRK-52E) cells. Oxalate-induced injury was assessed by lactate dehydrogenase (LDH) release experiments. 2,7-dichlorodihydrofluorescein diacetate and mitoSOX Red were used to determine the intracellular and mitochondrial ROS (mtROS) production, respectively. The expression level of Nox4, Nox2, and p22 protein was detected by Western blotting to observe the effect of oxalate on nicotinamide adenine dinucleotide phosphate oxidase (NADPH) oxidase (Nox). Furthermore, a specific NADPH oxidase subtype inhibitor and targeted mitochondrial antioxidants were used to preliminarily identify the role of ROS from different sources in renal tubular epithelial cell injury induced by oxalate. We found that oxalate inhibited cell viability, induced LDH release, and prompted intracellular and mitochondrial ROS (mtROS) production. Oxalate also decreased the protein expression level of Nox4 and increased the protein expression level of p22. Mitochondria were also a source of ROS production. In addition, Nox2 inhibitor or mtROS scavenging prevented oxalate-induced cell injury, reversed by an inhibitor of Nox4/1. We concluded that ROS from different sources might play different roles in oxalate-induced renal tubular epithelial cell injury. We also identified new potential targets for preventing or alleviating oxalate-induced renal tubular epithelial cell injury.
Graphic abstract
Collapse
|
15
|
Gan XG, Xu HT, Wang ZH. Phosphatidylserine eversion regulated by phospholipid scramblase activated by TGF-β1/Smad signaling in the early stage of kidney stone formation. Urolithiasis 2021; 50:11-20. [PMID: 34860265 PMCID: PMC8784500 DOI: 10.1007/s00240-021-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
The mechanism underlying phosphatidylserine eversion in renal tubule cells following calcium oxalate-mediated damage remains unclear; therefore, we investigated the effects of TGF-β1/Smad signaling on phosphatidylserine eversion in the renal tubule cell membrane during the early stage of kidney stone development. In a rat model of early stage of calcium oxalate stone formation, phosphatidylserine eversion on the renal tubular cell membrane was detected by flow cytometry, and the expression of TGF-β1 (transforming growth factor-β1), Smad7, and phospholipid scramblase in the renal tubular cell membrane was measured by western blotting. We observed that the TGF-β1/Smad signaling pathway increased phosphatidylserine eversion at the organism level. The results of in vitro studies demonstrated that oxalate exposure to renal tubule cells induced TGF-β1 expression, increasing phospholipid scramblase activity and phosphatidylserine eversion in the renal tubule cell membrane. These results indicate that TGF-β1 stimulates phosphatidylserine eversion by increasing the phospholipid scramblase activity in the renal tubule cell membrane during the early stage of kidney stone development. The results of this study form a basis for further detailed research on the development of therapeutic agents that specifically treat urolithiasis and exert fewer adverse effects.
Collapse
Affiliation(s)
- Xiu Guo Gan
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| | - Hai Tao Xu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhi Hao Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10071095. [PMID: 34356328 PMCID: PMC8301085 DOI: 10.3390/antiox10071095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson’s disease’s etiology is unknown, although evidence suggests the involvement of oxidative modifications of intracellular components in disease pathobiology. Despite the known involvement of the extracellular matrix in physiology and disease, the influence of oxidative stress on the matrix has been neglected. The chemical modifications that might accumulate in matrix components due to their long half-live and the low amount of extracellular antioxidants could also contribute to the disease and explain ineffective cellular therapies. The enriched striatal extracellular matrix from a mouse model of Parkinson’s disease was characterized by Raman spectroscopy. We found a matrix fingerprint of increased oxalate content and oxidative modifications. To uncover the effects of these changes on brain cells, we morphologically characterized the primary microglia used to repopulate this matrix and further quantified the effects on cellular mechanical stress by an intracellular fluorescence resonance energy transfer (FRET)-mechanosensor using the U-2 OS cell line. Our data suggest changes in microglia survival and morphology, and a decrease in cytoskeletal tension in response to the modified matrix from both hemispheres of 6-hydroxydopamine (6-OHDA)-lesioned animals. Collectively, these data suggest that the extracellular matrix is modified, and underscore the need for its thorough investigation, which may reveal new ways to improve therapies or may even reveal new therapies.
Collapse
|
17
|
Kowluru RA. Diabetic Retinopathy and NADPH Oxidase-2: A Sweet Slippery Road. Antioxidants (Basel) 2021; 10:783. [PMID: 34063353 PMCID: PMC8156589 DOI: 10.3390/antiox10050783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy remains the leading cause of vision loss in working-age adults. The multi-factorial nature of the disease, along with the complex structure of the retina, have hindered in elucidating the exact molecular mechanism(s) of this blinding disease. Oxidative stress appears to play a significant role in its development and experimental models have shown that an increase in cytosolic Reacttive Oxygen Speies (ROS) due to the activation of NADPH oxidase 2 (Nox2), is an early event, which damages the mitochondria, accelerating loss of capillary cells. One of the integral proteins in the assembly of Nox2 holoenzyme, Rac1, is also activated in diabetes, and due to epigenetic modifications its gene transcripts are upregulated. Moreover, addition of hyperlipidemia in a hyperglycemic milieu (type 2 diabetes) further exacerbates Rac1-Nox2-ROS activation, and with time, this accelerates and worsens the mitochondrial damage, ultimately leading to the accelerated capillary cell loss and the development of diabetic retinopathy. Nox2, a multicomponent enzyme, is a good candidate to target for therapeutic interventions, and the inhibitors of Nox2 and Rac1 (and its regulators) are in experimental or clinical trials for other diseases; their possible use to prevent/halt retinopathy will be a welcoming sign for diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Cao Y, Xu J, Cui D, Liu L, Zhang S, Shen B, Wu Y, Zhang Q. Protective effect of carnosine on hydrogen peroxide-induced oxidative stress in human kidney tubular epithelial cells. Biochem Biophys Res Commun 2020; 534:576-582. [PMID: 33276949 DOI: 10.1016/j.bbrc.2020.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) endangers health and is a high financial public burden worldwide. Risk of DN is positively correlated with high levels of reactive oxygen species (ROS). Carnosine, an antioxidant, actively regulates cell function and has the potential to reduce the occurrence of DN. Here, we explored whether carnosine could prevent oxidative stress in human kidney tubular epithelial (HK2) cells and, if so, the mechanisms underlying this effect. HK2 cells were cultured with the ROS hydrogen peroxide (H2O2) for 24 h and then treated with carnosine. In H2O2-damaged HK2 cells, carnosine significantly increased cell viability, assessed using a Cell Counting Kit 8, increased total superoxide dismutase (T-SOD) activity, assessed using a T-SOD activity detection kit, but decreased ROS levels, assessed using a ROS-sensitive fluorescent probe. Western blotting analyses to determine the protein expression levels of BAX, BCL-2, caspase 3, and the NADPH oxidase isoforms NOX2 and NOX4, as well as confocal laser scanning microscopy to assess changes in the mitochondrial membrane potential and the relative position of mitochondria to cytochrome c, indicated that carnosine inhibited apoptosis via the mitochondrial pathway in H2O2-damaged HK2 cells. Significantly decreased NOX4 expression and increased T-SOD activity in the presence of carnosine reduced the production of intracellular ROS, relieving oxidative stress to inhibit apoptosis via the mitochondrial pathway. These findings provide molecular mechanistic insights underlying the effects of carnosine, particularly as a potential therapeutic in DN.
Collapse
Affiliation(s)
- Yadi Cao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Juan Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Di Cui
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Shiqi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yonggui Wu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
19
|
Wang Z, Li MX, Xu CZ, Zhang Y, Deng Q, Sun R, Hu QY, Zhang SP, Zhang JW, Liang H. Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals. BMC Urol 2020; 20:136. [PMID: 32867742 PMCID: PMC7461262 DOI: 10.1186/s12894-020-00709-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Calcium oxalate monohydrate (COM), the major crystalline composition of most kidney stones, induces inflammatory infiltration and injures in renal tubular cells. However, the mechanism of COM-induced toxic effects in renal tubular cells remain ambiguous. The present study aimed to investigate the potential changes in proteomic landscape of proximal renal tubular cells in response to the stimulation of COM crystals. Methods Clinical kidney stone samples were collected and characterized by a stone component analyzer. Three COM-enriched samples were applied to treat human proximal tubular epithelial cells HK-2. The proteomic landscape of COM-crystal treated HK-2 cells was screened by TMT-labeled quantitative proteomics analysis. The differentially expressed proteins (DEPs) were identified by pair-wise analysis. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs were performed. Protein interaction networks were identified by STRING database. Results The data of TMT-labeled quantitative proteomic analysis showed that a total of 1141 proteins were differentially expressed in HK-2 cells, of which 699 were up-regulated and 442 were down-regulated. Functional characterization by KEGG, along with GO enrichments, suggests that the DEPs are mainly involved in cellular components and cellular processes, including regulation of actin cytoskeleton, tight junction and focal adhesion. 3 high-degree hub nodes, CFL1, ACTN and MYH9 were identified by STRING analysis. Conclusion These results suggested that calcium oxalate crystal has a significant effect on protein expression profile in human proximal renal tubular epithelial cells.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China.
| | - Ming-Xing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chang-Zhi Xu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Rui Sun
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Qi-Yi Hu
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Sheng-Ping Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Jian-Wen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China.
| |
Collapse
|
20
|
Song Q, He Z, Li B, Liu J, Liu L, Liao W, Xiong Y, Song C, Yang S, Liu Y. Melatonin inhibits oxalate-induced endoplasmic reticulum stress and apoptosis in HK-2 cells by activating the AMPK pathway. Cell Cycle 2020; 19:2600-2610. [PMID: 32871086 DOI: 10.1080/15384101.2020.1810401] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Deposition of various crystal and organic substances in the kidney can lead to kidney stone formation. Melatonin is an effective endogenous antioxidant that can prevent crystalluria and kidney damage due to crystal formation and aggregation. In this study, we investigated the mechanism by which melatonin inhibits endoplasmic reticulum (ER) stress and apoptosis. Methods: We treated HK-2 cells with oxalate to establish an in vitro kidney stone model, and treated these cells with different concentrations of melatonin (0, 5, 10, 20 μmol/L) and the AMP-activated protein kinase (AMPK) inhibitor Compound C. We measured levels of stress response markers including reactive oxygen species (ROS), lactate dehydrogenase (LDH), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and factors in the stress response pathway, such as ATF6, GRP78, DDIT3, PERK, p-PERK, IRE1, p-IRE1, XBP1s, AMPK, and p-AMPK, using real time-PCR, western blot, and immunofluorescence analyzes. We measured mitochondrial membrane potential and caspases-3 activity using the CCK8, enzyme-linked immunosorbent, and flow cytometry assays to assess HK-2 cell viability and apoptosis. Results: Melatonin improved the total antioxidant capacity (T-AOC) of the HK-2 cells, as evidenced by the dose-dependent reduction in apoptosis, ROS levels, and protein expression of ATF6, GRP78, DDIT3, p-PERK, p-IRE1, XBP1s, caspase-12, cleaved caspase-3 and cleaved caspase-9. Addition of the AMPK inhibitor, Compound C, partially reversed the protective effect of melatonin. Conclusion: Our study revealed that the protective effects of melatonin on oxalate-induced ER stress and apoptosis is partly dependent on AMPK activation in HK-2 cells. These findings provide insight into the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Bin Li
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Lang Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
21
|
Lobine D, Ahmed S, Aschner M, Khan H, Mirzaei H, Mahomoodally MF. Antiurolithiatic effects of pentacyclic triterpenes: The distance traveled from therapeutic aspects. Drug Dev Res 2020; 81:671-684. [PMID: 32314397 DOI: 10.1002/ddr.21670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Globally, approximately 12% of the population is inflicted by various types of urolithiasis. Standard treatments are available both to avert and treat urolithiasis, but with significant adverse side effects. Pentacyclic triterpenes represent a group of naturally occurring compounds which holds immense potential as therapeutic for treating kidney stone. This review aims to provide an integrative description on how pentacyclic triterpenes can effectively treat calcium oxalate urolithiasis through various mechanisms such as antioxidant, anti-inflammatory, diuretic, and angiotensin-converting enzyme inhibition. Some of the pentacylic triterpenes which shows promising activities include lupeol, oleanolic acid, betulin, and taraxasterol. Moreover, future perspectives in the development of pentacyclic triterpenes in formulations/drugs for urinary stone prevention are highlighted. It is anticipated that compiled information would serve as a scientific baseline to advocate further investigations on the potential of pentacyclic triterpenes in urolithiasis remediation.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
22
|
Jiang K, Hu J, Luo G, Song D, Zhang P, Zhu J, Sun F. miR-155-5p Promotes Oxalate- and Calcium-Induced Kidney Oxidative Stress Injury by Suppressing MGP Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5863617. [PMID: 32215174 PMCID: PMC7081043 DOI: 10.1155/2020/5863617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Oxalate and calcium are the major risk factors for calcium oxalate (CaOx) stone formation. However, the exact mechanism remains unclear. This study was designed to confirm the potential function of miR-155-5p in the formation of CaOx induced by oxalate and calcium oxalate monohydrate (COM). The HK-2 cells were treated by the different concentrations of oxalate and COM for 48 h. We found that oxalate and COM treatment significantly increased ROS generation, LDH release, cellular MDA levels, and H2O2 concentration in HK-2 cells. The results of qRT-PCR and western blot showed that expression of NOX2 was upregulated, while that of SOD-2 was downregulated following the treatment with oxalate and COM in HK-2 cells. Moreover, the results of miRNA microarray analysis showed that miR-155-5p was significantly upregulated after oxalate and COM treated in HK-2 cells, but miR-155-5p inhibitor treatment significantly decreased ROS generation, LDH release, cellular MDA levels, and H2O2 concentration in HK-2 cells incubated with oxalate and COM. miR-155-5p negatively regulated the expression level of MGP via directly targeting its 3'-UTR, verified by the Dual-Luciferase Reporter System. In vivo, polarized light optical microphotography showed that CaOx crystal significantly increased in the high-dose oxalate and Ca2+ groups compared to the control group. Furthermore, IHC analyses showed strong positive staining intensity for the NOX-2 protein in the high-dose oxalate and Ca2+-treated mouse kidneys, and miR-155-5p overexpression can further enhance its expression. However, the expression of SOD-2 protein was weakly stained. In conclusion, our study indicates that miR-155-5p promotes oxalate- and COM-induced kidney oxidative stress injury by suppressing MGP expression.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dalong Song
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
- Guizhou University, Guiyang, China
- Department of Urology, Panzhou People's Hospital, Panzhou, Guizhou, China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
23
|
Peerapen P, Thongboonkerd V. Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: An in vitro study. Food Chem Toxicol 2020; 135:110915. [DOI: 10.1016/j.fct.2019.110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
|
24
|
NADPH oxidase: a therapeutic target for hyperoxaluria-induced oxidative stress – an update. Future Med Chem 2019; 11:2975-2978. [DOI: 10.4155/fmc-2019-0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Nox1-derived oxidative stress as a common pathogenic link between obesity and hyperoxaluria-related kidney injury. Urolithiasis 2019; 48:481-492. [DOI: 10.1007/s00240-019-01170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
|
26
|
Joshi S, Khan SR. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress. Expert Opin Ther Targets 2019; 23:379-391. [PMID: 30905219 DOI: 10.1080/14728222.2019.1599359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxalate is a toxic byproduct of metabolism and is normally produced in quantities easily removed from the body. However, under specific circumstances oxalate production is increased resulting in deposition of calcium oxalate (CaOx) crystals in the kidneys as well as other organs causing inflammation and injury. Excessive buildup of crystal deposits in the kidneys causes eventual loss of renal function requiring renal transplantation. Areas covered: Cellular exposure to CaOx crystals induces the production of reactive oxygen species (ROS) with the involvement of renin-angiotensin aldosterone system (RAAS), mitochondria, and NADPH oxidase. Inflammasomes are activated and pro-inflammatory cytokines, such as IL-1β and IL-18 are produced. We reviewed results of experimental and clinical studies of crystal renal epithelial cell interactions with emphasis on cellular injury and ROS production. Expert opinion: Treatment should depend upon the level of hyperoxaluria and whether it is associated with CaOx crystal deposition. Persistent low grade or intermittent hyperoxaluria can be treated with antioxidants, free radical scavengers. Hyperoxaluria associated with CaOx crystal deposition will require administration of angiotensin II receptor blockers, and NADPH oxidase or NLRP3 inflammasome inhibitors. DASH-style diet will be beneficial in both cases.
Collapse
Affiliation(s)
- Sunil Joshi
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| | - Saeed R Khan
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
27
|
Kim SK, Rho SJ, Kim SH, Kim SY, Song SH, Yoo JY, Kim CH, Lee SH. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clin Exp Pharmacol Physiol 2018; 46:153-162. [PMID: 30403294 DOI: 10.1111/1440-1681.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
NADPH oxidase (NOX) plays an important role in inflammatory response by producing reactive oxygen species (ROS). The inhibition of NOX has been shown to induce anti-inflammatory effects in a few experimental models. The aim of this study was to investigate the effects of diphenyleneiodonium (DPI), a NOX inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a rat model. Sprague-Dawley rats were intraperitoneally administered by DPI (5 mg/kg) 30 minutes after intratracheal instillation of LPS (3 mg/kg). After 6 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The NOX activity in lung tissue was significantly increased in LPS-treated rats. It was significantly attenuated by DPI. DPI-treated rats showed significant reduction in the intracellular ROS, the number of inflammatory cells, and cytokines (TNF-α and IL-6) in BALF compared with LPS-treated rats. In lung tissue, DPI-treated rats showed significantly decreased malondialdehyde content and increased activity of glutathione peroxidase and superoxide dismutase compared with LPS-treated rats. Lung injury score, myeloperoxidase activity, and inducible nitric oxide synthase expression were significantly decreased in DPI-treated rats compared with LPS-treated animals. Western blotting analysis demonstrated that DPI significantly suppressed LPS-induced activation of NF-κB and ERK1/2 and SAPK/JNK in MAPK pathway. Our results suggest that DPI may have protective effects on LPS-induced ALI thorough anti-oxidative and anti-inflammatory effects which may be due to inactivation of the NF-κB, ERK1/2, and SAPK/JNK pathway. These results suggest the therapeutic potential of DPI as an anti-inflammatory agent in ALI.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Joon Rho
- Research Institute of Medical Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Hoon Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Shin Young Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - So Hyang Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Young Yoo
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Chi Hong Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
28
|
Montes-Rivera JO, Tamay-Cach F, Quintana-Pérez JC, Guevara-Salazar JA, Trujillo-Ferrara JG, Del Valle-Mondragón L, Arellano-Mendoza MG. Apocynin combined with drugs as coadjuvant could be employed to prevent and/or treat the chronic kidney disease. Ren Fail 2018; 40:92-98. [PMID: 29299955 PMCID: PMC6014519 DOI: 10.1080/0886022x.2017.1421557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
A worldwide public health problem is chronic kidney disease (CKD) presenting alarming epidemiological data. It currently affects about 10% of the adult population worldwide and has a high mortality rate. It is now known that oxidative stress represents one of the most important mechanisms in its pathophysiology, from the early stages to the terminal phase. Oxidation increases inflammation and reduces the capacity of NO• to relax vascular smooth muscle, in part by decreasing bioavailability of tetrahydrobiopterin (BH4), leading to endothelial dysfunction and high blood pressure, and due to the limited effectiveness of existing treatments, new drugs are needed to prevent and/or treat these mechanisms. The aim of this study was to test apocynin in a 5/6 nephrectomy mouse model of CKD to investigate whether its known antioxidant effect can improve the disease outcome. This effect results from the inhibition of NADPH oxidase and consequently a reduced production of the superoxide anion ([Formula: see text]). Animals were divided into five groups: sham, 5/6 nephrectomy only, and 5/6 nephrectomy followed by treatment with captopril, losartan or apocynin. The parameters evaluated were blood pressure and markers of oxidative stress ([Formula: see text]) and endothelial function (BH4). There were significantly lower levels of [Formula: see text] and a greater availability of serum BH4 in the apocynin-treated animals versus the control group and the two other drug treatments. The present findings suggest that apocynin in conjunction with a coadjuvant for modulating blood pressure may be useful for controlling the progression of CRF.
Collapse
Affiliation(s)
- Jorge Osvaldo Montes-Rivera
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Feliciano Tamay-Cach
- Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio César Quintana-Pérez
- Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Alberto Guevara-Salazar
- Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Guadalupe Trujillo-Ferrara
- Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica Griselda Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
29
|
Is oxidized low-density lipoprotein the connection between atherosclerosis, cardiovascular risk and nephrolithiasis? Urolithiasis 2018; 47:347-356. [PMID: 30302491 DOI: 10.1007/s00240-018-1082-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
Nephrolithiasis is considered a systemic disease. A link has been established between nephrolithiasis, cardiovascular disease (CVD), the metabolic syndrome and atherosclerosis. A significant correlation has been found between the high levels of oxidized low-density lipoprotein (oxLDL) and CVD and atherosclerosis, including coronary and femoral artery disease. To the best of our knowledge, oxLDL has not been evaluated in patients with nephrolithiasis. This study aimed to evaluate serum levels of oxLDL, anti-oxLDL antibodies (oxLDL-ab) and other markers of atherosclerosis in patients with nephrolithiasis, according to the severity of the disease. The population sample consisted of 94 patients of 30-70 years of age with no symptoms of CVD who presented with renal calculi documented by ultrasonography, abdominal X-ray or computed tomography. The patients were divided into two groups: Group 1 (≥ 3 stones) and Group 2 (1-2 stones). A comparison control group was formed with 21 healthy individuals. Enzyme-linked immunosorbent assays were used to assess oxLDL and oxLDL-ab. Lipid peroxidation indexes were also analyzed. Median serum oxLDL values were higher in Groups 1 and 2 compared to the control group (≥ 3 stones, p = 0.02; 1-2 stones, p = 0.03). Median serum anti-oxLDL antibody levels were lower in the patients in Group 1 compared to the controls (p = 0.03). There was no significant difference in the oxLDL/oxLDL-ab ratio between patients and controls. These findings suggest that this may be the link between nephrolithiasis and the greater incidence of atherosclerosis and cardiovascular disease in patients with kidney stones.
Collapse
|
30
|
Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1724648. [PMID: 30405874 PMCID: PMC6199878 DOI: 10.1155/2018/1724648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/27/2022]
Abstract
Solute carrier family 26 member 6 (Slc26a6), which is mainly expressed in the intestines and kidneys, is a multifunctional anion transporter that is crucial in the transport of oxalate anions. This study is aimed at investigating the effect of Slc26a6 expression on oxalate-induced cell oxidation and crystal formation. Lentivirus transfection was used to upregulate or downregulate Slc26a6 expression in NRK cells. Cell viability and apoptosis, reactive oxygen species (ROS) and malondialdehyde (MDA) generation, and superoxide dismutase (SOD) activity were measured. Crystal adhesion and the cell ultrastructure were observed using light and transmission electron microscopy (TEM). Three groups of rats, normal control, lentivirus-vector, and lentivirus-small interfering RNA (lv-siRNA) groups, were used, and after lentivirus transfection, they were fed 1% ethylene glycol (EG) and 0.5% ammonium chloride (NH4Cl) for 2 weeks. Dihydroethidium (DHE), terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labeling (TUNEL), and von Kossa staining were performed, and nuclear factor κB (NFκB) and osteopontin (OPN) expression were measured. In the vitro study, compared to the control group, downregulated Slc26a6 NRK cells showed alleviation of the cell viability decrease, cell apoptosis rate, ROS generation, and SOD activity decrease after oxalate treatment. Crystal adhesion and vesicles were significantly less after oxalate exposure than in the untreated controls. Rats infected with lentivirus-siRNA exhibited attenuated SOD generation, cell apoptosis, and crystal formation in the kidneys. Increased phosphorylation of NFκB and OPN was involved in the pathological process. In conclusion, the results of the present study indicate that reducing the expression of Slc26a6 in the kidney may be a potential strategy for preventing stone formation.
Collapse
|
31
|
Ahmed S, Hasan MM, Khan H, Mahmood ZA, Patel S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother 2018; 106:1292-1299. [DOI: 10.1016/j.biopha.2018.07.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
|
32
|
Vitamin D and calcium kidney stones: a review and a proposal. Int Urol Nephrol 2018; 51:101-111. [DOI: 10.1007/s11255-018-1965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
|
33
|
Losartan Ameliorates Calcium Oxalate-Induced Elevation of Stone-Related Proteins in Renal Tubular Cells by Inhibiting NADPH Oxidase and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1271864. [PMID: 29849862 PMCID: PMC5941794 DOI: 10.1155/2018/1271864] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Calcium oxalate (CaOx) is the most common type of urinary stone. Increase of ROS and NADPH oxidase gives rise to inflammation and injury of renal tubular cells, which promotes CaOx stone formation. Recent studies have revealed that the renin-angiotensin system might play a role in kidney crystallization and ROS production. Here, we investigated the involvement of Ang II/AT1R and losartan in CaOx stone formation. NRK-52E cells were incubated with CaOx crystals, and glyoxylic acid-induced hyperoxaluric rats were treated with losartan. Oxidative stress statuses were evaluated by detection of ROS, oxidative products (8-OHdG and MDA), and antioxidant enzymes (SOD and CAT). Expression of NADPH oxidase subunits (Nox2 and Nox4), NF-κB pathway subunits (p50 and p65), and stone-related proteins such as OPN, CD44, and MCP-1 was determined by Western blotting. The results revealed upregulation of Ang II/AT1R by CaOx treatment. CaOx-induced ROS and stone-related protein upregulation were mediated by the Ang II/AT1R signaling pathway. Losartan ameliorated renal tubular cell expression of stone-related proteins and renal crystallization by inhibiting NADPH oxidase and oxidative stress. We conclude that losartan might be a promising preventive and therapeutic candidate for hyperoxaluria nephrolithiasis.
Collapse
|
34
|
Inhibition of autophagy-attenuated calcium oxalate crystal-induced renal tubular epithelial cell injury in vivo and in vitro. Oncotarget 2017; 9:4571-4582. [PMID: 29435125 PMCID: PMC5796996 DOI: 10.18632/oncotarget.23383] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence suggests that autophagy is involved in the pathophysiological processes of kidney diseases. However, the role of autophagy in the formation of calcium oxalate (CaOx) nephrolithiasis remains unclear. In this study, we investigated the effects of autophagy on renal tubular epithelial cell injury induced by CaOx crystals in vivo and in vitro. We first observed that the expression levels of LC3-II and BECN1 and number of autophagic vacuoles were markedly increased in the renal tissue of CaOx stone patients. We subsequently found that exposure of HK-2 cells to CaOx crystals could increase LC3-II and BECN1 expression as well as the number of GFP-LC3 dots and autophagic vacuoles in a dose- and time-dependent manner. In addition, our results suggest that CaOx crystals induced autophagy, at least in part, via activation of the reactive oxygen species (ROS) pathway in HK-2 cells. Furthermore, inhibition of autophagy using 3-methyladenine or siRNA knockdown of BECN1 attenuated CaOx crystal-induced HK-2 cells injury. However, enhancing autophagic activity with rapamycin exerted an opposite effect. Taken together, our results demonstrate that autophagy is essential for CaOx crystal-induced renal tubular epithelial cell injury and that inhibition of autophagy could be a novel therapeutic strategy for CaOx nephrolithiasis.
Collapse
|
35
|
Joshi S, Wang W, Khan SR. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS One 2017; 12:e0185009. [PMID: 29091707 PMCID: PMC5665423 DOI: 10.1371/journal.pone.0185009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Hyperoxaluria associated with renal deposition of calcium oxalate (CaOx) crystals causes renal injury and inflammation leading to number of diseases including chronic kidney disease (CKD). It is however, not been possible to separate the renal consequences of hyperoxaluria from that of CaOx crystal deposition. We decided to utilize ethylene glycol (EG) model where hyperoxaluria and CaOx crystal deposition can be separated in time. To test our hypothesis, male rats were made hyperoxaluric by administering EG, rats were euthanized and kidneys were extracted on day 14, when occasional crystal is seen in the kidneys and day 28, when all animals have developed renal CaOx crystal deposits. Total RNA was extracted for microarray analysis and genome wide analysis of differentially expressed genes was performed to investigate differences between hyperoxaluria and crystal induced alterations in the kidneys. Immunohistochemical and Hematoxylin and Eosin (H&E) staining was also done for macromolecules with significant role in stone formation. All EG fed rats became hyperoxaluric by day 7, showed a few crystal deposits on day 14, and had heavy crystal deposition by day 28. There were significant changes in the expression of genes encoding for NADPH Oxidases; macromolecular crystallization modulators; genes involved in inflammasome activation; and osteogenic marker genes. Results demonstrate major differences between hyperoxaluria and CaOx crystal induced changes in the kidneys. Injury and inflammation are mainly associated with crystal deposition indicating significant role played by crystal retention.
Collapse
Affiliation(s)
- Sunil Joshi
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Wei Wang
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Saeed R. Khan
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nair AS, Pulipaka K, Rayani BK. Anesthetic-induced developmental neurotoxicity: causes, prospective studies and possible interventions. Med Gas Res 2017; 7:224-225. [PMID: 29152217 PMCID: PMC5674662 DOI: 10.4103/2045-9912.215754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Abhijit S Nair
- Department of Anesthesiology and Pain Management, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad-500034, Telangana, India
| | - Kaushik Pulipaka
- Department of Anesthesiology and Pain Management, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad-500034, Telangana, India
| | - Basanth Kumar Rayani
- Department of Anesthesiology and Pain Management, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad-500034, Telangana, India
| |
Collapse
|
37
|
MitoTEMPO Prevents Oxalate Induced Injury in NRK-52E Cells via Inhibiting Mitochondrial Dysfunction and Modulating Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7528090. [PMID: 28116040 PMCID: PMC5237742 DOI: 10.1155/2017/7528090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023]
Abstract
As one of the major risks for urolithiasis, hyperoxaluria can be caused by genetic defect or dietary intake. And high oxalate induced renal epithelial cells injury is related to oxidative stress and mitochondrial dysfunction. Here, we investigated whether MitoTEMPO, a mitochondria-targeted antioxidant, could protect against oxalate mediated injury in NRK-52E cells via inhibiting mitochondrial dysfunction and modulating oxidative stress. MitoSOX Red was used to determine mitochondrial ROS (mtROS) production. Mitochondrial membrane potential (Δψm) and quantification of ATP synthesis were measured to evaluate mitochondrial function. The protein expression of Nox4, Nox2, and p22 was also detected to explore the effect of oxalate and MitoTEMPO on NADPH oxidase. Our results revealed that pretreatment with MitoTEMPO significantly inhibited oxalate induced lactate dehydrogenase (LDH) and malondialdehyde (MDA) release and decreased oxalate induced mtROS generation. Further, MitoTEMPO pretreatment restored disruption of Δψm and decreased ATP synthesis mediated by oxalate. In addition, MitoTEMPO altered the protein expression of Nox4 and p22 and decreased the protein expression of IL-6 and osteopontin (OPN) induced by oxalate. We concluded that MitoTEMPO may be a new candidate to protect against oxalate induced kidney injury as well as urolithiasis.
Collapse
|
38
|
Metformin Prevents Renal Stone Formation through an Antioxidant Mechanism In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4156075. [PMID: 27781075 PMCID: PMC5066015 DOI: 10.1155/2016/4156075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a causal factor and key promoter of urolithiasis associated with renal tubular epithelium cell injury. The present study was designed to investigate the preventive effects of metformin on renal tubular cell injury induced by oxalate and stone formation in a hyperoxaluric rat model. MTT assays were carried out to determine the protection of metformin from oxalate-induced cytotoxicity. The intracellular superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels were measured in vitro. Male Sprague-Dawley rats were divided into control group, ethylene glycol (EG) treated group, and EG + metformin treated group. Oxidative stress and crystal formations were evaluated in renal tissues after 8-week treatment. Metformin significantly inhibited the decrease of the viability in MDCK cells and HK-2 cells induced by oxalate. Besides, metformin markedly prevented the increased concentration of MDA and the decreased tendency of SOD in oxalate-induced MDCK cells and HK-2 cells. In vivo, the increased MDA levels and the reduction of SOD activity were detected in the EG treated group compared with controls, while these parameters reversed in the EG + metformin treated group. Kidney crystal formation in the EG + metformin treated group was decreased significantly compared with the EG treated group. Metformin suppressed urinary crystal deposit formation through renal tubular cell protection and antioxidative effects.
Collapse
|
39
|
Chhiber N, Kaur T, Singla S. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male wistar rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:989-97. [PMID: 27444343 DOI: 10.1016/j.phymed.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Oxalate and/or calcium oxalate, is known to induce free radical production, subsequently leading to renal epithelial injury. Oxidative stress and mitochondrial dysfunction have emerged as new targets for managing oxalate induced renal injury. HYPOTHESIS Plant products and antioxidants have gained tremendous attention in the prevention of lithiatic disease. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., has shown free radical scavenging, antioxidant activity and has been reported to interfere in signaling pathways leading to inflammation and apoptosis. In this study, the potential role of rottlerin, in rats exposed to hyperoxaluric environment was explored. METHODS Hyperoxaluria was induced by administering 0.4% ethylene glycol and 1% ammonium chloride in drinking water to male wistar rats for 9 days. Rottlerin was administered intraperitoneally at 1mg/kg/day along with the hyperoxaluric agent. Prophylactic efficacy of rottlerin to diminish hyperoxaluria induced renal dysfunctionality and crystal load was examined along with its effect on free radicals generating pathways in hyperoxaluric rats. RESULTS 0.4% ethylene glycol and 1% ammonium chloride led to induction of hyperoxaluria, oxiadtive stress and mitochondrial damage in rats. Rottlerin treatment reduced NADPH oxidase activity, prevented mitochondrial dysfunction and maintained antioxidant environment. It also refurbished renal functioning, tissue integrity and diminished urinary crystal load in hyperoxaluric rats treated with rottlerin. CONCLUSIONS Thus, the present investigation suggests that rottlerin evidently reduced hyperoxaluric consequences and the probable mechanism of action of this drug could be attributed to its ability to quench free radicals by itself and interrupting signaling pathways involved in pathogenesis of stone formation.
Collapse
Affiliation(s)
- Nirlep Chhiber
- Department of Biochemistry, Panjab University, Chandigarh-160015, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh-160015, India
| | - Surinder Singla
- Department of Biochemistry, Panjab University, Chandigarh-160015, India.
| |
Collapse
|
40
|
Deng W, Abliz A, Xu S, Sun R, Guo W, Shi Q, Yu J, Wang W. Severity of pancreatitis‑associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin. Mol Med Rep 2016; 14:3525-34. [PMID: 27573037 PMCID: PMC5042780 DOI: 10.3892/mmr.2016.5678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) inhibitor, significantly decreased acute pancreatitis-associated inflammatory and oxidative stress parameters. In addition, apocynin was able to reduce ischemic reperfusion injury-associated damage; however, the exact effects of apocynin on acute pancreatitis-associated intestinal mucosal injury have yet to be fully clarified. The present study aimed to investigate the protective effects of apocynin on intestinal mucosal injury in a rat model of severe acute pancreatitis (SAP). A total of 60 male Sprague Dawley rats were randomly divided into four groups (n=15/group): Sham operation group (SO), SAP group, apocynin treatment (APO) group and drug control (APO-CON) group. SAP was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Apocynin was administered 30 min prior to SAP induction in the APO group. All rats were sacrificed 12 h after SAP induction. Intestinal integrity was assessed by measuring diamine oxidase (DAO) levels. Morphological alterations to intestinal tissue were determined under light and transmission electron microscopy. NOX2, p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB expression levels were detected in the intestine by immunohistochemical staining. Oxidative stress was detected by measuring intestinal malondialdehyde (MDA) and superoxide dismutase content. In addition, blood inflammatory cytokines, and amylase (AMY) and lipase (LIP) levels were evaluated. The results demonstrated that apocynin attenuated the following: i) Serum AMY, LIP and DAO levels; ii) pancreatic and intestinal pathological injury; iii) intestinal MDA content; iv) intestinal ultrastructural alterations; v) serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels; and vi) NOX2, p38 MAPK and NF-κB expression in intestinal tissues. These results suggested that apocynin may attenuate intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ablikim Abliz
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Xu
- Department of General Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Rongze Sun
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
41
|
Niu H, Li Y, Li H, Chi Y, Zhuang M, Zhang T, Liu M, Nie L. Matrix metalloproteinase 12 modulates high-fat-diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity. Sci Rep 2016; 6:20171. [PMID: 26822129 PMCID: PMC4731752 DOI: 10.1038/srep20171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/23/2015] [Indexed: 01/04/2023] Open
Abstract
Obesity-induced kidney injury contributes to albuminuria, which is characterized by a progressive decline in renal function leading to glomerulosclerosis and renal fibrosis. Matrix metalloproteinases (MMPs) modulate inflammation and fibrosis by degrading a variety of extracellular matrix and regulating the activities of effector proteins. Abnormal regulation of MMP-12 expression has been implicated in abdominal aortic aneurysm, atherosclerosis, and emphysema, but the underlying mechanisms remain unclear. The present study examined the function of MMP-12 in glomerular fibrogenesis and inflammation using apo E−/− or apo E−/−MMP-12−/− mice and maintained on a high-fat-diet (HFD) for 3, 6, or 9 months. MMP-12 deletion reduced glomerular matrix accumulation, and downregulated the expression of NADPH oxidase 4 and the subunit-p67phox, indicating the inhibition of renal oxidative stress. In addition, the expression of the inflammation-associated molecule MCP-1 and macrophage marker-CD11b was decreased in glomeruli of apo E−/−MMP-12−/− mice fed HFD. MMP-12 produced by macrophages infiltrating into glomeruli contributed to the degradation of collagen type IV and fibronectin. Crescent formation due to renal oxidative stress in Bowman’s space was a major factor in the development of fibrogenesis and inflammation. These results suggest that regulating MMP-12 activity could be a therapeutic strategy for the treatment of crescentic glomerulonephritis and fibrogenesis.
Collapse
Affiliation(s)
- Honglin Niu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Ying Li
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Haibin Li
- Department of Cardiology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yanqing Chi
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Minghui Zhuang
- Department of Nephrology, First Central Hospital of Baoding, Baoding, 071000, China
| | - Tao Zhang
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Maodong Liu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Lei Nie
- Key Laboratory of Medical Biotechnology of Hebei Province and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
42
|
Luo WM, Kong J, Gong Y, Liu XQ, Yang RX, Zhao YX. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling. PLoS One 2015; 10:e0145130. [PMID: 26673167 PMCID: PMC4686063 DOI: 10.1371/journal.pone.0145130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of FoxO1 signaling.
Collapse
Affiliation(s)
- Wei-min Luo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Gong
- Department of Magnetic Resonance Imaging, Jinan hospital of infectious diseases, Jinan, Shandong, China
| | - Xiao-qiong Liu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-xue Yang
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
43
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
44
|
Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway. Apoptosis 2015; 21:36-50. [DOI: 10.1007/s10495-015-1191-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Damiano S, Ciarcia R, Montagnaro S, Pagnini U, Garofano T, Capasso G, Florio S, Giordano A. Prevention of nephrotoxicity induced by cyclosporine-A: role of antioxidants. J Cell Biochem 2015; 116:364-9. [PMID: 25418335 DOI: 10.1002/jcb.25022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022]
Abstract
Cyclosporine A (CsA) is a powerful immunosuppressive drug used to prevent allograft rejection after organ transplantation as well as in human and veterinary medicine. Unfortunately, its use is hampered by its nephrotoxic effects. The mechanisms of CsA-induced hypertension and nephrotoxicity are not clear, but several studies suggest the possible involvement of free radicals. In this review we have summarized the effect of some antioxidants that we have used in the recent years, in combination with CsA, to better understand the exact mechanism of action of CsA and to try to open new perspectives in the treatment of CsA nephrotoxicity.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", 80137, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tiselius HG. Should we modify the principles of risk evaluation and recurrence preventive treatment of patients with calcium oxalate stone disease in view of the etiologic importance of calcium phosphate? Urolithiasis 2014; 43 Suppl 1:47-57. [PMID: 25086904 DOI: 10.1007/s00240-014-0698-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
Prevention of recurrent calcium oxalate (CaOx) stone formation in the urinary tract is important to avoid negative effects on renal function, patient suffering and to reduce health care cost. Present shortcomings in this regard can be explained both by insufficient understanding of the mechanisms of stone formation and by poor patient compliance to those regimens that nevertheless have proven effective. During the past years, we have got increased insights in the nature of CaOx stone formation and it is suggested that the improved understanding of this process can be used for a more dynamic risk evaluation and treatment regimen directed to specific risk periods that can be identified in the individual patients. Some of the possibilities with regard to the important role of calcium phosphate are discussed in this article.
Collapse
Affiliation(s)
- Hans-Göran Tiselius
- Divison of Urology, Department of Clinical Science, Intervention and Technology, Karolinska institutet, Stockholm, Sweden,
| |
Collapse
|
47
|
Göknar N, Oktem F, Arı E, Demir AD, Torun E. Is oxidative stress related to childhood urolithiasis? Pediatr Nephrol 2014; 29:1381-6. [PMID: 24526098 DOI: 10.1007/s00467-014-2773-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Urolithiasis is a common condition in pediatric populations in Turkey. The role of oxidative stress in renal stone formation in pediatric patients has not been reported to date. The aim of this study was to assess oxidative stress in childhood urolithiasis. METHODS Seventy-four children diagnosed with urolithiasis and 72 healthy control subjects were enrolled in the study. Kidney stone formers were evaluated by analysis of metabolic conditions related to urolithiasis, such as hypercalciuria, hyperoxaluria, hypocitraturia and hyperuricosuria. Urine total antioxidant status (TAS), and total oxidant status (TOS) were measured, and oxidative stress index (OSI) was calculated as an indicator of the degree of oxidative stress. RESULTS Among the stone formers, metabolic analyses revealed that 30 % had hypercalciuria, 45 % had hypocitraturia, 6 % had hyperoxaluria and 40 % had hyperuricosuria. Elevated levels of the renal tubular damage marker urinary N-acetyl- beta-D-glucosaminidase (NAG) was elevated in 25 % of the patient group, but microalbuminuria was not detected. Total oxidant status and total antioxidant status were significantly higher in stone formers than in the controls (p = 0.023 and 0.004, respectively). In addition, urinary NAG was significantly correlated with TOS (r = 0.427, p = 0.019). CONCLUSIONS The results of this study show that oxidative stress may play an important role in the pathogenesis of pediatric stone formers.
Collapse
Affiliation(s)
- Nilufer Göknar
- Department of Pediatric Nephrology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
48
|
Kuma A, Yamada S, Wang KY, Kitamura N, Yamaguchi T, Iwai Y, Izumi H, Tamura M, Otsuji Y, Kohno K. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis. PLoS One 2014; 9:e103240. [PMID: 25054240 PMCID: PMC4108433 DOI: 10.1371/journal.pone.0103240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/26/2014] [Indexed: 12/01/2022] Open
Abstract
WNT signaling mediates various physiological and pathological processes. We previously showed that WNT10A is a novel angio/stromagenic factor involved in such processes as tumor growth, wound healing and tissue fibrosis. In this study, we investigated the role of WNT10A in promoting the fibrosis that is central to the pathology of acute interstitial nephritis (AIN). We initially asked whether there is an association between kidney function (estimated glomerular filtration rate; eGFR) and WNT10A expression using kidney biopsies from 20 patients with AIN. Interestingly, patients with WNT10A expression had significantly lower eGFR than WNT10A-negative patients. However, changes in kidney function were not related to the level of expression of other WNT family members. Furthermore, there was positive correlation between WNT10A and α-SMA expression. We next investigated the involvement of WNT10A in kidney fibrosis processes using COS1 cells, a kidney fibroblast cell line. WNT10A overexpression increased the level of expression of fibronectin and peroxiredoxin 5. Furthermore, WNT10A overexpression renders cells resistant to apoptosis induced by hydrogen peroxide and high glucose. Collectively, WNT10A may induce kidney fibrosis and associate with kidney dysfunction in AIN.
Collapse
Affiliation(s)
- Akihiro Kuma
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ke-Yong Wang
- Bio-information Research Center, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriaki Kitamura
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takahiro Yamaguchi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiko Iwai
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masahito Tamura
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, Cardiology and Nephrology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kimitoshi Kohno
- The President Laboratory, University of Occupational and Environmental Health, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Nephrolithiasis is a common systemic disease associated with both acute kidney injury (AKI) and chronic kidney disease (CKD). The purpose of this review is to discuss recent publications regarding nephrolithiasis-associated kidney damage, with an emphasis on AKI. RECENT FINDINGS Nephrolithiasis is not a common cause of adult AKI (1-2% of cases), although it may be a more important factor in young children (up to 30%). The primary mechanism of nephrolithiasis-associated AKI is obstructive nephropathy, and factors on presentation with obstructive uropathy predict the likelihood of long-term renal recovery. Crystalline nephropathy is another potential pathway in certain circumstances that is often associated with a worse outcome. Recent studies have elucidated additional pathways whereby calcium oxalate crystals can cause acute injury, implicating innate immunity and intracellular inflammasome pathways. Several large cohort studies have demonstrated an independent association of nephrolithiasis with CKD and end-stage renal disease, although the effect size is modest. Urologic comorbidities, urinary infection, and shared underlying risk factors (e.g., diabetes, hypertension) all impact nephrolithiasis-associated CKD risk. SUMMARY Obstructive nephropathy and crystalline nephropathy both contribute to nephrolithiasis-associated AKI, although the latter appears to have a worse prognosis. Nephrolithiasis is an independent, albeit small, risk factor for CKD. Further study is needed to clarify the incidence and mechanisms of nephrolithiasis-associated AKI, and the relationship between nephrolithiasis-associated AKI and CKD.
Collapse
Affiliation(s)
- Xiaojing Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - John C. Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Farooq SM, Boppana NB, Asokan D, Sekaran SD, Shankar EM, Li C, Gopal K, Bakar SA, Karthik HS, Ebrahim AS. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. [PMID: 24691130 PMCID: PMC3972226 DOI: 10.1371/journal.pone.0093056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/02/2014] [Indexed: 12/04/2022] Open
Abstract
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
Collapse
Affiliation(s)
- Shukkur M. Farooq
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Nithin B. Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Devarajan Asokan
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M. Shankar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Kaliappan Gopal
- Department of Orthopedics, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly A. Bakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Harve S. Karthik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abdul S. Ebrahim
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| |
Collapse
|