1
|
Yuya W, Yuansong Y, Susu L, Chen L, Yong W, Yining W, YouChun W, Changfa F. Progress and challenges in development of animal models for dengue virus infection. Emerg Microbes Infect 2024; 13:2404159. [PMID: 39312399 PMCID: PMC11423536 DOI: 10.1080/22221751.2024.2404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
ABSTRACTThe severity of the dengue epidemic is on the rise, with its geographic range had expanded to southern Europe by 2024. In this August, the WHO updated the pathogens that could spark the next pandemic, dengue virus was on the list. Vaccines and drugs serve as powerful tools for both preventing dengue infections and treating patients. Animal models play a pivotal role in vaccine development and drug screening. Available potential susceptible animals, including non-human primates, rodents, pigs, and tree shrews, have been extensively explored to establish animal models of dengue disease. Despite significant advancements, there are still notable limitations. Different animal models exhibit distinct constraining factors such as viraemia, host susceptibility, immune function of the host, clinical symptoms, ADE (antibody-dependent enhancement) phenomena, cytokine storm response to various serotypes and strain variations. Furthermore, despite extensive research on the dengue virus receptor in recent years, genetically modified animal models immunocompetent harbouring dengue virus susceptibility receptors have not yet been available. This work reviewed the research progress of dengue virus receptors and dengue animal models, suggesting that the development of genetically modified murine models expressing dengue virus functional receptors may hold a promise for future dengue disease research, especially for its vaccine development.
Collapse
Affiliation(s)
- Wang Yuya
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yang Yuansong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Liu Susu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Ling Chen
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
- College of Life Science school, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, People’s Republic of China
| | - Wu Yong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang Yining
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang YouChun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Fan Changfa
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|
2
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
3
|
Rathnakumar S, Kambhampati NSV, Saiswaroop R, Pradhan SS, Ramkumar G, Beeraka N, Muddu GK, Kumar S, Javvaji SK, Parangoankar A, Sivaramakrishnan V, Ramamurthy SS. Integrated clinical and metabolomic analysis of dengue infection shows molecular signatures associated with host-pathogen interaction in different phases of the disease. Metabolomics 2023; 19:47. [PMID: 37130982 DOI: 10.1007/s11306-023-02011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Dengue is a mosquito vector-borne disease caused by the dengue virus, which affects 125 million people globally. The disease causes considerable morbidity. The disease, based on symptoms, is classified into three characteristic phases, which can further lead to complications in the second phase. Molecular signatures that are associated with the three phases have not been well characterized. We performed an integrated clinical and metabolomic analysis of our patient cohort and compared it with omics data from the literature to identify signatures unique to the different phases. METHODS The dengue patients are recruited by clinicians after standard-of-care diagnostic tests and evaluation of symptoms. Blood from the patients was collected. NS1 antigen, IgM, IgG antibodies, and cytokines in serum were analyzed using ELISA. Targeted metabolomics was performed using LC-MS triple quad. The results were compared with analyzed transcriptomic data from the GEO database and metabolomic data sets from the literature. RESULTS The dengue patients displayed characteristic features of the disease, including elevated NS1 levels. TNF-α was found to be elevated in all three phases compared to healthy controls. The metabolic pathways were found to be deregulated compared to healthy controls only in phases I and II of dengue patients. The pathways represent viral replication and host response mediated pathways. The major pathways include nucleotide metabolism of various amino acids and fatty acids, biotin, etc. CONCLUSION: The results show elevated TNF-α and metabolites that are characteristic of viral infection and host response. IL10 and IFN-γ were not significant, consistent with the absence of any complications.
Collapse
Affiliation(s)
- Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Naga Sai Visweswar Kambhampati
- STAR Laboratory, Central Research Instruments Facility, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - R Saiswaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - G Ramkumar
- Department of General Medicine, Sri Sathya Sai General Hospital, Sri Sathya Sai Institute of Higher Medical Sciences Campus, Whitefield, Bengaluru, Karnataka, 560066, India
| | - Nirmala Beeraka
- Department of General Medicine, Sri Sathya Sai General Hospital, Sri Sathya Sai Institute of Higher Medical Sciences Campus, Whitefield, Bengaluru, Karnataka, 560066, India
| | - Gopi Krishna Muddu
- Department of Pediatrics, Sri Sathya Sai General Hospital, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sandeep Kumar
- Department of General Medicine, Sri Sathya Sai General Hospital, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sai Kiran Javvaji
- Department of Laboratory Medicine and Cardiology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka, 560066, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Central Research Instruments Facility, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| |
Collapse
|
4
|
Abstract
The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.
Collapse
|
5
|
Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022; 14:v14050992. [PMID: 35632732 PMCID: PMC9147118 DOI: 10.3390/v14050992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs’ roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.
Collapse
|
6
|
Low Activation of CD8+ T Cells in response to Viral Peptides in Mexican Patients with Severe Dengue. J Immunol Res 2022; 2022:9967594. [PMID: 35372587 PMCID: PMC8975689 DOI: 10.1155/2022/9967594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is acknowledged that antiviral immune response contributes to dengue immunopathogenesis. To identify immunological markers that distinguish dengue fever (DF) and dengue hemorrhagic fever (DHF), 113 patients with confirmed dengue infection were analyzed at 6 or 7 days after fever onset. Peripheral blood mononuclear cells (PBMC) were isolated, lymphocyte subsets and activation biomarkers were identified by flow cytometry, and differentiation of T helper (Th) lymphocytes was achieved by the relative expression analysis of T-bet (Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (T regulatory) transcription factors quantified by real-time PCR. CD8+, CD40L+, and CD45+ cells show higher numbers in DF compared to DHF patients, whereas CD4+, CD19+, and CD25+ cells show higher numbers in DHF than DF patients. High expression of GATA-3 accompanied by low expression of T-bet indicates predominance of Th2 response. In addition, higher expression of FOXP-3 and reduced functional cytotoxic T cells (CD8+perforin+) were observed in DHF patients. In further experiments, PBMC were stimulated ex vivo with dengue virus E, NS3, NS4, and NS5 peptides, and proliferating T cell subsets were determined. Lower proliferative responses to NS3 and NS4 peptides and reduced CD8+ cytotoxic T cells were observed in DHF patients. Our results suggest that immune response to dengue is dysregulated with predominance of CD4+ T cells, low activation of Th1 cells, and downregulation of the antiviral cytotoxic activity during severe dengue, likely induced by regulatory T cells.
Collapse
|
7
|
Dong B, Tang N, Guan Y, Qu G, Miao L, Han W, Shen Z. Type and Abundance of Sialic Acid Receptors on Host Cell Membrane Affect Infectivity and Viral Titer of Different Strains of Newcastle Disease Virus. J Virol Methods 2022; 302:114488. [DOI: 10.1016/j.jviromet.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
|
8
|
Mihaescu G, Chifiriuc MC, Vrancianu CO, Constantin M, Filip R, Popescu MR, Burlibasa L, Nicoara AC, Bolocan A, Iliescu C, Gradisteanu Pircalabioru G. Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms 2021; 9:2578. [PMID: 34946179 PMCID: PMC8703918 DOI: 10.3390/microorganisms9122578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
After two previous episodes, in 2002 and 2012, when two highly pathogenic coronaviruses (SARS, MERS) with a zoonotic origin emerged in humans and caused fatal respiratory illness, we are today experiencing the COVID-19 pandemic produced by SARS-CoV-2. The main question of the year 2021 is if naturally- or artificially-acquired active immunity will be effective against the evolving SARS-CoV-2 variants. This review starts with the presentation of the two compartments of antiviral immunity-humoral and cellular, innate and adaptive-underlining how the involved cellular and molecular actors are intrinsically connected in the development of the immune response in SARS-CoV-2 infection. Then, the SARS-CoV-2 immunopathology, as well as the derived diagnosis and therapeutic approaches, will be discussed.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, 050096 Bucharest, Romania;
- The Romanian Academy, 25 Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Regional County Emergency Hospital, 720284 Suceava, Romania
| | - Mihaela Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital “Carol Davila”, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Anca Cecilia Nicoara
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alexandra Bolocan
- General Surgery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
| | | |
Collapse
|
9
|
Rox K, Heyner M, Krull J, Harmrolfs K, Rinne V, Hokkanen J, Perez Vilaro G, Díez J, Müller R, Kröger A, Sugiyama Y, Brönstrup M. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Treatment of Dengue Infections Applied to the Broad Spectrum Antiviral Soraphen A. ACS Pharmacol Transl Sci 2021; 4:1499-1513. [PMID: 34661071 DOI: 10.1021/acsptsci.1c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/22/2022]
Abstract
While a drug treatment is unavailable, the global incidence of Dengue virus (DENV) infections and its associated severe manifestations continues to rise. We report the construction of the first physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that predicts viremia levels in relevant target organs based on preclinical data with the broad spectrum antiviral soraphen A (SorA), an inhibitor of the host cell target acetyl-CoA-carboxylase. SorA was highly effective against DENV in vitro (EC50 = 4.7 nM) and showed in vivo efficacy by inducing a significant reduction of viral load in the spleen and liver of IFNAR-/- mice infected with DENV-2. PBPK/PD predictions for SorA matched well with the experimental infection data. Transfer to a human PBPK/PD model for DENV to mimic a clinical scenario predicted a reduction in viremia by more than one log10 unit for an intravenous infusion regimen of SorA. The PBPK/PD model is applicable to any DENV drug lead and, thus, represents a valuable tool to accelerate and facilitate DENV drug discovery and development.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maxi Heyner
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | | | - Gemma Perez Vilaro
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juana Díez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Rolf Müller
- German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Abstract
Dengue is a vector-borne viral disease caused by the flavivirus dengue virus (DENV). Approximately 400 million cases and 22 000 deaths occur due to dengue worldwide each year. It has been reported in more than 100 countries in tropical and subtropical regions. A positive-stranded enveloped RNA virus (DENV) is principally transmitted by Aedes mosquitoes. It has four antigenically distinct serotypes, DENV-1 to DENV-4, with different genotypes and three structural proteins and seven non-structural proteins. Clinical symptoms of dengue range from mild fever to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), with thrombocytopenia, leucopenia, and increased vascular permeability. Although primary infection causes activation of immune responses against DENV serotypes, the severity of the disease is enhanced via heterotypic infection by various serotypes as well as antibody-dependent enhancement (ADE). The first licensed DENV vaccine was tetravalent CYD Denvaxia, but it has not been approved in all countries. The lack of a suitable animal model, a proper mechanistic study in pathogenesis, and ADE are the main hindrances in vaccine development. This review summarizes the current knowledge on DENV epidemiology, biology, and disease aetiology in the context of prevention and protection from dengue virus disease.
Collapse
Affiliation(s)
- Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| |
Collapse
|
11
|
A Paradigm Gap in Host–Pathogen Interaction Studies: Lesson from the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1353:47-70. [DOI: 10.1007/978-3-030-85113-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Ullah MA, Araf Y, Faruqui NA, Mowna SA, Prium DH, Sarkar B. Dengue Outbreak is a Global Recurrent Crisis: Review of the Literature. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Crocetin Improves Dengue Virus-Induced Liver Injury. Viruses 2020; 12:v12080825. [PMID: 32751420 PMCID: PMC7472398 DOI: 10.3390/v12080825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Dengue virus (DENV) infection is one of the most widespread mosquito-borne viral infections. Liver injury is commonly observed in severe DENV infection, and the present study aimed to examine the efficacy of crocetin treatment in an immunocompetent mouse model of DENV infection exhibiting liver injury. The efficacy of crocetin treatment in DENV-induced liver injury was assessed via both transaminase levels and histopathology analysis. A real-time polymerase chain reaction array was then used to describe the expression of 84 apoptosis-related genes. Using real-time RT-PCR and Western blot analysis, the gene expressions of host factors were investigated. Additionally, the effect of crocetin in NF-kB signaling during DENV infection was studied. We did not observe any significant reduction in virus production when DENV-infected mice were treated with crocetin. However, DENV-infected mice treated with crocetin showed reduced DENV-induced apoptosis. The real-time polymerase chain reaction array revealed pro-inflammatory cytokine expressions to be significantly reduced in the crocetin-treated DENV-infected mice. We also found that crocetin could effectively modulate antioxidant status in DENV-infected mice. Moreover, crocetin demonstrated the ability to reduce the nuclear translocation of NF-kB in DENV-infected mice. Our results suggest that crocetin treatment does not inhibit DENV replication in the liver of DENV-infected mice; however, we did find that crocetin improves host responses that reduce liver injury.
Collapse
|
14
|
Santos NCD, Gomes TN, Góis IADF, Oliveira JSD, Coelho LFL, Ferreira GP, Silva FRPD, Pereira ACTDC. Association of single nucleotide polymorphisms in TNF-α (-308G/A and -238G/A) to dengue: Case-control and meta-analysis study. Cytokine 2020; 134:155183. [PMID: 32731142 DOI: 10.1016/j.cyto.2020.155183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023]
Abstract
Dengue is an acute viral disease whose clinical condition is related to the interaction of factors related to the Dengue virus (DENV), environment and the host, with the immunity of the human host contributing a substantial role in the pathogenesis of DENV infection. Studies have demonstrated that single nucleotide polymorphisms (SNPs) in the promoter regions of cytokine genes such as tumor necrosis factor (TNF-α) affect transcription and/or expression; and therefore, may influence the pathogenesis of infectious diseases, such as dengue. Consequently, the objective of this study was to assess through a case-control study whether there was an association between the presence of SNPs -308G/A and -238G/A in the TNF-α gene and 158 patients with dengue and 123 controls. No association was found between the SNPs and the dengue cases in the study population. We then performed a meta-analysis, retrieving data from case-control studies in the literature for the same polymorphisms. For SNP-308G/A, the GG genotype was associated with dengue fever (DF) risk (OR = 1.24, 1.00-1.53; p = 0.05; I2 = 0%), while the GA genotype (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) and allele A (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) were associated with protection. The genotype GG population in the Asian continent (OR = 1.81 [1.06, 3.09], p = 0.03, I2 = 0%) and American (OR = 1.29 [1.00, 1.65], p = 0.05, I2 = 0%) was also associated with protection in the comparison between the cases versus the control group. In each comparison, the dominant model AA + GA (p < 0.00001) conferred protection. For SNP-238G/A the GA genotype was associated with risk for dengue hemorrhagic fever (DHF; OR = 2.17, 1.28-3.67; p = 0.004; I2 = 0%)), and the dominant AA + GA model (p < 0.00001) was associated with protection in each comparison. In summary, our results did not associate SNPs in the TNF-α gene to dengue in the Brazilian northeast population. However, combined literature data suggested the effect of the GG and GA genotypes of the SNP-308G/A on risk and protection, respectively, in Asian and American populations.
Collapse
Affiliation(s)
- Naiany Carvalho Dos Santos
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Thiago Nobre Gomes
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Iara Alda de Fontes Góis
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Gustavo Portela Ferreira
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | | |
Collapse
|
15
|
Alkaff AH, Saragih M, Fardiansyah MA, Tambunan USF. Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development against Dengue Virus. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.
Collapse
|
16
|
Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the Tropism of Dengue Virus in Humans. Viruses 2019; 11:v11121136. [PMID: 31835302 PMCID: PMC6950149 DOI: 10.3390/v11121136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In tropical and subtropical zones, arboviruses are among the major threats to human life, affecting a large number of populations with serious diseases. Worldwide, over three hundred million people are infected with dengue virus (DENV) every year as per the World Health Organization (WHO). DENV-mediated disease severity ranges from a mild fever to hemorrhagic fever and shock syndrome. Patients suffering from severe infection might experience multi-organ failure, cardiomyopathy and even encephalopathy, further complicating the disease pathogenesis. In life-threatening cases, DENV has been reported to affect almost all organs of the human body. In this review, we discuss the organ tropism of DENV in humans in depth as detected in various autopsy studies. Keeping in mind the fact that there is currently no DENV-specific antiviral, it is of utmost importance to achieve a vivid picture of the susceptible cells in humans which might help in designing antivirals against DENV, especially targeting those tissues in which infection might lead to life-threatening conditions.
Collapse
Affiliation(s)
- Feroza Begum
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeepan Das
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debica Mukherjee
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sweety Mal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-978-187-8333
| |
Collapse
|
17
|
Abstract
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
Collapse
|
18
|
Hijacking the Host Immune Cells by Dengue Virus: Molecular Interplay of Receptors and Dengue Virus Envelope. Microorganisms 2019; 7:microorganisms7090323. [PMID: 31489877 PMCID: PMC6780243 DOI: 10.3390/microorganisms7090323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) is one of the lethal pathogens in the hot climatic regions of the world and has been extensively studied to decipher its mechanism of pathogenesis and the missing links of its life cycle. With respect to the entry of DENV, multiple receptors have been recognized in different cells of the human body. However, scientists still argue whether these identified receptors are the exclusive entry mediators for the virus. Adding to the complexity, DENV has been reported to be infecting multiple organ types in its human host. Also, more than one receptor in a particular cell has been discerned to take part in mediating the ingress of DENV. In this review, we aim to discuss the different cells of the human immune system that support DENV infection and their corresponding receptors that DENV deploy to gain access to the cells.
Collapse
|
19
|
Sucipto TH, Setyawati H, Churrotin S, Amarullah IH, Sumarsih S, Wardhani P, Aryati A, Soegijanto S. ANTI-DENGUE TYPE 2 VIRUS ACTIVITIES OF ZINC (II) COMPLEX COMPOUNDS WITH 2-(2,4 -DIHYDROXYPHENYL)-3,5,7-TRIHYDROXYCROMEN-4-ONE LIGANDS IN VERO CELLS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i5.10851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue virus (DENV) is a disease that is transmitted through Aedes aegypti and Aedes albopictus mosquitoes, and is spread in tropical and sub-tropical regions. Now, dengue or antiviral vaccines for humans do not yet exist, but there are great efforts to achieve this goal. Complex compounds are reported to fungicidal, bactericidal and antiviral activity. Antiviral activity against DENV is an important alternative to the characterization and development of drugs candidate. The purpose of this study was to study zinc(II) compounds with 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxycromen-4-one ligand on DENV-2 replication in Vero cells. Vero cell lines (African green monkey kidney) was used in this study, maintained and propagated in Minimum Essential Eagle Medium containing 10% fetal bovine serum at 37°C in 5% CO2. The activity of dengue virus was carried out by enzyme-immunosorbent assay (ELISA) method and CellTiter96® Non-Radioactive Proliferation. The value of activity inhibition (IC50) of complex compounds with variations of mol metal: ligand 1:2, 1:3, and 1:4 against dengue virus type 2 (DENV2) was 2.44 μg/ml, 2.75 μg/ml, respectively and 2.00 μg/ml, also the toxicity value (CC50) of complex compounds with variation mol metal: ligand 1:4 for Vero cells is 3.59 μg/ml. The results of this study were indicate that these properties have been shown to inhibit anti-dengue type 2 virus (DENV-2), but are also toxic in Vero cells. Including previous study about complex compound interaction with dengue virus type 2 activity, Zn(II) more reactive compound then Cu(II), and Co(II). The comparison with Cu(II) complex compound, it has been revealed that Co(II) and Zn(II) is more toxic, was found to be nontoxic to human erythrocyte cells even at a concentration of 500 μg/ml.
Collapse
|
20
|
Budiutari NN, Dachlan YP, Nugraha J. OVERVIEW OF NUCLEAR FACTOR-KB (NF-KB) AND NON-STRUCTURAL PROTEIN 1 (NS1) IN PATIENTS WITH DENGUE FEVER IN PREMIER HOSPITAL, SURABAYA. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i5.9955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue fever (DF) is an acute viral fever caused by RNA virus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. DF is also called viral arthropod-borne disease and is accompanied by headaches, joint and muscle pain. The main target of dengue infection is macrophages or monocytes and dendritic cells (DC). Infected DC is caused the viral replication and the endocytosis into endosomal, easier, thus inducing the activation of NF-ĸB transcription factor to produce proinflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukin-1 (IL-1), IL-6, IL-12 and chemokine. NF-kB is one of the transcription factors involved in the regulation of the expression of various cytokines, chemokines and anti/pro-apoptotic proteins during infection and act as indicator of disease severity. Infected DC cells are secreted NS1 protein which is the co-factor needed for viral replication and can be detected in the first eight days. The level will be higher in the initial phase of fever. The purpose of this study was to analyze the description of NF-kB and NS1 levels in the serum of patients with dengue fever through observational analytic studies through a cross-sectional approach. This study was done on 40 patients with dengue fever and 10 healthies people as negative controls. NS1 was analyzed in serum of Panbio rapid test and NF-kB level were measured by sandwich ELISA. The results are showed positive and negative NS1 results in dengue fever patients. The average NF-kB serum level in dengue fever patients was found to be higher than the control. NF-ĸB level in negative NS1 was higher than the NS1 positive group. It is showed that NS1 is detected both in the acute phase. The detection of NF-ĸB is showed the involvement of transcription factors in the development of dengue virus infection and has a protective role for host cells.
Collapse
|
21
|
Sule WF, Fadamitan TO, Lawal OA, Adebimpe WO, Opaleye OO, Oluwayelu DO. Probable primary and secondary dengue viral infections and associated host factors among university undergraduates in Osun State, Nigeria. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1080/20905068.2019.1592935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Waidi F. Sule
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Toluwani O. Fadamitan
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Omotayo A. Lawal
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Wasiu O. Adebimpe
- Department of Community Medicine, Faculty of Clinical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Oluyinka O. Opaleye
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Daniel O. Oluwayelu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
22
|
Evaluation of variants in IL6R, TLR3, and DC-SIGN genes associated with dengue in sampled Colombian population. BIOMEDICA 2019; 39:88-101. [PMID: 31021550 DOI: 10.7705/biomedica.v39i1.4029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Host genetics is recognized as an influential factor for the development of dengue disease. OBJECTIVE This study evaluated the association of dengue with the polymorphisms rs8192284 for gene IL6R, rs3775290 for TLR3, and rs7248637 for DC-SIGN. MATERIALS AND METHODS Of the 292 surveyed subjects, 191 were confirmed for dengue fever and the remaining 101 were included as controls. The genotypes were resolved using polymerase chain reaction and restriction fragment length polymorphism (PCRRFLP). In an attempt to determine the risk (Odds Ratio) of suffering dengue fever, data were analyzed using chi-square for alleles and logistic regression for both genotypes and allelic combinations. Confidence intervals were set to 95% for all tests regardless of the adjustment by either self-identification or ancestry. RESULTS For Afro-Colombians, the allele rs8192284 C offered protection against dengue [OR=0.425,(0.204-0.887), p=0.020]. The alleles rs7248637 A and rs3775290 A posed, respectively, an increased risk of dengue for Afro-Colombians [OR=2.389, (1.170-4.879), p=0.015] and Mestizos [OR=2.329, (1.283-4.226), p=0.005]. The reproducibility for rs8192284 C/C [OR=2.45, (1.05-5.76), p=0.013] remained after adjustment by Amerindian ancestry [OR=2.52, (1.04-6.09), p=0.013]. The reproducibility for rs3775290 A/A [OR=2.48, (1.09-5.65), p=0.033] remained after adjustment by European [OR=2.34, (1.02-5.35), p=0.048], Amerindian [OR=2.49, (1.09-5.66), p=0.035], and African ancestry [OR=2.37, (1.04-5.41), p=0.046]. Finally, the association of dengue fever with the allelic combination CAG [OR=2.07, (1.06-4.05), p=0.033] remained after adjustment by Amerindian ancestry [OR=2.16, (1.09-4.28), p=0.028]. CONCLUSIONS Polymorphisms rs8192284 for IL6R, rs3775290 for TLR3, and rs7248637 for DC-SIGN were associated with the susceptibility to suffer dengue fever in the sampled Colombian population.
Collapse
|
23
|
Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies. Proc Natl Acad Sci U S A 2018; 116:227-232. [PMID: 30518559 DOI: 10.1073/pnas.1812055115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses of humans. The interactions between DENVs and the human host that lead to asymptomatic, mild, or severe disease are poorly understood, in part, because laboratory models are poor surrogates for human DENV disease. Virologists are interested in how the properties of DENVs replicating in people compare with virions propagated on laboratory cell lines, which are widely used for research and vaccine development. Using clinical samples from a DENV type 1 epidemic in Sri Lanka and new ultrasensitive assays, we compared the properties of DENVs in human plasma and after one passage on laboratory cell lines. DENVs in plasma were 50- to 700-fold more infectious than cell culture-grown viruses. DENVs produced by laboratory cell lines were structurally immature and hypersensitive to neutralization by human antibodies compared with DENVs circulating in people. Human plasma and cell culture-derived virions had identical genome sequences, indicating that these phenotypic differences were due to the mature state of plasma virions. Several dengue vaccines are under development. Recent studies indicate that vaccine-induced antibodies that neutralized DENVs in cell culture assays were not sufficient for protecting people from DENV infections. Our results about structural differences between DENVs produced in humans versus cell lines may be key to understanding vaccine failure and developing better models for vaccine evaluation.
Collapse
|
24
|
de Sousa JR, Azevedo RSS, Martins Filho AJ, Araujo MTF, Moutinho ERC, Baldez Vasconcelos BC, Cruz ACR, Oliveira CS, Martins LC, Baldez Vasconcelos BH, Casseb LMN, Chiang JO, Quaresma JAS, Vasconcelos PFC. Correlation between Apoptosis and in Situ Immune Response in Fatal Cases of Microcephaly Caused by Zika Virus. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2644-2652. [PMID: 30121258 DOI: 10.1016/j.ajpath.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) is a single-stranded positive-sense RNA flavivirus that possesses a genome approximately 10.7 Kb in length. Although pro-inflammatory and anti-inflammatory cytokines and apoptotic markers belonging to the extrinsic and intrinsic pathways are suggested to be involved in fatal cases of ZIKV-induced microcephaly, their exact roles and associations are unclear. To address this, brain tissue samples were collected from 10 individuals, five of whom were diagnosed as ZIKV positive with microcephaly and a further five were flavivirus-negative controls that died because of other causes. Examination of material from the fatal cases of microcephaly revealed lesions in the cerebral cortex, edema, vascular proliferation, neuronal necrosis, gliosis, neuronophagy, calcifications, apoptosis, and neuron loss. The expression of various apoptosis markers in the neural parenchyma, including FasL, FAS, BAX, BCL2, and caspase 3 differed between ZIKV-positive cases and controls. Further investigation of type 1 and 2 helper T-cell cytokines confirmed a greater anti-inflammatory response in fatal ZIKV-associated microcephaly cases. Finally, an analysis of the linear correlation between tumor necrosis factor-α, IL-1β, IL-4, IL-10, transforming growth factor-β, and IL-33 expression and various apoptotic markers suggested that the immune response may be associated with the apoptotic phenomenon observed in ZIKV-induced microcephaly.
Collapse
Affiliation(s)
- Jorge R de Sousa
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Raimunda S S Azevedo
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Marialva T F Araujo
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Ermelinda R C Moutinho
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Ana C R Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
| | - Consuelo S Oliveira
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Lívia C Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | | | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Jannifer O Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Juarez A S Quaresma
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil; Tropical Medicine Center, Federal University of Pará, Belém, Brazil.
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil.
| |
Collapse
|
25
|
Simulation Model for Dynamics of Dengue with Innate and Humoral Immune Responses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8798057. [PMID: 29849749 PMCID: PMC5925133 DOI: 10.1155/2018/8798057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking, innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the viral kinetics during a dengue infection.
Collapse
|
26
|
Kalra V, Ahmad S, Shrivastava V, Mittal G. Quantitative and volume, conductivity and scatter changes in leucocytes of patients with acute undifferentiated febrile illness: a pilot study. Trans R Soc Trop Med Hyg 2017; 110:281-5. [PMID: 27198211 DOI: 10.1093/trstmh/trw028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/28/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A single diagnostic test for acute undifferentiated febrile illnesses (AUFI) is elusive. This pilot study was undertaken on the premise that leucocytes, being the main cells of defence, undergo quantitative, structural and functional changes in AUFI. We evaluated the potential of volume, conductivity and scatter (VCS) parameters of leucocytes, generated with the haemogram report by the Coulter auto-analyzer, in differentiating the common etiologies of AUFI. METHODS The haematological and VCS data obtained from 800 controls and 200 cases of AUFI (50 cases each of acute malaria, dengue, scrub typhus and enteric fever) were retrieved for analysis. RESULTS The cases and controls differed significantly with respect to relative numbers and the VCS parameters of neutrophils, lymphocytes and monocytes (p<0.05). The neutrophil and lymphocyte were significantly voluminous in acute malaria and scrub typhus as compared to dengue and enteric fevers (p<0.05). Enteric fever significantly enhanced the conductivity of neutrophils as compared to other subgroups while lymphocyte conductivity significantly differed from dengue and scrub typhus. Lymphocyte and neutrophil scatter values in malaria and scrub typhus were comparable but differed significantly from that in enteric fever. CONCLUSIONS Etiology-specific changes occur in leucocytes, both in numbers and their VCS properties which can be identified without additional cost.
Collapse
Affiliation(s)
- Varun Kalra
- Department of Medicine; Pathology; Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India-248016
| | - Sohaib Ahmad
- Department of Medicine; Pathology; Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India-248016
| | - Vikas Shrivastava
- Department of Medicine; Pathology; Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India-248016
| | - Garima Mittal
- Department of Medicine; Pathology; Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India-248016
| |
Collapse
|
27
|
Suwanmanee S, Luplertlop N. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis. Viral Immunol 2016; 30:13-19. [PMID: 27860556 DOI: 10.1089/vim.2016.0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| |
Collapse
|
28
|
Martínez-Betancur V, Martínez-Gutierrez M. Proteomic profile of human monocytic cells infected with dengue virus. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus. Rev Med Virol 2016; 27. [DOI: 10.1002/rmv.1899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
|
30
|
Kamaladasa A, Gomes L, Jeewandara C, Shyamali N, Ogg GS, Malavige GN. Lipopolysaccharide acts synergistically with the dengue virus to induce monocyte production of platelet activating factor and other inflammatory mediators. Antiviral Res 2016; 133:183-90. [DOI: 10.1016/j.antiviral.2016.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
|
31
|
Association of genetic polymorphisms of IL1β -511 C>T, IL1RN VNTR 86 bp, IL6 -174 G>C, IL10 -819 C>T and TNFα -308 G>A, involved in symptomatic patients with dengue in Brazil. Inflamm Res 2016; 65:925-932. [PMID: 27436278 DOI: 10.1007/s00011-016-0975-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/20/2016] [Accepted: 07/16/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE In this study, single nucleotide polymorphisms (SNP) of interleukin (IL) 1β -511C>T, IL1RN VNTR 86 bp, IL6 -174G>C, IL10 -819C>T and TNFα -308G>A were analyzed by PCR-RFLP with symptoms of dengue with the clinical features. SUBJECTS 196 individuals admitted to the São José Infectious Diseases Hospital with suspected dengue infection. Dengue was confirmed in 111 of the patients. The control group consisted of 85 other individuals confirmed without dengue. RESULTS It was demonstrated that the presence the T allele of IL1β (P < 0.05) was associated with susceptibility to developing the disease. Other results also suggested that the polymorphism in the combinations IL6 × IL1β (C and T alleles, respectively), IL1β (T allele) × IL1RN (*2/*2 genotype), IL6 (C allele) × TNFα (A allele), IL10 (C/T genotype) × TNFα (A/A genotype) (P < 0.01, P = 0.01, P < 0.05 and P = 0.03, respectively) were associated with predisposition to developing the disease and its symptoms. CONCLUSIONS In summary, the findings of this study in a Brazilian population point out the importance of studies of combinations of polymorphisms in the development of dengue, which can increase the risk of dengue infection and its severity.
Collapse
|
32
|
Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016; 428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Canada
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Matteo Ferrari
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University at St. Louis, St. Louis, MO, USA
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
33
|
The purinergic receptor P2X7 role in control of Dengue virus-2 infection and cytokine/chemokine production in infected human monocytes. Immunobiology 2016; 221:794-802. [PMID: 26969484 DOI: 10.1016/j.imbio.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/25/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022]
Abstract
Purinergic signaling has a crucial role in intracellular pathogen elimination. The P2X7 purinergic receptor (P2X7R), once activated by ATP, leads to pro-inflammatory responses including reactive oxygen species production. ATP can be released by injured cells, as endogenous danger signals. Dengue fever may evolve to a severe disease, leading to hypovolemic shock and coagulation dysfunctions as a result of a cytokine storm. Our aim was to evaluate the role of P2X7R activation during Dengue virus (DENV) infection. Extracellular ATP inhibited viral load in pretreated monocytes, as measured by NS1 secretion and by decrease in DENV(+) P2X7(+) cell frequencies, suggesting that P2X7R is involved in the antiviral response. Nitric oxide (NO) has anti-DENV properties and is decreased after DENV infection. NO production after ATP stimulation is abrogated by KN62 treatment, a specific P2X7R inhibitor, indicating that P2X7R likely is acting in the virus containment process. Additionally, TNF, CXCL8, CCL2 and CXCL10 factors that are associated with dengue severity were modulated by the P2X7R activation. We conclude that P2X7R is directly involved in the modulation of the antiviral and inflammatory process that occurs during DENV infection in vitro, and may have an important role in patient recovery in a first moment.
Collapse
|
34
|
Hu SF, Li M, Zhong LL, Lu SM, Liu ZX, Pu JY, Wen JS, Huang X. Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection and differentiation of dengue virus serotypes 1-4. BMC Microbiol 2015; 15:265. [PMID: 26572227 PMCID: PMC4647581 DOI: 10.1186/s12866-015-0595-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 10/30/2015] [Indexed: 12/03/2022] Open
Abstract
Background Dengue virus (DENV), the most widely prevalent arbovirus, continues to be a threat to human health in the tropics and subtropics. Early and rapid detection of DENV infection during the acute phase of illness is crucial for proper clinical patient management and preventing the spread of infection. The aim of the current study was to develop a specific, sensitive, and robust reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay for detection and differentiation of DENV1-4 serotypes. Results The method detection primers, which were designed to target the different DENV serotypes, were identified by inspection of multiple sequence alignments of the non-structural protein (NS) 2A of DENV1, NS4B of DENV2, NS4A of DENV3 and the 3′ untranslated region of the NS protein of DENV4. No cross-reactions of the four serotypes were observed during the tests. The detection limits of the DENV1-4-specific RT-LAMP assays were approximately 10-copy templates per reaction. The RT-LAMP assays were ten-fold more sensitive than RT-PCR or real-time PCR. The diagnostic rate was 100 % for clinical strains of DENV, and 98.9 % of the DENV-infected patients whose samples were tested were detected by RT-LAMP. Importantly, no false-positives were detected with the new equipment and methodology that was used to avoid aerosol contamination of the samples. Conclusion The RT-LAMP method used in our study is specific, sensitive, and suitable for further investigation as a useful alternative to the current methods used for clinical diagnosis of DENV1-4, especially in hospitals and laboratories that lack sophisticated diagnostic systems.
Collapse
Affiliation(s)
- Sheng-feng Hu
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Miao Li
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Lan-lan Zhong
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Shi-miao Lu
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Ze-xia Liu
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Jie-ying Pu
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Jin-sheng Wen
- Department of microbiology and immunology, Wenzhou, Medical University, Wenzhou, China.
| | - Xi Huang
- Program of Immunology, Institute of Human Virology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Department of microbiology and immunology, Wenzhou, Medical University, Wenzhou, China.
| |
Collapse
|
35
|
Watson NB, Schneider KM, Massa PT. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2796-809. [PMID: 25681345 DOI: 10.4049/jimmunol.1402210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Karin M Schneider
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Paul T Massa
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and Department of Neurology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
36
|
Castillo Ramirez JA, Urcuqui-Inchima S. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J Interferon Cytokine Res 2015; 35:421-30. [PMID: 25629430 DOI: 10.1089/jir.2014.0129] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The arthropod-borne diseases caused by dengue virus (DENV) are a major and emerging problem of public health worldwide. Infection with DENV causes a series of clinical manifestations ranging from mild flu syndrome to severe diseases that include hemorrhage and shock. It has been demonstrated that the innate immune response plays a key role in DENV pathogenesis. However, in recent years, it was shown that DENV evades the innate immune response by blocking type I interferon (IFN-I). It has been demonstrated that DENV can inhibit both the production and the signaling of IFN-I. The viral proteins, NS2A and NS3, inhibit IFN-I production by degrading cellular signaling molecules. In addition, the viral proteins, NS2A, NS4A, NS4B, and NS5, can inhibit IFN-I signaling by blocking the phosphorylation of the STAT1 and STAT2 molecules. Finally, NS5 mediates the degradation of STAT2 using the proteasome machinery. In this study, we briefly review the most recent insights regarding the IFN-I response to DENV infection and its implication for pathogenesis.
Collapse
Affiliation(s)
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
37
|
Mathew A, Townsley E, Ennis FA. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol 2015; 9:411-25. [PMID: 24762312 DOI: 10.2217/fmb.13.171] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dengue viruses (DENV) cause significantly more human disease than any other arbovirus, with hundreds of thousands of cases leading to severe disease in thousands annually. Antibodies and T cells induced by primary infection with DENV have the potential for both positive (protective) and negative (pathological) effects during subsequent DENV infections. In this review, we summarize studies that have examined T-cell responses in humans following natural infection and vaccination. We discuss studies that support a role for T cells in protection against and those that support a role for the involvement of T cells in the pathogenesis of severe disease. The mechanisms that lead to severe disease are complex, and T-cell responses are an important component that needs to be further evaluated for the development of safe and efficacious DENV vaccines.
Collapse
Affiliation(s)
- Anuja Mathew
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
38
|
Advances in the understanding, management, and prevention of dengue. J Clin Virol 2014; 64:153-9. [PMID: 25453329 DOI: 10.1016/j.jcv.2014.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/25/2014] [Indexed: 01/09/2023]
Abstract
Dengue causes more human morbidity globally than any other vector-borne viral disease. Recent research has led to improved epidemiological methods that predict disease burden and factors involved in transmission, a better understanding of immune responses in infection, and enhanced animal models. In addition, a number of control measures, including preventative vaccines, are in clinical trials. However, significant gaps remain, including the need for better surveillance in large parts of the world, methods to predict which individuals will develop severe disease, and immunologic correlates of protection against dengue illness. During the next decade, dengue will likely expand its geographic reach and become an increasing burden on health resources in affected areas. Licensed vaccines and antiviral agents are needed in order to effectively control dengue and limit disease.
Collapse
|
39
|
Beltrán D, López-Vergès S. NK Cells during Dengue Disease and Their Recognition of Dengue Virus-Infected cells. Front Immunol 2014; 5:192. [PMID: 24829565 PMCID: PMC4017149 DOI: 10.3389/fimmu.2014.00192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022] Open
Abstract
The innate immune response, in addition to the B- and T-cell response, plays a role in protection against dengue virus (DENV) infection and the degree of disease severity. Early activation of natural killer (NK) cells and type-I interferon-dependent immunity may be important in limiting viral replication during the early stages of DENV infection and thus reducing subsequent pathogenesis. NK cells may also produce cytokines that reduce inflammation and tissue injury. On the other hand, NK cells are also capable of inducing liver injury at early-time points of DENV infection. In vitro, NK cells can kill antibody-coated DENV-infected cells through antibody-dependent cell-mediated cytotoxicity. In addition, NK cells may directly recognize DENV-infected cells through their activating receptors, although the increase in HLA class I expression may allow infected cells to escape the NK response. Recently, genome-wide association studies have shown an association between MICB and MICA, which encode ligands of the activating NK receptor NKG2D, and dengue disease outcome. This review focuses on recognition of DENV-infected cells by NK cells and on the regulation of expression of NK cell ligands by DENV.
Collapse
Affiliation(s)
- Davis Beltrán
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies , Panama City , Panama ; Institute for Scientific Research and Technology Services (INDICASAT-AIP) , Panama City , Panama ; Department of Biotechnology, Acharya Nagarjuna University , Guntur , India
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies , Panama City , Panama
| |
Collapse
|