1
|
Vidal MS, Radnaa E, Vora N, Khanipov K, Antich C, Ferrer M, Urrabaz-Garza R, Jacob JE, Menon R. Establishment and comparison of human term placenta-derived trophoblast cells†. Biol Reprod 2024; 110:950-970. [PMID: 38330185 PMCID: PMC11484515 DOI: 10.1093/biolre/ioae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jeena E Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
2
|
Kiełbowski K, Stańska W, Bakinowska E, Rusiński M, Pawlik A. The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. Curr Issues Mol Biol 2024; 46:3640-3675. [PMID: 38666958 PMCID: PMC11049642 DOI: 10.3390/cimb46040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| |
Collapse
|
3
|
Özkul B, Sever İH, Yiğittürk G, Elgörmüş ÇS, Gür SG, Erbaş O. Demonstration of ameliorating effect of papaverine in sepsis-induced acute lung injury on rat model through radiology and histology. ULUS TRAVMA ACIL CER 2023; 29:963-971. [PMID: 37681716 PMCID: PMC10560817 DOI: 10.14744/tjtes.2023.73580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/26/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Our target was to show the role of high mobility group box-1/receptor for (HMGB1/RAGE) interaction in feces intraperitoneal injection procedure (FIP)-induced acute lung injury (ALI) pathophysiology, to investigate the effect of papaverine on RAGE associated NF-κB pathway by determining the level of soluble RAGE (sRAGE) and HMGB1, and to support this hypothesis by evaluating inflammatory biochemical, oxidative stress markers, Hounsfield unit (HU) value in computed tomography (CT), and histo-pathological results. METHODS FIP was performed on 37 Wistar rats for creating a sepsis-induced ALI model. The animals were assigned into four groups as follows: Normal control (no treatment), placebo (FIP and saline), and receiving 20 mg/kg and 40 mg/kg per day papaverine. Twenty h after FIP, CT examination was performed for all animals, and HU value of the lung parenchyma was measured. The plasma levels of tumor necrosis factor (TNF)-α, HMGB1, sRAGE, C-reactive protein (CRP) and malondialdehyde (MDA), and lactic acid (LA) were determined and PaO2 and PaCO2 were measured from arterial blood sample. Lung damage was assessed by histopathological. RESULTS TNF-, IL-6, CRP, HMGB1, MDA, LA levels, histopathologic scores, and HU values of CT were significantly increased and sRAGE levels were decreased in the saline-treated group against normal group (all P<0.05). Papaverine significantly reversed all results regardless of the dose (all P<0.05) and demonstrated inhibition of HMGB1/RAGE interaction through increasing sRAGE levels and suppresses the pro-inflammatory cytokines. CONCLUSION We concluded that papaverine has ameliorating effects in rat model of ALI.
Collapse
Affiliation(s)
- Bahattin Özkul
- Department of Radiology, İstanbul Atlas University, İstanbul-Türkiye
| | | | - Gürkan Yiğittürk
- Department of Histology and Embryology, Muğla Sıtkı Koçman University, Muğla-Türkiye
| | | | | | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, İstanbul-Türkiye
| |
Collapse
|
4
|
Li J, Zhang X, Guo D, Shi Y, Zhang S, Yang R, Cheng J. The mechanism of action of paeoniae radix rubra-angelicae sinensis radix drug pair in the treatment of rheumatoid arthritis through PI3K/AKT/NF-κB signaling pathway. Front Pharmacol 2023; 14:1113810. [PMID: 36992829 PMCID: PMC10040578 DOI: 10.3389/fphar.2023.1113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: To investigate the effects and mechanisms of Paeoniae radix rubra-Angelicae sinensis radix (P-A) drug pair in the treatment of rheumatoid arthritis (RA). Methods: Mass spectrometry was employed to accurately characterize the main components of the P-A drug pair. Network pharmacology was used to analyze the main components and pathways of the P-A drug pair in the treatment of RA, and Discovery Studio software was used to molecularly dock the key proteins on the pathway with their corresponding compounds. The levels of serum TNF-a, IL-1β, and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). The histopathology of the ankle joint was observed by hematoxylin-eosin (HE) staining, and the positive expression of p-PI3K, p-IKK, p-NF-κB, and p-AKT in the synovial tissue of the ankle joint was detected by immunohistochemical analysis. Finally, the expression of PI3K, IKK, and AKT and their phosphorylation levels were determined by western blot in each group of rats. Results: Network pharmacology combined with molecular docking analysis revealed that the pharmacodynamic mechanism of the P-A drug pair for the treatment of RA may be related to the contents of caffeic acid, quercetin, paeoniflorin, and baicalein in the regulation of the expression of the PI3K/AKT/NF-κB signaling pathway and the targets of PIK3CA, PIK3R1, AKT1, HSP90AA1 and IKBKB in the pathway. Compared with the model group, the P-A drug pair significantly improved the pathological changes of the synovial tissue and reduced feet swelling in RA model rats. Moreover, it regulated the levels of TNF-α, IL-1β, and IL-6 in serum (p < 0.05). The results of the immunohistochemical analysis and western blot showed that the expression of PI3K, IKK, NF-κB, and AKT decreased after phosphorylation in the synovial tissue (p < 0.05). Conclusion: The P-A drug pair exhibited an inhibitory effect on the hyperactivation of the PI3K/AKT/NF-κB signaling pathway in the synovial membrane of RA rats. The mechanism may be related to the downregulation of the phosphorylation levels PI3K, IKK, NF-κB, and AKT, which in turn decreased inflammatory cell infiltration and synovial membrane proliferation.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Pharmaceutics, The Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dongyan Guo
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shihao Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ruiying Yang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiangxue Cheng
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Extracellular HMGB1 as Inflammatory Mediator in the Progression of Mycoplasma Gallisepticum Infection. Cells 2022; 11:cells11182817. [PMID: 36139393 PMCID: PMC9496866 DOI: 10.3390/cells11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a member of damage-associated molecular patterns (DAMPs), is involved in the immune regulation of several infectious diseases. Mycoplasma gallisepticum (MG) infection is proved to cause an abnormal immune response, but the role of HMGB1 in MG-induced chronic respiratory disease (CRD) is unclear. In this study, we found that HMGB1 was released from the nucleus to the extracellular in macrophages upon infection with MG. Extracellular HMGB1 bound to TLR2 activating the NF-κB pathway triggering a severe inflammatory storm and promoting the progression of MG infection. More importantly, TLR4 could be activated by HMGB1 to trigger immune disorders after TLR2 was silenced. This disease process could be interrupted by ethyl pyruvate (EP) inhibition of HMGB1 release or glycyrrhizic acid (GA). Furthermore, treatment of MG-infected chickens with GA significantly alleviated immune organ damage. In conclusion, we demonstrate that HMGB1 is secreted extracellularly to form an inflammatory environment upon MG infection, triggering a further cellular inflammatory storm in a positive feedback approach. Blocking MG-induced HMGB1 release or suppression downstream of the HMGB1-TLR2/TLR4 axis may be a promising novel strategy for the treatment of CRD. Furthermore, this study may provide a theoretical reference for understanding non-LPS-activated TLR4 events.
Collapse
|
6
|
Jankauskaite L, Malinauskas M, Mickeviciute GC. HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS. Front Pediatr 2022; 10:884539. [PMID: 35633962 PMCID: PMC9132499 DOI: 10.3389/fped.2022.884539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
From the start of pandemics, children were described as the ones who were less affected by SARS-Cov-2 or COVID-19, which was mild in most of the cases. However, with the growing vaccination rate of the adult population, children became more exposed to the virus and more cases of severe SARS-CoV-2-induced ARDS are being diagnosed with the disabling consequences or lethal outcomes associated with the cytokine storm. Thus, we do hypothesize that some of the children could benefit from nervus vagus stimulation during COVID-19 ARDS through the inhibition of HMGB1 release and interaction with the receptor, resulting in decreased neutrophil accumulation, oxidative stress, and coagulopathy as well as lung vascular permeability. Moreover, stimulation through alpha-7 nicotinic acetylcholine receptors could boost macrophage phagocytosis and increase the clearance of DAMPs and PAMPs. Further rise of FGF10 could contribute to lung stem cell proliferation and potential regeneration of the injured lung. However, this stimulation should be very specific, timely, and of proper duration, as it could lead to such adverse effects as increased viral spread and systemic infection, especially in small children or infants due to specific pediatric immunity state and anatomical features of the respiratory system.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Mantas Malinauskas
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Goda-Camille Mickeviciute
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
- Rehabilitation Center “Palangos Linas”, Palanga, Lithuania
| |
Collapse
|
7
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
8
|
Ding X, Li S, Zhu L. Potential effects of HMGB1 on viral replication and virus infection-induced inflammatory responses: A promising therapeutic target for virus infection-induced inflammatory diseases. Cytokine Growth Factor Rev 2021; 62:54-61. [PMID: 34503914 DOI: 10.1016/j.cytogfr.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory responses, characterized by the overproduction of numerous proinflammatory mediators by immune cells, is essential to protect the host against invading pathogens. Excessive production of proinflammatory cytokines is a key pathogenic factor accounting for severe tissue injury and disease progression during the infection of multiple viruses, which are therefore termed as "cytokine storm". High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein released either over virus-infected cells or activated immune cells, may act as a proinflammatory cytokine with a robust capacity to potentiate inflammatory response and disease severity. Moreover, HMGB1 is a host factor that potentially participates in the regulation of viral replication cycles with complicated mechanisms. Currently, HMGB1 is regarded as a promising therapeutic target against virus infection. Here, we provide an overview of the updated studies on how HMGB1 is differentially manipulated by distinct viruses to regulate viral diseases.
Collapse
Affiliation(s)
- Xiuyan Ding
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70118, USA
| | - Liqian Zhu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Meta-Analysis of Methamphetamine Modulation on Amyloid Precursor Protein through HMGB1 in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094781. [PMID: 33946401 PMCID: PMC8124433 DOI: 10.3390/ijms22094781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
The deposition of amyloid-beta (Aβ) through the cleavage of amyloid-beta precursor protein (APP) is a biomarker of Alzheimer’s disease (AD). This study used QIAGEN Ingenuity Pathway Analysis (IPA) to conduct meta-analysis on the molecular mechanisms by which methamphetamine (METH) impacts AD through modulating the expression of APP. All the molecules affected by METH and APP were collected from the QIAGEN Knowledge Base (QKB); 78 overlapping molecules were identified. Upon simulation of METH exposure using the “Molecule Activity Predictor” feature, eight molecules were found to be affected by METH and exhibited activation relationships on APP expression at a confidence of p = 0.000453 (Z-score = 3.51, two-tailed). Core Analysis of these eight molecules identified High Mobility Group Box protein 1 (HMGB1) signaling pathway among the top 5 canonical pathways with most overlap with the 8-molecule dataset. Simulated METH exposure increased APP expression through HMGB1 at a confidence of p < 0.00001 (Z-score = 7.64, two-tailed). HMGB1 is a pathogenic hallmark in AD progression. It not only increases the production of inflammatory mediators, but also mediates the disruption of the blood-brain barrier. Our analyses suggest the involvement of HMGB1 signaling pathway in METH-induced modulation of APP as a potential casual factor of AD.
Collapse
|
10
|
Nair M, Jagadeeshan S, Katselis G, Luan X, Momeni Z, Henao-Romero N, Chumala P, Tam JS, Yamamoto Y, Ianowski JP, Campanucci VA. Lipopolysaccharides induce a RAGE-mediated sensitization of sensory neurons and fluid hypersecretion in the upper airways. Sci Rep 2021; 11:8336. [PMID: 33863932 PMCID: PMC8052339 DOI: 10.1038/s41598-021-86069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Thoracic dorsal root ganglia (tDRG) contribute to fluid secretion in the upper airways. Inflammation potentiates DRG responses, but the mechanisms remain under investigation. The receptor for advanced glycation end-products (RAGE) underlies potentiation of DRG responses in pain pathologies; however, its role in other sensory modalities is less understood. We hypothesize that RAGE contributes to electrophysiological and biochemical changes in tDRGs during inflammation. We used tDRGs and tracheas from wild types (WT), RAGE knock-out (RAGE-KO), and with the RAGE antagonist FPS-ZM1, and exposed them to lipopolysaccharides (LPS). We studied: capsaicin (CAP)-evoked currents and action potentials (AP), tracheal submucosal gland secretion, RAGE expression and downstream pathways. In WT neurons, LPS increased CAP-evoked currents and AP generation, and it caused submucosal gland hypersecretion in tracheas from WT mice exposed to LPS. In contrast, LPS had no effect on tDRG excitability or gland secretion in RAGE-KO mice or mice treated with FPS-ZM1. LPS upregulated full-length RAGE (encoded by Tv1-RAGE) and downregulated a soluble (sRAGE) splice variant (encoded by MmusRAGEv4) in tDRG neurons. These data suggest that sensitization of tDRG neurons contributes to hypersecretion in the upper airways during inflammation. And at least two RAGE variants may be involved in these effects of LPS.
Collapse
Affiliation(s)
- Manoj Nair
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - George Katselis
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Xiaojie Luan
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zeinab Momeni
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Nicolas Henao-Romero
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Paulos Chumala
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Julian S Tam
- Department of Medicine, Division of Respirology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8640, Japan
| | - Juan P Ianowski
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Verónica A Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
11
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho AF, Maes M, Walder K, Berk M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166. [PMID: 32739471 PMCID: PMC7392886 DOI: 10.1016/j.lfs.2020.118166] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia,Corresponding author at: IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3218, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Barwon Health, Geelong, Australia
| | - Andre F. Carvalho
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, University of Toronto, Toronto, Canada,Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Li R, Zou X, Huang H, Yu Y, Zhang H, Liu P, Pan S, Ouyang Y, Shang Y. HMGB1/PI3K/Akt/mTOR Signaling Participates in the Pathological Process of Acute Lung Injury by Regulating the Maturation and Function of Dendritic Cells. Front Immunol 2020; 11:1104. [PMID: 32636835 PMCID: PMC7318890 DOI: 10.3389/fimmu.2020.01104] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: High-mobility group box 1 protein (HMGB1) was identified as a highly conserved DNA binding nuclear protein, which participates in the processes of acute lung injury (ALI). HMGB1 binds to its specific receptors not only to activate the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways but also to regulate the activation of the phosphatidylinositol 3′-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway. Mature dendritic cells (DCs) regulate acute lung inflammation and pathological injury in ALI. In addition, studies have shown that the activation of the PI3K/AKT/mTOR signaling pathway may regulate the function and maturation of DCs. Objective: Therefore, we speculate that HMGB1/PI3K/Akt/mTOR signaling participates in regulating the pathological process of ALI by regulating the maturation and function of DCs. Methods: Anti-HMGB1 antibody, rHMGB1, or LY294002 (PI3K inhibitor) was administered in a murine model of lipopolysaccharide (LPS)-induced ALI. For in vitro studies, generated bone marrow-derived dendritic cells (BMDCs) primed by LPS were stimulated with the same reagents. The effects of these different treatments were observed on the expression of PI3K, AKT, and mTOR and on the function of DCs. Results: HMGB1 upregulated the expression of PI3K, Akt, and mTOR mRNA and phosphorylated proteins in BMDCs. The HMGB1/PI3K/Akt/mTOR signaling pathway induced the maturation and antigen-presenting ability of lung DCs, mediated the percentage of myeloid DCs (mDCs), and enhanced the adhesion and chemotactic ability of lung DCs. Conclusions: HMGB1/PI3K/Akt/mTOR signaling participates in the pathological process of ALI by regulating the maturation and functions of DCs.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Huang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Zhang
- Department of Emergency, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Pei Liu
- Shenzhen Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Ouyang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
14
|
Wu MQ, Li C, Zhang LN, Lin J, He K, Niu YW, Che CY, Jiang N, Jiang JQ, Zhao GQ. High-mobility group box1 as an amplifier of immune response and target for treatment in Aspergillus fumigatus keratitis. Int J Ophthalmol 2020; 13:708-717. [PMID: 32420216 DOI: 10.18240/ijo.2020.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
AIM To determine the roles of high-mobility group box1 (HMGB1) in pro-inflammation, host immune response and its potential target for treatment in Aspergillus fumigatus (A.fumigatus) keratitis. METHODS Expression of HMGB1 was tested in C57BL/6 normal and infected corneas. Dual immunostaining tested co-expression of HMGB1 with TLR4 or LOX-1. C57BL/6 mice were pretreated with Box A or PBS and then infected. Clinical scores, polymerase chain reaction, ELISA, and MPO assay were used to assess the disease response. Flow cytometry were used to test the effect of Box A on reactive oxygen species (ROS) expression after A.fumigatus stimulation in polymorphonuclear neutrophilic leukocytes (PMN). C57BL/6 peritoneal macrophages were pretreated with Box B before A.fumigatus stimulation, and MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 were measured. Macrophages were pretreated with Box B or Box B combined with Poly(I) (an inhibitor of LOX-1) before stimulating with A.fumigatus, and MIP-2, IL-1β, TNF-α, LOX-1, p38-MAPK, p-p38-MAPK were measured. RESULTS HMGB1 levels were elevated in C57BL/6 mice after infection. HMGB1 co-expressed with TLR4, and LOX-1 in infiltrated cells. Box A vs PBS treated C57BL/6 mice had lower clinical scores and down-regulated corneal HMGB1, MIP-2, IL-1β expression and neutrophil influx. Box B treatment amplified expression of MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 that induced by A.fumigatus in macrophage. Compared to the treatment of Box B only, the protein expression of IL-1β, TNF-α showed inhibition of Box B combined with Poly(I), which also reduced the A.fumigatus-evoked protein level of LOX-1 and phosphorylation level of p38-MAPK. The production of A.fumigatus-stimulated ROS was significantly declined after Box A pretreatment in PMN. CONCLUSION Blocking HMGB1 reduces the disease response in C57BL/6 mice. HMGB1 can amplify the host immune response through p38-MAPK, and is a target for treatment of A.fumigatus keratitis.
Collapse
Affiliation(s)
- Meng-Qi Wu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Na Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Kun He
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Ya-Wen Niu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jia-Qian Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
15
|
Gao R, Zhang Y, Kang Y, Xu W, Jiang L, Guo T, Huan C. Glycyrrhizin Inhibits PEDV Infection and Proinflammatory Cytokine Secretion via the HMGB1/TLR4-MAPK p38 Pathway. Int J Mol Sci 2020; 21:ijms21082961. [PMID: 32340172 PMCID: PMC7215578 DOI: 10.3390/ijms21082961] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Our previous study showed that glycyrrhizin (GLY) inhibited porcine epidemic diarrhea virus (PEDV) infection, but the mechanisms of GLY anti-PEDV action remain unclear. In this study, we focused on the anti-PEDV and anti-proinflammatory cytokine secretion mechanisms of GLY. We found that PEDV infection had no effect on toll-like receptor 4 (TLR4) protein and mRNA levels, but that TLR4 regulated PEDV infection and the mRNA levels of proinflammatory cytokines. In addition, we demonstrated that TLR4 regulated p38 phosphorylation but not extracellular regulated protein kinases1/2 (Erk1/2) and c-Jun N-terminal kinases (JNK) phosphorylation, and that GLY inhibited p38 phosphorylation but not Erk1/2 and JNK phosphorylation. Therefore, we further explored the relationship between high mobility group box-1 (HMGB1) and p38. We demonstrated that inhibition of HMGB1 using an antibody, mutation, or knockdown decreased p38 phosphorylation. Thus, HMGB1 participated in activation of p38 through TLR4. Collectively, our data indicated that GLY inhibited PEDV infection and decreased proinflammatory cytokine secretion via the HMGB1/TLR4-mitogen-activated protein kinase (MAPK) p38 pathway.
Collapse
Affiliation(s)
- Ruyi Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yongshuai Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yuhui Kang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Weiyin Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
- Correspondence: ; Tel.: +13-585-232-936
| |
Collapse
|
16
|
Catalpol ameliorates type II collagen-induced arthritis in rats and inhibits LPS-stimulated inflammatory response in SW982 human synovial cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
17
|
Gorgulho CM, Romagnoli GG, Bharthi R, Lotze MT. Johnny on the Spot-Chronic Inflammation Is Driven by HMGB1. Front Immunol 2019; 10:1561. [PMID: 31379812 PMCID: PMC6660267 DOI: 10.3389/fimmu.2019.01561] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Although much has been made of the role of HMGB1 acting as an acute damage associated molecular pattern (DAMP) molecule, prompting the response to tissue damage or injury, it is also released at sites of chronic inflammation including sites of infection, autoimmunity, and cancer. As such, the biology is distinguished from homeostasis and acute inflammation by the recruitment and persistence of myeloid derived suppressor cells, T regulatory cells, fibrosis and/or exuberant angiogenesis depending on the antecedents and the other individual inflammatory partners that HMGB1 binds and focuses, including IL-1β, CXCL12/SDF1, LPS, DNA, RNA, and sRAGE. High levels of HMGB1 released into the extracellular milieu and its persistence in the microenvironment can contribute to the pathogenesis of many if not all autoimmune disorders and is a key factor that drives inflammation further and worsens symptoms. HMGB1 is also pivotal in the maintenance of chronic inflammation and a “wound healing” type of immune response that ultimately contributes to the onset of carcinogenesis and tumor progression. Exosomes carrying HMGB1 and other instructive molecules are released and shape the response of various cells in the chronic inflammatory environment. Understanding the defining roles of REDOX, DAMPs and PAMPs, and the host response in chronic inflammation requires an alternative means for positing HMGB1's central role in limiting and focusing inflammation, distinguishing chronic from acute inflammation.
Collapse
Affiliation(s)
- Carolina M Gorgulho
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Graziela G Romagnoli
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Rosh Bharthi
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Bi X, Xu M, Li J, Huang T, Jiang B, Shen L, Luo L, Liu S, Yin Z. Heat shock protein 27 inhibits HMGB1 translocation by regulating CBP acetyltransferase activity and ubiquitination. Mol Immunol 2019; 108:45-55. [DOI: 10.1016/j.molimm.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
|
19
|
Kim G, Piao C, Oh J, Lee M. Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:165-174. [PMID: 30668337 DOI: 10.1016/j.phymed.2018.09.240] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an inflammatory lung disease with a high mortality rate. In this study, combined delivery of the anti-inflammatory compound curcumin and the heme-oxygenase-1 (HO-1) gene using cholesterol-conjugated polyamidoamine was evaluated in a mouse model as a therapeutic option for ALI. METHODS Curcumin was loaded into cholesterol-conjugated polyamidoamine (PamChol) micelles, and curcumin-loaded PamChol (PamChol-Cur) was then complexed with plasmid DNA (pDNA) through charge interactions. The pDNA/PamChol-Cur complex was physically characterized by dynamic light scattering, gel retardation, and heparin competition assay. Gene delivery efficiency was measured by luciferase assay. The HO-1 expression plasmid (pHO-1)/PamChol-Cur complex was administrated into the ALI model via intratracheal injection. The anti-inflammatory effect of the pDNA/PamChol-Cur complex was evaluated by ELISA, immunohistochemistry, and hematoxylin and eosin staining. RESULTS The pDNA/PamChol-Cur complex had a size of approximately 120 nm with a positive surface charge. The in vitro plasmid DNA (pDNA) delivery efficiency of the pDNA/PamChol-Cur complex into L2 lung epithelial cells was higher than that of pDNA/PamChol. In addition, the curcumin in the pDNA/PamChol-Cur complex inhibited the nuclear translocation of NF-κB, suggesting an anti-inflammatory effect of curcumin. In the ALI animal model, the pHO-1/PamChol-Cur complex delivered the pHO-1 gene more efficiently than pHO-1/PamChol. In addition, the pHO-1/PamChol-Cur complex showed greater anti-inflammatory effects by reducing anti-inflammatory cytokine levels more than delivery of pHO-1/PamChol or PamChol-Cur only. CONCLUSION The pHO-1/PamChol-Cur complex had a higher pHO-1 gene-delivery efficiency and greater anti-inflammatory effects than the pHO-1/PamChol complex or PamChol-Cur. Therefore, the combined delivery of curcumin and pHO-1 using PamChol-Cur may be useful for treatment of ALI.
Collapse
Affiliation(s)
- Gyeungyun Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| |
Collapse
|
20
|
Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, Zhang R, Shen L. High-Mobility Group Box 1 (HMGB1) and Autophagy in Acute Lung Injury (ALI): A Review. Med Sci Monit 2019; 25:1828-1837. [PMID: 30853709 PMCID: PMC6423734 DOI: 10.12659/msm.912867] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome in critically ill patients. The identification of novel biological markers for the early diagnosis of ALI and the development of more effective treatments are topics of current research. High mobility group box-1 protein (HMGB1) is a late inflammatory mediator associated with sepsis, malignancy, and immune disease. Levels of HMGB1 may reflect the severity of inflammation and tissue damage, indicating a potential role for HMGB1 as a prognostic biomarker in ALI, and a potential target for blocking inflammatory pathways. Several studies have shown that HMGB1 regulates autophagy. Autophagy, or type II programmed cell death, is an essential biological process that maintains cellular homeostasis. Studies have shown that HMGB1 and autophagy are involved in the pathogenesis of many lung diseases including ALI but the specific mechanisms underlying this association remain to be determined. This review aims to provide an update on the current status of the role of HMBG1 and autophagy in ALI.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Physiology, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| | - Chao Chen
- Department of Pathology and Key Laboratory of Cancer Stem Cells and Translational Medicine, Hunan Normal University Medical College, Changsha, Hunan, Christmas island
| | - YangYe Chen
- Department of Physiology, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| | - Yi Li
- Department of Physiology, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| | - Fang Tang
- Department of Medical Nursing, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| | - Hao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the Peoples' Liberation Army (PLA), Changsha, Hunan, China (mainland)
| | - Wei He
- Department of Ultrasonography, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Ran Zhang
- Department of Immunology, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| | - Li Shen
- Department of Physiology, Hunan Normal University Medical College, Changsha, Hunan, China (mainland)
| |
Collapse
|
21
|
Zhong F, Xu J, Yang X, Zhang Q, Gao Z, Deng Y, Zhang L, Yu C. miR-145 eliminates lipopolysaccharides-induced inflammatory injury in human fibroblast-like synoviocyte MH7A cells. J Cell Biochem 2018; 119:10059-10066. [PMID: 30191608 DOI: 10.1002/jcb.27341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Recently, it has been accepted that miR-based therapy may be beneficial for rheumatoid arthritis (RA). This study aimed to evaluate the potential involvement of miR-145 in RA in vitro. The expression of miR-145 in the human fibroblast-like synoviocyte line MH7A was overexpressed by miR-mimic transfection, after which cells were subjected to lipopolysaccharides (LPS). Cell viability, apoptosis, and the release of pro-inflammatory cytokines were measured. The result showed that the apoptosis and the release of IL-1β, IL-6, IL-8, and TNF-α were significantly induced by LPS. Meanwhile, LPS treatment led to downregulation of miR-145. miR-145 overexpression in LPS-untreated MH7A cells had no impacts on cell apoptosis and inflammation. But, restoring miR-145 expression in LPS-stimulated cells by supplementation of a miR-145 mimic protected MH7A cells against LPS-induced apoptosis and inflammation. Furthermore, miR-145 overexpression in LPS-untreated MH7A cells slightly blocked the PI3K/ATK and mTOR pathways, whereas miR-145 overexpression in LPS-stimulated cells notably repressed the LPS-induced activation of PI3K/ATK and MAPK/mTOR pathways. Our study suggested that miR-145 protected MH7A cells against LPS-induced apoptosis and inflammation by inhibiting the PI3K/AKT and MAPK/mTOR pathways.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jian Xu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xirui Yang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Zhaomeng Gao
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Yao Deng
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chunyan Yu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
22
|
Zhang B, Wang H, Wang Y, Yang M, Gu J, Yao M. High mobility group box protein 1 downregulates acid β-glucosidase 1 in synovial fibroblasts from patients with rheumatoid arthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3575-3582. [PMID: 31949736 PMCID: PMC6962872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/28/2018] [Indexed: 06/10/2023]
Abstract
High mobility group box protein 1 (HMGB1) plays an important role in the pathogenesis of rheumatoid arthritis (RA), but the pathogenic mechanisms of HMGB1 in RA and the involvement of the lysosomal enzyme acid β-glucosidase 1 (GBA1) are not fully elucidated. The aim of the present study was to use HMGB1 to treat RA synovial fibroblasts (RASFs) and to examine the changes of transcriptional factors. RASFs were isolated from synovial tissues obtained from five RA patients undergoing synovectomy or joint replacement. RASFs were incubated with 100 ng/mL of HMGB1 for different periods. The changes in transcriptional factors were screened by RNA sequencing (RNA-seq) and results were confirmed by quantitative real-time PCR and western blot. The results showed that the mRNA of >60 genes in RASFs were differentially expressed after HMGB1 treatment. Among them, GBA1 was the most markedly decreased (-3.99 folds, P<0.001). These results were confirmed by qRT-PCR and western blot. The late-stage inflammatory mediator HMGB1 probably exerts its pathogenic role in RA by downregulating GBA1.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| | - Hongzhi Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| | - Mingfeng Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| | - Juanfang Gu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| | - Ming Yao
- Department of Pain, First Affiliated Hospital of Jiaxing UniversityZhejiang, China
| |
Collapse
|
23
|
Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018; 9:1330. [PMID: 29963048 PMCID: PMC6013556 DOI: 10.3389/fimmu.2018.01330] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Trauma is one of the leading causes of death and disability in the world. Multiple trauma or isolated traumatic brain injury are both indicative of human tissue damage. In the early phase after trauma, damage-associated molecular patterns (DAMPs) are released and give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. Later, protracted inflammation following sepsis will favor hospital-acquired infection and will worsen patient’s outcome through immunosuppression. Throughout medical care or surgical procedures, severe trauma patients will be subjected to endogenous or exogenous DAMPs. In this review, we summarize the current knowledge regarding DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of organ failure and infections.
Collapse
Affiliation(s)
- Mickael Vourc'h
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| |
Collapse
|
24
|
BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget 2018; 7:23370-82. [PMID: 26993765 PMCID: PMC5029633 DOI: 10.18632/oncotarget.8042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/28/2016] [Indexed: 11/29/2022] Open
Abstract
Inhibition of proapoptotic pathways in synovial fibroblasts is one of the major causes of synovial proliferation and hyperplasia in rheumatic diseases. We have shown previously that NF-κB inhibitor BAY 11-7085, through inactivation of PPAR-γ, induces apoptosis in human synovial fibroblasts. In this work we showed that BAY 11-7085 induced autophagy that preceded BAY 11-7085-induced apoptosis. Of interest, BAY 11-7085 induced Serine 211 phosphorylation and degradation of glucocorticoid receptor (GR). Glucocorticoid prednisolone induced both activation and degradation of GR, as well as autophagy in synovial fibroblasts. BAY 11-7085-induced cell death was significantly decreased with glucocorticoid inhibitor mifepristone and with inhibitors of autophagy. Both BAY 11-7085-induced autophagy and GR activation were down regulated with PPAR-γ agonist, 15d-PGJ2 and MEK/ERK inhibitor UO126. Inhibition of autophagy markedly decreased endogenous and BAY 11-7085-induced ERK phosphorylation, suggesting a positive feed back loop between ERK activation and autophagy in synovial fibroblasts. Co-transfection of MEK1 with PPAR-γ1 in HEK293 cells caused known inhibitory phosphorylation of PPAR-γ1 (Serine 112) and enhanced GR degradation, in the absence or presence of prednisolone. Furthermore, GR was both phosphorylated on Serine 211 and down regulated in synovial fibroblasts during serum starvation induced autophagy. These results showed that GR activation and PPAR-γ inactivation mediated BAY 11-7085-induced autophagy.
Collapse
|
25
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
26
|
Lee S, Piao C, Kim G, Kim JY, Choi E, Lee M. Production and application of HMGB1 derived recombinant RAGE-antagonist peptide for anti-inflammatory therapy in acute lung injury. Eur J Pharm Sci 2017; 114:275-284. [PMID: 29292016 DOI: 10.1016/j.ejps.2017.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease caused by sepsis, infection, or ischemia-reperfusion. The receptor for advanced glycation end-products (RAGE) signaling pathway plays an important role in ALI. In this study, a novel RAGE-antagonist peptide (RAP) was produced as an inhibitor of the RAGE signaling pathway based on the RAGE-binding domain of high mobility group box-1 (HMGB1). Recombinant RAP was over-expressed and purified using nickel-affinity chromatography. In lipopolysaccharide- or HMGB1-activated RAW264.7 macrophage cells, RAP reduced the levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). RAP decreased the levels of cell surface RAGE and inhibited the nuclear translocation of nuclear factor-κB (NF-κB). These results imply that RAP decreases RAGE-mediated NF-κB activation and subsequent inflammatory reaction. For in vivo evaluation, RAP was delivered to the lungs of ALI-model animals via intratracheal administration. As a result, RAGE was down-regulated in the lung tissues by pulmonary delivery of RAP. Consequently, TNF-α, IL-6, and IL-1β were also reduced in broncoalveolar lavage fluid and the lung tissues of RAP-treated animals. Hematoxylin and eosin staining indicated that inflammation was decreased in RAP-treated animals. Collectively, these results suggest that RAP may be a useful treatment for ALI.
Collapse
Affiliation(s)
- Seonyeong Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeungyun Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ji Yeon Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunji Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
27
|
Saquinavir Ameliorates Liver Warm Ischemia-Reperfusion-Induced Lung Injury via HMGB-1- and P38/JNK-Mediated TLR-4-Dependent Signaling Pathways. Mediators Inflamm 2017; 2017:7083528. [PMID: 29440779 PMCID: PMC5758951 DOI: 10.1155/2017/7083528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Liver ischemia and reperfusion (I/R) induce local and distant tissue injuries, contributing to morbidity and mortality in a wider range of pathologies. This is especially seen under uncontrolled aseptic inflammatory conditions, leading to injury of remote organs, such as lung injury, and even failure. Saquinavir (SQV) is a kind of HIV protease inhibitor that possesses an anti-inflammatory property. In this study, we investigated whether SQV suppresses Toll-like receptor 4- (TLR4-) dependent signaling pathways of high-mobility group box 1 (HMGB1) and P38/JNK, conferring protection against murine liver I/R-induced lung injury. To investigate our hypothesis, C57BL/6 mice and TLR4 knockout mice (TLR4−/−) were used to perform the study. SQV administration markedly attenuated remote lung tissue injury after 1-hour ischemia and 6-hour reperfusion of the liver. To our expectation, SQV attenuated I/R-induced lung edema, hyperpermeability, and pathological injury. The beneficial effects of SQV were associated with decreased levels of circulating and lung tissue inflammatory cytokines, such as IL-6, IL-1β, TNF-α, and iNOS. The protective effect of SQV was also associated with decreased lung tissue expression of HMGB1, TLR-4, and p-P38/JNK, but not p-ERK in wild-type liver I/R mice. Overall, this study demonstrated a new role of SQV, facilitating negative regulation of HMGB1- and P38/JNK-mediated TLR-4-dependent signaling pathways, conferring protection against liver I/R-induced lung injury.
Collapse
|
28
|
Yang Z, Cheng F, Yan G, Xiong L, Liu H. Propofol protects against endotoxin-induced myocardial injury by inhibiting NF-κB-mediated inflammation. Exp Ther Med 2017; 15:2032-2036. [PMID: 29434801 PMCID: PMC5776645 DOI: 10.3892/etm.2017.5605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
This study investigated whether propofol protects against endotoxin-induced myocardial injury by inhibiting NF-κB-mediated inflammation. Thirty clean male SD rats were randomly divided into a control (n=10), a model (n=10) and a propofol group (n=10). The model and propofol groups were injected with lipopolysaccharide (LPS) via the caudal vein to establish animal models of myocardial injury. At the same time, the control group was injected with normal saline via the caudal vein. At 30 min after the injections, the propofol group was treated with a continuous intravenous infusion of propofol, the control and model groups were injected with normal saline, and the three groups were treated continuously for 4 h. The changes in levels of interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum were detected via enzyme-linked immunosorbent assay (ELISA). The mRNA expression level of nuclear factor-κB (NF-κB) in myocardial tissues was detected via quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of NF-κB, Bax and Bcl-2 in atrial muscles in each group were measured via Western blotting. The damage of myocardial tissues was detected via hematoxylin eosin (H&E) staining of tissues. Our results showed that compared with those in control group, the levels of IL-1, IL-6 and TNF-α in serum in the model and propofol groups were significantly higher; however, the levels in the model group, were significantly higher than those in the propofol group (P<0.01). The mRNA and protein expression levels of NF-κB in the propofol group were significantly lower than those in the model group (P<0.01). Likewise, the protein expression levels of Bax were significantly lower, while those of Bcl-2 were significantly increased. H&E staining showed that the myocardial tissues in the model group were damaged significantly, but the damage in the propofol group was significantly less severe. Based on our findings, it seems propofol can indeed protect against endotoxin-induced myocardial injury through its inhibition of the NF-κB-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Zhijun Yang
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Feng Cheng
- Department of Clinical Laboratory, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Guosheng Yan
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Lang Xiong
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Huizhang Liu
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| |
Collapse
|
29
|
Chen YS, Wang XJ, Feng W, Hua KQ. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med 2017; 40:987-998. [PMID: 28849117 PMCID: PMC5593496 DOI: 10.3892/ijmm.2017.3097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to observe the impact of advanced glycation end products (AGEs) on collagen I derived from vaginal fibroblasts in the context of pelvic organ prolapse (POP), and explore the downstream effects on MAPK and nuclear factor-κB (NF-κB) signaling. After treating primary cultured human vaginal fibroblasts (HVFs) derived from POP and non-POP cases with AGEs, cell counting was carried out by sulforhodamine B. The expression levels of collagen I, receptor of advanced glycation end products (RAGE), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were detected by western blot analysis and PCR. RAGE, MAPK and NF-κB were molecularly and pharmacologically-inhibited by siRNA, SB203580 and PDTC, respectively, and downstream changes were detected by western blot analysis and PCR. Inhibition of HVF proliferation by AGEs occurred more readily in POP patients than that noted in the controls. After treatment with AGEs, collagen I levels decreased and MMP-1 levels increased to a greater extent in the HVFs of POP than that noted in the controls. During this same period, RAGE and TIMP-1 levels remained stable. Following treatment with AGEs and RAGE pathway inhibitors by siRNA, SB203580 and PDTC, the impact induced by AGEs was diminished. The inhibition of p-p38 MAPK alone was not able to block the promoting effect of AGEs on the levels of NF-κB, which suggests that AGEs may function through other pathways, as well as p-p38 MAPK. On the whole, this study demonstrated that AGEs inhibited HVF proliferation in POP cases and decreased the expression of collagen I through RAGE and/or p-p38 MAPK and NF-κB-p-p65 pathways. Our results provide important insights into the collagen I metabolism in HVFs in POP.
Collapse
Affiliation(s)
- Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xiao-Juan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Weiwei Feng
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, P.R. China
| | - Ke-Qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
30
|
Bai C, Ren Y, Huang J, Zhang Y, LI L, Du G. High-mobility group Box-1 regulates acute myocardial ischemia-induced injury through the toll-like receptor 4-related pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8344-8352. [PMID: 31966685 PMCID: PMC6965424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 06/10/2023]
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein released by necrotic cells as a result of its interactions with several receptors, including the receptor for advanced glycation end-products (RAGE) and members of the toll-like receptor family. HMGB1 has been implicated in autoimmune diseases and hepatic and intestinal ischemia/reperfusion (I/R) injury; however, its role in myocardial ischemia-induced injury remains unclear. In this study, isoproterenol (ISO) was used to establish a myocardial ischemia mouse model. Treating mice with recombinant HMGB1 (rHMGB1) worsened myocardial injury, whereas treating mice with antibodies that neutralized HMGB1 significantly reduced tissue damage. Interestingly, myocardial ischemia severity was not affected by rHMGB1 or HMGB1 antibody administration in toll-like receptor 4 (TLR4)-deficient mice (TLR4-/-), which demonstrated significantly reduced ischemia-induced cardiac tissue damage compared with wild-type (WT) mice. HMGB1 plays an important role in myocardial ischemia-induced injury by binding to TLR4, which results in proinflammatory pathway activation and enhanced myocardial injury. Therefore, blocking HMGB1 or TLR4 may represent a novel therapeutic strategy for treating myocardial ischemia-induced injury.
Collapse
Affiliation(s)
- Chaochao Bai
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yun Ren
- The Fifth People’s Hospital of FoshanFoshan, China
| | - Jin Huang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yuan Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Lingyi LI
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Guangsheng Du
- The Fifth People’s Hospital of FoshanFoshan, China
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| |
Collapse
|
31
|
Wu R, Long L, Chen Q, Wu X, Zhu J, Zhou B, Cheng J. Effects of Tim-3 silencing on the viability of fibroblast-like synoviocytes and lipopolysaccharide-induced inflammatory reactions. Exp Ther Med 2017; 14:2721-2727. [PMID: 28962218 DOI: 10.3892/etm.2017.4819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
The objective of the present study was to investigate the effects of Tim-3 silencing on cell viability and lipopolysaccharide (LPS)-induced inflammatory reactions in fibroblast-like synoviocytes (FLS). T-cell immunoglobulin mucin domain molecule (Tim)-3 expression in FLS obtained from patients with rheumatoid arthritis (RA) and normal controls were detected by western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). Small interfering (si)RNA was transfected using Lipofectamine® 2000 to decrease Tim-3 expression. Following transfection, FLS were stimulated by LPS. An MTT assay, RT-PCR and western blot analysis were performed to measure cell viability, Toll-like receptor 4 (TLR4) signaling pathway-related protein expression and inflammatory cytokine release, respectively. The results of the present study indicated that Tim-3 expression was increased in FLS from patients with RA compared with FLS from healthy controls. Transfection of Tim-3 siRNA significantly decreased Tim-3 expression in FLS from patients with RA. Notably, Tim-3 silencing decreased FLS cell viability. Following stimulation with LPS, cell viability and the expression of TLR4, myeloid differentiation protein gene 88 (MyD88) and nuclear factor-κB (NF-κB) p65 were enhanced in FLS. By contrast, Tim-3 silencing attenuated LPS-induced cell proliferation and the expression of TLR4, MyD88 and NF-κB p65. In addition, LPS significantly increased levels of cytokines in the supernatant, including tumor necrosis factor-α, interferon-γ and interleukin-6 (P<0.01). By contrast, Tim-3 silencing significantly decreased LPS-induced cytokine release (P<0.01). However, Tim-3 silencing did not affect TLR4, MyD88 and NF-κB p65 expression and the release of cytokines in cells that did not undergo treatment with LPS. Therefore, the results of the present study indicate that Tim-3 silencing decreases the viability of FLS in RA and attenuates the LPS-induced inflammatory reaction.
Collapse
Affiliation(s)
- Rui Wu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Qiqi Chen
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xiaodan Wu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Bin Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jia Cheng
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
32
|
Chen Y, Zhang J, Wang X, Wu Y, Zhu L, Lu L, Shen Q, Qin Y. HMGB1 level in cerebrospinal fluid as a complimentary biomarker for the diagnosis of tuberculous meningitis. SPRINGERPLUS 2016; 5:1775. [PMID: 27795917 PMCID: PMC5061653 DOI: 10.1186/s40064-016-3478-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Purpose High mobility group box-1 (HMGB1) is a proinflammatory, DAMP protein that participates in many pathological conditions. In this study, we evaluated the usability of CSF HMGB1 as a biomarker for the diagnosis of tuberculous meningitis (TBM). Methods A total of 59 TBM patients and 169 control patients were included in our study. CSF samples were obtained and analyzed for HMGB1 using a commercial ELISA kit. Results The mean CSF HMGB1 was 19.36 ng/ml in TBM patients (n = 59) versus 3.12 ng/ml in non-TB meningitis patients (n = 30), 2.13 ng/ml in patients with extra neural tuberculosis (n = 73), and 1.06 ng/m in controls (n = 66). According to the receiver operator characteristic curves, a cut-off value of 3.4 ng/ml was calculated, indicating that the sensitivity and specificity of CSF HMGB1 alone in diagnosis of TBM were 61.02 and 89.94 %, respectively. In patients with extra neural tuberculosis and a high risk of TBM, CSF HMGB1 seemed to be a good candidate for early differential diagnosis of TBM at the cut-off value of 3.8 ng/ml, when the sensitivity and specificity were 79.49 and 94.52 % respectively. Conclusion Our finding may prove to be clinically useful, because CSF HMGB1 ELISA can be performed in almost all clinical laboratories, especially when sophisticated technologies are either time consuming or unavailable.
Collapse
Affiliation(s)
- Yan Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072 People's Republic of China.,Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 People's Republic of China
| | - Xiaofei Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 People's Republic of China
| | - Yu Wu
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| | - Li Zhu
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| | - Longkun Lu
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| | - Qian Shen
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| | - Yanghua Qin
- Department of Laboratory Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 People's Republic of China
| |
Collapse
|
33
|
Guo DY, Cao C, Zhang XY, Xiang LX, Shao JZ. Scavenger Receptor SCARA5 Acts as an HMGB1 Recognition Molecule Negatively Involved in HMGB1-Mediated Inflammation in Fish Models. THE JOURNAL OF IMMUNOLOGY 2016; 197:3198-3213. [DOI: 10.4049/jimmunol.1600438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
|
34
|
Shimizu T, Yamakuchi M, Biswas KK, Aryal B, Yamada S, Hashiguchi T, Maruyama I. HMGB1 is secreted by 3T3-L1 adipocytes through JNK signaling and the secretion is partially inhibited by adiponectin. Obesity (Silver Spring) 2016; 24:1913-21. [PMID: 27430164 DOI: 10.1002/oby.21549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/13/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Obesity is a chronic inflammatory disease, and adipocytes contribute to obesity-associated inflammation by releasing inflammatory mediators. High mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, mainly localized to cell nuclei, has been recently recognized as an innate pro-inflammatory mediator when released extracellularly. It was hypothesized that HMGB1 is an adipocytokine that acts as an innate pro-inflammatory mediator in white adipose tissue (WAT) of patients with obesity and is associated with insulin resistance. Additionally, it was hypothesized that HMGB1 secretion is regulated by adiponectin. METHODS 3T3-L1 cells were differentiated into mature adipocytes. After tumor necrosis factor-α (TNF-α) stimulation, HMGB1 in culture media was measured. Localizations of HMGB1 in 3T3-L1 adipocytes and human WAT were examined by immunostaining. RESULTS HMGB1 was secreted from TNF-α-induced 3T3-L1 adipocytes through JNK signaling. HMGB1-activated MAP kinases (ERK1/2, JNK) and suppressed insulin-stimulated Akt phosphorylation in 3T3-L1 adipocytes. The cytoplasm in 3T3-L1 adipocytes and adipocytes of WAT from a patient with obesity was intensely stained with HMGB1. Adiponectin partially inhibited TNF-α-induced HMGB1 secretion from 3T3-L1 adipocytes. CONCLUSIONS These findings suggest that HMGB1 is a pro-inflammatory adipocytokine involved in WAT inflammation and insulin resistance in patients with obesity, which may contribute to the progression of metabolic syndrome, and that adiponectin protects against HMGB1-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Toshiaki Shimizu
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kamal Krishna Biswas
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Bibek Aryal
- Cardiovascular and Gastroenterological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
35
|
Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF- κB Signaling in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6345656. [PMID: 27656654 PMCID: PMC5021466 DOI: 10.1155/2016/6345656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 12/03/2022]
Abstract
Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway.
Collapse
|
36
|
Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression. Mol Cell Biochem 2016; 420:161-70. [PMID: 27522665 DOI: 10.1007/s11010-016-2783-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/05/2016] [Indexed: 12/29/2022]
Abstract
High-mobility group box 1 (HMGB1) is associated with the development of rheumatoid arthritis (RA). Recent studies have shown that methotrexate (MTX) may inhibit the expression of HMGB1. This study examined whether HMGB1 might be involved in the treatment of RA using MTX. Synovial tissues were collected from RA patients who were treated with MTX for at least 6 months (RA-MTX group, 7 cases) and from those without MTX treatment (RA-noMTX group, 7 cases). Additionally, patients with osteoarthritis (OA group, 7 cases) were used as controls. The expression and locations of HMGB1 in the tissues were detected using real-time PCR, western blot, and immunohistochemistry. Additionally, OA-fibroblast-like synoviocytes (FLSs) and RA-FLSs were isolated and cultured, and the expression of HMGB1 was reduced in these cells by transfection with HMGB1 siRNA. Cell proliferation, migration, and invasion abilities were detected. Furthermore, the effects of HMGB1 on matrix metalloproteinase (MMP)-2 and MMP-13 were measured using western blot analysis. At the tissue level, HMGB1 expression in synovial membrane did not differ significantly between the OA and RA-MTX groups, but was significantly lower in these groups than in the RA-noMTX group. In cell experiments, the cell doubling time in the RA-FLS HMGB1 siRNA group was significantly extended compared with that in the RA-FLS negative control (NC)-siRNA group. The amount of cell migration and invasion in the RA-FLS HMGB1 siRNA group was significantly lower compared with that in the NC-siRNA group; the MMP-2 and MMP-13 expression levels were also lower. These results showed that MTX reduced HMGB1 expression in RA synovial tissues, and through the downregulation of HMGB1 expression in tissues, MTX may slow disease progression of RA.
Collapse
|
37
|
Lan L, Han F, Lang X, Chen J. Monocyte Chemotactic Protein-1, Fractalkine, and Receptor for Advanced Glycation End Products in Different Pathological Types of Lupus Nephritis and Their Value in Different Treatment Prognoses. PLoS One 2016; 11:e0159964. [PMID: 27458981 PMCID: PMC4961285 DOI: 10.1371/journal.pone.0159964] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022] Open
Abstract
Background Early diagnosis is important for the outcome of lupus nephritis (LN). However, the pathological type of lupus nephritis closely related to the clinical manifestations; therefore, the treatment of lupus nephritis depends on the different pathological types. Objective To assess the level of monocyte chemotactic protein (MCP-1), fractalkine (Fkn), and receptor for advanced glycation end product (RAGE) in different pathological types of lupus nephritis and to explore the value of these biomarkers for predicting the prognosis of lupus nephritis. Methods Patients included in this study were assessed using renal biopsy. Class III and class IV were defined as the proliferative group, class V as non-proliferative group, and class V+III and class V+IV as the mixed group. During the follow-up, 40 of 178 enrolled patients had a poor response to the standard immunosuppressant therapy. The level of markers in the different response groups was tested. Results The levels of urine and serum MCP-1, urine and serum fractalkine, and serum RAGE were higher in the proliferative group, and lower in the non-proliferative group, and this difference was significant. The levels of urine and serum MCP-1 and serum RAGE were lower in the poor response group, and these differences were also significant. The relationship between urine MCP-1 and urine and serum fractalkine with the systemic lupus erythematosus disease activity index was evaluated. Conclusion The concentration of cytokines MCP-1, fractalkine, and RAGE may be correlated with different pathology type of lupus nephtitis. Urine and serum MCP-1 and serum RAGE may help in predicting the prognosis prior to standard immunosuppressant therapy.
Collapse
Affiliation(s)
- Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Xiabing Lang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
- * E-mail:
| |
Collapse
|
38
|
Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression. Mediators Inflamm 2016; 2016:1062586. [PMID: 27413250 PMCID: PMC4928008 DOI: 10.1155/2016/1062586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA). Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α.
Collapse
|
39
|
Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res 2016; 65:587-602. [PMID: 26995266 DOI: 10.1007/s00011-016-0937-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India
| | | | | | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India.
| |
Collapse
|
40
|
Abstract
BACKGROUND Abnormalities in mesenteric adipose tissue (MAT) have long been recognized; however, the functional changes in the mesenteric adipocytes as well as the underlying mechanisms are not entirely clear. The aim of this study was to analyze the function and morphology of the MAT in patients with Crohn's disease (CD) and the underlying mechanism. METHODS The MAT specimens were obtained from areas adjacent to the intestinal wall in patients with CD (n = 33) and without CD (control, n = 23) who underwent intestinal resection. For patients with CD, paired samples were obtained from the macroscopically hypertrophic mesenteric adipose tissue (htMAT), adjacent to the involved ileum, and the macroscopically normal mesenteric adipose tissue (nMAT), contiguous with the healthy segment of the ileum. Morphological and molecular techniques were used to detect the characteristics of the MAT of CD and compare them with the characteristics of the control tissues. Hypoxia was confirmed by a high expression of hypoxia-inducible factor 1α. RESULTS The function and morphology of the nMAT in patients with CD were similar to those of the control tissues. htMAT of CD was dysfunctional based on the evidence that htMAT exhibited decreased lipid store, fatty acid synthase, and adipose triglyceride lipase, but increased levels of glucose transporter 1, aldolase C, and lactate when compared with those from nMAT and control tissues (P < 0.01). In addition, the structure of htMAT was found to be disorganized and characterized by higher levels of collagen content, interleukin 1β, interleukin 6, tumor necrosis factor α, and MCP-1 when compared with nMAT and control tissues (P < 0.01). htMAT was in a hypoxic condition, based on the findings that htMAT had a higher level of hypoxia-inducible factor 1α and a decreased number of vessels per adipocyte compared with those of nMAT and the control tissues (P < 0.01). The transforming growth factor β/Smad and nuclear factor-kappa B signaling pathways were found to be activated in htMAT, which may be associated with hypoxia. CONCLUSIONS The disorganized structure and dysfunction of mesenteric adipocyte tissue in CD was confirmed, and these alterations may be associated with hypoxia. It is possible that amelioration of mesenteric adipocyte hypoxia may help attenuate CD with underlying MAT inflammation.
Collapse
|
41
|
Ojo OO, Ryu MH, Jha A, Unruh H, Halayko AJ. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1354-66. [PMID: 26432865 DOI: 10.1152/ajplung.00054.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion.
Collapse
Affiliation(s)
- Oluwaseun O Ojo
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Min Hyung Ryu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Helmut Unruh
- Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Jhun J, Lee S, Kim H, Her YM, Byun JK, Kim EK, Lee SK, Cho ML, Choi JY. HMGB1/RAGE induces IL-17 expression to exaggerate inflammation in peripheral blood cells of hepatitis B patients. J Transl Med 2015; 13:310. [PMID: 26391982 PMCID: PMC4576399 DOI: 10.1186/s12967-015-0663-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatitis B (HB) is an infectious disease with unfavorable consequence for patients and involved in chronic inflammation of liver. The present study aimed to investigate whether High-mobility group protein B (HMGB)1/receptor for advanced glycation end products (RAGE) aggravates inflammation enhancing the expression of interleukin (IL)-17. METHODS Mild and severe HB liver tissue and peripheral blood samples were obtained intra-operatively. Histological analysis of the livers was performed by immunohistochemistry. IL-1β and IL-6 of liver tissue were detected by confocal microscopy staining. Relative mRNA expression was measured by real-time PCR and protein levels were measured by enzyme-linked immunosorbent assay. RESULTS HMGB1, RAGE and IL-17 expression is increased in liver of HB patients with acute on chronic liver failure (ACLF) compared to healthy controls. HMGB1 treatment induced inflammatory cytokines including IL-17 in peripheral blood cells of HB patients. IL-17 also induced the expression of RAGE and IL-1β in peripheral blood cells of HB patients with ACLF. On the other hands, the inhibitory factor of p38 and nuclear factor-kappa B reduced the expression of RAGE and IL-1β in peripheral blood cells HB patients with ACLF. CONCLUSIONS HMGB1, RAGE and IL-17 expression is increased in liver of severe HB patients. HMGB1 and RAGE interaction may contribute to the inflammation of liver enhancing the expression of IL-17, which can be possibly restored through the decline of the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| | - SeungHoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| | - HeeYeon Kim
- Division of Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, South Korea.
| | - Yang-Mi Her
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| | - Jae Kyeong Byun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| | - Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea. .,Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, South Korea.
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, South Korea.
| |
Collapse
|
43
|
Guo J, Zheng L, Chen L, Luo N, Yang W, Qu X, Liu M, Cheng Z. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10014-10025. [PMID: 26617709 PMCID: PMC4637524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid.
Collapse
Affiliation(s)
- Jing Guo
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Lihua Zheng
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Xiaoyan Qu
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Mingmin Liu
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Yangpu Hospital, Tongji University School of MedicineShanghai, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of MedicineShanghai, China
| |
Collapse
|
44
|
Wang L, Song G, Zheng Y, Wang D, Dong H, Pan J, Chang X. miR-573 is a negative regulator in the pathogenesis of rheumatoid arthritis. Cell Mol Immunol 2015; 13:839-849. [PMID: 26166764 DOI: 10.1038/cmi.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. Our previous study demonstrated an increased expression of thioredoxin domain containing 5 (TXNDC5) in the synovial tissues of RA, and its overexpression was implicated in RA pathology. Although TXNDC5 variation is linked to genetic susceptibility to RA, the regulation of its abnormal expression has not been well defined. Here, we show that TXNDC5 is directly targeted by microRNA (miR)-573, and TXNDC5, in turn, mediates the suppressive effect of miR-573 on the invasion of synovial fibroblasts of RA (RASFs). miR-573 overexpression suppressed the expression of interleukin 6 (IL-6) and cyclooxygenase 2 in RASFs, as well as the production of tumor necrosis factor-alpha and interleukin-1 beta by activated THP-1 cells in response to lipopolysaccharide (LPS) stimulation. Moreover, treatment with conditioned medium of RASFs transfected with miR-573 mimic inhibited the angiogenic ability of human umbilical vein endothelial cells (HUVECs). Of note, epidermal growth factor receptor and Toll-like receptor 2 were validated as new direct targets of miR-573, and mediate the regulation of miR-573 on IL-6 production as well as the angiogenesis of HUVECs. In addition, exogenous miR-573 expression suppressed the activation of mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3, and phosphatidylinositol-3 kinase/activate protein kinase B in RASFs in response to LPS. Indeed, MAPK signaling was essential to ensure the function of miR-573. Taken together, our study points toward the protective roles of miR-573 in the pathological process of RA and suggests a potential target in the treatment of RA.
Collapse
Affiliation(s)
- Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, People's Republic of China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yabing Zheng
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Dan Wang
- Department of pathology, Linyi People's Hospital Linyi People's Republic of China
| | - Hongyan Dong
- Department of pathology, Linyi People's Hospital Linyi People's Republic of China
| | - Jihong Pan
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
45
|
Wang FC, Pei JX, Zhu J, Zhou NJ, Liu DS, Xiong HF, Liu XQ, Lin DJ, Xie Y. Overexpression of HMGB1 A-box reduced lipopolysaccharide-induced intestinal inflammation via HMGB1/TLR4 signaling in vitro. World J Gastroenterol 2015; 21:7764-7776. [PMID: 26167076 PMCID: PMC4491963 DOI: 10.3748/wjg.v21.i25.7764] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/23/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects and mechanism of high mobility group box (HMGB)1 A-box in lipopolysaccharide (LPS)-induced intestinal inflammation.
METHODS: Overexpression of HMGB1 A-box in human intestinal epithelial cell lines (SW480 cells) was achieved using the plasmid pEGFP-N1. HMGB1 A-box-overexpressing SW480 cells were stimulated with LPS and co-culturing with human monocyte-like cell lines (THP-1 cells) using a Transwell system, compared with another HMGB1 inhibitor ethyl pyruvate (EP). The mRNA and protein levels of HMGB1/toll-like receptor (TLR) 4 signaling pathways [including HMGB1, TLR4, myeloid differentiation factor88 (MYD88), Phosphorylated Nuclear Factor κB (pNF-κB) p65] in the stimulated cells were determined by real-time polymerase chain reaction and Western blotting. The levels of the proinflammatory mediators [including HMGB1, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α] in the supernatants of the stimulated cells were determined by ELISA.
RESULTS: EP downregulated the mRNA and protein levels of HMGB1, inhibited the TLR4 signaling pathways (TLR4, MYD88 and pNF-κB p65) and reduced the secretion of proinflammatory mediators (HMGB1, IL-1β, IL-6 and TNF-α) in the SW480 and THP-1 cells activated by LPS but not in the unstimulated cells. Activated by LPS, the overexpression of HMGB1 A-box in the SW480 cells also inhibited the HMGB1/TLR4 signaling pathways and reduced the secretion of these proinflammatory mediators in the THP-1 cells but not in the transfected and unstimulated cells.
CONCLUSION: HMGB1 A-box, not only EP, can reduce LPS-induced intestinal inflammation through inhibition of the HMGB1/TLR4 signaling pathways.
Collapse
|
46
|
Bawadekar M, De Andrea M, Lo Cigno I, Baldanzi G, Caneparo V, Graziani A, Landolfo S, Gariglio M. The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation. J Interferon Cytokine Res 2015; 35:441-53. [PMID: 25715050 DOI: 10.1089/jir.2014.0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear interferon-inducible-16 (IFI16) protein acts as DNA sensor in inflammasome signaling and as viral restriction factor. Following Herpesvirus infection or UV-B treatment, IFI16 delocalizes from the nucleus to the cytoplasm and is eventually released into the extracellular milieu. Recently, our group has demonstrated the occurrence of IFI16 in sera of systemic-autoimmune patients that hampers biological activity of endothelia through high-affinity membrane binding. As a continuation, we studied the activity of endotoxin-free recombinant IFI16 (rIFI16) protein on primary endothelial cells. rIFI16 caused dose/time-dependent upregulation of IL-6, IL-8, CCL2, CCL5, CCL20, ICAM1, VCAM1, and TLR4, while secretion of IL-6 and IL-8 was amplified with lipopolysaccharide synergy. Overall, cytokine secretion was completely inhibited in MyD88-silenced cells and partially by TLR4-neutralizing antibodies. By screening downstream signaling pathways, we found that IFI16 activates p38, p44/42 MAP kinases, and NF-kB. In particular, activation of p38 is an early event required for subsequent p44/42 MAP kinases activity and cytokine induction indicating a key role of this kinase in IFI16 signaling. Altogether, our data conclude that extracellular IFI16 protein alone or by synergy with lipopolysaccharide acts like Damage-associated molecular patterns propagating "Danger Signal" through MyD88-dependent TLR-pathway.
Collapse
Affiliation(s)
- Mandar Bawadekar
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy .,3 Division of Rheumatology, Department of Medicine, University of Wisconsin-Madison , Wisconsin
| | - Marco De Andrea
- 4 Department of Public Health and Pediatric Sciences, University of Turin , Medical School, Turin, Italy
| | - Irene Lo Cigno
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| | - Gianluca Baldanzi
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy
| | - Valeria Caneparo
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| | - Andrea Graziani
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy
| | - Santo Landolfo
- 4 Department of Public Health and Pediatric Sciences, University of Turin , Medical School, Turin, Italy
| | - Marisa Gariglio
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| |
Collapse
|
47
|
Land WG. The Role of Damage-Associated Molecular Patterns in Human Diseases: Part I - Promoting inflammation and immunity. Sultan Qaboos Univ Med J 2015; 15:e9-e21. [PMID: 25685392 PMCID: PMC4318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/05/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023] Open
Abstract
There is increasing interest by physicians in the impact of the innate immune system on human diseases. In particular, the role of the molecules that initiate and amplify innate immune pathways, namely damage-associated molecular patterns (DAMPs), is of interest as these molecules are involved in the pathogenesis of many human disorders. The first part of this review identifies five classes of cell stress/tissue injury-induced DAMPs that are sensed by various recognition receptor-bearing cells of the innate immune system, thereby mounting inflammation, promoting apoptosis and shaping adaptive immune responses. The DAMPs activate and orchestrate several innate immune machineries, including inflammasomes and the unfolded protein response that synergistically operates to induce inflammatory, metabolic and adaptive immune pathologies. Two examples of autoimmune diseases are discussed as they represent a typical paradigm of the intimate interplay between innate and adaptive immune responses.
Collapse
Affiliation(s)
- Walter G Land
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Université de Strasbourg, Strasbourg, France, E-mail:
| |
Collapse
|
48
|
Batkulwar KB, Bansode SB, Patil GV, Godbole RK, Kazi RS, Chinnathambi S, Shanmugam D, Kulkarni MJ. Investigation of phosphoproteome in RAGE signaling. Proteomics 2014; 15:245-59. [DOI: 10.1002/pmic.201400169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/14/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Kedar B. Batkulwar
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Sneha B. Bansode
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Gouri V. Patil
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Rashmi K. Godbole
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Rubina S. Kazi
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | | | - Dhanasekaran Shanmugam
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Mahesh J. Kulkarni
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| |
Collapse
|
49
|
HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One 2014; 9:e113799. [PMID: 25469638 PMCID: PMC4254744 DOI: 10.1371/journal.pone.0113799] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Spontaneous preterm birth (PTB) and preterm prelabor rupture of membranes (pPROM) are major pregnancy complications often associated with a fetal inflammatory response. Biomolecular markers of this fetal inflammatory response to both infectious and non-infectious risk factors and their contribution to PTB and pPROM mechanism are still unclear. This study examined fetal membrane production, activation and mechanistic properties of high mobility group box 1 (HMGB1) as a contributor of the non-infectious fetal inflammatory response. Materials and Methods HMGB1 transcripts and active HMGB1 were profiled in fetal membranes and amniotic fluids collected from PTB and normal term birth. In vitro, normal term not in labor fetal membranes were exposed to lipopolysaccharide (LPS) and water soluble cigarette smoke extract (CSE). HMGB1-transcripts and its protein concentrations were documented by RT-PCR and ELISA. Recombinant HMGB1 treated membranes and media were subjected to RT-PCR for HMGB1 receptors, mitogen activated protein kinase pathway analysis, cytokine levels, and Western blot for p38MAPK. Results HMGB1 expression and its active forms were higher in PTB and pPROM than normal term membranes and amniotic fluid samples. Both LPS and CSE enhanced HMGB1 expression and release in vitro. Fetal membrane exposure to HMGB1 resulted in increased expression of TLR2 and 4 and dose-dependent activation of p38MAPK-mediated inflammation. Conclusions HMGB1 increase by fetal membrane cells in response to either oxidative stress or infection can provide a positive feedback loop generating non-infectious inflammatory activation. Activation of p38MAPK by HMGB1 promotes development of the senescence phenotype and senescence associated sterile inflammation. HMGB1 activity is an important regulator of the fetal inflammatory response regardless of infection.
Collapse
|
50
|
Zuo L, Li Y, Wang H, Wu R, Zhu W, Zhang W, Cao L, Gu L, Gong J, Li N, Li J. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice. J Crohns Colitis 2014; 8:1710-22. [PMID: 25205553 DOI: 10.1016/j.crohns.2014.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/23/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023]
Abstract
AIMS To observe the effect of cigarette smoke (CS) on the small bowel and colon in mice and to attempt to explain the potential mechanisms that account for these effects. METHODS Male BALB/c mice age 6-8 weeks were randomly divided into a CS group and a control group (n=10 per group). CS mice were exposed to CS (five cigarettes each time, four times a day for 5 days a week using Hamburg II smoking machine and CS was diluted with air at a ratio of 1:6) for 10 weeks, and control mice were exposed to room air. After 10 weeks, mice were sacrificed for analysis (colon and small bowel). RESULTS CS exposure impaired the intestinal barrier of the small bowel, based on evidence that CS mice exhibited increased intestinal permeability, bacterial translocation, intestinal villi atrophy, damaged tight junctions and abnormal tight junction proteins. These changes were partly mediated through the activated NF-κB (p65) signalling pathway. However, no obvious changes associated with the intestinal barrier were identified in the small bowel of control mice or the colons of control or CS mice. CONCLUSIONS CS is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Honggang Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Wei Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|