1
|
Gong G, Wan W, Liu X, Yin J. Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. Int Immunopharmacol 2023; 117:109991. [PMID: 37012875 DOI: 10.1016/j.intimp.2023.109991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Apelin/APJ is widely distributed in various tissues in the body and participates in the regulation of physiological and pathological mechanisms such as autophagy, apoptosis, inflammation, and oxidative stress. Apelin-13 is an adipokine family member with multiple biological roles and has been shown to be involved in the development and progression of bone diseases. In the process of osteoporosis and fracture healing, Apelin-13 plays an osteoprotective role by regulating the autophagy and apoptosis of BMSCs, and promotes the osteogenic differentiation of BMSCs. In addition, Apelin-13 also attenuates the progression of arthritis by regulating the inflammatory response of macrophages. In conclusion, Apelin-13 has an important connection with bone protection, which provides a new strategy for the clinical treatment of bone-related diseases.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
2
|
Relation between adipose tissue and the musculoskeletal unit in a group of postmenopausal women. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2022; 21:259-265. [PMID: 36704760 PMCID: PMC9871992 DOI: 10.5114/pm.2022.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/26/2022] [Indexed: 01/04/2023]
Abstract
Introduction Involutional changes observed during aging increase rapidly in the postmenopausal period. These changes include body composition by affecting bone, muscle and fat tissue. A number of studies have investigated the mutual interaction between bone and muscle tissue, whereas adipose tissue had not been studied thoroughly.The aim of the present study was to assess the relation between fat tissue parameters and the musculoskeletal unit. Material and methods The study was conducted in a group of 120 postmenopausal women with an average age of 69 years (59-81; SD 5.3). All women had been asked to complete a questionnaire (medical history) and underwent a total body composition analysis [bone mineral density (BMD)] testing (spine and/or neck) followed by a handgrip test. Results The study revealed strong correlations between appendicular skeletal muscle mass index - appen.lean/height2, visceral adipose tissue area (VAT) and fat/mass/height2 index (r = 0.589 and 0.658 respectively; p < 0.001). The results were not supported by muscle strength (handgrip). The authors identified correlations between the bone parameters and adipose tissue but these were identified as weak or moderate (p < 0.05). Special emphasis should be placed on the relation between the trabecular bone score (TBS) and VAT area (r = -0.385, p < 0.001). Conclusions There is a strong dependence between muscle and adipose tissues. Despite the fact that the increase in fat is correlated with the growth of muscle tissue, it is not accompanied by better quality of the muscle (handgrip). Bone microarchitecture is more related to VAT area than neck/spine BMD.
Collapse
|
3
|
Tariq S, Tariq S, Khaliq S, Abualhamael SA, Baig M. Association of serum levels of Visfatin, Intelectin-1, RARRES2 and their genetic variants with bone mineral density in postmenopausal females. Front Endocrinol (Lausanne) 2022; 13:1024860. [PMID: 36531488 PMCID: PMC9748547 DOI: 10.3389/fendo.2022.1024860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adipokines are engaged in bone physiology and regulate bone mineral density (BMD) by playing protective or cynical role in bone metabolism. The study is designed to measure and compare BMD, adipokines (retinoic acid receptor responder protein-2 RARRES2, visfatin and Intelectin-1) and their genetic variants in postmenopausal osteoporotic, osteopenic and non-osteoporotic females. Methods This comparative study included postmenopausal non-osteoporotic (n=72), osteopenic (n=72) and osteoporotic (n=100) females with two years of amenorrhea and age between 50 to 70 years. Gold standard DXA was used to measure BMD. Hardy-Weinberg equilibrium was established. Kruskal-Wallis test for comparisons, logistic and multivariate regression analysis were used to rule out the predictors of BMD. Results On comparing the three groups, significant differences were observed in serum RARRES2 (p <0.001) and serum visfatin (p=0.050). The significant positive predictor of BMD at lumbar spine and total hip was serum visfatin. BMD at right and left femoral neck was predicted negatively by serum chemerin while BMD at left femoral neck was also predicted positively by serum calcium levels. There was significant difference in BMD at right femoral neck (p = 0.033) between rs7806429 genotypes. The odds of having low BMD increases with increasing serum levels of chemerin and decreasing serum levels of visfatin and calcium. Conclusion The adipokines RARRES2 and visfatin are associated with BMD. RARRES2 is an independent negative and visfatin is positive predictor of BMD in postmenopausal females. BMD at right femoral neck was significantly low in RARRES2 rs7806429 TC heterozygotes.
Collapse
Affiliation(s)
- Sundus Tariq
- Department of Physiology, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Tariq
- Department of Pharmacology and Therapeutics, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | | | - Mukhtiar Baig
- Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Li Z, Bagchi DP, Zhu J, Bowers E, Yu H, Hardij J, Mori H, Granger K, Skjaerlund J, Mandair G, Abrishami S, Singer K, Hankenson KD, Rosen CJ, MacDougald OA. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight 2022; 7:160915. [PMID: 36048537 PMCID: PMC9675472 DOI: 10.1172/jci.insight.160915] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology and
| | | | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hui Yu
- Department of Molecular & Integrative Physiology and
| | - Julie Hardij
- Department of Molecular & Integrative Physiology and
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology and
| | | | - Jon Skjaerlund
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gurjit Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanakadurga Singer
- Department of Molecular & Integrative Physiology and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology and
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Tariq S, Tariq S, Abualhamael SA, Shahzad M. Effect of Ibandronate Therapy on Serum Chemerin, Vaspin, Omentin-1 and Osteoprotegerin (OPG) in Postmenopausal Osteoporotic Females. Front Pharmacol 2022; 13:822671. [PMID: 35222038 PMCID: PMC8864312 DOI: 10.3389/fphar.2022.822671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a condition in which bone mineral density is reduced due to altered bone microstructure, which results in increased skeletal fragility and incidence of various types of fractures. Adipokines such as chemerin, vaspin, omentin-1 and osteoprotegerin are involved in bone remodeling. The current study was designed to determine the changes in circulating chemerin, vaspin, omentin-1, and osteoprotegerin levels after treatment with oral ibandronate 150 mg in postmenopausal osteoporotic females. The present study enrolled 107 postmenopausal osteoporotic females from a tertiary care hospital in Faisalabad, Pakistan, based on stringent inclusion and exclusion criteria. Sixty-six healthy postmenopausal, non-osteoporotic females with no systemic illness were chosen from the general population. The assessment of bone mineral density (BMD) was done using a DEXA scan. Serum levels of chemerin, vaspin, omentin-1 and osteoprotegerin were estimated using commercially available enzyme-linked immunosorbent assay kits. The collected data were analyzed with the Statistical Package for Social Sciences (SPSS) version 24. Following 6 months of ibandronate treatment, there was a significant decrease of 24.24% (p < .033) in serum chemerin levels, as well as a significant increase in serum vaspin levels 343.32% (p < .001) and osteoprotegerin levels 19.57% (p < .001), with no significant change in omentin-1 levels. Thus, an increase in serum chemerin levels and a decrease in serum vaspin and osteoprotegerin levels could be implicated in osteoporosis.
Collapse
Affiliation(s)
- Saba Tariq
- Department of Pharmacology and Therapeutics, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan.,Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Sundus Tariq
- Department of Physiology and Cell Biology, University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan.,Department of Physiology, University of Health Sciences, Lahore, Pakistan
| | | | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Jiang XY, Wang Q, Zhang Y, Chen Y, Wu LF. Association of High Serum Chemerin with Bone Mineral Density Loss and Osteoporotic Fracture in Elderly Chinese Women. Int J Womens Health 2022; 14:107-118. [PMID: 35140527 PMCID: PMC8818771 DOI: 10.2147/ijwh.s337985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Chemerin has been suggested to be a risk factor for osteoporosis; however, its relationship with osteoporotic fracture is poorly understood. Herein, we intend to explore the association between serum chemerin and osteoporotic fracture. Methods A total of 111 elderly women patients diagnosed with osteoporotic fracture were selected as the observation group, and 40 healthy subjects were enrolled as controls. Dual-energy X-ray absorptiometry, enzyme-linked immunosorbent assay, electrochemiluminescence immunoassay, and biochemical analysis were separately performed to determine body bone mineral density (BMD), chemerin levels, bone turnover markers, and other parameters. Pearson's correlation analysis was conducted to examine a relationship between chemerin and laboratory parameters. Moreover, the levels of chemokine-like receptor 1 (CMKLR), C-C motif chemokine receptor-like 2 (CCRL2), collagen type I alpha (COLA1), and runt-related transcription factor-2 (RUNX2) were confirmed by quantitative polymerase chain reaction, and the effect of chemerin on osteogenic differentiation of hFOB1.19 cells was indicated by tartrate-resistant acid phosphatase and alkaline phosphatase double staining. Results A higher level of chemerin was generally detected in patients with osteoporotic fracture compared with those without (P<0.05). Compared with controls, lower BMD levels and higher β-CTx and P1NP levels were detected in patients with osteoporotic fracture (all P<0.05). Interestingly, chemerin level was negatively correlated to BMD, but positively related to P1NP and β-CTx. Risk of osteoporotic fracture was 2.75-fold higher in subjects with each standard deviation increment of chemerin. Compared with controls, there were no significant differences in CMKLR1 and CCRL2 mRNA after incubation with osteogenic differentiation medium (all P>0.05), whereas there was a remarkable decrease of COLA1 and RUNX2 after incubation with chemerin for nine days (all P<0.05). Furthermore, prolonged incubation with chemerin enhanced osteoclast differentiation and maturation, consequently contributing to an increased risk of fracture. Conclusion Chemerin is a strong and independent risk factor for osteoporosis-related fracture among elderly Chinese women.
Collapse
Affiliation(s)
- Xi-Yuan Jiang
- Center of Osteoporosis, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, 215300, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Qing Wang
- Center of Osteoporosis, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Ying Zhang
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Yong Chen
- Center of Osteoporosis, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Long-Fei Wu
- School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| |
Collapse
|
7
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
8
|
Tariq S, Tariq S, Khaliq S, Lone KP. Serum resistin levels as predictor of low bone mineral density in postmenopausal women. Health Care Women Int 2020; 42:82-91. [PMID: 32744891 DOI: 10.1080/07399332.2020.1798965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Resistin, a novel adipokine may play an important role in bone metabolism. The study is designed to discover the association of bone mineral density (BMD) with serum resistin levels, anthropometric measures and to elucidate serum resistin as a predictor of BMD in postmenopausal women. Postmenopausal women (n = 160) were recruited and divided into two groups, non-osteoporotic (n = 70) and osteoporotic (n = 90). BMD was evaluated by DXA scan. High serum resistin levels and low weight are independent contributors to low BMD and can influence BMD at lumbar spine, right femoral neck, right hip, left femoral neck, and left hip in postmenopausal women.
Collapse
Affiliation(s)
- Sundus Tariq
- Department of Physiology, University Medical & Dental College, Faisalabad, Pakistan.,Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Saba Tariq
- Pharmacology and Therapeutics, University Medical & Dental College, Faisalabad, Pakistan.,Pharmacology and Therapeutics, University of Health Sciences, Lahore, Pakistan
| | - Saba Khaliq
- Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid Parvez Lone
- Physiology and Metabolic disorders, Government College University, Lahore, Pakistan
| |
Collapse
|
9
|
Muruganandan S, Ionescu AM, Sinal CJ. At the Crossroads of the Adipocyte and Osteoclast Differentiation Programs: Future Therapeutic Perspectives. Int J Mol Sci 2020; 21:ijms21072277. [PMID: 32224846 PMCID: PMC7177886 DOI: 10.3390/ijms21072277] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
The coordinated development and function of bone-forming (osteoblasts) and bone-resorbing (osteoclasts) cells is critical for the maintenance of skeletal integrity and calcium homeostasis. An enhanced adipogenic versus osteogenic potential of bone marrow mesenchymal stem cells (MSCs) has been linked to bone loss associated with diseases such as diabetes mellitus, as well as aging and postmenopause. In addition to an inherent decrease in bone formation due to reduced osteoblast numbers, recent experimental evidence indicates that an increase in bone marrow adipocytes contributes to a disproportionate increase in osteoclast formation. Therefore, a potential strategy for therapeutic intervention in chronic bone loss disorders such as osteoporosis is to interfere with the pro-osteoclastogenic influence of marrow adipocytes. However, application of this approach is limited by the extremely complex regulatory processes in the osteoclastogenic program. For example, key regulators of osteoclastogenesis such as the receptor activator of nuclear factor-kappaB ligand (RANKL) and the soluble decoy receptor osteoprotegerin (OPG) are not only secreted by both osteoblasts and adipocytes, but are also regulated through several cytokines produced by these cell types. In this context, biologically active signaling molecules secreted from bone marrow adipocytes, such as chemerin, adiponectin, leptin, visfatin and resistin, can have a profound influence on the osteoclast differentiation program of hematopoietic stem cells (HSCs), and thus, hold therapeutic potential under disease conditions. In addition to these paracrine signals, adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), C/EBP beta (C/EBPβ) and peroxisome proliferator-associated receptor gamma (PPARγ) are also expressed by osteoclastogenic cells. However, in contrast to MSCs, activation of these adipogenic transcription factors in HSCs promotes the differentiation of osteoclast precursors into mature osteoclasts. Herein, we discuss the molecular mechanisms that link adipogenic signaling molecules and transcription factors to the osteoclast differentiation program and highlight therapeutic strategies targeting these mechanisms for promoting bone homeostasis.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +614-971-0412
| | - Andreia M. Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
| | | |
Collapse
|
10
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
11
|
Papageorgiou M, Kerschan-Schindl K, Sathyapalan T, Pietschmann P. Is Weight Loss Harmful for Skeletal Health in Obese Older Adults? Gerontology 2019; 66:2-14. [DOI: 10.1159/000500779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
|
12
|
Mihai G, Gasparik AI, Pascanu IM, Cevei M, Hutanu A, Pop RM. The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis. Aging Clin Exp Res 2019; 31:889-895. [PMID: 31054116 DOI: 10.1007/s40520-019-01206-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The impact of the two adipokines, visfatin and retinol-binding protein 4 (RBP-4) on bone mineral density (BMD) has been analysed in various studies with conflicting results. Visfatin is highly expressed in visceral fat with stimulatory effect on osteoblast proliferation and inhibition on osteoclast formation, while RBP-4 acts as a transporter protein for retinol, associated with changes in insulin sensitivity, independent of obesity, with no consensus on its effect on bone metabolism. We evaluated the relationship between serum concentrations of visfatin, RBP-4, markers of insulin resistance and current BMD in treated postmenopausal osteoporosis (PO). METHODS Demographics, previous treatment, metabolic status, anthropometry, serum Alkaline phosphatise (ALP), visfatin, RBP-4, the HOMA IR (homeostatic model assessment of insulin resistance) index and BMD were evaluated in 61 subjects with PO. Statistical analysis used SPSS v. 25.0, with a level of significance α = 0.05. Regression models were constructed to evaluate the relationship between adipokines and BMD, adjusting for covariates. RESULTS In multilinear regression analysis, the strongest predictor for current BMD was a previous BMD, followed by ALP and age. RBP4 and HOMA IR were significant predictors, while visfatin had no significant effect. A significant correlation between body mass index (BMI) and BMD at the femoral neck was observed. ALP was negatively correlated with BMD and visfatin positively with RBP4. CONCLUSIONS Data indicate a positive relationship between BMD and RBP-4, an inverse relationship between markers of insulin resistance, bone turn-over and current BMD. No significant effect of visfatin on BMD was observed.
Collapse
Affiliation(s)
- Gabriela Mihai
- Department of Endocrinology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mureş, Str. Gh Marinescu nr 38, Tirgu Mureş, Romania
| | - Andrea Ildiko Gasparik
- Department of Public Health and Health Management, University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mureş, Str. Gh Marinescu nr 38, Tirgu Mureş, Romania.
| | - Ionela Maria Pascanu
- Department of Endocrinology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mureş, Str. Gh Marinescu nr 38, Tirgu Mureş, Romania
| | - Mariana Cevei
- Medical Rehabilitation Hospital Băile Felix, Comuna Sinmartin, Romania
| | - Adina Hutanu
- Department of Laboratory Medicine, Centre for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mureş, Str. Gh Marinescu nr 38, Tirgu Mureş, Romania
| | - Raluca-Monica Pop
- Research Methodology Department, University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mureş, Str. Gh Marinescu nr 38, Tirgu Mureş, Romania
| |
Collapse
|
13
|
Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018; 19:E3503. [PMID: 30405034 PMCID: PMC6274683 DOI: 10.3390/ijms19113503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma with clonal plasma expansion in bone marrow is the second most common hematologic malignancy in the world. Though the improvement of outcomes from the achievement of novel agents in recent decades, the disease progresses and leads to death eventually due to the elusive nature of myeloma cells and resistance mechanisms to therapeutic agents. In addition to the molecular and genetic basis of resistance pathomechanisms, the bone marrow microenvironment also contributes to disease progression and confers drug resistance in myeloma cells. In this review, we focus on the current state of the literature in terms of critical bone marrow microenvironment components, including soluble factors, cell adhesion mechanisms, and other cellular components. Transcriptional factor nuclear factor erythroid-derived-2-like 2 (NRF2), a central regulator for anti-oxidative stresses and detoxification, is implicated in chemoresistance in several cancers. The functional roles of NRF2 in myeloid-derived suppressor cells and multiple myeloma cells, and the potential of targeting NRF2 for overcoming microenvironment-mediated drug resistance in multiple myeloma are also discussed.
Collapse
Affiliation(s)
- Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hui-Hua Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
14
|
Dimitri P. Fat and bone in children - where are we now? Ann Pediatr Endocrinol Metab 2018; 23:62-69. [PMID: 29969876 PMCID: PMC6057021 DOI: 10.6065/apem.2018.23.2.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
The risk of fracture secondary to low-impact trauma is greater in obese children, suggesting obese children are at risk of skeletal fragility. However, despite this finding, there is a lack of agreement about the impact of excessive adiposity on skeletal development. The combination of poor diet, sedentary lifestyle, greater force generated on impact through falls, and greater propensity to falls may in part explain the increased risk of fracture in obese children. To date, evidence suggests that in early childhood years, obesity confers a structural advantage to the developing skeleton. However, in time, this relationship attenuates and then reverses, such that there is a critical period during skeletal development when obesity has a detrimental effect on skeletal structure and strength. Fat mass may be important to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Evidence from studies examining bone microstructure suggests skeletal adaption to excessive load fails, and bone strength is relatively diminished in relation to body size in obese children. Mechanisms that may explain these changes include changes in the hormonal environment, particularly in relation to alterations in adipokines and fat distribution. Given the concomitant rise in the prevalence of childhood obesity and fractures, as well as adult osteoporosis, further work is required to understand the relationship between obesity and skeletal development.
Collapse
Affiliation(s)
- Paul Dimitri
- Address for correspondence: Paul Dimitri The Academic Unit of Child Health, Sheffield Children’s NHS Foundation Trust, Western Bank, Sheffield S10 2TH, United Kingdom Tel: +44-271-7118 Fax: +44-275-5364 E-mail:
| |
Collapse
|
15
|
Tanna N, Patel K, Moore AE, Dulnoan D, Edwards S, Hampson G. The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J Endocrinol Invest 2017. [PMID: 28646476 DOI: 10.1007/s40618-017-0711-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To explore the relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial stiffness and vascular calcification in post-menopausal women. We hypothesised that adipokines produced by adipose tissue may be mediators of bone and cardiovascular disease (CVD) and explain, in part, the observed association between osteoporosis and CVD. DESIGN We studied 386 ambulant community dwelling postmenopausal women aged (mean [SD] 61 [6.4] years). BMD at the lumbar spine, femoral neck (FN), and total hip (TH), body composition; fat mass (FM) and lean mass (LM) as well as abdominal aortic calcification (AAC) were determined by dual energy X-ray absorptiometry. Pulse wave velocity (PWV) and augmentation index, markers of arterial stiffness were measured. Fasting adiponectin, leptin and vaspin were quantified in serum. RESULTS A positive independent association was observed between vaspin and BMD at the FN (p = 0.009), TH (p = 0.037) in the whole study population adjusted for confounders including age, FM, LM and lifestyle variables. Using the same model, a negative association was seen between adiponectin and BMD at the FN in women with osteoporosis (p = 0.043). Serum adiponectin was significantly higher in women with fractures (20.8 [9.3] µg/ml compared to those without (18.5 [8.6] µg/ml, p = 0.018) and associated with a significant increased risk of fracture (HR 1.032, 95% CI 1.003-1.063, p = 0.032). Leptin was not associated with BMD or fracture risk after adjustment. Adiponectin was independently associated with AAC (p = 0.007) and significantly higher in women with AAC scores > 1; (19.2[9.2]) compared to those with no or low AAC scores (<1); 16.8 [8.0], p = 0.018). In adjusted analyses, PWV velocity was positively associated with circulating vaspin (p = 0.039) and AI was negatively associated with serum leptin (p = 0.002). CONCLUSION Adiponectin, leptin, vaspin are related to markers of bone and vascular health and may contribute to the observed association between osteoporosis and CVD.
Collapse
Affiliation(s)
- N Tanna
- Department of Clinical Chemistry and Metabolic Medicine, St Thomas' Hospital, 5th Floor, North Wing, London, SE1 7EH, UK
| | - K Patel
- Department of Clinical Chemistry and Metabolic Medicine, St Thomas' Hospital, 5th Floor, North Wing, London, SE1 7EH, UK
| | - A E Moore
- Osteoporosis Unit, Guy's Hospital, London, UK
| | - D Dulnoan
- Osteoporosis Unit, Guy's Hospital, London, UK
| | - S Edwards
- Osteoporosis Unit, Guy's Hospital, London, UK
| | - G Hampson
- Department of Clinical Chemistry and Metabolic Medicine, St Thomas' Hospital, 5th Floor, North Wing, London, SE1 7EH, UK.
- Metabolic Bone Clinic, Department of Rheumatology, Guy's Hospital, London, UK.
| |
Collapse
|
16
|
Ponti F, Guerri S, Sassi C, Battista G, Guglielmi G, Bazzocchi A. Imaging of diabetic bone. Endocrine 2017; 58:426-441. [PMID: 28293856 DOI: 10.1007/s12020-017-1278-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023]
Abstract
Diabetes is an important concern in terms of medical and socioeconomic costs; a high risk for low-trauma fractures has been reported in patients with both type 1 and type 2 diabetes. The mechanism involved in the increased fracture risk from diabetes is highly complex and still not entirely understood; obesity could play an important role: recent evidence suggests that the influence of fat on bone is mainly dependent on the pattern of regional fat deposition and that an increased amount of visceral adipose tissue negatively affects skeletal health.Correct and timely individuation of people with high fracture risk is critical for both prevention and treatment: Dual-energy X-ray Absorptiometry (currently the "gold standard" for diagnosis of osteoporosis) underestimates fracture risk in diabetic patients and therefore is not sufficient by itself to investigate bone status. This paper is focused on imaging, covering different modalities involved in the evaluation of skeletal deterioration in diabetes, discussing the limitations of conventional methods and exploring the potential of new tools and recent high-resolution techniques, with the intent to provide interesting insight into pathophysiology and fracture risk.
Collapse
Affiliation(s)
- Federico Ponti
- Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Division of Radiology S.Orsola-Malpighi Hospital, University of Bologna, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Sara Guerri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Division of Radiology S.Orsola-Malpighi Hospital, University of Bologna, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Claudia Sassi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Division of Radiology S.Orsola-Malpighi Hospital, University of Bologna, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Division of Radiology S.Orsola-Malpighi Hospital, University of Bologna, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy
- Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy.
| |
Collapse
|
17
|
Pop LM, Lingvay I, Yuan Q, Li X, Adams-Huet B, Maalouf NM. Impact of pioglitazone on bone mineral density and bone marrow fat content. Osteoporos Int 2017; 28:3261-3269. [PMID: 28735463 DOI: 10.1007/s00198-017-4164-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED Pioglitazone use is associated with an increased risk of fractures. In this randomized, placebo-controlled study, pioglitazone use for 12 months was associated with a significant increase in bone marrow fat content at the femoral neck, accompanied by a significant decrease in total hip bone mineral density. The change in bone marrow fat with pioglitazone use was predominantly observed in female vs. male participants. INTRODUCTION Use of the insulin sensitizer pioglitazone is associated with greater fracture incidence, although the underlying mechanisms are incompletely understood. This study aimed to assess the effect of pioglitazone treatment on femoral neck bone marrow (BM) fat content and on bone mineral density (BMD), and to establish if any correlation exists between the changes in these parameters. METHODS In this double-blind placebo-controlled clinical trial, 42 obese volunteers with metabolic syndrome were randomized to pioglitazone (45 mg/day) or matching placebo for 1 year. The following measurements were conducted at baseline and during the treatment: liver, pancreas, and femoral neck BM fat content (by magnetic resonance spectroscopy), BMD by DXA, abdominal subcutaneous and visceral fat, and beta-cell function and insulin sensitivity. RESULTS Results were available for 37 subjects who completed the baseline and 1-year evaluations. At 12 months, BM fat increased with pioglitazone (absolute change, +4.1%, p = 0.03), whereas BM fat content in the placebo group decreased non-significantly (-3.1%, p = 0.08) (p = 0.007 for the pioglitazone-placebo response difference). Total hip BMD declined in the pioglitazone group (-1.4%) and increased by 0.8% in the placebo group (p = 0.03 between groups). The change in total hip BMD was inversely and significantly correlated with the change in BM fat content (Spearman rho = -0.56, p = 0.01) in the pioglitazone group, but not within the placebo group (rho = -0.29, p = 0.24). Changes in BM fat with pioglitazone were predominantly observed in female vs. male subjects. CONCLUSIONS Pioglitazone use for 12 months compared with placebo is associated with significant increase in BM fat content at the femoral neck, accompanied by a small but significant decrease in total hip BMD.
Collapse
Affiliation(s)
- L M Pop
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - I Lingvay
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Q Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - X Li
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - B Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA
- Department of Internal Medicine, Division of Mineral Metabolism, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA
| | - N M Maalouf
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA.
- Department of Internal Medicine, Division of Mineral Metabolism, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA.
| |
Collapse
|
18
|
Farr JN, Dimitri P. The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children. Calcif Tissue Int 2017; 100:500-513. [PMID: 28013362 PMCID: PMC5395331 DOI: 10.1007/s00223-016-0218-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
Abstract
A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.
Collapse
Affiliation(s)
- Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Paul Dimitri
- The Academic Unit of Child Health, Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, University of Sheffield, Western Bank, Sheffield, S10 2TH, UK.
| |
Collapse
|
19
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
20
|
Tekin S, Erden Y, Sandal S, Etem Onalan E, Ozyalin F, Ozen H, Yilmaz B. Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism. Arch Physiol Biochem 2017; 123:9-15. [PMID: 27494693 DOI: 10.1080/13813455.2016.1211709] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apelin is an adipose tissue derived peptidergic hormone. In this study, 40 male Sprague-Dawley rats were used (four groups; n = 10). Apelin-13 at three different dosages (1, 5 and 50 μg/kg) was given intraperitoneally while the control group received vehicle the same route for a period of 14 days. In results, apelin-13 caused significant decreases in serum testosterone, luteinizing hormone and follicle-stimulating hormone levels (p < 0.05). Administration of apelin-13 significantly increased body weights, food intake, serum low-density lipoprotein and total cholesterol levels (p < 0.05), but caused significant decreases in high-density lipoprotein levels (p < 0.05). Serum glucose and triglyceride levels were not significantly altered by apelin-13 administration. Significant decreases in both uncoupling protein (UCP)-1 levels in the white and brown adipose tissues and UCP-3 levels in the biceps muscle (p < 0.05) were noted. The findings of the study suggest that apelin-13 may not only lead to obesity by increasing body weight but also cause infertility by suppressing reproductive hormones.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Dose-Response Relationship, Drug
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Feeding Behavior/drug effects
- Gonadotropins, Pituitary/antagonists & inhibitors
- Gonadotropins, Pituitary/blood
- Hypercholesterolemia/blood
- Hypercholesterolemia/chemically induced
- Hypercholesterolemia/metabolism
- Infertility, Male/blood
- Infertility, Male/chemically induced
- Infertility, Male/metabolism
- Injections, Intraperitoneal
- Intercellular Signaling Peptides and Proteins/toxicity
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Overweight/blood
- Overweight/chemically induced
- Overweight/metabolism
- Random Allocation
- Rats, Sprague-Dawley
- Testosterone/antagonists & inhibitors
- Testosterone/blood
- Toxicity Tests, Chronic
- Uncoupling Protein 1/antagonists & inhibitors
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 3/antagonists & inhibitors
- Uncoupling Protein 3/genetics
- Uncoupling Protein 3/metabolism
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Suat Tekin
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Yavuz Erden
- b Department of Molecular Biology and Genetics , Faculty of Science, Bartin University , Bartin , Turkey
| | - Suleyman Sandal
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Ebru Etem Onalan
- c Department of Medical Biology , Faculty of Medicine, Firat University , Elazig , Turkey
| | - Fatma Ozyalin
- d Department of Biochemistry , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Hasan Ozen
- e Department of Pathology , Faculty of Veterinary Medicine, Kafkas University , Kars , Turkey
| | - Bayram Yilmaz
- f Department of Physiology , Faculty of Medicine, Yeditepe University , Istanbul , Turkey
| |
Collapse
|
21
|
Baek JM, Ahn SJ, Cheon YH, Lee MS, Oh J, Kim JY. Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro. Mol Med Rep 2016; 15:784-792. [PMID: 28035412 PMCID: PMC5364879 DOI: 10.3892/mmr.2016.6069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
The adipokine nicotinamide phosphoribosyltransferase (Nampt), also known as pre-B-cell colony-enhancing factor or the insulin-mimetic hormone visfatin, has a crucial role in the conversion of nicotinamide to nicotinamide mononucleotide during biosynthesis of the coenzyme nicotinamide adenine dinucleotide. Previous reports have demonstrated the inhibitory effects of Nampt on osteoclast formation from human peripheral blood mononuclear cells and CD14+ monocytes. However, the effects of Nampt on bone marrow macrophage (BMM)-derived osteoclastogenesis and its precise role in the process remain unclear. The present in vitro study used recombinant Nampt and BMMs as osteoclast precursors demonstrated that Nampt suppresses receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by decreasing the phosphorylation of various early signal transducers, including c-Jun N-terminal kinase, Akt, glycogen synthase kinase-3 β, Bruton's tyrosine kinase and phospholipase C γ-2. In addition, western blotting and reverse transcription-quantitative polymerase chain reaction analysis indicated that Nampt downregulates the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1, leading to a decrease in the expression of osteoclast-specific genes including tartrate-resistant acid phosphatase, osteoclast-associated receptor and cathepsin K. However, the bone-resorbing activity of mature osteoclasts treated with Nampt was similar to untreated control osteoclasts. This finding indicates that Nampt exerts its anti-osteoclastogenic activity by targeting osteoclast precursor cells rather than mature osteoclasts. Consequently, the present study demonstrated that Nampt acts as a negative regulator of RANKL-mediated differentiation of BMMs into osteoclasts, suggesting the potential therapeutic targets to treat bone-related disorders such as osteoporosis.
Collapse
Affiliation(s)
- Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Yoon-Hee Cheon
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Myeung Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Jaemin Oh
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Ju-Young Kim
- Imaging Science‑Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| |
Collapse
|
22
|
Shi L, Mao C, Wang X, Liu R, Li L, Mou X, Xu P, Li H, Xu C, Yuan G, Wang B, Zhang H. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women. Medicine (Baltimore) 2016; 95:e4583. [PMID: 27583869 PMCID: PMC5008553 DOI: 10.1097/md.0000000000004583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = -0.155, P = 0.001; r = -0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = -0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Chaoming Mao
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Xuefeng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Rencong Liu
- Department of Nuclear Medicine, Nanjing First Hospital
| | - Lin Li
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Xiao Mou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Ping Xu
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Jiangsu University
| | - Hongli Li
- Department of Laboratory Medicine, Nantong Tumor Hospital
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University
| | - Guoyue Yuan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Jiangsu University
| | - Bin Wang
- Department of ICU, Affiliated Hospital of Jiangsu University
- Correspondence: Hao Zhang, Emergency Medicine Center, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jiangsu 212001, China (e-mails: [HZ], [BW])
| | - Hao Zhang
- Emergency Medicine Center, Affiliated Hospital of Jiangsu University, China
- Correspondence: Hao Zhang, Emergency Medicine Center, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jiangsu 212001, China (e-mails: [HZ], [BW])
| |
Collapse
|
23
|
Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop. Sci Rep 2016; 6:25578. [PMID: 27156573 PMCID: PMC4860647 DOI: 10.1038/srep25578] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023] Open
Abstract
Vaspin (visceral adipose tissue-derived serine protease inhibitor) is a newly discovered adipokine that widely participates in diabetes mellitus, polycystic ovarian syndrome and other disorders of metabolism. However, the effect of vaspin on the regulation of osteogenesis and the mechanism responsible are still unclear. Here, we found that vaspin can attenuate the osteogenic differentiation of the preosteoblast cell line MC3T3-E1 in a dose-dependent way; also, during this process, the expression of miRNA-34c (miR-34c) was significantly increased. Down-regulation of the expression of miR-34c in MC3T3-E1 diminished the osteogenic inhibitory effect of vaspin, while the up-regulation of miR-34c increased this effect through its target gene Runx2. Meanwhile, we found that vaspin could also activate the PI3K-Akt signalling pathway. Blocking the PI3K-Akt signalling pathway with specific inhibitors could decrease the osteogenic inhibitory effect of vaspin as well as the expression level of miR-34c. Furthermore, knock-down of miR-34c could promote the activation of Akt, which was probably realised by targeting c-met expression. Thus, PI3K-Akt and miR-34c constituted a modulation loop and controlled the expression of each other. Taken together, our study showed that vaspin could inhibit the osteogenic differentiation in vitro, and the PI3K-Akt/miR-34c loop might be the underlying mechanism.
Collapse
|
24
|
Beier EE, Holz JD, Sheu TJ, Puzas JE. Elevated Lifetime Lead Exposure Impedes Osteoclast Activity and Produces an Increase in Bone Mass in Adolescent Mice. Toxicol Sci 2015; 149:277-88. [PMID: 26518054 DOI: 10.1093/toxsci/kfv234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The heavy metal lead (Pb) has a deleterious effect on skeletal health. Because bone mass is maintained through a balance of bone formation and resorption, it is important to understand the effect of Pb levels on osteoblastic and osteoclastic activity. Pb exposure is associated with low bone mass in animal models and human populations; however, the correlation between Pb dosing and corresponding bone mass has been poorly explored. Thus, mice were exposed to increasing Pb and at higher levels (500 ppm), there was unexpectedly an increase in femur-tibial bone mass by 3 months of age. This is contrary to several studies alluded to earlier. Increased bone volume (BV) was accompanied by a significant increase in cortical thickness of the femur and trabecular bone that extended beyond the epiphyseal area into the marrow cavity. Subsequent evaluations revealed an increase in osteoclast numbers with high Pb exposure, but a deficiency in osteoclastic activity. These findings were substantiated by observed increases in levels of the resorption-altering hormones calcitonin and estrogen. In addition we found that pro-osteoclastic nuclear factor-kappa beta (NF-κB) pathway activity was dose dependently elevated with Pb, both in vivo and in vitro. However, the ability of osteoclasts to resorb bone was depressed in the presence of Pb in media and within test bone wafers. These findings indicate that exposure to high Pb levels disrupts early life bone accrual that may involve a disruption of osteoclast activity. This study accentuates the dose dependent variation in Pb exposure and consequent effects on skeletal health.
Collapse
Affiliation(s)
- Eric E Beier
- *Center for Musculoskeletal Research; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, 14624; and
| | - Jonathan D Holz
- *Center for Musculoskeletal Research; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, 14624; and Department of Math and Natural Sciences, D'Youville College, Buffalo, New York, 14201
| | | | - J Edward Puzas
- *Center for Musculoskeletal Research; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, 14624; and
| |
Collapse
|
25
|
Shay G, Hazlehurst L, Lynch CC. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med (Berl) 2015; 94:21-35. [PMID: 26423531 DOI: 10.1007/s00109-015-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Multiple myeloma is a plasma cell skeletal malignancy. While therapeutic agents such as bortezomib and lenalidomide have significantly improved overall survival, the disease is currently incurable with the emergence of drug resistance limiting the efficacy of chemotherapeutic strategies. Failure to cure the disease is in part due to the underlying genetic heterogeneity of the cancer. Myeloma progression is critically dependent on the surrounding microenvironment. Defining the interactions between myeloma cells and the more genetically stable hematopoietic and mesenchymal components of the bone microenvironment is critical for the development of new therapeutic targets. In this review, we discuss recent advances in our understanding of how microenvironmental elements contribute to myeloma progression and, therapeutically, how those elements can or are currently being targeted in a bid to eradicate the disease.
Collapse
Affiliation(s)
- G Shay
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA
| | - L Hazlehurst
- Department of Pharmaceutical Sciences and The Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University, Morgantown, WV, 26506, USA
| | - C C Lynch
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
Kim JY, Min JY, Baek JM, Ahn SJ, Jun HY, Yoon KH, Choi MK, Lee MS, Oh J. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Bone 2015; 79:242-51. [PMID: 26103094 DOI: 10.1016/j.bone.2015.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
Adipokines derived from adipocytes are important factors that act as circulating regulators of bone metabolism. C1q/tumor necrosis factor (TNF)-related Protein-3 (CTRP3) is a novel adipokine with multiple effects such as lowering glucose levels, inhibiting gluconeogenesis in the liver, and increasing angiogenesis and anti-inflammation. However, the effects and the mechanisms of CTRP3 on bone metabolism, which is regulated by osteoblasts and osteoclasts, have not been investigated. Here, we found that CTRP3 inhibited osteoclast differentiation induced by osteoclastogenic factors in bone marrow cell-osteoblast co-cultures, but did not affect the ratio of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to osteoprotegerin (OPG) induced by osteoclastogenic factors in osteoblasts. We also found that CTRP3 inhibited osteoclast differentiation from mouse bone marrow macrophages (BMMs) induced by RANKL in a dose-dependent manner without cytotoxicity. Functionally, CTRP3 inhibited the F-actin formation and bone resorbing activity of mature osteoclasts. Pretreatment with CTRP3 significantly inhibited RANKL-induced expression of c-Fos and nuclear factor of activated T-cells (NFATc1), essential transcription factors for osteoclast development. Surprisingly, the activation of AMP-activated protein kinase (AMPK) was considerably increased by pretreatment with CTRP3 for 1h. The CTRP3-stimulated AMPK activation was also maintained during RANKL-induced osteoclastogenesis. CTRP3 did not affect RANKL-induced p38, ERK, JNK, Akt, IκB, CREB, and calcium signaling (Btk and PLCγ2). These results suggest that CTRP3 plays an important role as a negative regulator of RANKL-mediated osteoclast differentiation by acting as an inhibitor of NFATc1 activation through the AMPK signaling pathway. Furthermore, CTRP3 treatment reduced RANKL-induced osteoclast formation and bone destruction in mouse calvarial bone in vivo based on micro-CT and histologic analysis. In conclusion, these findings strongly suggest that CTRP3 deserves new evaluation as a potential treatment target in various bone diseases associated with excessive osteoclast differentiation and bone destruction.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jung-Youl Min
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Hong Young Jun
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Radiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Min Kyu Choi
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Environmental Science, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| | - Jaemin Oh
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| |
Collapse
|
27
|
Nguyen KH, Xu F, Flowers S, Williams EAJ, Fritton JC, Moran E. SWI/SNF-Mediated Lineage Determination in Mesenchymal Stem Cells Confers Resistance to Osteoporosis. Stem Cells 2015; 33:3028-38. [PMID: 26059320 PMCID: PMC5014198 DOI: 10.1002/stem.2064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Redirecting the adipogenic potential of bone marrow‐derived mesenchymal stem cells to other lineages, particularly osteoblasts, is a key goal in regenerative medicine. Controlling lineage selection through chromatin remodeling complexes such as SWI/SNF, which act coordinately to establish new patterns of gene expression, would be a desirable intervention point, but the requirement for the complex in essentially every lineage pathway has generally precluded selectivity. However, a novel approach now appears possible by targeting the subset of SWI/SNF powered by the alternative ATPase, mammalian brahma (BRM). BRM is not required for development, which has hindered understanding of its contributions, but knockdown genetics here, designed to explore the hypothesis that BRM‐SWI/SNF has different regulatory roles in different mesenchymal stem cell lineages, shows that depleting BRM from mesenchymal stem cells has a dramatic effect on the balance of lineage selection between osteoblasts and adipocytes. BRM depletion enhances the proportion of cells expressing markers of osteoblast precursors at the expense of cells able to differentiate along the adipocyte lineage. This effect is evident in primary bone marrow stromal cells as well as in established cell culture models. The altered precursor balance has major physiological significance, which becomes apparent as protection against age‐related osteoporosis and as reduced bone marrow adiposity in adult BRM‐null mice. Stem Cells2015;33:3028–3038
Collapse
Affiliation(s)
- Kevin Hong Nguyen
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Fuhua Xu
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Edek A J Williams
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - J Christopher Fritton
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Elizabeth Moran
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
28
|
Doubelt I, de Zepetnek JT, MacDonald MJ, Atkinson SA. Influences of nutrition and adiposity on bone mineral density in individuals with chronic spinal cord injury: A cross-sectional, observational study. Bone Rep 2015; 2:26-31. [PMID: 28377950 PMCID: PMC5365169 DOI: 10.1016/j.bonr.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dietary inadequacy and adiposity, both prevalent in the chronic spinal cord injury (SCI) population, are known to influence bone turnover and may be potential modifiable risk factors for the development of sublesional osteoporosis following SCI. This pilot study in an SCI cohort aimed to assess measures of nutrition and obesity, to determine if these measures were associated with bone mineral density (BMD), and to compare these measures to a non-SCI control cohort. METHODS In a cross-sectional observational study, volunteers with chronic SCI (> 1 year post-injury, lesions from C1 to T12 and severity category A-D by the American Spinal Injury Association Impairment Scale) were assessed, and 8 non-SCI individuals were recruited as a comparison group. BMD at the femoral neck (FN) and lumbar spine (LS), and an estimate of visceral adipose tissue (VAT) from lumbar vertebrae 1 through 4 were measured using dual energy X-ray absorptiometry (DXA); nutrient intake of calcium, vitamins D & K, and protein were estimated using a food frequency questionnaire; plasma 25-hydroxyvitamin D (25(OH)D) was analyzed using ultra-high performance liquid chromatography/tandem mass spectroscopy; and serum leptin, adiponectin and insulin were analyzed using a multiplex assay. RESULTS A total of 34 individuals with SCI (n = 22 tetraplegic; n = 12 paraplegic; 94% male) who averaged 12.7 (9.0) years post-injury, age 40.0 (10.9) years and % body fat of 28.4 (7.3) were assessed. Multiple linear regression analyses in the SCI cohort showed significant associations between BMD at the FN and LS with leptin (FN: r = 0.529, p = 0.005; LS: r = 0.392, p = 0.05), insulin (FN: r = 0.544, p = 0.003; LS: r = 0.388, p = 0.05), and VAT percent (FN: r = 0.444, p = 0.02; LS: r = 0.381, p = 0.05). Adiponectin was only correlated with LS BMD (r = 0.429, p = 0.03). No significant relationships were found between BMD and serum 25(OH)D, or intakes of calcium, vitamins D & K, and protein. Intake of vitamin D was adequate in 69% of participants with SCI, where 91% of those persons consumed either vitamin D and/or multivitamin supplements. Vitamin D status was similar between SCI and non-SCI groups as was sub-optimal status (25(OH)D < 75 nmol/L) (60% of SCI compared to 50% of non-SCI). Participants with SCI had significantly lower FN BMD in comparison to non-SCI controls (p = 0.001). CONCLUSIONS Compromised BMD among individuals with SCI was not associated with a deficiency of vitamin D or other bone nutrients. The observed positive associations between BMD and leptin, insulin, adiponectin and VAT provide a framework to evaluate links between adiposity and bone health in a larger SCI cohort.
Collapse
Key Words
- AIS, American Spinal Injury Association Impairment Scale
- Adiposity
- Bone mineral density
- DRI, dietary reference intakes
- EAR, estimated average requirement
- FFQ, food frequency questionnaire
- IOM, Institute of Medicine
- Nutritional status
- SCI, spinal cord injury
- SLOP, sublesional osteoporosis
- Spinal cord injury
- Sublesional osteoporosis
- UPLC/MS–MS, ultra high performance liquid chromatography tandem mass spectrometry
- VAT, visceral adipose tissue
- WC, waist circumference.
Collapse
Affiliation(s)
- Irena Doubelt
- Department of Pediatrics, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Julia Totosy de Zepetnek
- Department of Kinesiology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Maureen J. MacDonald
- Department of Kinesiology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Stephanie A. Atkinson
- Department of Pediatrics, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
29
|
Cook LM, Shay G, Araujo A, Aruajo A, Lynch CC. Integrating new discoveries into the "vicious cycle" paradigm of prostate to bone metastases. Cancer Metastasis Rev 2015; 33:511-25. [PMID: 24414228 DOI: 10.1007/s10555-014-9494-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In prostate to bone metastases, the "vicious cycle" paradigm has been traditionally used to illustrate how metastases manipulate the bone forming osteoblasts and resorbing osteoclasts in order to yield factors that facilitate growth and establishment. However, recent advances have illustrated that the cycle is far more complex than this simple interpretation. In this review, we will discuss the role of exosomes and hematopoietic/mesenchymal stem/stromal cells (MSC) that facilitate the establishment and activation of prostate metastases and how cells including myeloid-derived suppressor cells, macrophages, T cells, and nerve cells contribute to the momentum of the vicious cycle. The increased complexity of the tumor-bone microenvironment requires a system level approach. The evolution of computational models to interrogate the tumor-bone microenvironment is also discussed, and the application of this integrated approach should allow for the development of effective therapies to treat and cure prostate to bone metastases.
Collapse
Affiliation(s)
- Leah M Cook
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., SRB-3, Tampa, FL, 33612, USA
| | | | | | | | | |
Collapse
|
30
|
James AW, Shen J, Khadarian K, Pang S, Chung G, Goyal R, Asatrian G, Velasco O, Kim J, Zhang X, Ting K, Soo C. Lentiviral delivery of PPARγ shRNA alters the balance of osteogenesis and adipogenesis, improving bone microarchitecture. Tissue Eng Part A 2014; 20:2699-710. [PMID: 24785569 DOI: 10.1089/ten.tea.2013.0736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skeletal aging is associated not only with alterations in osteoblast (OB) and osteoclast (OC) number and activity within the basic metabolic unit, but also with increased marrow adiposity. Peroxisome proliferator-activated receptor gamma (PPARγ) is commonly considered the master transcriptional regulator of adipogenesis, however, it has known roles in osteoblast and osteoclast function as well. Here, we designed a lentiviral delivery system for PPARγ shRNA, and examined its effects in vitro on bone marrow stromal cells (BMSC) and in a mouse intramedullary injection model. METHODS PPARγ shRNA was delivered by a replication-deficient lentiviral vector, after in vitro testing to confirm purity, concentration, and efficacy for Pparg transcript reduction. Next, control green fluorescent protein lentivirus or PPARγ shRNA expressing lentivirus were delivered by intramedullary injection into the femoral bone marrow of male SCID mice. Analyses included daily monitoring of animal health, and postmortem analysis at 4 weeks. Postmortem analyses included high resolution microcomputed tomography (microCT) reconstructions and analysis, routine histology and histomorphometric analysis, quantitative real time polymerase chain reaction analysis of Pparg transcript levels, and immunohistochemical analysis for markers of adipocytes (PPARγ, fatty acid binding protein 4 [FABP4]), osteoblasts (alkaline phosphatase [ALP], osteocalcin [OCN]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP], Cathepsin K). RESULTS In vitro, PPARγ shRNA delivery significantly reduced Pparg expression in mouse BMSC, accompanied by a significant reduction in lipid droplet accumulation. In vivo, a near total reduction in mature marrow adipocytes was observed at 4 weeks postinjection. This was accompanied by significant reductions in adipocyte-specific markers. Parameters of trabecular bone were significantly increased by both microCT and histomorphometric analysis. By immunohistochemical staining and semi-quantification, a significant increase in OCN+osteoblasts and decrease in TRAP+multinucleated osteoclasts was observed with PPARγ shRNA treatment. DISCUSSION These findings suggest that acute loss of PPARγ in the bone marrow compartment has a significant role beyond anti-adipose effects. Specifically, we found pro-osteoblastogenic, anti-osteoclastic effects after PPARγ shRNA treatment, resulting in improved trabecular bone architecture. Future studies will examine the isolated and direct effects of PPARγ shRNA on OB and OC cell types, and it may help determine whether PPARγ antagonists are potential therapeutic agents for osteoporotic bone loss.
Collapse
Affiliation(s)
- Aaron W James
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
32
|
Wu SS, Liang QH, Liu Y, Cui RR, Yuan LQ, Liao EY. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway. Int J Endocrinol 2013; 2013:368970. [PMID: 23606838 PMCID: PMC3626246 DOI: 10.1155/2013/368970] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB) proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [(3)H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector) and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor) and HIMO (a selective Akt inhibitor) abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.
Collapse
|