1
|
Kuru N, Öztop M, Demirbağ E, Ercan N. Seasonal variation in the expression pattern of heat shock protein 70 and 90 in Common carp ( Cyprinus carpio) from Karataş Lake, Burdur, Türkiye. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:471-479. [PMID: 37814663 PMCID: PMC10560325 DOI: 10.30466/vrf.2022.558983.3568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/17/2022] [Indexed: 10/11/2023]
Abstract
Organisms have evolved defense mechanisms to protect themselves from stressful conditions. The expression of heat shock proteins is considered a valid indication of protection from the adverse effects of hostile conditions. In this study, we used immunohistochemistry to investigate the seasonal effects of some abiotic factors on heat shock protein 70 and 90 (HSP70 and HSP90) expression in the liver, gills, and muscle tissues of 24 Common carp (Cyprinus carpio) caught in Karataş Lake (Burdur, Türkiye) using gillnets of various mesh sizes. We also measured some physicochemical parameters on-site at sampling time and took water samples for further analyses of other physicochemical parameters and heavy metals. Immunostaining for HSP90 was stronger than for HSP70 in both liver and gill samples. Liver and gill structures exhibited significant seasonal differences in HSP70 and HSP90 immunoreactivity, and the same was true for immunostaining for HSP70 and HSP90 in muscle samples. Some physicochemical properties seemed to vary considerably between seasons, with Fe, Mn, and Zn levels tending to exhibit changes throughout the seasons. However, these levels were considered acceptable for human health. In conclusion, this study suggests that substantial changes in HSP70 and HSP90 expression may be essential for seasonal adaptation and tolerance. Further research on fish HSPs would greatly contribute to aquaculture, which is essential for meeting food requirements.
Collapse
Affiliation(s)
- Nilgün Kuru
- Department of Anatomy, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Türkiye;
| | - Mustafa Öztop
- Department of Biology, Faculty of Science and Art, BurdurMehmet Akif Ersoy University, Burdur, Türkiye;
| | - Emel Demirbağ
- Department of Medical Services and Techniques, Isparta Health Services Vocational School, Süleyman Demirel University, Isparta, Türkiye;
| | - Nazlı Ercan
- Department of Biochemistry, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Türkiye.
| |
Collapse
|
2
|
Liu S, Chen S, Lu C, Qi D, Qi H, Wang Y, Zhao K, Tian F. Fatty acid metabolism and antioxidant capacity in Gymnocypris przewalskii (Kessler, 1876) response to thermal stress. J Therm Biol 2023; 116:103650. [PMID: 37459706 DOI: 10.1016/j.jtherbio.2023.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/28/2023]
Abstract
The Qinghai-Tibet Plateau is undergoing a wet-warming transition, which could affect the survival of the native fish. However, the tolerance and physiological response to thermal stress is rarely studied in Gymnocypris przewalskii, a rare native fish in the Tibetan plateau. In this study, first, we detected the thermal tolerance of five groups of six-month G. przewalskii which acclimated at 8, 12, 16, 20, and 24 °C for two weeks, respectively, by critical thermal methodology. Then, through heat challenge, we detected the metabolites, key enzyme activities, and gene expressions involved in metabolism and antioxidant in the hepatopancreas when the temperatures increased from 16 °C to 18, 20, 22, 24, 26, and 28 °C for 12 h, respectively. The results showed that although the fish are sensitive to high temperatures, the quick acclimation at mild high temperatures could significantly improve the tolerance to acute high-temperature stress in juvenile G. przewalskii. During the heat challenge study, blood glucose significantly increased at heat stress (P < 0.05). At the same time, total cholesterol (TC), triglyceride (TG), and free fatty acid (FFA) significantly decreased when the temperature rose continuously to 20 °C. Metabolic enzyme activities of carnitine palmityl transferase I (CPT-Ⅰ), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) significantly decreased at 20 °C (P < 0.05). Superoxide dismutase (SOD) and antioxidant capacity (T-AOC) significantly increased at 20 °C (P < 0.05). The relative transcript levels of genes involved in antioxidant and glycolysis/gluconeogenesis were markedly higher than the control at 20-26 °C (P < 0.05). The genes involved in fatty acid biosynthesis or metabolism showed different expression patterns under heat stress. Heat shock protein 70 (Hsp70) and Hsp90 were significantly higher than the control at 18 °C and 26 °C, respectively. These results confirmed the prediction that G. przewalskii is sensitive to high temperatures, so conservation efforts should pay more attention to the warming damage.
Collapse
Affiliation(s)
- Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Shengxue Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Chunna Lu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Delin Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
3
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants (Basel) 2023; 12:1444. [PMID: 37507982 PMCID: PMC10376781 DOI: 10.3390/antiox12071444] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
4
|
Dash P, Siva C, Tandel RS, Bhat RAH, Gargotra P, Chadha NK, Pandey PK. Temperature alters the oxidative and metabolic biomarkers and expression of environmental stress-related genes in chocolate mahseer (Neolissochilus hexagonolepis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43203-43214. [PMID: 36650370 DOI: 10.1007/s11356-023-25325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Long-term acclimation temperature effects on biomarkers of oxidative stress, metabolic stress, expression of heat shock proteins (Hsps), and warm-temperature acclimation related 65-kDa protein (Wap65) were evaluated in the threatened chocolate mahseer (Neolissochilus hexagonolepis). Fifteen-day-old larvae were acclimated to different water temperatures (15, 19, 23-control group, 27, and 31 °C) for 60 days prior to the sampling for quantification of mRNA, enzyme, nitric oxide, and malondialdehyde (MDA) content. Acclimation to 31 °C increased the basal mRNA level of glutathione S-transferase alpha 1 (GSTa1), and activities of catalase (CAT), glutathione reductase (GR), and GST enzymes and but downregulated the expression of superoxide dismutase 1 (SOD1) in the whole-body homogenate. Other antioxidant genes, i.e., CAT and GPx1a, were unaffected at 31 °C, and nitric oxide (NO) concentration was significantly lower. In contrast, fish acclimated to 15 °C showed an upregulated transcript level of all the antioxidant genes and no significant difference in the CAT, GR, and GST enzymes. Activities of the metabolic enzymes, aspartate transaminase (AST) and alanine transaminase (ALT), were significantly lower at 15 °C. The expression of Hsp47 was upregulated at both 15 and 31 °C groups, whereas Hsp70 was elevated at 27 and 31 °C groups. Wap65-1 transcription did not show significant variation in treatment groups compared to control. Fish in the high (31 °C) and low-temperature (15 °C) acclimation groups were capable of maintaining oxidative stress by modulating their antioxidant transcripts, enzymes, and Hsps.
Collapse
Affiliation(s)
- Pragyan Dash
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India.
| | - C Siva
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Ritesh Shantilal Tandel
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Raja Aadil Hussain Bhat
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Pankaj Gargotra
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education, Panch Marg, Versova, Andheri West, Maharastra, 400061, India
| | - Pramod Kumar Pandey
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| |
Collapse
|
5
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
6
|
Moreno P, Leiva-Rebollo R, Garcia-Rosado E, Bejar J, Alonso MC. Cytokine-like activity of European sea bass ISG15 protein on RGNNV-infected E-11 cells. FISH & SHELLFISH IMMUNOLOGY 2022; 128:612-619. [PMID: 36007830 DOI: 10.1016/j.fsi.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
IFN-I generates an antiviral state by inducing the expression of numerous genes, called IFN-stimulated genes, ISGs, including ISG15, which is the only ISG with cytokine-like activity. In a previous study, we developed the Dl_ISG15_E11 cell line, which consisted of E11 cells able to express and secrete sea bass ISG15. The current study is a step forward, analysing the effect of secreted sea bass ISG15 on RGNNV replication in E11 cells, and looking into its immunomodulatory activity in order to corroborate its cytokine-like activity. The medium from ISG15-produccing cells compromised RGNNV replication, as it has been demonstrated both, by reduction in the viral genome synthesis and, specially, in the yield of infective viral particles. The implication of sea bass ISG15 in this protection has been demonstrated by ISG15 removal, which decreased the percentage of surviving cells upon viral infection, and by incubation of RGNNV-infected cells with a recombinant sea bass ISG15 protein, which resulted in almost full protection. Furthermore, the immunomodulatory activity of extracellular sea bass ISG15 has been demonstrated, which reaffirms a cytokine-like role for this protein.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Rocio Leiva-Rebollo
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Julia Bejar
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain.
| |
Collapse
|
7
|
Liu Z, Ma F, Kang Y, Liu X. Gene ssa-miR-301a-3p improves rainbow trout ( Oncorhynchus mykiss) resistance to heat stress by targeting hsp90b2. PeerJ 2022; 10:e13476. [PMID: 35811807 PMCID: PMC9266697 DOI: 10.7717/peerj.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is a cold-water fish that is commonly harmed by high temperatures. MicroRNAs (miRNAs) are being investigated intensively because they act as essential metabolic regulators and have a role in the heat stress response. Although there have been numerous studies on rainbow trout heat stress, research on miRNA implicated in rainbow trout heat stress is quite restricted. Rainbow trout were sampled at 18 and 24 °C, respectively, to examine the mechanism of miRNA under heat stress, and we identified a heat stress-induced miRNA, ssa-miR-301a-3p, for further investigation based on our bioinformatics analysis of rainbow trout small RNA sequencing data. Bioinformatics research suggested that hsp90b2 is a probable target gene for ssa-miR-301a-3p. QRT-PCR was used to confirm the expression levels of ssa-miR-301a-3p and hsp90b2. Meanwhile, the dual-luciferase reporter assay was employed to validate the ssa-miR-301a-3p-hsp90b2 targeted connection. The results indicated that at 24 °C, the relative expression of ssa-miR-301a-3p was considerably lower than at 18 °C. On the other hand, hsp90b2 expression, followed the opposite pattern. The binding of ssa-miR-301a-3p to the 3'-UTR of hsp90b2 resulted in a substantial decrease in luciferase activity. The findings showed that ssa-miR-301a-3p was implicated in heat stress, and our findings provide fresh insights into the processes of miRNA in response to heat stress in rainbow trout.
Collapse
Affiliation(s)
- Zhe Liu
- Gansu Agricultural University, Lanzhou, China
| | - Fang Ma
- Tianshui Normal University, Tianshui, China
| | - Yujun Kang
- Gansu Agricultural University, Lanzhou, China
| | - Xiaoxia Liu
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
9
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
10
|
Huang S, Dou J, Li Z, Hu L, Yu Y, Wang Y. Analysis of Genomic Alternative Splicing Patterns in Rat under Heat Stress Based on RNA-Seq Data. Genes (Basel) 2022; 13:genes13020358. [PMID: 35205403 PMCID: PMC8871965 DOI: 10.3390/genes13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most severe challenges faced in livestock production in summer. Alternative splicing as an important post-transcriptional regulation is rarely studied in heat-stressed animals. Here, we performed and analyzed RNA-sequencing assays on the liver of Sprague-Dawley rats in control (22 °C, n = 5) and heat stress (4 °C for 120 min, H120; n = 5) groups, resulting in the identification of 636 differentially expressed genes. Identification analysis of the alternative splicing events revealed that heat stress-induced alternative splicing events increased by 20.18%. Compared with other types of alternative splicing events, the alternative start increased the most (43.40%) after heat stress. Twenty-eight genes were differentially alternatively spliced (DAS) between the control and H120 groups, among which Acly, Hnrnpd and mir3064 were also differentially expressed. For DAS genes, Srebf1, Shc1, Srsf5 and Ensa were associated with insulin, while Cast, Srebf1, Tmem33, Tor1aip2, Slc39a7 and Sqstm1 were enriched in the composition of the endoplasmic reticulum. In summary, our study conducts a comprehensive profile of alternative splicing in heat-stressed rats, indicating that alternative splicing is one of the molecular mechanisms of heat stress response in mammals and providing reference data for research on heat tolerance in mammalian livestock.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
- Correspondence: (J.D.); (Y.W.)
| | - Zhongshu Li
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Lirong Hu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Ying Yu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Yachun Wang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
- Correspondence: (J.D.); (Y.W.)
| |
Collapse
|
11
|
Manzon LA, Zak MA, Agee M, Boreham DR, Wilson JY, Somers CM, Manzon RG. Thermal acclimation alters both basal heat shock protein gene expression and the heat shock response in juvenile lake whitefish (Coregonus clupeaformis). J Therm Biol 2022; 104:103185. [DOI: 10.1016/j.jtherbio.2021.103185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022]
|
12
|
Sun Y, Wen H, Tian Y, Mao X, Li X, Li J, Hu Y, Liu Y, Li J, Li Y. HSP90 and HSP70 Families in Lateolabrax maculatus: Genome-Wide Identification, Molecular Characterization, and Expression Profiles in Response to Various Environmental Stressors. Front Physiol 2021; 12:784803. [PMID: 34880782 PMCID: PMC8646100 DOI: 10.3389/fphys.2021.784803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) are a large class of highly conserved chaperons, which play important roles in response to elevated temperature and other environmental stressors. In the present study, 5 HSP90 genes and 17 HSP70 genes were systematically characterized in spotted seabass (Lateolabrax maculatus). The evolutionary footprint of HSP genes was revealed via the analysis of phylogeny, chromosome location, and gene copy numbers. In addition, the gene structure features and the putative distribution of heat shock elements (HSEs) and hypoxia response elements (HREs) in the promoter regions were analyzed. The protein-protein interaction (PPI) network analyses results indicated the potential transcriptional regulation between the heat shock factor 1 (HSF1) and HSPs and a wide range of interactions among HSPs. Furthermore, quantitative (q)PCR was performed to detect the expression profiles of HSP90 and HSP70 genes in gill, liver, and muscle tissues after heat stress, meanwhile, the expression patterns in gills under alkalinity and hypoxia stresses were determined by analyzing RNA-Seq datasets. Results showed that after heat stress, most of the examined HSP genes were significantly upregulated in a tissue-specific and time-dependent manners, and hsp90aa1.1, hsp90aa1.2, hsp70.1, and hsp70.2 were the most intense responsive genes in all three tissues. In response to alkalinity stress, 11 out of 13 significantly regulated HSP genes exhibited suppressed expression patterns. Alternatively, among the 12 hypoxia-responsive-expressed HSP genes, 7 genes showed induced expressions, while hsp90aa1.2, hsp70.1, and hsp70.2 had more significant upregulated changes after hypoxic challenge. Our findings provide the essential basis for further functional studies of HSP genes in response to abiotic stresses in spotted seabass.
Collapse
Affiliation(s)
- Yalong Sun
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Xuebin Mao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Xiurong Li
- Quality and Safety Center of Agricultural and Livestock Products, Bayannaoer, China
| | - Junjie Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yang Liu
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| |
Collapse
|
13
|
Huang Y, Xie H, Pan P, Qu Q, Xia Q, Gao X, Zhang S, Jiang Q. Heat stress promotes lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. Cell Stress Chaperones 2021; 26:563-574. [PMID: 33743152 PMCID: PMC8065074 DOI: 10.1007/s12192-021-01201-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Heat stress (HS) results in health problems in animals. This study was conducted to investigate the effect and the underlying mechanism of HS on the proliferation and differentiation process of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated at 37 °C or 41.5 °C. HS up-regulated the mRNA and protein expression level of heat shock protein 70 (HSP70). Furthermore, the proliferation of 3T3-L1 preadipocytes were significantly inhibited after HS treatment for 2 days. A large number of accumulated lipid droplets were observed under the microscope after HS treatment for 8 days. Notably, the result of oil red O staining showed that the number of lipid droplets increased significantly and the differentiation ability of the cells was enhanced after HS. Moreover, after 2 and 8 d of differentiation, HS increased the transcription levels of fat synthesis genes including peroxisome proliferators activated receptor γ (PPARγ), fatty acid binding protein 2 (AP2), fatty acid synthase (FAS) and CCAAT enhancer binding protein α (CEBPα) genes, while decreasing the transcription levels of lipid decomposition genes including ATGL and HSL genes. In addition, HS reduced the expression of AMPK and PGC-1α, as well as the dephosphorylation of AMPK. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) can eliminate HS induced lipogenesis by activating AMPK. These results indicated that HS inhibited the proliferation of 3T3-L1 preadipocytes and promoted lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. This work lays a theoretical foundation for improving the effect of HS on meat quality of livestock and provides a new direction for the prevention of obesity caused by HS.
Collapse
Affiliation(s)
- Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiuhong Qu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qin Xia
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Roychowdhury P, Aftabuddin M, Pati MK. Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:21-32. [PMID: 33058003 DOI: 10.1007/s10695-020-00880-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/22/2020] [Indexed: 05/20/2023]
Abstract
Fish mortality generally occurs during extreme summer temperatures in India which are apprehended to be more frequent in near future and may reduce the fish population, particularly in closed aquatic systems. This present study is conducted with the objectives to find out heat shock and associated oxidative stress responses that occurred in selected fish Labeo rohita due to extremely high water temperature (treated, 37-38 °C against control, 28-30 °C) exposure for 2 weeks. Calculated mortality was 30% during the experimental period. The results revealed the biomolecules associated with both the anti-oxidative response (reduced glutathione in serum, liver, muscle; catalase activity in liver, muscle; superoxide dismutase gene expression in the liver) and the heat shock response (hsp70 gene expression in the liver) were elevated under thermal stress. Pro-inflammatory responses (expression of complement protein 3, glyceraldehyde 3-phosphate dehydrogenase in the liver) and oxidative damages (lipid peroxidation in all studied tissue and DNA fragmentation in the liver) were more under thermal stress. Extreme thermal stress induced by partial lethal temperature exposure in this study led to the activation of both the heat shock response and the anti-oxidative response. However, these responses were not elicited to the level so that they can protect from oxidative damages and inflammation in the liver of all the studied fish that caused partial mortality in fish. Thermal stress-induced hepatotoxicity caused fish death which was documented for the first time in freshwater fish.
Collapse
Affiliation(s)
- Prasun Roychowdhury
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| | - Mohammad Aftabuddin
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India.
| | - Manoj Kumar Pati
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| |
Collapse
|
15
|
Wang Q, Hao X, Liu K, Feng B, Li S, Zhang Z, Tang L, Mahboob S, Shao C. Early response to heat stress in Chinese tongue sole (Cynoglossus semilaevis): performance of different sexes, candidate genes and networks. BMC Genomics 2020; 21:745. [PMID: 33109079 PMCID: PMC7590793 DOI: 10.1186/s12864-020-07157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Temperature is known to affect living organisms and alter the expression of responsive genes, which affects a series of life processes, such as development, reproduction and metabolism. Several genes and gene families have been involved in high temperature responses, such as heat shock protein (hsp) family, Jumonji family and genes related to cortisol synthesis. Gonad is a vital organ related to the existence of a species. However, the comprehensive understanding of gonadal responses to environmental temperature is limited. RESULTS To explore the effects of environmental temperature on genes and gene networks in gonads, we performed acute heat treatment (48 h) on Chinese tongue sole (Cynoglossus semilaevis). Gonadal transcriptome analysis was conducted on females, pseudomales and males exposed to high (28 °C) and normal (22 °C) temperatures. A total of 1226.24 million clean reads were obtained from 18 libraries. Principal component analysis (PCA) and differentially expressed gene (DEG) analysis revealed different performance of sex responses to heat stress. There were 4565, 790 and 1117 specific genes altered their expression level in females, pseudomales and males, respectively. Of these, genes related to hsp gene family, cortisol synthesis and metabolism and epigenetic regulation were involved in early heat response. Furthermore, a total of 1048 DEGs were shared among females, pesudomales and males, which may represent the inherent difference between high and normal temperatures. Genes, such as eef1akmt3, eef1akmt4, pnmt and hsp family members, were found. CONCLUSIONS Our results depicted for the first time the gonadal gene expression under acute high temperature treatment in Chinese tongue sole. The findings may provide a clue for understanding the responses of genes and networks to environmental temperature.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Xiancai Hao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuo Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Zhihua Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
16
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Mitra T, Mahanty A, Ganguly S, Mohanty BP. Transcriptomic responses to pollution in natural riverine environment in Rita rita. ENVIRONMENTAL RESEARCH 2020; 186:109508. [PMID: 32325295 DOI: 10.1016/j.envres.2020.109508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Aquatic pollution is one of the most common threats to the ecological health of aquatic ecosystems and its biota. Fish as lower vertebrates are excellent model to study the impact and responses of aquatic pollution. In fish, gill is the main organ indicator of whole animal health as it comes in contact with the surrounding water and absorbs many pollutants and contaminants; therefore, investigations on alterations in fish gill at transcriptome level could provide newer insights to the stress response mechanism(s) and pathways. For comprehensive evaluation of the impacts of pollutants (joint toxicity) prevalent in the riverine environment, comparative transcriptome analysis, by Next Generation Sequencing under Illumina HiSeq 2500 platform, was carried out in gill tissues of Rita rita collected from two stretches of river Ganga (Kanpur and Farakka) and results were validated by RT-qPCR. Out of 154,077 unigenes (Accession SRR548008), a total of 2024 differentially expressed genes (DEGs) including 942 up-regulated and 1082 down-regulated genes were identified by DESeq program. Further, Gene Ontology (GO) of DEGs showed that ribosomal large subunit biogenesis, mitochondrial ribosome and box H/ACA SnoRNA binding categories are highly affected by pollution. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis showed the involvement of the DEGs in energy metabolism, translational and transcriptional machinery, protein folding and degradation suggesting that these signalling pathways are highly affected by aquatic pollution. Among the DEGs, up-regulation of cytochrome c oxidase subunit (cox) 7a2 (69.47 fold), hsp70 subunit 14 (hsp70-14, 5.27 fold), muscle related coiled-coil protein (MURC, 21.55 fold), lysozyme G (40.14 fold), cox17 (29.36 fold) were the conspicuous ones which showed similar trends in expression when analysed by RT-qPCR. Based on fold change, perturbation values, correlation analysis by PCA and RT-qPCR validation, up-regulation of cox7a2, MURC and hsp70-14 appeared to be the most promising biomarker responses and could be useful in the evaluation of gill health and possibly be extended towards aquatic ecosystem health assessment.
Collapse
Affiliation(s)
- Tandrima Mitra
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata, 700 120, India; School of Biotechnology, KIIT-Deemed to be University, Patia, Bhubaneswar, 751024, India
| | - Arabinda Mahanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata, 700 120, India; ICAR-National Rice Research Institute, Crop Protection Division, Cuttack, 753006, India
| | - Satabdi Ganguly
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata, 700 120, India
| | - Bimal Prasanna Mohanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata, 700 120, India; ICAR-Fisheries Science Division, Krishi Anusandhan Bhawan II, Pusa, New Delhi, 110 012, India.
| |
Collapse
|
18
|
Effect of acclimated temperature on thermal tolerance, immune response and expression of HSP genes in Labeo rohita, Catla catla and their intergeneric hybrids. J Therm Biol 2020; 89:102570. [PMID: 32364999 DOI: 10.1016/j.jtherbio.2020.102570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
Abstract
The ability of a species and population to respond to a decrease or an increase in temperature depends on their adaptive potential. Here, the critical thermal tolerance (CTmax and CTmin) of four populations: Labeo rohita, Catla catla, and their reciprocal hybrids L. rohita♀× C. catla♂ (RC) and C. catla♀ × L. rohita♂ (CR) being acclimatized at four acclimation temperatures (22, 26, 30 and 34 °C) were determined. All populations indicated substantial variations (P < 0.05) in CTmax and CTmin values. L. rohita displayed, comparatively the highest CTmax with largest total and intrinsic polygon zones as well as the upper and lower acquired thermal tolerance zones followed by RC and CR hybrids, while C. catla showed significantly the highest CTmin value and the smallest intrinsic and acquired thermal tolerance zones. Both hybrids illustrated low parent heterosis (≤11%). Additionally, the highest expression of Hsp70 and Hsp90 (heat shock proteins) genes, serum lysozyme level, respiratory burst activity and lowest lipid peroxidation level under lower and higher temperature shock further illustrated strong physiological mechanism of L. rohita in contrast to C. catla, to deal with acute temperature, while hybrids, especially F1 RC hybrid appeared as a good option to replace C. catla in relatively higher and lower temperature areas.
Collapse
|
19
|
Effects of in ovo injection of vitamin C on heat shock protein and metabolic genes expression. Animal 2019; 14:360-367. [PMID: 31566174 DOI: 10.1017/s1751731119002088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Some studies have shown that the excessive metabolic heat production is the primary cause for dead chicken embryos during late embryonic development. Increasing heat shock protein (HSP) expression and adjusting metabolism are important ways to maintain body homeostasis under heat stress. This study was conducted to investigate the effects of in ovo injection (IOI) of vitamin C (VC) at embryonic age 11th day (E11) on HSP and metabolic genes expression. A total of 320 breeder eggs were randomly divided into normal saline and VC injection groups. We detected plasma VC content and rectal temperature at chick's age 1st day, and the mRNA levels of HSP and metabolic genes in embryonic livers at E14, 16 and 18, analysed the promoter methylation levels of differentially expressed genes and predicted transcription factors at the promoter regions. The results showed that IOI of VC significantly increased plasma VC content and decreased rectal temperature (P < 0.05). In ovo injection of VC significantly increased heat shock protein 60 (HSP60) and pyruvate dehydrogenase kinase 4 (PDK4) genes expression at E16 and PDK4 and secreted frizzled related protein 1 (SFRP1) at E18 (P < 0.05). At E16, IOI of VC significantly decreased the methylation levels of total CpG sites and -336 CpG site in HSP60 promoter and -1137 CpG site in PDK4 promoter (P < 0.05). Potential binding sites for nuclear factor-1 were found around -389 and -336 CpG sites in HSP60 promoter and potential binding site for specificity protein 1 was found around -1137 CpG site in PDK4 promoter. Our results suggested that IOI of VC increased HSP60, PDK4 and SFRP1 genes expression at E16 and 18, which may be associated with the demethylation in gene promoters. Whether IOI of VC could improve hatchability needs to be further verified by setting uninjection group.
Collapse
|
20
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Jin Y, Yang Y, Gao D, Dunham R, Liu Z. Heat stress induced alternative splicing in catfish as determined by transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:166-172. [PMID: 30481682 DOI: 10.1016/j.cbd.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Heat tolerance is increasingly becoming an important trait for aquaculture species with a changing climate. Transcriptional studies on responses to heat stress have been conducted in catfish, one of the most important economic aquaculture species around the world. The molecular mechanisms underlying heat tolerance is still poorly understood, especially at the post-transcriptional level including regulation of alternative splicing. In this study, existing RNA-Seq datasets were utilized to characterize the change of alternative splicing in catfish following heat treatment. Heat-tolerant and -intolerant catfish were differentiated by the time to lost equilibrium after heat stress. With heat stress, alternative splicing was generally increased. In heat-intolerant fish, the thermal stress induced 29.2% increases in alternative splicing events and 25.8% increases in alternatively spliced genes. A total of 282, 189, and 44 differential alternative splicing (DAS) events were identified in control-intolerant, control-tolerant, and intolerant-tolerant comparisons, corresponding to 252, 171, and 42 genes, respectively. Gene ontology analyses showed that genes involved in the molecular function of RNA binding were significantly enriched in DAS gene sets after heat stress in both heat-intolerant and -tolerant catfish compared with the control group. Similar results were also observed in the DAS genes between heat-intolerant and -tolerant catfish, and the biological process of RNA splicing was also enriched in this comparison, indicating the involvement of RNA splicing-related genes underlying heat tolerance. This is the first comprehensive study of alternative splicing in response to heat stress in fish species, providing insights into the molecular mechanisms of responses to the abiotic stress.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
21
|
Mitra T, Mahanty A, Ganguly S, Purohit GK, Mohanty S, Parida PK, Behera PR, Raman RK, Mohanty BP. Expression patterns of heat shock protein genes in Rita rita from natural riverine habitat as biomarker response against environmental pollution. CHEMOSPHERE 2018; 211:535-546. [PMID: 30092534 DOI: 10.1016/j.chemosphere.2018.07.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
River pollution is one of the principal environmental concerns and biomonitoring tools can play an important role in pollution assessment in the riverine environment. Heat shock proteins (Hsps) have been found to be suitable tools for monitoring stress response. In the present study, expression analyses of hsp genes (hsp27, hsp47, hsp60, hsp70, hsc70, and hsp90) and selected hsp-regulatory genes (hsf1, hyou1, ask1, jnk) were carried out by RT-qPCR in catfish Rita rita collected from selected stretches of river Ganga to investigate changes in their expression patterns as biomarker response. Water quality characteristics were measured in terms of physico-chemical characteristics (DO, BOD, COD, pH, conductivity), element profile (arsenic, mercury, cadmium, lead, chromium, zinc, copper) and persistent organic pollutants (POPs; HCH, DDT, aldrin, endosulphan, heptachlor). Water quality index was calculated and sampling sites were categorized as good/medium/bad. Multivariate analysis was carried out taking the water quality parameters and the fold changes in hsp gene expression as variables, which showed that hsp47 and hsp70b correlated well with BOD, an indicator of organic pollution. To identify the organic pollutant(s) which could be influencing the expression of hsps, again multivariate analysis was employed taking concentration of POPs and fold changes of hsps, which showed up-regulation of hsp47 and hsp70b (HSP72i) correlated well with concentrations of aldrin and HCH. Synergistic effects of these POPs could be responsible for the up-regulation of said hsps, although individually present in low concentration; thus, indicating synergistic effect of the POPs on hsp47 and hsp70b up-regulation as biomarker response.
Collapse
Affiliation(s)
- Tandrima Mitra
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Arabinda Mahanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Satabdi Ganguly
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | | | - Sasmita Mohanty
- School of Biotechnology, KIIT- Deemed University, Bhubaneswar 751024, Odisha, India
| | - Pranaya Kumar Parida
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Prajna Ritambhara Behera
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Rohan Kumar Raman
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Bimal Prasanna Mohanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India.
| |
Collapse
|
22
|
Expression patterns and mutation analysis of p53 in fish Rita rita from polluted riverine environment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:41-51. [PMID: 30057020 DOI: 10.1016/j.mrgentox.2018.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/12/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
The present study was undertaken to investigate the alterations in gene expression patterns and for mutation analysis of p53 in the riverine catfish Rita rita collected from polluted riverine habitat. The partial p53 gene sequence of Rita rita generated showed a high degree of similarities with the DNA binding domains of fishes, mice and human. Transcriptomic analysis, carried out by quantitative real-time Polymerase Chain Reaction (RT-qPCR), showed significant down-regulation of p53 in fishes collected from most of the polluted stretches. Similar trend in protein abundance was observed by western blot analysis. Down-regulation of p53 was more pronounced in gill than liver. Expression patterns of p53 suggest that exposure to a multitude of contaminants in the natural riverine ecosystem could suppress the expression of p53. Genomic DNA showed a low stained smear pattern upon electrophoresis, with no evidence of DNA fragmentation. For mutation analysis PCR-SSCP followed by sequence analysis was carried out, which identified eight mutations; two at codon level and six missense mutations in the DNA binding domain IV and V. Secondary structure prediction showed that these mutations could lead to impairment of protein structure. Thus, the present study indicated that aquatic pollution has impacted these lower vertebrates which are reflected by the down-regulation of tumor suppressor protein (p53) in majority of the stretches studied.
Collapse
|
23
|
|
24
|
Mahanty A, Mohanty S, Mohanty BP. Dietary supplementation of curcumin augments heat stress tolerance through upregulation of nrf-2-mediated antioxidative enzymes and hsps in Puntius sophore. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1131-1141. [PMID: 28315162 DOI: 10.1007/s10695-017-0358-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin augments tolerance to high temperature stress in P. sophore that could be attributed to nrf-2-induced upregulation of antioxidative enzymes sod, catalase, gpx, and the hsps.
Collapse
Affiliation(s)
- Arabinda Mahanty
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR - Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sasmita Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Bimal P Mohanty
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR - Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| |
Collapse
|
25
|
Mahanty A, Purohit GK, Yadav RP, Mohanty S, Mohanty BP. hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:89-102. [PMID: 27522494 DOI: 10.1007/s10695-016-0270-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Changes in the expression of a number of hsp genes in minnow Puntius sophore collected from a hot spring run-off (Atri hot spring in Odisha, India; 20o09'N 85°18'E, 36-38 °C) were investigated to study the upper thermal acclimation response under heat stress, using same species from aquaculture ponds (water temperature 27 °C) as control. Expression of hsp genes was analyzed in both groups using RT-qPCR, which showed up-regulation of hsp90 (2.1-fold) and hsp47 (2.5-fold) in hot spring run-off fishes, whereas there was no alteration in expression of other hsps. As the fish inhabit the hot spring run-off area for very long duration, they could have adapted to the environment. To test this hypothesis, fishes collected from hot spring run-off were divided into two groups; one was heat-shocked at 41 °C/24 h, and the other was acclimatized at 27 °C/24 h. Up-regulation of all the hsps (except hsp78) was observed in the heat-shocked fishes, whereas expression of all hsps was found to be down-regulated to the basal level in fishes maintained at 27 °C/24 h. Pathway analysis showed that the expressions of all the hsps except hsp90 are regulated by the transcription factor heat shock factor 1 (Hsf1). This study showed that hsp90 and hsp47 play an important role in Puntius sophore for surviving in the high-temperature environment of the hot spring run-off. Additionally, we show that plasticity in hsp gene expression is not lost in the hot spring run-off population.
Collapse
Affiliation(s)
- Arabinda Mahanty
- Biochemistry Laboratory, Proteomics Unit, Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | | | - Ravi Prakash Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Bimal Prasanna Mohanty
- Biochemistry Laboratory, Proteomics Unit, Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| |
Collapse
|
26
|
Khoso PA, Liu C, Liu C, Khoso MH, Li S. Selenium Deficiency Activates Heat Shock Protein Expression in Chicken Spleen and Thymus. Biol Trace Elem Res 2016; 173:492-500. [PMID: 27005933 DOI: 10.1007/s12011-016-0673-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/14/2016] [Indexed: 01/27/2023]
Abstract
Heat shock proteins (Hsps) are protective proteins present in nearly all species; they are used as biomarkers of various stress conditions in humans, animals, and birds. Selenium (Se) deficiency, which can depress the production of Hsps, can cause chicken tissue injuries. To investigate Hsp production, mRNA, and protein levels in Se-deficient chicken spleens and thymuses, a total of 180 1-day-old sea blue white laying hens (90 chickens/group) were harvested in two groups (the control group and the Se-deficient group) in 15, 25, 35, 45, and 55 days, respectively. The results showed that mRNA levels of Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90 were significantly increased in the spleens and thymuses of the Se-deficient group compared to the control group. Further protein levels of Hsp60, Hsp70, and Hsp90 were also significantly increased in the spleen and thymus of the Se-deficient group compared to the control group. Meanwhile, the spleen expression ratio of Hsp40 mRNA level and Hsp70 protein level were higher in the Se-deficient group than other proteins. In the thymus, the Hsp90 mRNA level and Hsp60 protein expression level were the highest level in the Se-deficient group among other proteins. Based on these results, we concluded that Se deficiency could induce a protective stress response in chicken by means of promoting the mRNA and protein expression of Hsps, thus easing the effects of Se deficiency to some extent.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chunpeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mir Hassan Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
27
|
Mahanty A, Purohit GK, Banerjee S, Karunakaran D, Mohanty S, Mohanty BP. Proteomic changes in the liver ofChanna striatusin response to high temperature stress. Electrophoresis 2016; 37:1704-17. [DOI: 10.1002/elps.201500393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/20/2016] [Accepted: 03/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | | | - Sudeshna Banerjee
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Dhanasekar Karunakaran
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Sasmita Mohanty
- KIIT School of Biotechnology; KIIT University; Bhubaneswar Odisha India
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| |
Collapse
|
28
|
Purohit GK, Mahanty A, Mohanty BP, Mohanty S. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of gene expression in the murrel Channa striatus under high-temperature stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:125-135. [PMID: 26343884 DOI: 10.1007/s10695-015-0123-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Quantitative real-time polymerase chain reaction is the most advanced method of quantifying gene expression studies; however, the significance of the obtained results strongly depends on the normalization of the data to compensate for differences between the samples. In the present study, expression analysis of six different constitutively expressed genes viz. 18S ribosomal RNA, glyceraldehyde-3-phosphate dehydrogenase (gapdh), beta actin (βactin), ribosomal binding protein L13, tubulin and TATA-box-binding protein (tbp) were carried out to test their efficacy as reference genes in three different tissues, namely liver, gill and muscle of murrel Channa striatus exposed to high temperature for variable time periods. The stability and suitability of the genes were determined by using bioinformatic tools: GeNorm, NormFinder and BestKeeper. Based on the results, tub/βactin could be used as the reference genes for liver and gill tissues and βactin/gapdh could be the reference genes for muscle tissues in Channa striatus under both short- and long-term thermal stress.
Collapse
Affiliation(s)
| | - Arabinda Mahanty
- Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Bimal Prasanna Mohanty
- Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| | - Sasmita Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
29
|
Kavembe GD, Franchini P, Irisarri I, Machado-Schiaffino G, Meyer A. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth’s Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. J Mol Evol 2015; 81:90-109. [DOI: 10.1007/s00239-015-9696-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/29/2015] [Indexed: 11/29/2022]
|
30
|
Zhou X, Dong L, Yang B, He Z, Chen Y, Deng T, Huang B, Lan C. Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways. Amino Acids 2015. [PMID: 26215736 DOI: 10.1007/s00726-015-2056-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the protective effects of preinduction of heat shock protein 70 (HSP70) on Trichinella spiralis infection-induced post-infectious irritable bowel syndrome (PI-IBS) in mice. Trichinella spiralis infection significantly reduced HSP70 abundance, ileal villus height and crypt depth, expression of tight junctions, serum lysine and arginine concentrations, and ileal SCL7A6 and SCL7A7 mRNA levels, induced inflammatory response, and activated NF-κB signaling pathway. Meanwhile, the heat treatment upregulated HSP70 expression, and then reversed intestinal dysfunction and inflammatory response. Preinduction of HSP70 enhanced serum arginine and intestinal SCL7A7 expression and inhibited NF-κB activation compared with PI-IBS model. Treatment with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) and N-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, NOS) further demonstrated that preinduction of HSP70 might inhibit NF-κB and activated NOS/nitric oxide (NO) signaling pathways. In conclusion, preinduction of HSP70 by heat treatment may confer beneficial effects on Trichinella spiralis infection-induced PI-IBS in mice, and the protective effect of HSP70 may be associated with inhibition of NF-κB and stimulation of NOS/NO signaling pathways.
Collapse
Affiliation(s)
- Xuchun Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liwei Dong
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China
| | - Bo Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhoutao He
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China
| | - Yiyao Chen
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China
| | - Taozhi Deng
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China
| | - Baili Huang
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China
| | - Cheng Lan
- Department of Gastroenterology, Hainan Provincial General Hospital, Haikou, 570311, China.
| |
Collapse
|
31
|
Mohanty BP, Mitra T, Banerjee S, Bhattacharjee S, Mahanty A, Ganguly S, Purohit GK, Karunakaran D, Mohanty S. Proteomic profiling of white muscle from freshwater catfish Rita rita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:789-802. [PMID: 25810140 DOI: 10.1007/s10695-015-0046-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Muscle tissues contribute 34-48 % of the total body mass in fish. Proteomic analysis enables better understanding of the skeletal muscle physiology and metabolism. A proteome map reflects the general fingerprinting of the fish species and has the potential to identify novel proteins which could serve as biomarkers for many aspects of aquaculture including fish physiology and growth, flesh quality, food safety and aquatic environmental monitoring. The freshwater catfish Rita rita of the family Bagridae inhabiting the tropical rivers and estuaries is an important food fish with high nutritive value and is also considered a species of choice in riverine pollution monitoring. Omics information that could enhance utility of this species in molecular research is meager. Therefore, in the present study, proteomic analysis of Rita rita muscle has been carried out and functional genomics data have been generated. A reference muscle proteome has been developed, and 23 protein spots, representing 18 proteins, have been identified by MALDI-TOF/TOF-MS and LC-MS/MS. Besides, transcript information on a battery of heat shock proteins (Hsps) has been generated. The functional genomics information generated could act as the baseline data for further molecular research on this species.
Collapse
Affiliation(s)
- Bimal Prasanna Mohanty
- Proteomics Unit, Biochemistry Laboratory, Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Banerjee S, Mitra T, Purohit GK, Mohanty S, Mohanty BP. Immunomodulatory effect of arsenic on cytokine and HSP gene expression in Labeo rohita fingerlings. FISH & SHELLFISH IMMUNOLOGY 2015; 44:43-49. [PMID: 25652292 DOI: 10.1016/j.fsi.2015.01.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Immune system is fundamental for survival of an organism against invading pathogens and other harmful agents. Cytokines, the signaling proteins that are produced transiently after cell activation and exert pleiotropic effects on cells of the immune system, are important mediators of cell mediated immune response. When expressed in a dysregulated fashion cytokines can underlie either immunodeficient or immunopathologic states. Heat shock proteins (stress proteins, HSPs) are also key proteins, which play important role in immunomodulation, apoptosis and influence the immune responses. Arsenic is a major toxic environmental contaminant and a human carcinogen. Prolonged drinking of arsenic-contaminated water leads to chronic arsenic toxicity (arsenicosis). Arsenic is also immunotoxic and renders the host immunocompromised. Arsenic exposure has been reported to result in growth retardation, gross pathology including skin and eye lesions, ulcerations, cataract development etc. in different fish species. The present study was undertaken to investigate the effect of arsenic exposure on the expression of immune genes IFN-γ, IL-4, IL-10, IL-12, complement C3a and HSP genes HSP47, HSP60, HSP70, HSC71, HSP78, and HSP90 in Labeo rohita, an important aquacultured species, as such information is not available on this major carp. Cytokine and HSP gene expression analyses were carried out in kidney and liver tissues, respectively, in arsenic-exposed fishes by RT-PCR and HSPs were analyzed by immunoblotting. It was observed that arsenic has a generalized immune-suppressive effect leading to down regulation of both Th1 and Th2 cytokines; besides, it led to up regulation of the HSP genes indicating arsenic-induced cellular stress. Thus arsenic exposure makes L. rohita immunocompromised and could increase its susceptibility to pathogen attacks.
Collapse
Affiliation(s)
- Sudeshna Banerjee
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Barrackpore, Kolkata, 700120, India
| | - Tandrima Mitra
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Barrackpore, Kolkata, 700120, India
| | | | - Sasmita Mohanty
- KIIT University, School of Biotechnology, Bhubaneswar, 751024, Odisha, India
| | - Bimal Prasanna Mohanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Barrackpore, Kolkata, 700120, India.
| |
Collapse
|
33
|
The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals 2014; 28:163-73. [DOI: 10.1007/s10534-014-9812-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/07/2014] [Indexed: 02/01/2023]
|