1
|
Thompson BA, Revilla J, Brovero S, Burgess SL. A high-dimensional platform for observing neutrophil-parasite interactions. Microbiol Spectr 2024; 12:e0047224. [PMID: 38888326 PMCID: PMC11302258 DOI: 10.1128/spectrum.00472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Diarrheal diseases with infectious etiology remain a major cause of death globally, particularly in low-income countries. Entamoeba histolytica is a pathogenic protozoan parasite that is the causative agent of amebiasis. Amebiasis has a wide presentation in clinical severity with many factors, including the bacterial microbiota, contributing to this variation. The innate immune response also plays a critical role in regulating the severity of E. histolytica infection, with neutrophils reported to have a protective role. Despite this, the precise mechanism of how neutrophils mediate amebic killing is poorly understood. Thus, modern platforms that allow for inquiry of granulocyte-ameba interactions will increase our understanding of this disease. Herein, we describe an assay for neutrophil killing of E. histolytica by utilizing high-dimensional spectral flow cytometry. Neutrophils were isolated from wild-type 5-week-old C57BL/6 mice and co-cultured with E. histolytica at various multiplicity of infections (MOIs). After co-culture, neutrophils and E. histolytica were stained for spectral flow cytometry. Cell populations were identified using surface markers and fluorescence minus one (FMO) controls. We have previously shown that animals colonized with a component of the human microbiota, Clostridium scindens, were protected from E. histolytica. This protection was associated with elevated neutrophil count. Here, we explored amebic killing capacity and observed that neutrophils from animals with C. scindens possessed heightened amebic killing compared with controls. Thus, this study establishes a novel platform that can provide an in-depth analysis of granulocyte-parasite interactions in various contexts, including during alteration of the intestinal microbiota.IMPORTANCEThe tools for studying host immune cell-E. histolytica interactions are limited. Factors, such as parasite heterogeneity, infectivity, and difficulties with culture systems and animal models, make interrogation of these interactions challenging. Thus, Entamoeba researchers can benefit from next-generation models that allow for the analysis of both host and parasite cells. Here, we demonstrate the use of a novel platform that allows for the determination of parasite-host cell interactions and customizable high-dimensional phenotyping of both populations. Indeed, spectral flow cytometry can approach >40 markers on a single panel and can be paired with custom-developed parasite antibodies that can be conjugated to fluorochromes via commercially available kits. This platform affords researchers the capability to test highly precise hypotheses regarding host-parasite interactions.
Collapse
Affiliation(s)
- Brandon A. Thompson
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Julio Revilla
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Savannah Brovero
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Sharma C, Khurana S, Bhatia A, Arora A, Gupta A. The gene expression and proteomic profiling of Acanthamoeba isolates. Exp Parasitol 2023; 255:108630. [PMID: 37820893 DOI: 10.1016/j.exppara.2023.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The free-living protozoan Acanthamoeba can cause severe keratitis known as Acanthamoeba Keratitis (AK) and granulomatous amoebic encephalitis (GAE). The pathogenesis of Acanthamoeba includes intricate interactions between the organism and the host's immune system. The downstream analysis of a well-annotated genome assembly along with proteomic analysis can unravel several biological processes and aid in the identification of potential genes involved in pathogenicity. METHODS Based on the next-generation sequencing data analysis, genes including lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein were selected as probable pathogenic targets that were validated by conventional PCR in a total of 30 Acanthamoeba isolates. This was followed by real-time PCR for the evaluation of relative gene expression in the keratitis and amoebic encephalitis animal model induced using keratitis (CHA5), encephalitis (CHA24) and non-pathogenic environmental isolate (CHA36). In addition, liquid chromatography-mass spectrometry (LC-MS/MS) was performed for keratitis, encephalitis, and non-pathogenic environmental isolate before and after treatment with polyhexamethylene biguanide (PHMB). RESULTS The conventional PCR demonstrated the successful amplification of lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein genes in clinical and environmental isolates. The expression analysis revealed phospholipase, lysophospholipase, and mannose-binding genes to be significantly upregulated in the keratitis isolate (CHA 5) during AK in the animal model. In the case of the amoebic encephalitis model, phospholipase, lysophospholipase, S8/S53 peptidase, and carboxylesterase were significantly upregulated in the encephalitis isolate compared to the keratitis isolate. The proteomic data revealed differential protein expression in pathogenic versus non-pathogenic isolates in the pre and post-treatment with PHMB. CONCLUSION The gene expression data suggests that lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein (MBP) could play a role in the contact-dependent and independent mechanisms of Acanthamoeba pathogenesis. In addition, the proteomic profiling of the 3 isolates revealed differential protein expression crucial for parasite growth, survival, and virulence. Our results provide baseline data for selecting possible pathogenic targets that could be utilized for designing knockout experiments in the future.
Collapse
Affiliation(s)
- Chayan Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Arora
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| |
Collapse
|
3
|
Gandhi J, Awasthi AA, Banker A. Fulminant amoebic colitis co-infection in a patient with COVID-19. BMJ Case Rep 2023; 16:e254004. [PMID: 37996146 PMCID: PMC10668175 DOI: 10.1136/bcr-2022-254004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
A woman in her 80s who presented with sudden abdominal pain and bloody stool associated with fever, dry cough and malaise, was found to be COVID-19 RT-PCR positive with fulminating necrotising amoebic colitis. She underwent right extended hemicolectomy with ileostomy and survived despite an unpredictable post-operative course, the need for aggressive intensive care and other major risk factors, and was discharged home after the twentieth day of her presentation.This case summarises the survival of a geriatric patient diagnosed with two lethal complications - amoebic colitis and COVID-19 respiratory infection with the aid of prompt surgical intervention and appropriate critical care.
Collapse
Affiliation(s)
- Jignesh Gandhi
- Department of General surgery, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | | | - Amay Banker
- Department of General surgery, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Blindheim S, Andersen L, Trösse C, Karlsbakk E, Nylund A. Growth characteristics and morphology of Paramoeba perurans from Atlantic salmon Salmo salar L. and ballan wrasse Labrus bergylta in Norway. Parasit Vectors 2023; 16:112. [PMID: 36959596 PMCID: PMC10037839 DOI: 10.1186/s13071-023-05715-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Paramoeba perurans is the causative agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar L. and many other farmed marine fish species worldwide. The first cases of AGD in Norway were reported in 2006, and it has subsequently become established as a significant gill disease that affects the country's salmonid aquaculture industry. Despite several decades of research on AGD, there is still a lack of knowledge of the biology of P. perurans and its interactions with its hosts and the environment. METHODS The growth and morphology of 10 clonal isolates of P. perurans were studied. The isolates were from farmed Atlantic salmon and ballan wrasse that had been obtained from different sites along the Norwegian coast between 2013 and 2015. The morphology and population growth patterns of these clonal amoeba isolates were examined in vitro using light microscopy and real-time reverse transcription polymerase chain reaction under a range of temperatures (4, 12, 15 and 21 °C) and salinities (20, 25, 30 and 34 ‰). RESULTS We found distinct morphological differences between both locomotive and floating forms of the amoeba isolates. The locomotive amoebae of the clonal isolates varied in size (area) from 453 µm2 to 802 µm2. There were differences in the growth patterns of the clonal amoeba isolates under similar conditions, and in their responses to variations in temperature and salinity. While most of the isolates grew well at salinities of 25-34 ‰, a significant reduction in growth was seen at 20 ‰. Most of the amoeba isolates grew well at 12 °C and 15 °C. At 4 °C, amoebae grew slower and, in contrast to the other temperatures, no extended pseudopodia could be seen in their floating form. The isolates seemed to reach a plateau phase faster at 21 °C, with a higher number of smaller, rounded amoebae. CONCLUSIONS The differences observed here between clonal isolates of P. perurans should be further examined in experimental in vivo challenge studies, as they may be of relevance to the virulence and proliferation potential of this amoeba on gills. Potential differences in virulence within P. perurans could have implications for management strategies for AGD.
Collapse
Affiliation(s)
- Steffen Blindheim
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
- The Industrial and Aquatic Laboratory, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Linda Andersen
- The Industrial and Aquatic Laboratory, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Christiane Trösse
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| | - Egil Karlsbakk
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| | - Are Nylund
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| |
Collapse
|
5
|
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR, Castillo-Ramírez DA, Rosales-Cruz É, Rojas-Hernández S. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res 2022; 121:3287-3303. [PMID: 36125528 PMCID: PMC9485797 DOI: 10.1007/s00436-022-07660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Estado de México, Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Tlalnepantla de Baz, México
| | - Ismael Vásquez-Moctezuma
- Laboratorio de Bioquímica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Gema Ramírez- Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Diego Arturo Castillo-Ramírez
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - Érika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México.
| |
Collapse
|
6
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
7
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
8
|
Alama-Bermejo G, Bartošová-Sojková P, Atkinson SD, Holzer AS, Bartholomew JL. Proteases as Therapeutic Targets Against the Parasitic Cnidarian Ceratonova shasta: Characterization of Molecules Key to Parasite Virulence In Salmonid Hosts. Front Cell Infect Microbiol 2022; 11:804864. [PMID: 35071050 PMCID: PMC8777295 DOI: 10.3389/fcimb.2021.804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Proteases and their inhibitors play critical roles in host-parasite interactions and in the outcomes of infections. Ceratonova shasta is a myxozoan pathogen that causes enteronecrosis in economically important salmonids from the Pacific Northwest of North America. This cnidarian parasite has host-specific genotypes with varying virulence, making it a powerful system to decipher virulence mechanisms in myxozoans. Using C. shasta genome and transcriptome, we identified four proteases of different catalytic types: cathepsin D (aspartic), cathepsin L and Z-like (cysteine) and aminopeptidase-N (metallo); and a stefin (cysteine protease inhibitor), which implied involvement in virulence and hence represent target molecules for the development of therapeutic strategies. We characterized, annotated and modelled their 3D protein structure using bioinformatics and computational tools. We quantified their expression in C. shasta genotype 0 (low virulence, no mortality) and IIR (high virulence and mortality) in rainbow trout Oncorhynchus mykiss, to demonstrate that there are major differences between the genotypes during infection and parasite development. High proliferation of genotype IIR was associated with high expression of the cathepsin D and the stefin, likely correlated with high nutrient demands and to regulate cell metabolism, with upregulation preceding massive proliferation and systemic dispersion. In contrast, upregulation of the cathepsin L and Z-like cysteine proteases may have roles in host immune evasion in genotype 0 infections, which are associated with low proliferation, low inflammation and non-destructive development. In contrast to the other proteases, C. shasta aminopeptidase-N appears to have a prominent role in nematocyst formation in both genotypes, but only during sporogenesis. Homology searches of C. shasta proteases against other myxozoan transcriptomes revealed a high abundance of cathepsin L and aminopeptidase homologs suggesting common gene requirements across species. Our study identified molecules of potential therapeutic significance for aquaculture and serves as a baseline for future research aimed at functional characterisation of these targets.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Oliveira LM, Oliveira YLDC, Oliveira YLM, Ramos ACS, Andrade GF, Sá VL, Geraldi RM, Pinheiro CS, Bueno LL, Fujiwara RT, Dolabella SS. Intestinal polyparasitism and levels of mucosal anthelmintic SIgA in children from endemic areas in Northeastern Brazil. Parasite Immunol 2021; 44:e12899. [PMID: 34861047 DOI: 10.1111/pim.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Interactions between parasites during co-infections are often complex and can impact immunization and treatment programmes, as well as disease outcomes and morbidity. However, little is known about these interactions and the mechanisms involved. In this study, a coproparasitological survey was carried out in school-age children living in endemic areas of parasitic infection in the state of Sergipe, Northeastern Brazil. Anti-helminth-specific and total secretory immunoglobulin-A (SIgA) levels were measured in stool and saliva samples and were compared in children presenting monoparasitism, polyparasitism (helminths and/or intestinal protozoa) and no infections. The survey showed that protozoa were more prevalent than helminths, and that there was a high frequency of polyparasitism in the studied population, mainly from combinations of protozoan species. Although less frequent, combinations between species of protozoa and helminths were also observed. The levels of salivary SIgA in these co-infected individuals were lower than the average observed in infections with helminths alone. Although the children participating in this survey were asymptomatic, and it was, therefore, not possible to evaluate the impact of salivary SIgA reduction on the diseases, and the study highlights the need for further investigations of co-infections by intestinal parasites and the effects on immune response induced by the interactions between different parasites.
Collapse
Affiliation(s)
- Luciana M Oliveira
- Postgraduate Program in Parasite Biology, Universidade Federal de Sergipe, São Cristóvão, Brazil.,Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Yvanna L D C Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Yrna L M Oliveira
- Postgraduate Program in Parasite Biology, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Anne Caroline S Ramos
- Postgraduate Program in Parasite Biology, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Gabriela F Andrade
- Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Vitor L Sá
- Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Ricardo M Geraldi
- Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Carina S Pinheiro
- Department of Biointeraction, Institute of Health Sciences, Universidade Federal da Bahia, Salvador, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T Fujiwara
- Postgraduate Program in Parasite Biology, Universidade Federal de Sergipe, São Cristóvão, Brazil.,Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvio S Dolabella
- Postgraduate Program in Parasite Biology, Universidade Federal de Sergipe, São Cristóvão, Brazil.,Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| |
Collapse
|
10
|
Genetic background affects the mucosal SIgA levels, parasite burden, lung inflammation and susceptibility of male mice to Ascaris suum infection. Infect Immun 2021; 90:e0059521. [PMID: 34807734 DOI: 10.1128/iai.00595-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ascariasis is a neglected tropical disease, widespread in the world and causing important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosa induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminthes, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Then, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosa in male mice with early ascariasis. Therefore, two mice strains showed a different susceptibility to ascariasis (BALB/c and C57BL6/j), when experimentally infected with 2,500 infective eggs of Ascaris suum from time-point 0 and the immune parasitological parameters evaluated each two days after infection, during the period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary SIgA contributing for the protection against early ascariasis by reducing the amount of migrating larval as well as the influx of leukocytes in the lung and the consequent impair of the pulmonary capacity.
Collapse
|
11
|
Chadha A, Moreau F, Wang S, Dufour A, Chadee K. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages. PLoS Pathog 2021; 17:e1009936. [PMID: 34499701 PMCID: PMC8454965 DOI: 10.1371/journal.ppat.1009936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages. The protozoan parasite Entamoeba histolytica (Eh) is the etiologic agent for the disease amebiasis. It is a potent pathogen that deploys an arsenal of virulence factors to trigger and subvert host immune defenses. One of the hallmark features of the disease is amebic colitis and in extreme cases, it can lead to abscesses of the liver and brain. For unknown reasons, the parasite breaches colonic mucosal barriers and invade underlying tissues. The host immune system plays a decisive role in determining the outcome of the disease. At the molecular level, the interaction of Eh with macrophage is a turning point in shaping pro-inflammatory responses. Understanding host-pathogen intricacies at the molecular level is key in determining the complexity of the disease. In the context of amebiasis, the underlying molecular events that occur at the Eh-macrophage intercellular junction are partly unravelled. Here we sought to interrogate the mechanisms by which NF-κB signaling is aborted following Eh-macrophage contact and found two regulatory scaffold proteins, cullin-1 and -5 (cullin-1/5) of the multiple E3 ligase complex, are degraded leading to dampening of NF-κB signaling. During Eh-macrophage contact, cullin-1/4A/4B/5 were rapidly degraded whereas cullin-2/3 were not. The degradation of cullin-1/5 was highly dependent on Eh-induced caspase-1 activation via the NLRP3 inflammasome. In contrast, the degradation of cullin-4A but not cullin-4B, was partially dependent on caspase-1 and was inhibited with a cell-permeable pan caspase inhibitor. Intriguingly, we found that Eh virulence factor EhCP-A1 and EhCP-A4, but not EhCP-A5, played an important role in mediating the degradation of these proteins. Silencing cullin-1/5 decreased the phosphorylation of Iκ-Bα in response to Eh and LPS stimulation that markedly downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. This study unravelled a novel role for Eh-induced NLRP3 inflammasome activation of caspase-1 that intersected with the NF-κB pathway leading to the degradation of the novel substrates cullin-1/5 that regulates NF-κB-dependent pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Wang
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
12
|
Di Cristanziano V, Farowski F, Berrilli F, Santoro M, Di Cave D, Glé C, Daeumer M, Thielen A, Wirtz M, Kaiser R, Eberhardt KA, Vehreschild MJGT, D’Alfonso R. Analysis of Human Gut Microbiota Composition Associated to the Presence of Commensal and Pathogen Microorganisms in Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9081763. [PMID: 34442844 PMCID: PMC8400437 DOI: 10.3390/microorganisms9081763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The human gut microbiota is a microbial ecosystem contributing to the maintenance of host health with functions related to immune and metabolic aspects. Relations between microbiota and enteric pathogens in sub-Saharan Africa are scarcely investigated. The present study explored gut microbiota composition associated to the presence of common enteric pathogens and commensal microorganisms, e.g., Blastocystis and Entamoeba species, in children and adults from semi-urban and non-urban localities in Côte d’Ivoire. Methods: Seventy-six stool samples were analyzed for microbiota composition by 16S rRDNA sequencing. The presence of adeno-, entero-, parechoviruses, bacterial and protozoal pathogens, Blastocystis, and commensal Entamoeba species, was analyzed by different molecular assays. Results: Twelve individuals resulted negative for any tested microorganisms, 64 subjects were positive for one or more microorganisms. Adenovirus, enterovirus, enterotoxigenic Escherichia coli (ETEC), and Blastocystis were frequently detected. Conclusions: The bacterial composition driven by Prevotellaceae and Ruminococcaceae confirmed the biotype related to the traditional dietary and cooking practices in low-income countries. Clear separation in UniFrac distance in subjects co-harboring Entamoeba hartmanni and Blastocystis was evidenced. Alpha diversity variation in negative control group versus only Blastocystis positive suggested its possible regulatory contribution on intestinal microbiota. Pathogenic bacteria and virus did not affect the positive outcome of co-harbored Blastocystis.
Collapse
Affiliation(s)
- Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
- Correspondence: ; Tel.: +49-221-478-85828
| | - Fedja Farowski
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (F.F.); (M.J.G.T.V.)
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - Maristella Santoro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - David Di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - Christophe Glé
- Centre Don Orione Pour Handicapés Physiques, Bonoua BP 21, Côte d’Ivoire; (C.G.); (R.D.)
| | - Martin Daeumer
- Seq-IT GmbH & Co KG, 67655 Kaiserslautern, Germany; (M.D.); (A.T.)
| | | | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany;
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Maria J. G. T. Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (F.F.); (M.J.G.T.V.)
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn, 50937 Cologne, Germany
| | - Rossella D’Alfonso
- Centre Don Orione Pour Handicapés Physiques, Bonoua BP 21, Côte d’Ivoire; (C.G.); (R.D.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
13
|
Ní Dhufaigh K, Botwright N, Dillon E, O’Connor I, MacCarthy E, Slattery O. Differential Exoproteome and Biochemical Characterisation of Neoparamoeba perurans. Microorganisms 2021; 9:microorganisms9061258. [PMID: 34207776 PMCID: PMC8226569 DOI: 10.3390/microorganisms9061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Infection with the protozoan ectoparasite Neoparamoeba perurans, the causative agent of AGD, remains a global threat to salmonid farming. This study aimed to analyse the exoproteome of both an attenuated and virulent N. perurans isolate using proteomics and cytotoxicity testing. A disproportionate presence of proteins from the co-cultured microbiota of N. perurans was revealed on searching an amalgamated database of bacterial, N. perurans and Amoebozoa proteins. LC-MS/MS identified 33 differentially expressed proteins, the majority of which were upregulated in the attenuated exoproteome. Proteins of putative interest found in both exoproteomes were maltoporin, ferrichrome-iron receptor, and putative ferric enterobactin receptor. Protease activity remained significantly elevated in the attenuated exoproteome compared with the virulent exoproteome. Similarly, the attenuated exoproteome had a significantly higher cytotoxic effect on rainbow trout gill cell line (RTgill W1) cells compared with the virulent exoproteome. The presence of a phosphatase and serine protease in the virulent exoproteome may facilitate AGD infection but do not appear to be key players in causing cytotoxicity. Altogether, this study reveals prolonged culture of N. perurans affects the exoproteome composition in favour of nutritional acquisition, and that the current culturing protocol for virulent N. perurans does not facilitate the secretion of virulence factors.
Collapse
Affiliation(s)
- Kerrie Ní Dhufaigh
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Natasha Botwright
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia;
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Co. Dublin, D04 V1W8 Eircode, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Orla Slattery
- Department of Biopharmaceutical and Medical Science, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland;
| |
Collapse
|
14
|
Rawat A, Roy M, Jyoti A, Kaushik S, Verma K, Srivastava VK. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol Res 2021; 249:126784. [PMID: 33989978 DOI: 10.1016/j.micres.2021.126784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Millions of people worldwide lie at the risk of parasitic protozoic infections that kill over a million people each year. The rising inefficacy of conventional therapeutics to combat these diseases, mainly due to the development of drug resistance to a handful of available licensed options contributes substantially to the rising burden of these ailments. Cysteine proteases are omnipresent enzymes that are critically implicated in the pathogenesis of protozoic infections. Despite their significance and druggability, cysteine proteases as therapeutic targets have not yet been translated into the clinic. The review presents the significance of cysteine proteases of members of the genera Plasmodium, Entamoeba, and Leishmania, known to cause Malaria, Amoebiasis, and Leishmaniasis, respectively, the protozoic diseases with the highest morbidity and mortality. Further, projecting them as targets for molecular tools like the CRISPR-Cas technology for favorable manipulation, exploration of obscure genomes, and achieving a better insight into protozoic functioning. Overcoming the hurdles that prevent us from gaining a better insight into the functioning of these enzymes in protozoic systems is a necessity. Managing the burden of parasitic protozoic infections pivotally depends upon the betterment of molecular tools and therapeutic concepts that will pave the path to an array of diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Kuldeep Verma
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
15
|
Ankri S. Entamoeba histolytica-Gut Microbiota Interaction: More Than Meets the Eye. Microorganisms 2021; 9:microorganisms9030581. [PMID: 33809056 PMCID: PMC7998739 DOI: 10.3390/microorganisms9030581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence.
Collapse
Affiliation(s)
- Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
16
|
Gilmartin AA, Ralston KS, Petri WA. Inhibition of Amebic Cysteine Proteases Blocks Amebic Trogocytosis but Not Phagocytosis. J Infect Dis 2021; 221:1734-1739. [PMID: 31999350 DOI: 10.1093/infdis/jiz671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Entamoeba histolytica kills human cells by ingesting fragments of live cells until the cell eventually dies, a process termed amebic trogocytosis. In a previous study, we showed that acidified amebic lysosomes are required for both amebic trogocytosis and phagocytosis, as well as cell killing. METHODS Amebic cysteine proteases (CPs) were inhibited using an irreversible inhibitor, E-64d. RESULTS Interfering with amebic CPs decreased amebic trogocytosis and amebic cytotoxicity but did not impair phagocytosis. CONCLUSIONS We show that amebic CPs are required for amebic trogocytosis and cell killing but not phagocytosis. These data suggest that amebic CPs play a distinct role in amebic trogocytosis and cell killing.
Collapse
Affiliation(s)
- Allissia A Gilmartin
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - William A Petri
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
18
|
Martínez-Pérez Y, Nequiz-Avendaño M, García-Torres I, Gudiño-Zayas ME, López-Velázquez G, Enríquez-Flores S, Mendoza E, Saavedra E, Pérez-Tamayo R, León-Avila G, Olivos-García A. Rabeprazole inhibits several functions of Entamoeba histolytica related with its virulence. Parasitol Res 2020; 119:3491-3502. [PMID: 32886229 DOI: 10.1007/s00436-020-06868-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022]
Abstract
Amoebiasis is a human parasitic disease caused by Entamoeba histolytica. The parasite can invade the large intestine and other organs such as liver; resistance to the host tissue oxygen is a condition for parasite invasion and survival. Thioredoxin reductase of E. histolytica (EhTrxR) is a critical enzyme mainly involved in maintaining reduced the redox system and detoxifying the intracellular oxygen; therefore, it is necessary for E. histolytica survival under both aerobic in vitro and in vivo conditions. In the present work, it is reported that rabeprazole (Rb), a drug widely used to treat heartburn, was able to inhibit the EhTrxR recombinant enzyme. Moreover, Rb affected amoebic proliferation and several functions required for parasite virulence such as cytotoxicity, oxygen reduction to hydrogen peroxide, erythrophagocytosis, proteolysis, and oxygen and complement resistances. In addition, amoebic pre-incubation with sublethal Rb concentration (600 μM) promoted amoebic death during early liver infection in hamsters. Despite the high Rb concentration used to inhibit amoebic virulence, the wide E. histolytica pathogenic-related functions affected by Rb strongly suggest that its molecular structure can be used as scaffold to design new antiamoebic compounds with lower IC50 values.
Collapse
Affiliation(s)
- Yoalli Martínez-Pérez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N. Col. Casco de Santo Tomás, Ciudad de México, 11340, México. .,Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| | - Mario Nequiz-Avendaño
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Itzhel García-Torres
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, México
| | - Marco E Gudiño-Zayas
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Gabriel López-Velázquez
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, México
| | - Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, México
| | - Edith Mendoza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, 14080, México
| | - Ruy Pérez-Tamayo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N. Col. Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Olivos-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
19
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
20
|
Martin KH, Borlee GI, Wheat WH, Jackson M, Borlee BR. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms. MICROBIOLOGY (READING, ENGLAND) 2020; 166:695-706. [PMID: 32459167 PMCID: PMC7641382 DOI: 10.1099/mic.0.000933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.
Collapse
Affiliation(s)
- Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int J Hyg Environ Health 2019; 224:113440. [PMID: 31978735 DOI: 10.1016/j.ijheh.2019.113440] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.
Collapse
|
22
|
Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep 2019; 9:16040. [PMID: 31690847 PMCID: PMC6831594 DOI: 10.1038/s41598-019-52572-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 11/09/2022] Open
Abstract
Naegleria fowleri is an environmental protist found in soil and warm freshwater sources worldwide and is known for its ability to infect humans and causing a rapid and mostly fatal primary amoebic meningoencephalitis. When contaminated water enters the nose, the facultative parasite follows the olfactory nerve and enters the brain by crossing the cribriform plate where it causes tissue damage and haemorrhagic necrosis. Although N. fowleri has been studied for several years, the mechanisms of pathogenicity are still poorly understood. Furthermore, there is a lack of knowledge on the genomic level and the current reference assembly is limited in contiguity. To improve the draft genome and to investigate pathogenicity factors, we sequenced the genome of N. fowleri using Oxford Nanopore Technology (ONT). Assembly and polishing of the long reads resulted in a high-quality draft genome whose N50 is 18 times higher than the previously published genome. The prediction of potentially secreted proteins revealed a large proportion of enzymes with a hydrolysing function, which could play an important role during the pathogenesis and account for the destructive nature of primary amoebic meningoencephalitis. The improved genome provides the basis for further investigation unravelling the biology and the pathogenic potential of N. fowleri.
Collapse
Affiliation(s)
- Nicole Liechti
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nadia Schürch
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.
| |
Collapse
|
23
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
24
|
Abstract
Entamoeba histolytica (Eh) is a protozoan parasite of humans that colonizes the outer colonic mucus layer. Under conditions not fully understood, Eh breaches innate host defenses and invades the intestinal mucosa-causing amebic colitis and liver abscess. In asymptomatic infection, Eh interacts with and feeds on resident microbiota that forms biofilms on the outer colonic mucus layer. Despite the close association between Eh and commensal microbiota, we still lack basic knowledge on whether microbiota and/or their metabolites influence Eh virulence traits critical in disease pathogenesis. In the pathogenesis of intestinal amebiasis, Eh overcomes the protective mucus layer using a combination of mucinase/glycosidase and potent mucus secretagogue activity. In this addendum, we discuss the interconnected role of a healthy mucus barrier and the role commensal microbiota play in shaping innate host defense against Eh-induced pro-inflammatory and secretory responses critical in disease pathogenesis.
Collapse
Affiliation(s)
- Aralia Leon-Coria
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada,CONTACT Kris Chadee Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Cano I, Taylor NG, Bayley A, Gunning S, McCullough R, Bateman K, Nowak BF, Paley RK. In vitro gill cell monolayer successfully reproduces in vivo Atlantic salmon host responses to Neoparamoeba perurans infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:287-300. [PMID: 30458309 PMCID: PMC6380893 DOI: 10.1016/j.fsi.2018.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 05/06/2023]
Abstract
An in vitro model to study the host response to Neoparamoeba perurans, the causative agent of amoebic gill disease (AGD), was evaluated. The rainbow trout gill derived cell line, RTgill-W1, was seeded onto permeable cell culture supports and maintained asymmetrically with apical seawater. Cells were inoculated with either a passage attenuated or a recent wild clone of N. perurans. Amoebae, loaded with phagocytosed fluorescent beads, were observed associated with host cells within 20 min post inoculation (pi). By 6 h small foci of cytopathic effect appeared and at 72 h cytolysis was observed, with total disruption of the cell monolayer at 96 h pi. Due to cell monolayer disruption, the platform could not support proliferation of amoebae, which showed a 3-log reduction in parasite 18S rRNA mRNA after 72 h (106 copies at 1 h to 103 at 72 h pi). SEM observations showed amoebae-like cells with either short pseudopodia and a malleiform shape, or, long pseudopodia embedded within the gill cells and erosion of the cell monolayer. To study the host immune response, inoculated gill cells were harvested from triplicate inserts at 0, 1, 3, 6, 24 and 48 h pi, and expression of 12 genes involved in the Atlantic salmon response to AGD was compared between infected and uninfected cells and between amoebic clones. Both clones induced similar host inmate immune responses, with the up-regulation of proinflammatory cytokine IL1β, complement C3 and cell receptor MHC-1. The Th2 pathway was up-regulated, with increased gene expression of the transcription factor GATA3, and Th2 cytokines IL10, IL6 and IL4/13A. PCNA and AG-2 were also up-regulated. The wild clone induced significantly higher up-regulation of IL1β, MHC-1, PCNA, lysozyme and IL10 than the attenuated clone for at least some exposure times, but AG-2 gene expression was higher in cells inoculated with the attenuated one. A principal component analysis showed that AG-2 and IL10 were key genes in the in vitro host response to N. perurans. This in vitro model has proved to be a promising tool to study host responses to amoebae and may therefore reduce the requirement for in vivo studies when evaluating alternative therapeutants to AGD control.
Collapse
Affiliation(s)
- Irene Cano
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Nick Gh Taylor
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Amanda Bayley
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Susie Gunning
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robin McCullough
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Kelly Bateman
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Barbara F Nowak
- IMAS, University of Tasmania, Locked Bag 1370, Launceston, 7250, Tasmania, Australia
| | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
26
|
Jalomo-Khayrova E, Mares RE, Muñoz PLA, Meléndez-López SG, Rivero IA, Ramos MA. Soluble expression of an amebic cysteine protease in the cytoplasm of Escherichia coli SHuffle Express cells and purification of active enzyme. BMC Biotechnol 2018; 18:20. [PMID: 29615011 PMCID: PMC5883314 DOI: 10.1186/s12896-018-0429-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Recombinant production of amebic cysteine proteases using Escherichia coli cells as the bacterial system has become a challenging effort, with protein insolubility being the most common issue. Since many of these enzymes need a native conformation stabilized by disulfide bonds, an elaborate process of oxidative folding is usually demanded to get a functional protein. The cytoplasm of E. coli SHuffle Express cells owns an enhanced ability to properly fold proteins with disulfide bonds. Because of this cellular feature, it was possible to assume that this strain represents a reliable expression system and worthwhile been considered as an efficient bacterial host for the recombinant production of amebic cysteine proteases. Results Using E. coli SHuffle Express cells as the bacterial system, we efficiently produce soluble recombinant EhCP1protein. Enzymatic and inhibition analyses revealed that it exhibits proper catalytic abilities, proceeds effectively over the substrate (following an apparent Michaelis-Menten kinetics), and displays a typical inhibition profile. Conclusions We report the first feasibility study of the recombinant production of amebic cysteine proteases using E. coli SHuffle Express as the bacterial host. We present a simple protocol for the recombinant expression and purification of fully soluble and active EhCP1 enzyme. We confirm the suitability of recombinant EhCP1 as a therapeutic target. We propose an approachable bacterial system for the recombinant production of amebic proteins, particularly for those with a need for proper oxidative folding. Electronic supplementary material The online version of this article (10.1186/s12896-018-0429-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ekaterina Jalomo-Khayrova
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Patricia L A Muñoz
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Samuel G Meléndez-López
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México
| | - Ignacio A Rivero
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Boulevard Industrial S/N, Mesa de Otay, 22510, Tijuana, BCN, México
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390, Tijuana, BCN, México.
| |
Collapse
|
27
|
Vlčková K, Kreisinger J, Pafčo B, Čížková D, Tagg N, Hehl AB, Modrý D. Diversity of Entamoeba spp. in African great apes and humans: an insight from Illumina MiSeq high-throughput sequencing. Int J Parasitol 2018. [PMID: 29530647 DOI: 10.1016/j.ijpara.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the complex Entamoeba communities in the mammalian intestine has been, to date, complicated by the lack of a suitable approach for molecular detection of multiple variants co-occurring in mixed infections. Here, we report on the application of a high throughput sequencing approach based on partial 18S rDNA using the Illumina MiSeq platform. We describe, to our knowledge, for the first time, the Entamoeba communities in humans, free-ranging western lowland gorillas and central chimpanzees living in the Dja Faunal Reserve in Cameroon. We detected 36 Entamoeba haplotypes belonging to six haplotype clusters, containing haplotypes possessing high and low host specificity. Most of the detected haplotypes belonged to commensal Entamoeba, however, the pathogenic species (Entamoeba histolytica and Entamoeba nuttalli) were also detected. We observed that some Entamoeba haplotypes are shared between humans and other hosts, indicating their zoonotic potential. The findings are important not only for understanding the epidemiology of amoebiasis in humans in rural African localities, but also in the context of wild great ape conservation.
Collapse
Affiliation(s)
- Klára Vlčková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, Brno 61242, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic.
| | - Jakub Kreisinger
- Division of Animal Evolutionary Biology, Department of Zoology Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Praha, Czech Republic
| | - Barbora Pafčo
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, Brno 61242, Czech Republic
| | - Dagmar Čížková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - Nikki Tagg
- Projet Grands Singes Cameroon, Centre for Research and Conservation, Royal Zoological Society of Antwerp, 20-26 Koningin Astridplein, 2018 Antwerp, Belgium
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zrich, Switzerland
| | - David Modrý
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, Brno 61242, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 370 05, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| |
Collapse
|
28
|
Martínez-Castillo M, Santos-Argumedo L, Galván-Moroyoqui JM, Serrano-Luna J, Shibayama M. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2017; 117:75-87. [PMID: 29128927 DOI: 10.1007/s00436-017-5666-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Naegleria fowleri is a protozoan that invades the central nervous system and causes primary amoebic meningoencephalitis. It has been reported that N. fowleri induces an important inflammatory response during the infection. In the present study, we evaluated the roles of Toll-like receptors in the recognition of N. fowleri trophozoites by human mucoepithelial cells, analyzing the expression and production of innate immune response mediators. After amoebic interactions with NCI-H292 cells, the expression and production levels of IL-8, TNF-α, IL-1β, and human beta defensin-2 were evaluated by RT-PCR, ELISA, immunofluorescence, and dot blot assays, respectively. To determine whether the canonical signaling pathways were engaged, we used different inhibitors, namely, IMG-2005 for MyD88 and BAY 11-7085 for the nuclear factor NFkB. Our results showed that the expression and production of the pro-inflammatory cytokines and beta defensin-2 were induced by N. fowleri mainly through the canonical TLR4 pathway in a time-dependent manner.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - José Manuel Galván-Moroyoqui
- Department of Medicine and Health Sciences, University of Sonora, Boulevard Luis Donaldo Colosio and Francisco Q. Salazar S/N, 83000, Hermosillo, SON, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
29
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
30
|
Soto-Castro L, Plata-Guzmán LY, Figueroa-Angulo EE, Calla-Choque JS, Reyes-López M, de la Garza M, León-Sicairos N, Garzón-Tiznado JA, Arroyo R, León-Sicairos C. Iron responsive-like elements in the parasite Entamoeba histolytica. Microbiology (Reading) 2017; 163:1329-1342. [DOI: 10.1099/mic.0.000431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liliana Soto-Castro
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Laura Yuliana Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Jaeson Santos Calla-Choque
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México D.F. 07360, Mexico
| | - Nidia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - José Antonio Garzón-Tiznado
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, México, D.F. 07360, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortíz (Cd. Universitaria) Culiacán, Sinaloa 80030, Mexico
| |
Collapse
|
31
|
Cuellar P, Hernández-Nava E, García-Rivera G, Chávez-Munguía B, Schnoor M, Betanzos A, Orozco E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front Cell Infect Microbiol 2017; 7:372. [PMID: 28861400 PMCID: PMC5561765 DOI: 10.3389/fcimb.2017.00372] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico.,Consejo Nacional de Ciencia y TecnologíaMexico, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| |
Collapse
|
32
|
Patel S. Every member of the kingdom Animalia is a potential vector of human pathogens. Microb Pathog 2017; 109:1-3. [PMID: 28487229 DOI: 10.1016/j.micpath.2017.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Zoonotic diseases are a subset of infectious diseases, which account for enormous morbidity and mortality. Pathologies like malaria, rabies, Lyme disease, leptospirosis, avian flu etc. are microbe- and parasite-caused ailments, where the etiological agents are introduced into or on the human body via ticks, mosquitoes, birds, rodents, bats, and deer, among other members of kingdom Animalia. While some of the zoonotic diseases are well-investigated and caution taken against, a lot many are yet to be recognized. This ignorance costs health, and lives, especially in developing countries. To promote awareness regarding the risks of immunogenicity and pathogen dissemination by hitherto unknown non-plant organisms, the members of kingdom Animalia, this letter has been compiled. The vector exploitation mechanisms of the pathogens, and in silico evidences of conserved protein domains across the potential pathogen reservoirs have been mentioned to underline the importance of this topic.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| |
Collapse
|
33
|
Antioxidant defense of Nrf2vspro-inflammatory system of NF-κB during the amoebic liver infection in hamster. Parasitology 2016; 144:384-393. [DOI: 10.1017/s0031182016001967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARYEntamoeba histolyticais the causative agent of amoebic liver abscess (ALA), which course with an uncontrolled inflammation and nitro-oxidative stresses, although it is well known that amoeba has an effective defence mechanisms against this toxic environment, the underlying molecular factors responsible for progression of tissue damage remain largely unknown. The purpose of the present study was to determine during the acute stage of ALA in hamsters, the involvement of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor-kappa B (NF-κB), which are activated in response to oxidative stress. From 12 h post-infection the ALA was visible, haematoxylin-eosin and Masson's trichrome stains were consistent with these observations, and alanine aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase serum activities were increased too. At 48 h after infection, liver glycogen content was significantly reduced. Western blot analyses showed that 4-Hydroxy-2-nonenal peaked at 12 h, while glycogen synthase kinase-3β, cleaved caspase-3, pNF-κB, interleukin-1β and tumour necrosis factor-α were overexpressed from 12 to 48 h post-infection. Otherwise, Nrf2 and superoxide dismutase-1, decreased at 48 h and catalase declined at 36 and 48 h. Furthermore, heme oxygenase-1 was increased at 12 and 24 h and decreased to normal levels at 36 and 48 h. These findings suggest for the first time that the host antioxidant system of Nrf2 is influenced during ALA.
Collapse
|
34
|
Shahi P, Trebicz-Geffen M, Nagaraja S, Hertz R, Baumel-Alterzon S, Methling K, Lalk M, Mazumder M, Samudrala G, Ankri S. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress. Sci Rep 2016; 6:36323. [PMID: 27808157 PMCID: PMC5093748 DOI: 10.1038/srep36323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite's survival in its host. In order to obtain insight into the mechanism of E. histolytica's adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS.
Collapse
Affiliation(s)
- Preeti Shahi
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Rivka Hertz
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Mohit Mazumder
- Jawaharlal Nehru University School of Life Sciences, New Delhi, India
| | | | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| |
Collapse
|
35
|
Wiik-Nielsen J, Mo TA, Kolstad H, Mohammad SN, Hytterød S, Powell MD. Morphological diversity of Paramoeba perurans trophozoites and their interaction with Atlantic salmon, Salmo salar L., gills. JOURNAL OF FISH DISEASES 2016; 39:1113-1123. [PMID: 26775899 DOI: 10.1111/jfd.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans affects several cultured marine fish species worldwide. In this study, the morphology and ultrastructure of P. perurans in vitro and in vivo was investigated using scanning and transmission electron microscopy (SEM and TEM, respectively). Amoebae cultures contained several different morphologies ranging from a distinct rounded cell structure and polymorphic cells with pseudopodia of different lengths and shapes. SEM studies of the gills of AGD-affected Atlantic salmon, Salmo salar L., revealed the presence of enlarged swellings in affected gill filaments and fusion of adjacent lamellae. Spherical amoebae appeared to embed within the epithelium, and subsequently leave hemispherical indentations with visible fenestrations in the basolateral surface following their departure. These fenestrated structures corresponded to the presence of pseudopodia which could be seen by TEM to penetrate into the epithelium. The membrane-membrane interface contained an amorphous and slightly fibrous matrix. This suggests the existence of cellular glycocalyces and a role for extracellular products in mediating pathological changes in amoebic gill disease.
Collapse
Affiliation(s)
| | - T A Mo
- Norwegian Veterinary Institute, Oslo, Norway
| | - H Kolstad
- Imaging Centre, Norwegian University of Life Sciences, Ås, Norway
| | | | - S Hytterød
- Norwegian Veterinary Institute, Oslo, Norway
| | - M D Powell
- Norwegian Institute for Water Research, Bergen, Norway
| |
Collapse
|
36
|
Uslu H, Aktas O, Uyanik MH. Comparison of Various Methods in the Diagnosis of Entamoeba histolytica in Stool and Serum Specimens. Eurasian J Med 2016; 48:124-9. [PMID: 27551176 DOI: 10.5152/eurasianjmed.2015.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Entamoeba histolytica is indistinguishable from Entamoeba dispar in direct microscopic examination. A definitive diagnosis of E. histolytica is important in terms of the treatment of the patient and to avoid unnecessary costs. This study's aim is to determine the prevalence of E. histolytica and to make a comparison of the different diagnostic tests in the patients specimens defined as E. histolytica/E. dispar infection. MATERIALS AND METHODS Faecal and serum specimens of 90 patients defined as E. histolytica/E. dispar with microscopy (wet mount examination with 0.85% saline and Lugol's iodine) were examined. Stool samples were examined by trichrome staining for trophozoites and cysts and by immunoassay methods for specific adhesin antigens (Wampole (®) E. histolytica II antigen testing) and for specific serine-rich 30 kD membrane protein (Serazym(®) E. histolytica antigen testing). Anti-E. histolytica antibodies were investigated using a latex slide test and indirect hemagglutination methods in serum specimens. RESULTS Presence of E. histolytica was not confirmed in 31.1% cases with trichrome staining, 62.2% of the Wampole antigen test, 64.4%, of the Serazym antigen test, 73.3% of the indirect hemagglutination test and 75.6%. of the latex agglutination. Considering the common results from Wampole and Serazym antigen testing as a reference standard, the specificity/sensitivity is 100/53.85% for trichrome staining, 75.00/98.11% for the latex agglutination test and 78.57/96.77% for the indirect hemagglutination test. CONCLUSION It has been shown that investigation of E. histolytica in stools by direct wet-smear microscopy alone can cause significant false positive results. To obtain a reliable diagnosis for E. histolytica and to avoid unnecessary treatment for this parasite, at least one more specific assay, particularly an antigen testing and microscopy, is required.
Collapse
Affiliation(s)
- Hakan Uslu
- Department of Medical Microbiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Osman Aktas
- Department of Medical Microbiology, Atatürk University School of Medicine, Erzurum, Turkey
| | | |
Collapse
|
37
|
Muñoz PLA, Minchaca AZ, Mares RE, Ramos MA. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica. Parasitol Int 2015; 65:70-77. [PMID: 26526675 DOI: 10.1016/j.parint.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed.
Collapse
Affiliation(s)
- Patricia L A Muñoz
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Alexis Z Minchaca
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, B.C. 22390, Mexico.
| |
Collapse
|
38
|
Bridle AR, Davenport DL, Crosbie PBB, Polinski M, Nowak BF. Neoparamoeba perurans loses virulence during clonal culture. Int J Parasitol 2015; 45:575-8. [PMID: 26008963 DOI: 10.1016/j.ijpara.2015.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Amoebic Gill Disease affects farmed salmonids and is caused by Neoparamoeba perurans. Clonal cultures of this amoeba have been used for challenge experiments, however the effect of long-term culture on virulence has not been investigated. Here we show, using in vitro and in vivo methods, that a clone of N. perurans which was virulent 70 days after clonal culture lost virulence after 3 years in clonal culture. We propose that this is related either to the lack of attachment to the gills or the absence of an extracellular product, as shown by the lack of cytopathic effect on Chinook salmon embryo cells. The avirulent clonal culture of N. perurans allowed us to propose two potential virulence mechanisms/factors involved in Amoebic Gill Disease and is an invaluable tool for host-pathogen studies of Amoebic Gill Disease.
Collapse
Affiliation(s)
- Andrew R Bridle
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Danielle L Davenport
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Philip B B Crosbie
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Mark Polinski
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Barbara F Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
39
|
Chaturvedi R, Gupte PA, Joshi AS. Fulminant amoebic colitis: a clinicopathological study of 30 cases. Postgrad Med J 2015; 91:200-5. [PMID: 25748520 DOI: 10.1136/postgradmedj-2014-132597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
Abstract
AIMS To review the clinical and pathological factors associated with fulminant amoebic colitis (FAC) requiring colonic resection and its outcome. METHODS We retrospectively identified adult patients admitted to our centre between June 2007 and December 2011 with FAC who underwent colonic resection and were diagnosed with amoebic colitis based on the presence of trophozoites on histological examination. The clinical details were extracted from the medical notes and correlated with the pathological findings. RESULTS Thirty patients (18 men and 12 women) met the inclusion criteria. Their mean age was 50.1 years (range 21-89). The most frequent symptoms were abdominal pain, vomiting and fever. More than half the patients (16/30) had underlying conditions associated with immunosuppression including diabetes mellitus and tuberculosis. Pathological investigation of colonic resections showed predominantly right-sided involvement with geographic colonic ulcers covered with a creamy-white pseudomembrane, perforations, gangrenous changes, amoeboma and lesions mimicking inflammatory bowel disease. All showed basophilic dirty necrosis with abundant nuclear debris and amoebic trophozoites on histological examination. 21/30 patients (70%) had involvement beyond the caecum. 17/30 patients (57%) died. Those with involvement beyond the caecum were more likely to die (15/21, 71.4%) than those with less extensive disease. CONCLUSIONS FAC presents as acute abdomen and can mimic appendicitis, ischaemic bowel disease, tuberculosis and malignancy. Comorbidities causing immunosuppression frequently associated. Mortality remains high despite surgery, so FAC should be suspected in every case of acute abdomen with colonic perforation if associated with typical gross and microscopic findings and a history of stay in an endemic area.
Collapse
Affiliation(s)
- Rachana Chaturvedi
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Prajakta A Gupte
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Amita S Joshi
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
40
|
Lee YA, Saito-Nakano Y, Kim KA, Min A, Nozaki T, Shin MH. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins. Exp Parasitol 2014; 149:7-15. [PMID: 25500214 DOI: 10.1016/j.exppara.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
41
|
Abstract
Entamoeba histolytica is the third-leading cause of parasitic mortality globally. E. histolytica infection generally does not cause symptoms, but the parasite has potent pathogenic potential. The origins, benefits, and triggers of amoebic virulence are complex. Amoebic pathogenesis entails depletion of the host mucosal barrier, adherence to the colonic lumen, cytotoxicity, and invasion of the colonic epithelium. Parasite damage results in colitis and, in some cases, disseminated disease. Both host and parasite genotypes influence the development of disease, as do the regulatory responses they govern at the host-pathogen interface. Host environmental factors determine parasite transmission and shape the colonic microenvironment E. histolytica infects. Here we highlight research that illuminates novel links between host, parasite, and environmental factors in the regulation of E. histolytica virulence.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908; ,
| | | |
Collapse
|
42
|
García G, Ramos F, Pérez RG, Yañez J, Estrada MS, Mendoza LH, Martinez-Hernandez F, Gaytán P. Molecular epidemiology and genetic diversity of Entamoeba species in a chelonian collection. J Med Microbiol 2013; 63:271-283. [PMID: 24194557 DOI: 10.1099/jmm.0.061820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Veterinary medicine has focused recently on reptiles, due to the existence of captive collections in zoos and an increase in the acquisition of reptiles as pets. The protozoan parasite, Entamoeba can cause amoebiasis in various animal species and humans. Although amoebiasis disease is remarkably rare in most species of chelonians and crocodiles, these species may serve as Entamoeba species carriers that transmit parasites to susceptible reptile species, such as snakes and lizards, which can become sick and die. In this study, we identified the Entamoeba species in a population of healthy (disease-free) chelonians, and evaluated their diversity through the amplification and sequencing of a small subunit rDNA region. Using this procedure, three Entamoeba species were identified: Entamoeba invadens in 4.76 % of chelonians, Entamoeba moshkovskii in 3.96 % and Entamoeba terrapinae in 50 %. We did not detect mixed Entamoeba infections. Comparative analysis of the amplified region allowed us to determine the intra-species variations. The E. invadens and E. moshkovskii strains isolated in this study did not exhibit marked differences with respect to the sequences reported in GenBank. The analysis of the E. terrapinae isolates revealed three different subgroups (A, B and C). Although subgroups A and C were very similar, subgroup B showed a relatively marked difference with respect to subgroups A and C (Fst = 0.984 and Fst = 1.000, respectively; 10-14 % nucleotide variation, as determined by blast) and with respect to the sequences reported in GenBank. These results suggested that E. terrapinae subgroup B may be either in a process of speciation or belong to a different lineage. However, additional research is necessary to support this statement conclusively.
Collapse
Affiliation(s)
- Gabriela García
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco Universidad, Delegación Coyoacan, México DF, CP 04510, México
| | - Fernando Ramos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco Universidad, Delegación Coyoacan, México DF, CP 04510, México
| | - Rodrigo Gutiérrez Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco Universidad, Delegación Coyoacan, México DF, CP 04510, México
| | - Jorge Yañez
- Unidad de Síntesis y Secuenciación de DNA, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Cuernavaca Morelos, CP 62210, México
| | - Mónica Salmerón Estrada
- Herpetario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco Universidad, Delegación Coyoacan, México DF, CP 04510, México
| | - Lilian Hernández Mendoza
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco Universidad, Delegación Coyoacan, México DF, CP 04510, México
| | - Fernando Martinez-Hernandez
- Departamento de Ecología de Agentes Patógenos, Hospital General Doctor Manuel Gea González, Calz de Tlalpan 4800, Tlalpan, México DF, CP 14000, México
| | - Paul Gaytán
- Unidad de Síntesis y Secuenciación de DNA, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Cuernavaca Morelos, CP 62210, México
| |
Collapse
|
43
|
Scanlan PD, Stensvold CR. Blastocystis: getting to grips with our guileful guest. Trends Parasitol 2013; 29:523-9. [PMID: 24080063 DOI: 10.1016/j.pt.2013.08.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Blastocystis, a common single-celled intestinal parasite of humans and animals, continues to puzzle clinical microbiologists, gastroenterologists, and general practitioners who are still unsure of the clinical significance of the organism. Here we consider some less well-addressed areas of Blastocystis research, which, facilitated by recent technological advances, could potentially turn out to be significant pathways to knowledge. First and foremost we discuss new trends in Blastocystis research, including the 'omics' perspectives, and then highlight some aspects of Blastocystis research in the context of host coevolution, its potential as a biomarker of intestinal functionality, and its relationship to other components of the human intestinal microbiota.
Collapse
Affiliation(s)
- Pauline D Scanlan
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|