1
|
Thepbandit W, Srisuwan A, Athinuwat D. Priming of Exogenous Salicylic Acid under Field Conditions Enhances Crop Yield through Resistance to Magnaporthe oryzae by Modulating Phytohormones and Antioxidant Enzymes. Antioxidants (Basel) 2024; 13:1055. [PMID: 39334714 PMCID: PMC11429108 DOI: 10.3390/antiox13091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the impact of exogenous salicylic acid (SA) alongside conventional treatment by farmers providing positive (Mancozeb 80 % WP) and negative (water) controls on rice plants (Oryza sativa L.), focusing on antioxidant enzyme activities, phytohormone levels, disease resistance, and yield components under greenhouse and field conditions. In greenhouse assays, SA application significantly enhanced the activities of peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT), and superoxide dismutase (SOD) within 12-24 h post-inoculation (hpi) with Magnaporthe oryzae. Additionally, SA-treated plants showed higher levels of endogenous SA and indole-3-acetic acid (IAA) within 24 hpi compared to the controls. In terms of disease resistance, SA-treated plants exhibited a reduced severity of rice blast under greenhouse conditions, with a significant decrease in disease symptoms compared to negative control treatment. The field study was extended over three consecutive crop seasons during 2021-2023, further examining the efficacy of SA in regular agricultural practice settings. The SA treatment consistently led to a reduction in rice blast disease severity across all three seasons. Yield-related parameters such as plant height, the number of tillers and panicles per hill, grains per panicle, and 1000-grain weight all showed improvements under SA treatment compared to both positive and negative control treatments. Specifically, SA-treated plants yielded higher grain outputs in all three crop seasons, underscoring the potential of SA as a growth enhancer and as a protective agent against rice blast disease under both controlled and field conditions. These findings state the broad-spectrum benefits of SA application in rice cultivation, highlighting its role not only in bolstering plant defense mechanisms and growth under greenhouse conditions but also in enhancing yield and disease resistance in field settings across multiple crop cycles. This research presents valuable insights into the practical applications of SA in improving rice plant resilience and productivity, offering a promising approach for sustainable agriculture practices.
Collapse
Affiliation(s)
- Wannaporn Thepbandit
- Faculty of Science and Technology, Thammasat University, Pathumtani 12121, Thailand;
| | - Anake Srisuwan
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Dusit Athinuwat
- Faculty of Science and Technology, Thammasat University, Pathumtani 12121, Thailand;
- Center of Excellence in Agriculture Innovation Centre through Supply Chain and Value Chain, Thammasat University, Pathumtani 12121, Thailand
| |
Collapse
|
2
|
Antón-Domínguez BI, Díaz-Díaz M, Acedo-Antequera FA, Trapero C, Agustí-Brisach C. Use of natural-based commercial products as an alternative for providing bioprotection against verticillium wilt of olive. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6311-6321. [PMID: 38482895 DOI: 10.1002/jsfa.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Begoña I Antón-Domínguez
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Miriam Díaz-Díaz
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Santa Clara, Villa Clara, Cuba
| | - Francisca A Acedo-Antequera
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Trapero
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Mahadevan N, Sinniah GD, Gunasekaram P, Karunajeewa DGNP. How Tea Plant Defends Against Blister Blight Disease: Facts Revealed and Unexplored Horizons. PLANT DISEASE 2024; 108:2253-2263. [PMID: 38616396 DOI: 10.1094/pdis-10-23-2033-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is cultivated as a beverage crop. Despite being a hardy perennial, the tea plant is susceptible to various biotic stresses. Among them, the foliar disease blister blight (BB) is considered the most serious threat to the tea industry, particularly in Asia. BB caused by Exobasidium vexans (Basidiomycetes) was first reported from Northern India in 1868 and gradually established in other tea-growing countries. The fungus E. vexans attacks young harvestable shoots and causes 20 to 50% crop loss. Over the past 150 years, scientific research has delved into various aspects of BB disease, including pathogen biology, disease cycle, epidemiology, disease forecasting, crop loss assessment, and disease management strategies. In a recent shift in research focus, scientists have begun to investigate the resistance mechanisms of tea plants against BB and apply this knowledge to commercial tea cultivation. Although progress has been significant in understanding the fundamental aspects of BB resistance, the detailed molecular mechanisms driving this resistance remain under investigation. This paper focuses on the current understanding of defense mechanisms employed by tea plants against E. vexans and, conversely, how E. vexans overcomes these defenses. Furthermore, we discuss the application of plant resistance strategies in commercial tea cultivation. Lastly, we identify existing research gaps and propose future research directions in the field.
Collapse
Affiliation(s)
- Niranjan Mahadevan
- Plant Pathology Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
- Department of Plant Sciences, Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Ganga Devi Sinniah
- Plant Pathology Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
| | - Pradeep Gunasekaram
- Advisory and Extension Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
| | | |
Collapse
|
4
|
Moreno-Pérez A, Martínez-Ferri E, van den Berg N, Pliego C. Effects of Exogenous Application of Methyl Jasmonate and Salicylic Acid on the Physiological and Molecular Response of 'Dusa' Avocado to Rosellinia necatrix. PLANT DISEASE 2024; 108:2111-2121. [PMID: 38530233 DOI: 10.1094/pdis-11-23-2316-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Methyl jasmonate (MeJA) and salicylic acid (SA) are important in mediating plant responses to abiotic and biotic stresses. MeJA and SA can act as elicitors by triggering plant defense responses similar to those induced by pathogens and may even provide long-term protection against them. Thus, exogenous application of MeJA and SA could protect susceptible avocado plants against white root rot (WRR) disease caused by the necrotrophic fungus Rosellinia necatrix, one of the main diseases affecting avocado orchards. This work evaluates the effects of MeJA or SA on the physiological and molecular response of susceptible 'Dusa' avocado rootstock and their ability to provide some protection against WRR. The application of MeJA and SA in avocado increased photoprotective mechanisms (nonphotochemical chlorophyll fluorescence quenching) and upregulated the glutathione S-transferase, suggesting the triggering of mechanisms closely related to oxidative stress relief and reactive oxygen species scavenging. In contrast to SA, MeJA's effects were more pronounced at the morphoanatomical level, including functional traits such as high leaf mass area, high stomatal density, and high root/shoot ratio, closely related to strategies to cope with water scarcity and WRR disease. Moreover, MeJA upregulated a greater number of defense-related genes than SA, including a glu protease inhibitor, a key gene in avocado defense against R. necatrix. The overall effects of MeJA increased 'Dusa' avocado tolerance to R. necatrix by inducing a primed state that delayed WRR disease symptoms. These findings point toward the use of MeJA application as an environmentally friendly strategy to mitigate the impact of this disease on susceptible avocado orchards.
Collapse
Affiliation(s)
- Ana Moreno-Pérez
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Program of Advanced Biotechnology, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Churriana, Málaga, Spain
| | - Elsa Martínez-Ferri
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa
| | - Clara Pliego
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| |
Collapse
|
5
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
6
|
Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, Mohamed Z, Doni F. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Microbiol Res 2024; 283:127665. [PMID: 38452552 DOI: 10.1016/j.micres.2024.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
Collapse
Affiliation(s)
- Sulistya Ika Akbari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dedat Prismantoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java 40132, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| |
Collapse
|
7
|
Bouraoui M, Abbes Z, L’taief B, Alshaharni MO, Abdi N, Hachana A, Sifi B. Exploring the biochemical dynamics in faba bean (Vicia faba L. minor) in response to Orobanche foetida Poir. parasitism under inoculation with different rhizobia strains. PLoS One 2024; 19:e0304673. [PMID: 38820398 PMCID: PMC11142618 DOI: 10.1371/journal.pone.0304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.
Collapse
Affiliation(s)
- Manel Bouraoui
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
- Sciences Faculty of Bizerte (FSB), Carthage University, Tunis, Tunisia
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Zouhaier Abbes
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| | - Boulbaba L’taief
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O. Alshaharni
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Neila Abdi
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Amira Hachana
- Agronomic Sciences and Technology Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| | - Bouaziz Sifi
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| |
Collapse
|
8
|
Liu J, Feng S, Liu T, Mao Y, Shen S, Liu Y, Hao Z, Li Z. Molecular characterization revealed the role of thaumatin-like proteins of Rhizoctonia solani AG4-JY in inducing maize disease resistance. Front Microbiol 2024; 15:1377726. [PMID: 38812677 PMCID: PMC11135045 DOI: 10.3389/fmicb.2024.1377726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
The gene family of thaumatin-like proteins (TLPs) plays a crucial role in the adaptation of organisms to environmental stresses. In recent years, fungal secreted proteins (SP) with inducing disease resistance activity in plants have emerged as important elicitors in the control of fungal diseases. Identifying SPs with inducing disease resistance activity and studying their mechanisms are crucial for controlling sheath blight. In the present study, 10 proteins containing the thaumatin-like domain were identified in strain AG4-JY of Rhizoctonia solani and eight of the 10 proteins had signal peptides. Analysis of the TLP genes of the 10 different anastomosis groups (AGs) showed that the evolutionary relationship of the TLP gene was consistent with that between different AGs of R. solani. Furthermore, it was found that RsTLP3, RsTLP9 and RsTLP10 were regarded as secreted proteins for their signaling peptides exhibited secretory activity. Prokaryotic expression and enzyme activity analysis revealed that the three secreted proteins possess glycoside hydrolase activity, suggesting they belong to the TLP family. Additionally, spraying the crude enzyme solution of the three TLP proteins could enhance maize resistance to sheath blight. Further analysis showed that genes associated with the salicylic acid and ethylene pathways were up-regulated following RsTLP3 application. The results indicated that RsTLP3 had a good application prospect in biological control.
Collapse
Affiliation(s)
- Jiayue Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/The Key Research Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Shang Feng
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Tingting Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Yanan Mao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Shen Shen
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Zhiyong Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/The Key Research Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Demehin O, Attjioui M, Goñi O, O’Connell S. Chitosan from Mushroom Improves Drought Stress Tolerance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1038. [PMID: 38611567 PMCID: PMC11013739 DOI: 10.3390/plants13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Chitosan is a derivative of chitin that is one of the most abundant biopolymers in nature, found in crustacean shells as well as in fungi cell walls. Most of the commercially available chitosans are produced from the exoskeletons of crustaceans. The extraction process involves harsh chemicals, has limited potential due to the seasonal and limited supply and could cause allergic reactions. However, chitosan has been shown to alleviate the negative effect of environmental stressors in plants, but there is sparse evidence of how chitosan source affects this bioactivity. The aim of this study was to investigate the ability of chitosan from mushroom in comparison to crustacean chitosan in enhancing drought stress tolerance in tomato plants (cv. MicroTom). Chitosan treatment was applied through foliar application and plants were exposed to two 14-day drought stress periods at vegetative and fruit set growth stages. Phenotypic (e.g., fruit number and weight), physiological (RWC) and biochemical-stress-related markers (osmolytes, photosynthetic pigments and malondialdehyde) were analyzed at different time points during the crop growth cycle. Our hypothesis was that this drought stress model will negatively impact tomato plants while the foliar application of chitosan extracted from either crustacean or mushroom will alleviate this effect. Our findings indicate that drought stress markedly decreased the leaf relative water content (RWC) and chlorophyll content, increased lipid peroxidation, and significantly reduced the average fruit number. Chitosan application, regardless of the source, improved these parameters and enhanced plant tolerance to drought stress. It provides a comparative study of the biostimulant activity of chitosan from diverse sources and suggests that chitosan sourced from fungi could serve as a more sustainable and environmentally friendly alternative to the current chitosan from crustaceans.
Collapse
Affiliation(s)
- Olusoji Demehin
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Maha Attjioui
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
10
|
Basit A, Humza M, Majeed MZ, Shakeel M, Idrees A, Hu CX, Gui SH, Liu TX. Systemic resistance induced in tomato plants by Beauveria bassiana-derived proteins against tomato yellow leaf curl virus and aphid Myzus persicae. PEST MANAGEMENT SCIENCE 2024; 80:1821-1830. [PMID: 38029362 DOI: 10.1002/ps.7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum L.) is an economically important vegetable crop around the globe. Tomato yellow leaf curling (TYLC) is the most devastating viral disease posing a serious threat to tomato production throughout the tropical and subtropical world. Induction of microbe-mediated systemic resistance in plants has been of great interest in recent years as a novel microbiological tool in disease and insect pest management. This in-vitro study aimed to determine the effectiveness of different strains (BB252, BB72 and ARSEF-2860) of a hypocreal fungus Beauveria bassiana against TYLCV disease and aphid Myzus persicae. Potted tomato plants exogenously treated with conidial and filtrate suspensions of B. bassiana strains and of their partially purified or purified proteins were exposed to TYLCV inoculum and aphid M. persicae. RESULTS Results showed a significant suppression of TYLCV disease severity index by the exogenous application of conidial, filtrate and protein treatments of all B. bassiana strains and this response was directly proportional to the treatment concentration. Similarly, mean fecundity rate of M. persicae was also significantly reduced by the highest concentration of ARSEF-2860-derived elicitor protein PeBb1, followed by the highest concentrations of BB252- and BB72-derived partially purified proteins. Moreover, these B. bassiana-derived proteins also caused a significant upregulation of most of the plant immune marker genes associated with plant defense. CONCLUSION Overall, the study findings suggest that these B. bassiana strains and their partially purified or purified elicitor proteins could be effective biological tools for the management of TYLCV and aphid infestation on tomato plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Humza
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | | | - Atif Idrees
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Chao-Xing Hu
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Zhang C, Tang C, Wang Q, Su Y, Zhang Q. Synergistic Effects of Oligochitosan and Pyraclostrobin in Controlling Leaf Spot Disease in Pseudostellaria heterophylla. Antibiotics (Basel) 2024; 13:128. [PMID: 38391514 PMCID: PMC10886130 DOI: 10.3390/antibiotics13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudostellaria heterophylla (or Taizishen in Chinese), a medicinal, edible, and ornamental Chinese herb, is seriously affected by leaf spot disease (LSD). Oligochitosan is a natural agricultural antibiotic that is produced via the degradation of chitosan, which is deacetylated from chitin; pyraclostrobin is a broad-spectrum and efficient strobilurin fungicide. In this work, the ability of pyraclostrobin, oligochitosan, and their formula to manage P. heterophylla leaf spot disease and their role in its resistance, leaf photosynthesis, agronomic plant traits, root growth, and root quality were studied. The results show that the joint application of oligochitosan and low-dosage pyraclostrobin could control LSD more efficiently, with control effects of 85.75-87.49% compared to high-dosage pyraclostrobin or oligochitosan alone. Concurrently, the application of this formula could more effectively improve the resistance, leaf photosynthesis, agronomic plant traits, root yield, and medicinal quality of P. heterophylla, as well as reduce the application of pyraclostrobin. This finding suggests that 30% pyraclostrobin suspension concentrate (SC) 1500-time + 5% oligosaccharin aqueous solutions (AS) 500-time diluent can be recommended for use as a feasible formula to manage LSD and reduce the application of chemical pesticides.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Chenglin Tang
- Guizhou Crop Technology Extension Station, Agriculture and Rural Affairs Department of Guizhou Province, Guiyang 550001, China
| | - Qiuping Wang
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yue Su
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinghai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
12
|
Jalota K, Sharma V, Agarwal C, Jindal S. Eco-friendly approaches to phytochemical production: elicitation and beyond. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:5. [PMID: 38195902 PMCID: PMC10776560 DOI: 10.1007/s13659-023-00419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
Highly ameliorated phytochemicals from plants are recognized to have numerous beneficial effects on human health. However, obtaining secondary metabolites directly from wild plants is posing a great threat to endangered plant species due to their over exploitation. Moreover, due to complicated structure and stereospecificity chemical synthesis of these compounds is a troublesome procedure. As a result, sustainable and ecofriendly in vitro strategy has been adopted for phytochemicals production. But, lack of fully differentiated cells lowers down cultured cells productivity. Consequently, for enhancing yield of metabolites produced by cultured plant cells a variety of methodologies has been followed one such approach includes elicitation of culture medium that provoke stress responses in plants enhancing synthesis and storage of bioactive compounds. Nevertheless, for conclusive breakthrough in synthesizing bioactive compounds at commercial level in-depth knowledge regarding metabolic responses to elicitation in plant cell cultures is needed. However, technological advancement has led to development of molecular based approaches like metabolic engineering and synthetic biology which can serve as promising path for phytochemicals synthesis. This review article deals with classification, stimulating effect of elicitors on cultured cells, parameters of elicitors and action mechanism in plants, modern approaches like metabolic engineering for future advances.
Collapse
Affiliation(s)
- Kritika Jalota
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Vikas Sharma
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | | | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
13
|
Mu D, Shao Y, He J, Zhu L, Qiu D, Wilson IW, Zhang Y, Pan L, Zhou Y, Lu Y, Tang Q. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. Int J Mol Sci 2023; 24:16330. [PMID: 38003520 PMCID: PMC10671239 DOI: 10.3390/ijms242216330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil, a traditional medicinal herb, is enriched with several pharmacologically active terpenoid indole alkaloids (TIAs). At present, no method has been reported that can comprehensively select and evaluate the appropriate reference genes for gene expression analysis, especially the transcription factors and key enzyme genes involved in the biosynthesis pathway of TIAs in U. rhynchophylla. Reverse transcription quantitative PCR (RT-qPCR) is currently the most common method for detecting gene expression levels due to its high sensitivity, specificity, reproducibility, and ease of use. However, this methodology is dependent on selecting an optimal reference gene to accurately normalize the RT-qPCR results. Ten candidate reference genes, which are homologues of genes used in other plant species and are common reference genes, were used to evaluate the expression stability under three stress-related experimental treatments (methyl jasmonate, ethylene, and low temperature) using multiple stability analysis methodologies. The results showed that, among the candidate reference genes, S-adenosylmethionine decarboxylase (SAM) exhibited a higher expression stability under the experimental conditions tested. Using SAM as a reference gene, the expression profiles of 14 genes for key TIA enzymes and a WRKY1 transcription factor were examined under three experimental stress treatments that affect the accumulation of TIAs in U. rhynchophylla. The expression pattern of WRKY1 was similar to that of tryptophan decarboxylase (TDC) under ETH treatment. This research is the first to report the stability of reference genes in U. rhynchophylla and provides an important foundation for future gene expression analyses in U. rhynchophylla. The RT-qPCR results indicate that the expression of WRKY1 is similar to that of TDC under ETH treatment. It may coordinate the expression of TDC, providing a possible method to enhance alkaloid production in the future through synthetic biology.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Iain W Wilson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Limei Pan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dai-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yu Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Changsha 410208, China
| |
Collapse
|
14
|
Reglinski T, Wurms KV, Vanneste JL, Ah Chee A, Schipper M, Cornish D, Yu J, McAlinden J, Hedderley D. Kiwifruit Resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. actinidiae and Defence Induction by Acibenzolar-S-methyl and Methyl Jasmonate Are Cultivar Dependent. Int J Mol Sci 2023; 24:15952. [PMID: 37958935 PMCID: PMC10647243 DOI: 10.3390/ijms242115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogen susceptibility and defence gene inducibility were compared between the Actinidia arguta cultivar 'Hortgem Tahi' and the two cultivars of A. chinensis 'Hayward' and 'Zesy002'. Plants were treated with acibenzolar-s-methyl (ASM) or methyl jasmonate (MeJA) one week before inoculation with Pseudomonas syringae pv. actinidiae (Psa biovar3) or Sclerotinia sclerotiorum, or secondary induction with chitosan+glucan (Ch-Glu) as a potential pathogen proxy. Defence expression was evaluated by measuring the expression of 18 putative defence genes. 'Hortgem Tahi' was highly susceptible to sclerotinia and very resistant to Psa, whereas 'Zesy002' was highly resistant to both, and 'Hayward' was moderately susceptible to both. Gene expression in 'Hayward' and 'Zesy002' was alike but differed significantly from 'Hortgem Tahi' which had higher basal levels of PR1-i, PR5-i, JIH1, NPR3 and WRKY70 but lower expression of RD22 and PR2-i. Treatment with ASM caused upregulation of NIMIN2, PR1-i, WRKY70, DMR6 and PR5-i in all cultivars and induced resistance to Psa in 'Zesy002' and 'Hayward' but decreased resistance to sclerotinia in 'Zesy002'. MeJA application caused upregulation of LOX2 and downregulation of NIMIN2, DMR6 and PR2-i but did not affect disease susceptibility. The Ch-Glu inducer induced PR-gene families in each cultivar, highlighting its possible effectiveness as an alternative to actual pathogen inoculation. The significance of variations in fundamental and inducible gene expression among the cultivars is explored.
Collapse
Affiliation(s)
- Tony Reglinski
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Kirstin V. Wurms
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Joel L. Vanneste
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Annette Ah Chee
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Magan Schipper
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Deirdre Cornish
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Janet Yu
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Jordan McAlinden
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Duncan Hedderley
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| |
Collapse
|
15
|
Setiawati T, Arofah AN, Nurzaman M, Annisa A, Mutaqin AZ, Hasan R. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum ( Chrysanthemum morifolium Ramat) callus culture based on harvest time differences. BIOTECHNOLOGIA 2023; 104:289-300. [PMID: 37850113 PMCID: PMC10578125 DOI: 10.5114/bta.2023.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 10/19/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) contains secondary metabolites, such as flavonoid compounds, especially luteolin-7-glucoside and quercetin-3-O-rhamnoside (quercitrin), in its tissues. Utilizing sucrose as an elicitor through callus culture presents an alternative method to enhance the production of secondary metabolites. This research aimed to determine the best sucrose concentration and harvest time for maximizing quercitrin content in chrysanthemum callus culture. The research employed a completely randomized design with four treatment groups: 0, 30, 45, and 60 g/l of sucrose added to MS medium containing 4 ppm 2,4-dichlorophenoxyacetic acid (2,4-D). Callus samples were harvested on the 15th and 30th days of culture. The observed parameters included callus morphology (color and texture), fresh weight, dry weight, the diameter of the callus, and quercitrin content analyzed using high-performance liquid chromatography. The results showed that all callus cultures exhibited intermediate textures and varied colors, predominantly shades of brown. The treatment involving 45 g/l of sucrose with a 30th-day harvest yielded the highest fresh weight, dry weight, and quercitrin content, namely 2.108 g, 0.051 g, and 0.437 mg/g DW, respectively. Notably, the quercitrin content exhibited a 63.67% increase compared to the control.
Collapse
Affiliation(s)
- Tia Setiawati
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa N. Arofah
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Asep Z. Mutaqin
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Rusdi Hasan
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
16
|
Khoo YW, Chong KP. Ganoderma boninense: general characteristics of pathogenicity and methods of control. FRONTIERS IN PLANT SCIENCE 2023; 14:1156869. [PMID: 37492765 PMCID: PMC10363743 DOI: 10.3389/fpls.2023.1156869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Ganoderma boninense (G. boninense) is a soil-borne fungus threatening oil palm at the present. It causes basal stem rot disease on oil palm. Within six months, this fungus can cause an oil palm plantation to suffer a significant 43% economic loss. The high persistence and nature of spread of G. boninense in soil make control of the disease challenging. Therefore, controlling the pathogen requires a thorough understanding of the mechanisms that underlie pathogenicity as well as its interactions with host plants. In this paper, we present the general characteristics, the pathogenic mechanisms, and the host's defensive system of G. boninense. We also review upcoming and most promising techniques for disease management that will have the least negative effects on the environment and natural resources.
Collapse
Affiliation(s)
- Ying Wei Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
17
|
Suwanchaikasem P, Nie S, Idnurm A, Selby‐Pham J, Walker R, Boughton BA. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:115-133. [PMID: 37362423 PMCID: PMC10290428 DOI: 10.1002/pei3.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoria3052Australia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoria3020Australia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Australian National Phenome CentreMurdoch UniversityPerthWestern Australia6150Australia
| |
Collapse
|
18
|
Karczyński P, Orłowska A, Kępczyńska E. Two Medicago truncatula growth-promoting rhizobacteria capable of limiting in vitro growth of the Fusarium soil-borne pathogens modulate defense genes expression. PLANTA 2023; 257:118. [PMID: 37173556 PMCID: PMC10181981 DOI: 10.1007/s00425-023-04145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION PGPRs: P. fluorescens Ms9N and S. maltophilia Ll4 inhibit in vitro growth of three legume fungal pathogens from the genus Fusarium. One or both trigger up-regulation of some genes (CHIT, GLU, PAL, MYB, WRKY) in M. truncatula roots and leaves in response to soil inoculation. Pseudomonas fluorescens (referred to as Ms9N; GenBank accession No. MF618323, not showing chitinase activity) and Stenotrophomonas maltophilia (Ll4; GenBank accession No. MF624721, showing chitinase activity), previously identified as promoting growth rhizobacteria of Medicago truncatula, were found, during an in vitro experiment, to exert an inhibitory effect on three soil-borne fungi: Fusarium culmorum Cul-3, F. oxysporum 857 and F. oxysporum f. sp. medicaginis strain CBS 179.29, responsible for serious diseases of most legumes including M. truncatula. S. maltophilia was more active than P. fluorescens in suppressing the mycelium growth of two out of three Fusarium strains. Both bacteria showed β-1,3-glucanase activity which was about 5 times higher in P. fluorescens than in S. maltophilia. Upon soil treatment with a bacterial suspension, both bacteria, but particularly S. maltophilia, brought about up-regulation of plant genes encoding chitinases (MtCHITII, MtCHITIV, MtCHITV), glucanases (MtGLU) and phenylalanine ammonia lyases (MtPAL2, MtPAL4, MtPAL5). Moreover, the bacteria up-regulate some genes from the MYB (MtMYB74, MtMYB102) and WRKY (MtWRKY6, MtWRKY29, MtWRKY53, MtWRKY70) families which encode TFs in M. truncatula roots and leaves playing multiple roles in plants, including a defense response. The effect depended on the bacterium species and the plant organ. This study provides novel information about effects of two M. truncatula growth-promoting rhizobacteria strains and suggests that both have a potential to be candidates for PGPR inoculant products on account of their ability to inhibit in vitro growth of Fusarium directly and indirectly by up-regulation of some defense priming markers such as CHIT, GLU and PAL genes in plants. This is also the first study of the expression of some MYB and WRKY genes in roots and leaves of M. truncatula upon soil treatment with two PGPR suspensions.
Collapse
Affiliation(s)
- Piotr Karczyński
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Anna Orłowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
19
|
Wang J, Liu S, Ren P, Jia F, Kang F, Wang R, Xue R, Yan X, Huang L. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:436-451. [PMID: 36872468 PMCID: PMC10098051 DOI: 10.1111/mpp.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 05/03/2023]
Abstract
Previously, we reported a rare actinomycete Saccharothrix yanglingensis Hhs.015 with strong biocontrol ability, which can colonize plant tissues and induce resistance, but the key elicitor and immune mechanisms were unclear. In this study, a novel protein elicitor screened from the genome of Hhs.015, PeSy1 (protein elicitor of S. yanglingensis 1), could induce a strong hypersensitive response (HR) and resistance in plants. The PeSy1 gene encodes an 11 kDa protein with 109 amino acids that is conserved in Saccharothrix species. PeSy1-His recombinant protein induced early defence events such as a cellular reactive oxygen species burst, callose deposition, and the activation of defence hormone signalling pathways, which enhanced Nicotiana benthamiana resistance to Sclerotinia sclerotiorum and Phytophthora capsici, and Solanum lycopersicum resistance to Pseudomonas syringae pv. tomato DC3000. Through pull-down and mass spectrometry, candidate proteins that interacted with PeSy1 were obtained from N. benthamiana. We confirmed the interaction between receptor-like cytoplasmic kinase RSy1 (Response to PeSy1) and PeSy1 using co-immunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. PeSy1 treatment promoted up-regulation of marker genes in pattern-triggered immunity. The cell death it elicited was dependent on the co-receptors NbBAK1 and NbSOBIR1, suggesting that PeSy1 acts as a microbe-associated molecular pattern from Hhs.015. Additionally, RSy1 positively regulated PeSy1-induced plants resistant to S. sclerotiorum. In conclusion, our results demonstrated a novel receptor-like cytoplasmic kinase in the plant perception of microbe-associated molecular patterns, and the potential of PeSy1 in induced resistance provided a new strategy for biological control of actinomycetes in agricultural diseases.
Collapse
Affiliation(s)
- Jianxun Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Shang Liu
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Peng Ren
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Fengguo Jia
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Feng Kang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Ruolin Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Renzheng Xue
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Xia Yan
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
20
|
Kumari P, Azad C, Kumar RR, Kumari J, Aditya K, Kumar A. Defense Inducer Compounds Up-regulated the Peroxidase, Polyphenol Oxidase, and Total Phenol Activities against Spot Blotch Disease of Wheat. THE PLANT PATHOLOGY JOURNAL 2023; 39:159-170. [PMID: 37019826 PMCID: PMC10102565 DOI: 10.5423/ppj.oa.06.2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 06/19/2023]
Abstract
Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Plant Pathology, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| | - Chandrashekhar Azad
- Department of Plant Pathology, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| | - Ravi Ranjan Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| | - Jyoti Kumari
- Department of Plant Pathology, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| | - Kumar Aditya
- Department of Plant Pathology, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| | - Amarendra Kumar
- Department of Plant Pathology, Bihar Agricultural University, Sabour Bhagalpur 813210,
India
| |
Collapse
|
21
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
22
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
23
|
El-Aswad AF, Aly MI, Alsahaty SA, Basyony ABA. Efficacy evaluation of some fumigants against Fusarium oxysporum and enhancement of tomato growth as elicitor-induced defense responses. Sci Rep 2023; 13:2479. [PMID: 36774421 PMCID: PMC9922316 DOI: 10.1038/s41598-023-29033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Fusarium wilt, the most serious soil-borne pathogen, is a serious problem for tomato production worldwide. The presented study evaluated the antifungal activity against Fusarium oxysporum f. sp. lycopersici in vitro and in vivo for nine fumigants. In addition, the research examined the possibility of enhancing the growth of tomato plants in order to increase resistance against this disease by using four chemical inducers. The results indicated that at 20 mg/L, the radial growth of the pathogen was inhibited 100% by formaldehyde and > 80% by phosphine. Among the essential oils investigated, neem oil was the most effective, however, it only achieved 40.54% at 500 mg/L. The values of EC50 for all fumigants, except dimethyl disulfide (DMDS) and carbon disulfide (CS2), were lower than those for thiophanate-methyl. Phosphine was the highest efficient. The elicitors can be arranged based on their effectiveness, gibberellic acid (GA3) > sorbic acid > cytokinin (6-benzylaminopurine) > indole-3-butyric acid. The change in root length, fresh weight, and dry weight was greater with soil drench than with foliar application. The fumigant generators formaldehyde, phosphine and 1,4-dichlorobenzene and bio-fumigants citrus and neem oils as well as elicitors gibberellic and sorbic acid could be one of the promising alternatives to methyl bromide against Fusarium oxysporum as an important component of integrated management of Fusarium wilt.
Collapse
Affiliation(s)
- Ahmed F El-Aswad
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt.
| | - Maher I Aly
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Sameh A Alsahaty
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Ayman B A Basyony
- Plant Pathology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Alnefaie RM, EL-Sayed SA, Ramadan AA, Elmezien AI, El-Taher AM, Randhir TO, Bondok A. Physiological and Anatomical Responses of Faba Bean Plants Infected with Chocolate Spot Disease to Chemical Inducers. Life (Basel) 2023; 13:life13020392. [PMID: 36836749 PMCID: PMC9963110 DOI: 10.3390/life13020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Plant diseases are biotic stresses that restrict crop plants' ability to develop and produce. Numerous foliar diseases, such as chocolate spots, can cause significant production losses in Vicia faba plants. Certain chemical inducers, including salicylic acid (SA), oxalic acid (OA), nicotinic acid (NA), and benzoic acid (BA), were used in this study to assess efficacy in controlling these diseases. A foliar spray of these phenolic acids was used to manage the impacts of the biotic stress resulting from disease incidence. All tested chemical inducers resulted in a significant decrease in disease severity. They also enhanced the defense system of treated plants through increasing antioxidant enzyme activity (Peroxidase, polyphenol oxidase, β-1, 3-glucanase, and chitinase) compared to the corresponding control. Healthy leaves of faba plants recorded the lowest (p < 0.05) values of all antioxidant activities compared to those plants infected by Botrytis fabae. Moreover, the separation of proteins using SDS-PAGE showed slight differences among treatments. Furthermore, foliar spray with natural organic acids reduced the adverse effects of fungal infection by expediting recovery. The SA (5 mM) treatment produced a pronounced increase in the upper, lower epidermis, palisade thickness, spongy tissues, midrib zone, length, and width of vascular bundle. The foliar application with other treatments resulted in a slight increase in the thickness of the examined layers, especially by benzoic acid. In general, all tested chemical inducers could alleviate the adverse effects of the biotic stress on faba bean plants infected by Botrytis fabae.
Collapse
Affiliation(s)
- Rasha M. Alnefaie
- Biology Department, College of Science, Albaha University, Al Bahah 65779, Saudi Arabia
| | - Sahar A. EL-Sayed
- Biology Department, College of Science, Albaha University, Al Bahah 65779, Saudi Arabia
- Institute of Plant Pathology, Agricultural Research Center, Giza P.O. Box 12613, Egypt
| | - Amany A. Ramadan
- Botany Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza P.O. Box 12622, Egypt
| | - Ahmed I. Elmezien
- Department of Agricultural Botany (Plant Physiology), Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. El-Taher
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Timothy O. Randhir
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Ahmed Bondok
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
25
|
Borrego-Muñoz P, Cardenas D, Ospina F, Coy-Barrera E, Quiroga D. Second-Generation Enamine-Type Schiff Bases as 2-Amino Acid-Derived Antifungals against Fusarium oxysporum: Microwave-Assisted Synthesis, In Vitro Activity, 3D-QSAR, and In Vivo Effect. J Fungi (Basel) 2023; 9:jof9010113. [PMID: 36675934 PMCID: PMC9866056 DOI: 10.3390/jof9010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In this manuscript, the synthesis of enamine-type Schiff bases 1−48 derived from the amino acids L-Ala, L-Tyr, and L-Phe was carried out. Their in vitro activity and in vivo protective effect against Fusarium oxysporum were also evaluated through mycelial growth inhibition and disease severity reduction under greenhouse conditions. The in vitro activity of test compounds 1−48 showed half-maximal inhibitory concentrations (IC50) at different levels below the 40 mM range. Deep analysis of the IC50 variations indicated that the size of the substituent on the acetylacetone derivatives and the electronic character on the cyclohexane-3-one fragment influenced the antifungal effect. 3D-QSAR models based on atoms (atom-based approach) were built to establish the structure−activity relationship of the test Schiff bases, showing a good correlation and predictive consistency (R2 > 0.70 and Q2 > 0.60). The respective contour analysis also provided information about the structural requirements for potentiating their antifungal activity. In particular, the amino acid-related fragment and the alkyl ester residue can favor hydrophobic interactions. In contrast, the nitrogen atoms and enamine substituent are favorable regions as H-donating and electron-withdrawing moieties. The most active compounds (40 and 41) protected cape gooseberry plants against F. oxysporum infection (disease severity index < 2), involving adequate physiological parameters (stomatal conductance > 150 mmol/m2s) after 45 days of inoculation. These promising results will allow the design of novel Schiff base-inspired antifungals using 2-amino acids as precursors.
Collapse
|
26
|
New plant resistance inducers based on polyamines. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The novel and revolutionary approach to plant protection presented in this work, based on the preparation of bifunctional salts of a plant resistance inducer combined with a polyamine cation, may become a potential solution in the future for reducing the effects of abiotic and biotic stresses to which the plant is exposed. This study presents the synthesis, physical properties, phytotoxicity, and systemic acquired resistance (SAR) induction efficacy of new salts composed of the anion of plant resistance inducers and N,N,N,N′,N′,N′-hexamethylpropane-1,3-diammonium cation (5 salts), N,N,N,N′,N′,N′-hexamethyl-butane-1,4-diammonium cation (5 salts), spermidine salicylate, and spermine salicylate. SAR induction efficiency tests were performed on tobacco, Nicotiana tabacum var. Xanthi, infected with the tobacco mosaic virus.
Collapse
|
27
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Nie Y, Li G, Li J, Zhou X, Zhang Y, Shi Q, Zhou X, Li H, Chen XL, Li Y. A novel elicitor MoVcpo is necessary for the virulence of Magnaporthe oryzae and triggers rice defense responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1018616. [PMID: 36325552 PMCID: PMC9619064 DOI: 10.3389/fpls.2022.1018616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Elicitors secreted by M. oryzae play important roles in the interaction with rice to facilitate fungal infection and disease development. In recent years, several elicitor proteins have been identified in M. oryzae, and their functions and importance are increasingly appreciated. In this study, we purified a novel elicitor-activity protein from M. oryzae, which was further identified as a vanadium chloroperoxidase (MoVcpo) by MAIDL TOF/TOF MS. The purified MoVcpo induced reactive oxygen species (ROS) accumulation in host cells, up-regulated the expression of multiple defense-related genes, thus significantly enhancing rice resistance against M. oryzae. These results suggested that MoVcpo functions as a pathogen-associated molecular pattern (PAMP) to trigger rice immunity. Furthermore, MoVcpo was highly expressed in the early stage of M. oryzae infection. Deletion of MoVcpo affected spore formation, conidia germination, cell wall integrity, and sensitivity to osmotic stress, but not fungal growth. Interestingly, compared with the wild-type, inoculation with MoVcpo deletion mutant on rice led to markedly induced ROS accumulation, increased expression of defense-related genes, but also lower disease severity, suggesting that MoVcpo acts as both an elicitor activating plant immune responses and a virulence factor facilitating fungal infection. These findings reveal a novel role for vanadium chloroperoxidase in fungal pathogenesis and deepen our understanding of M. oryzae-rice interactions.
Collapse
Affiliation(s)
- Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guanjun Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoshu Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanzhi Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingchuan Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Ehiobu J, Idamokoro E, Afolayan A. Biofungicides for Improvement of Potato ( Solanum tuberosum L) Production. SCIENTIFICA 2022; 2022:1405900. [PMID: 36226271 PMCID: PMC9550405 DOI: 10.1155/2022/1405900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Potato (Solanum tuberosum L) cultivation originated from Peru in Latin America. The cultivation has spread fast across the globe due to its ability to cope in the warm tropical and temperate climate. It is spotted by the United Nations as the only tuberous crop that can compete with the cereals in productivity. Fungal disease infestation has been identified as a major challenge confronting the farmers during the cultivation and marketing processes. Farmers' reliance on Chemical fungicides has lost its credibility to the adoption of the use of biofungicides due to its toxic, high cost, and environmental hazard effects. The trend of the adoption of biofungicides by potato farmers is gaining ground at a fast rate. Various national governments are devising means of collaborating with the United Nations stakeholders through encouraging research funding and by organizing conferences that will enhance potato production. This could be achieved by minimizing losses through farmer's complete adoption of biofungicides. This review, therefore, examines the various botanicals with antimicrobial properties as potential biofungicide against fungi diseases of potato.
Collapse
Affiliation(s)
- John Ehiobu
- Medicinal Plants and Economic Development (MPED) Research Centre, Botany Department, University of Fort Hare, Alice 5700, South Africa
| | - Emrobowansan Idamokoro
- Faculty of Commerce and Administration, Department of Economics and Business Science, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Anthony Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Botany Department, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
30
|
De Novo Transcriptome Analysis of R. nigrum cv. Aldoniai in Response to Blackcurrant Reversion Virus Infection. Int J Mol Sci 2022; 23:ijms23179560. [PMID: 36076958 PMCID: PMC9455767 DOI: 10.3390/ijms23179560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The most damaging pathogen in blackcurrant plantations is mite-transmitted blackcurrant reversion virus (BRV). Some Ribes species have an encoded genetic resistance to BRV. We performed RNA sequencing analysis of BRV-resistant blackcurrant cv. Aldoniai to evaluate the molecular mechanisms related to the BRV infection response. The RNA of virus-inoculated and mock-inoculated microshoots was sequenced, and the transcriptional changes at 2- and 4-days post inoculation (dpi) were analyzed. The accumulation and expression of BRV RNA1 were detected in infected plants. In total, 159,701 transcripts were obtained and 30.7% were unigenes, annotated in 7 databases. More than 25,000 differentially expressed genes (DEGs) according to FPKM were upregulated or downregulated. We observed 221 and 850 DEGs at 2 and 4 dpi, respectively, in BRV-infected microshoots related to the stress response. The proportion of upregulated DEGs at 4 dpi was about 3.5 times higher than at 2 dpi. Pathways of the virus defense response were activated, and key candidate genes were identified. The phenylpropanoid and the cutin, suberine, and wax biosynthesis pathways were activated in infected plants. Our comparative de novo analysis of the R. nigrum transcriptome provides clues not only for understanding the molecular BRV resistance mechanisms but also for breeding BRV-tolerant genotypes.
Collapse
|
31
|
Derbalah A, Abdelsalam I, Behiry SI, Abdelkhalek A, Abdelfatah M, Ismail S, Elsharkawy MM. Copper oxide nanostructures as a potential method for control of zucchini yellow mosaic virus in squash. PEST MANAGEMENT SCIENCE 2022; 78:3587-3595. [PMID: 35598074 DOI: 10.1002/ps.7001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zucchini yellow mosaic virus (ZYMV) infects cucurbits and has been identified as a major limiting factor in their production. The purpose of this study was to create copper oxide nanostructures (CONS) to control ZYMV in squash plants. Protection of squash against ZYMV was assessed in terms of virus severity, ZYMV concentration, transcription of pathogenesis-related genes and growth enhancement of treated squash. RESULTS The findings revealed that squash plants treated with CONS had a significant reduction in disease severity when compared with untreated plants. In squash plants treated with CONS, defense genes associated with the salicylic acid signaling pathway were strongly expressed compared with untreated plants. The structural characteristics of CONS, such as their small size and appropriate shape, added to their excellent anti-ZYMV efficacy. CONS-treated squash plants show significantly improved growth traits compared with untreated plants. CONCLUSION Based on the results of this study, CONS may be a new strategy for the control of ZYMV in squash. This represents an unconventional solution to control this virus, particularly as no chemical pesticides can control viral diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Ibrahim Abdelsalam
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications SRTA-City, Alexandria, Egypt
| | | | - Sherin Ismail
- Chemistry Department, Tanta University, Tanta, Egypt
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
32
|
Rosales-López C, Arce-Torres F, Monge-Artavia M, Rojas-Chaves M. Evaluation of the Use of Elicitors for the Production of Antioxidant Compounds in Liquid Cultures of Ganoderma curtisii from Costa Rica. Molecules 2022; 27:4265. [PMID: 35807510 PMCID: PMC9268739 DOI: 10.3390/molecules27134265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
The use of substances or conditions as elicitors can significantly increase the production of secondary metabolites. In this research, the effects of different elicitors on the production of antioxidant secondary metabolites were evaluated in a strain of Ganoderma sp. The elicitors tested were pH changes in different growth phases of the fungus (pH 3, 5.5 and 8), different concentrations of peptone as a nitrogen source (1 g/L and 10 g/L), and the addition of chemical agents to the culture medium (ethanol, growth regulators, and salts). The alkaline pH during the stationary phase and the high availability of nitrogen were effective elicitors, producing cultures with higher antioxidant activity (37.87 g/L and 43.13 g/L dry biomass) although there were no significant differences with other treatments.
Collapse
|
33
|
Zhong Y, Gai Y, Gao J, Nie W, Bao Z, Wang W, Xu X, Wu J, He Y. Selection and validation of reference genes for quantitative real-time PCR normalization in Psoralea corylifolia (Babchi) under various abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153722. [PMID: 35605384 DOI: 10.1016/j.jplph.2022.153722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Psoralea corylifolia L. is a popular herb and has long been used in traditional Ayurvedic and Chinese medicine owing to its extensive pharmacological activities, especially in the treatment of various shin diseases. To date, the systematic evaluation and selection of the optimum reference genes for gene expression analysis of P. corylifolia were not reported. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a method for gene expression quantification. Selecting appropriate reference genes is the prerequisite for accurate normalization of RT-qPCR results. This study assessed the expression stability of 10 candidate reference genes under different abiotic stresses. First, amplification primers for RT-qPCR were designed and received testing and optimization. Then, expression data from each candidate gene were evaluated based on three statistical algorithms, and their results were further integrated into a comprehensive ranking based on the geometric mean. Additionally, one target gene, i.e., 1-aminocyclopropane-1-carboxylate oxidase (ACO), was used to validate the effectiveness of the selected reference. Our analysis suggested that thioredoxin-like protein YLS8 (YLS8), TIP41-like family protein (TIP41), and cyclophilin 2 (CYP2) genes provided superior expression normalization under different abiotic stresses. Overall, this work constitutes the first effort to select optimal endogenous controls for RT-qPCR studies of gene expression in P. corylifolia. It also provides a reasonable normalization standard and basis for further analysis of the gene expression of bioactive components in P. corylifolia.
Collapse
Affiliation(s)
- Yuan Zhong
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Jiajia Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Weifen Nie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhenzhen Bao
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Weiqi Wang
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Xiaoqing Xu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Jie Wu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yuedong He
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
34
|
Du J, Wang Q, Zeng C, Zhou C, Wang X. A prophage-encoded nonclassical secretory protein of "Candidatus Liberibacter asiaticus" induces a strong immune response in Nicotiana benthamiana and citrus. MOLECULAR PLANT PATHOLOGY 2022; 23:1022-1034. [PMID: 35279937 PMCID: PMC9190977 DOI: 10.1111/mpp.13206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (CLas), is a globally devastating plant disease. The highly reduced genome of CLas encodes a number of secretory proteins. The conserved prophage-encoded protein AGH17470 is herein identified as a nonclassical secretory protein. We confirmed that the N-terminal and C-terminal sequences jointly determine the secretion of AGH17470. The transient expression of AGH17470 protein in Nicotiana benthamiana caused hypersensitive response (HR) cell death in infiltrated leaves and systemically infected leaves as well as the dwarfing of the entire plant, suggesting that AGH17470 is involved in the plant immune response, growth, and development. Overexpression of AGH17470 in N. benthamiana and citrus plants up-regulated the transcription of pathogenesis-related and salicylic acid (SA)-signalling pathway genes and promoted SA accumulation. Furthermore, transient expression of AGH17470 enhanced the resistance of sweet orange to Xanthomonas citri subsp. citri. To our knowledge, AGH17470 is the first prophage-encoded secretory protein demonstrated to elicit an HR and induce a strong plant immune response. The findings have increased our understanding of prophage-encoded secretory protein genes, and the results provide clues as to the plant defence response against CLas.
Collapse
Affiliation(s)
- Jiao Du
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Qiying Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Chunhua Zeng
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Xuefeng Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| |
Collapse
|
35
|
Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning. Sci Rep 2022; 12:10857. [PMID: 35760985 PMCID: PMC9237127 DOI: 10.1038/s41598-022-14913-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 12/30/2022] Open
Abstract
The rhizosphere, the region of soil surrounding roots of plants, is colonized by a unique population of Plant Growth Promoting Rhizobacteria (PGPR). Many important PGPR as well as plant pathogens belong to the genus Pseudomonas. There is, however, uncertainty on the divide between beneficial and pathogenic strains as previously thought to be signifying genomic features have limited power to separate these strains. Here we used the Genome properties (GP) common biological pathways annotation system and Machine Learning (ML) to establish the relationship between the genome wide GP composition and the plant-associated lifestyle of 91 Pseudomonas strains isolated from the rhizosphere and the phyllosphere representing both plant-associated phenotypes. GP enrichment analysis, Random Forest model fitting and feature selection revealed 28 discriminating features. A test set of 75 new strains confirmed the importance of the selected features for classification. The results suggest that GP annotations provide a promising computational tool to better classify the plant-associated lifestyle.
Collapse
|
36
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Aprile AM, Langella E, Rigano MM, Francesca S, Chiaiese P, Palmieri G, Tatè R, Sinno M, Barra E, Becchimanzi A, Monti SM, Pennacchio F, Rao R. Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:887674. [PMID: 35685017 PMCID: PMC9173717 DOI: 10.3389/fpls.2022.887674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Prosystemin is a 200-amino acid precursor expressed in Solanaceae plants which releases at the C-terminal part a peptidic hormone called Systemin in response to wounding and herbivore attack. We recently showed that Prosystemin is not only a mere scaffold of Systemin but, even when deprived of Systemin, is biologically active. These results, combined with recent discoveries that Prosystemin is an intrinsically disordered protein containing disordered regions within its sequence, prompted us to investigate the N-terminal portions of the precursor, which contribute to the greatest disorder within the sequence. To this aim, PS1-70 and PS1-120 were designed, produced, and structurally and functionally characterized. Both the fragments, which maintained their intrinsic disorder, were able to induce defense-related genes and to protect tomato plants against Botrytis cinerea and Spodoptera littoralis larvae. Intriguingly, the biological activity of each of the two N-terminal fragments and of Systemin is similar but not quite the same and does not show any toxicity on experimental non-targets considered. These regions account for different anti-stress activities conferred to tomato plants by their overexpression. The two N-terminal fragments identified in this study may represent new promising tools for sustainable crop protection.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Naples, Italy
| | - Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Eleonora Barra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Brassinolide Maximized the Fruit and Oil Yield, Induced the Secondary Metabolites, and Stimulated Linoleic Acid Synthesis of Opuntia ficus-indica Oil. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prickly pear plant is widely cultivated in arid and semi-arid climates. Its fruits are rich in polyphenols, proteins, vitamin C, minerals, fatty acids, and amino acids. The oil extracted from the seeds also has a significant proportion of linoleic acid (ω6) and might be employed as a therapeutic raw material. The potential of enhancing fruit yield, increasing bioactive compounds of the fruit pulp, and improving the unsaturated fatty acid content of prickly pear oilseed by using the foliar application of brassinolide as a plant growth regulator was the main goal of this study. Prickly pear plants were foliar sprayed with a brassinolide solution at concentrations of 0, 1, 3, and 5 mg L−1. The plant performance was significantly improved following brassinolide applications, as compared with untreated plants. The plants subjected to 5 mg L−1 application exhibited 183 and 188% stimulation in the fruit yield, and 167 and 172% in the seed yield for the first and second seasons, respectively. The highest concentration of phenolic, flavonoid, protein, vitamin C, and maximum antioxidant activity in the fruit pulp was observed following 5 mg L−1 brassinolide treatment. The oil yield has been increased by 366 and 353% following brassinolide at a 5 mg L−1 level over control plants. Linoleic, oleic, and palmitic acids are the major components in prickly pear seed oil. Brassinolide foliar spraying induced an alternation in the fatty acid profile, as linoleic and oleic acids exhibited 5 and 4% higher following 5 mg L−1 application as compared with untreated plants. In conclusion, the treatment of 5 mg L−1 brassinolide improved the growth and quality of prickly pear plants by boosting fruit and seed yields, increasing active component content in the fruit pulp, improving mineral content, and increasing oil production and linoleic acid proportion.
Collapse
|
38
|
Abstract
Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice. The use of elicitors in viticulture to control disease and improve phenolic compounds is widely recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma compounds. Grape and wine aroma compounds are an important quality factor that reflects nutritional information and influences consumer preference. However, the effects of elicitors on aroma compounds are diverse, as different grape varieties respond differently to treatments. Among the numerous commercialized elicitors, some have proven very effective in improving the quality of grapes and the resulting wines. This review summarizes some of the elicitors commonly used in grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile compounds. The work is intended to serve as a reference for growers for the sustainable development of high-quality grapes.
Collapse
|
39
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
40
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
41
|
Alkan M, Bayraktar H, İmren M, Özdemir F, Lahlali R, Mokrini F, Paulitz T, Dababat AA, Özer G. Monitoring of Host Suitability and Defense-Related Genes in Wheat to Bipolaris sorokiniana. J Fungi (Basel) 2022; 8:jof8020149. [PMID: 35205903 PMCID: PMC8877012 DOI: 10.3390/jof8020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat worldwide. This study investigated the aggressiveness of B. sorokiniana isolates from different wheat-growing areas of Bolu province in Turkey on the cultivar Seri-82. Host susceptibility of 55 wheat cultivars was evaluated against the most aggressive isolate. Our results indicated that the cultivars Anafarta and Koç-2015 were the most resistant. A specific and sensitive qPCR assay was developed for detecting the pathogen in plant tissues and evaluating wheat plants with different resistance levels. Three primer sets, BsGAPDHF/BsGAPDHR, BsITSF/BsITSR, and BsSSUF/BsSSUR, were designed based on glyceraldehyde-3-phosphate dehydrogenase, internal transcribed spacers, and 18S rRNA loci of B. sorokiniana with detection limits of 1, 0.1, and 0.1 pg of pathogen DNA, respectively. The qPCR assay was highly sensitive and did not amplify DNA from the other closely related fungal species and host plants. The protocol differentiated wheat plants with varying degrees of resistance. The assay developed a useful tool for the quantification of the pathogen in the early stages of infection and may provide a significant contribution to a more efficient selection of wheat genotypes in breeding studies. In the present study, expression levels of PR proteins, phenylalanine ammonia-lyase, catalase, ascorbate peroxidase, and superoxide dismutase enzymes were upregulated in Anafarta (resistant) and Nenehatun (susceptible) cultivars at different post-infection time points, but more induced in the susceptible cultivar. The results showed considerable variation in the expression levels and timing of defense genes in both cultivars.
Collapse
Affiliation(s)
- Mehtap Alkan
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.A.); (M.İ.)
| | - Harun Bayraktar
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey
- Correspondence: (H.B.); (A.A.D.); (G.Ö.); Tel.: +90-31-2596-1270 (H.B.); +90-53-0406-2825 (A.A.D.); +90-50-5385-8234 (G.Ö.)
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.A.); (M.İ.)
| | - Fatih Özdemir
- Bahri Dagdas International Agricultural Research Institute, Konya 42050, Turkey;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknes 50001, Morocco;
| | - Fouad Mokrini
- Biotechnology Research Unit, Laboratory of Nematology, Regional Center of Agricultural Research, National Institute of Agronomic Research (INRA), Rabat 10060, Morocco;
| | - Timothy Paulitz
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA;
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), P.O. Box 39, Emek, Ankara 06170, Turkey
- Correspondence: (H.B.); (A.A.D.); (G.Ö.); Tel.: +90-31-2596-1270 (H.B.); +90-53-0406-2825 (A.A.D.); +90-50-5385-8234 (G.Ö.)
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.A.); (M.İ.)
- Correspondence: (H.B.); (A.A.D.); (G.Ö.); Tel.: +90-31-2596-1270 (H.B.); +90-53-0406-2825 (A.A.D.); +90-50-5385-8234 (G.Ö.)
| |
Collapse
|
42
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Zehra A, Swapnil P. Role of Microbial Bioagents as Elicitors in Plant Defense Regulation. TRANSCRIPTION FACTORS FOR BIOTIC STRESS TOLERANCE IN PLANTS 2022:103-128. [DOI: 10.1007/978-3-031-12990-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
44
|
V. PR, S. T, N. P, V. P. Plant-Microbe-Insect Interactions: Concepts and Applications for Agricultural Sustainability. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Trehalose: A mycogenic cell wall elicitor elicit resistance against leaf spot disease of broccoli and acts as a plant growth regulator. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00690. [PMID: 34987982 PMCID: PMC8711064 DOI: 10.1016/j.btre.2021.e00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022]
Abstract
Mycogenic cell wall elicitor was isolated from trichoderma atroviride. The isolated elicitor was identified as trehalose by LC-MS analysis. Seed priming with elicitor enhanced early germination and vigour. Primed plants induced resistance against leaf spot disease of brocolli. Trehalose sugar act as a bio-stimulant for growth promotion and plant defence.
Elicitors are biochemicals, and the cell wall-derived elicitors from fungi can trigger defence mechanisms in plants by increasing the phytoalexin accumulation when they encounter the pathogens. The main objective of this research was to purify and characterize a cell wall elicitor from Trichoderma atroviride (TaCWE) and evaluate the seed priming effect of that elicitor for inducing systemic resistance in broccoli plants against leaf spot disease. Amongst the tested TaCWE concentrations of the seed priming (5, 10, & 25 mg ml−1), 10.0 mg ml−1 showed significantly (P < 0.05) improved early emergence, the rate of germination at 94%, and observed seedling vigour of 2601. Also, elicitor (10 mg ml−1) treatment alone induced 57% plant protection. On the contrary, the elicitor treated and pathogen inoculated plants induced a notable 72% protection against leaf spot disease of broccoli caused by A. brassicicola. Thus, the primed seeds with elicitor showed induced disease resistance and plant growth promotion. The prominent molecule present in the purified extracted cell wall elicitor is confirmed as trehalose. The AFM analysis indicated the trehalose length and width as 10.16 µm and 2.148 µm, respectively. FTIR chromatogram further confirmed trehalose in abundance with traces of carbon, hydrogen, nitrogen, oxygen, and LC-MS profile with a single peak eluted with a retention time of 3.78 min. The findings of this study contribute to understanding better the role of trehalose, a biogenic cell-wall elicitor that can induce systemic resistance against leaf spot disease and regulate plant growth in the broccoli plants.
Collapse
|
46
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
MBCAs played beneficial role to protect plants from harmful pathogens to control plant diseases. MBCAs also support in plant growth promotion and stress tolerance. MBCAs act as elicitors to induce a signal to stimulate the plant defense mechanism against pathogens. Reticine A-induced hypersensitive reaction, systemic accumulation of H2O2 and salicylic acid.
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur - 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi - 110007, India
| |
Collapse
|
47
|
Lally RD, Donaleshen K, Chirwa U, Eastridge K, Saintilnord W, Dickinson E, Murphy R, Borst S, Horgan K, Dawson K. Transcriptomic Response of Huanglongbing-Infected Citrus sinensis Following Field Application of a Microbial Fermentation Product. FRONTIERS IN PLANT SCIENCE 2021; 12:754391. [PMID: 34917102 PMCID: PMC8669595 DOI: 10.3389/fpls.2021.754391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is considered the most destructive disease in Citrus production and threatens the future of the industry. Microbial-derived defense elicitors have gained recognition for their role in plant defense priming. This work assessed a 5% (V/V) microbial fermentation application (MFA) and its role in the elicitation of defense responses in HLB-infected Citrus sinensis trees following a foliar application with a pump sprayer. Using a PCR detection method, HLB infection levels were monitored in healthy and infected trees for 20months. Nutrient analysis assessed N, P, K, Ca, Mg, Mn, Zn, Fe, B, and Cu concentrations in the trees. MFA significantly increased Cu concentrations in treated trees and resulted in the stabilization of disease index (DI) in infected trees. Initial real-time qPCR analysis of defense-associated genes showed a significant increase in pathogenesis-related protein 2 (PR2) and phenylalanine ammonia lyase (PAL) gene expression in healthy and HLB-infected trees in response to MFA. Gene expression of PR2 and PAL peaked 6h post-microbial fermentation application during an 8-h sampling period. A transcriptomic assessment using GeneChip microarray of the hour 6 samples revealed differential expression of 565 genes when MFA was applied to healthy trees and 909 genes when applied infected citrus trees when compared to their respective controls. There were 403 uniquely differentially expressed genes in response to MFA following an intersectional analysis of both healthy and infected citrus trees. The transcriptomic analysis revealed that several genes associated with plant development, growth, and defense were upregulated in response to MFA, including multiple PR genes, lignin formation genes, ROS-related genes, hormone synthases, and hormone regulators. This study provides further evidence that MFA may play an important role as a plant elicitor in an integrated pest management strategy in citrus and other agronomically important crops.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | | | | | | | | | |
Collapse
|
48
|
Plant Growth-Promoting Rhizobacteria Modulate the Concentration of Bioactive Compounds in Tomato Fruits. SEPARATIONS 2021. [DOI: 10.3390/separations8110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The application of microorganisms as bioestimulants in order to increase the yield and/or quality of agricultural products is becoming a widely used practice in many countries. In this work, five plant growth-promoting rhizobacteria (PGPR), isolated from cultivated rice paddy soils, were selected for their plant growth-promoting capacities (e.g., auxin synthesis, chitinase activity, phosphate solubilisation and siderophores production). Two different tomato cultivars were inoculated, Tres Cantos and cherry. Plants were grown under greenhouse conditions and different phenotypic characteristics were analysed at the time of harvesting. Results: Tres Cantos plants inoculated with PGPR produced less biomass but larger fruits. However, the photosynthetic rate was barely affected. Several antioxidant activities were upregulated in these plants, and no oxidative damage in terms of lipid peroxidation was observed. Finally, ripe fruits accumulated less sugar but, interestingly, more lycopene. By contrast, inoculation of cherry plants with PGPR had no effect on biomass, although photosynthesis was slightly affected, and the productivity was similar to the control plants. In addition, antioxidant activities were downregulated and a higher lipid peroxidation was detected. However, neither sugar nor lycopene accumulation was altered. Conclusion: These results support the use of microorganisms isolated from agricultural soils as interesting tools to manipulate the level of important bioactive molecules in plants. However, this effect seems to be very specific, even at the variety level, and deeper analyses are necessary to assess their use for specific applications.
Collapse
|
49
|
Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc'h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express 2021; 11:137. [PMID: 34661766 PMCID: PMC8523646 DOI: 10.1186/s13568-021-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Brisbane, 4343, Australia
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Muhammad Naeem Bajwa
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
50
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|