1
|
Zhou Y, Chen Z, Guo Z, Gao G, Duan Y, Wang H, Sun L, Huang W, Zhuo Y. Blood metabolites mediate the causal relationship between circulating CX3CL1 levels and prostate cancer: A 2-step Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38433. [PMID: 38847691 PMCID: PMC11155528 DOI: 10.1097/md.0000000000038433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Chemokines influence the progression of prostate cancer (PCa) through multiple mechanisms. However, the effect of C-X3-C chemokine ligand 1 (CX3CL1) on PCa risk remains controversial. Our study aimed to investigate whether circulating CX3CL1 is causally associated with PCa and to identify metabolites that have mediating effects using the 2-step bidirectional Mendelian randomization (MR) analysis process. Inverse variance weighting (IVW) results were used as the primary observations, while additional sensitivity analyses were conducted. For each standard deviation increase exhibited by the circulating CX3CL1 levels, the risk of PCa was reduced by 0.4% (IVW: OR = 0.996, [95% CI = 0.994-0.998], P < .001), and blood alliin levels increased by 19% (IVW: OR = 1.185, [95% CI = 1.01-1.54], P = .003). For each standard deviation increase in the blood alliin levels, the risk of PCa was reduced by 0.1% (IVW: OR = 0.999, [95% CI = 0.997-0.999], P = .03). Therefore, the protective effect of circulating CX3CL1 on PCa may be mediated by blood alliin levels (mediated proportion = 6.7%). The results supported the notion that high levels of circulating CX3CL1 indicate a lower PCa risk and the idea that the food-derived antioxidant alliin may mediate this association. We emphasize that the use of CX3CL1 as a protective factor against PCa may provide new strategies for PCa prevention and care in the future.
Collapse
Affiliation(s)
- Yinshu Zhou
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zexiong Guo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guie Gao
- Surgery Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiping Duan
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Haoyu Wang
- International School, Jinan University, Guangzhou, China
| | - Luping Sun
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wanwei Huang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Hu P, Li B, Yin Z, Peng P, Cao J, Xie W, Liu L, Cao F, Zhang B. Multi-omics characterization of macrophage polarization-related features in osteoarthritis based on a machine learning computational framework. Heliyon 2024; 10:e30335. [PMID: 38774079 PMCID: PMC11106839 DOI: 10.1016/j.heliyon.2024.e30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Background OA imposes a heavy burden on patients and society in that its mechanism is still unclear, and there is a lack of effective targeted therapy other than surgery. Methods The osteoarthritis dataset GSE55235 was downloaded from the GEO database and analyzed for differential genes by limma package, followed by analysis of immune-related modules by xcell immune infiltration combined with the WGCNA method, and macrophage polarization-related genes were downloaded according to the Genecard database, and VennDiagram was used to determine their intersection. These genes were also subjected to gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Using machine learning, the key osteoarthritis genes were finally screened. Using single gene GSEA and GSVA, we examined the significance of these key gene functions in immune cell and macrophage pathways. Next, we confirmed the correctness of the hub gene expression profile using the GSE55457 dataset and the ROC curve. Finally, we projected TF, miRNA, and possible therapeutic drugs using the miRNet, TargetScanHuman, ENCOR, and NetworkAnalyst databases, as well as Enrichr. Results VennDiagram obtained 71 crossover genes for DEGs, WGCNA-immune modules, and Genecards; functional enrichment demonstrated NF-κB, IL-17 signaling pathway play an important role in osteoarthritis-macrophage polarization genes; machine learning finally identified CSF1R, CX3CR1, CEBPB, and TLR7 as hub genes; GSVA analysis showed that CSF1R, CEBPB play essential roles in immune infiltration and macrophage pathway; validation dataset GSE55457 analyzed hub genes were statistically different between osteoarthritis and healthy controls, and the AUC values of ROC for CSF1R, CX3CR1, CEBPB and TLR7 were more outstanding than 0.65. Conclusions CSF1R, CEBPB, CX3CR1, and TLR7 are potential diagnostic biomarkers for osteoarthritis, and CSF1R and CEBPB play an important role in regulating macrophage polarization in osteoarthritis progression and are expected to be new drug targets.
Collapse
Affiliation(s)
- Ping Hu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Beining Li
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Peng
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangang Cao
- Department of Sports Injury and Arthroscopy, Tianjin Hospital of Tianjin University, China
| | - Wanyu Xie
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Liang Liu
- Orthopaedic Center of Beijing Luhe Hospital, Capital Medical University, China
| | - Fujiang Cao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Piloto JV, Dias RVR, Mazucato WSA, Fossey MA, de Melo FA, Almeida FCL, de Souza FP, Caruso IP. Computational Insights into the Interaction of the Conserved Cysteine-Noose Domain of the Human Respiratory Syncytial Virus G Protein with the Canonical Fractalkine Binding site of Transmembrane Receptor CX3CR1 Isoforms. MEMBRANES 2024; 14:84. [PMID: 38668112 PMCID: PMC11052111 DOI: 10.3390/membranes14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it.
Collapse
Affiliation(s)
- João Victor Piloto
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Raphael Vinicius Rodrigues Dias
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Wan Suk Augusto Mazucato
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Marcelo Andres Fossey
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Fernando Alves de Melo
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Fabio Ceneviva Lacerda Almeida
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Fatima Pereira de Souza
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| | - Icaro Putinhon Caruso
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto 15054-000, Brazil; (J.V.P.); (R.V.R.D.); (W.S.A.M.); (M.A.F.); (F.A.d.M.); (F.P.d.S.)
| |
Collapse
|
5
|
Shao M, Wang M, Wang X, Feng X, Zhang L, Lv H. SQLE is a promising prognostic and immunological biomarker and correlated with immune Infiltration in Sarcoma. Medicine (Baltimore) 2024; 103:e37030. [PMID: 38335381 PMCID: PMC10861000 DOI: 10.1097/md.0000000000037030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.
Collapse
Affiliation(s)
- Mengwei Shao
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaodong Feng
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lifeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huicheng Lv
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
Mei N, Su H, Gong S, Du H, Zhang X, Wang L, Wang H. High CX3CR1 expression predicts poor prognosis in paediatric acute myeloid leukaemia undergoing hyperleukocytosis. Int J Lab Hematol 2023; 45:53-63. [PMID: 36064206 PMCID: PMC10087374 DOI: 10.1111/ijlh.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Paediatric AML patients with hyperleukocytosis have a poor prognosis and higher early mortality. Therefore, more studies are needed to explore relevant prognostic indicators and develop effective prevention strategies for this type of childhood AML. METHODS All original data were obtained from the TARGET database. First, we explored meaningful differentially expressed genes (DEGs) between the hyperleukocytosis group and the non-hyperleukocytosis group. Next, we screened and identified valuable target genes using univariate Cox regression, Cytoscape software, and Kaplan-Meier survival curves. Finally, the coexpressed genes, functional networks, and immune-related activities associated with the target gene were deeply analysed by the GeneMANIA, LinkedOmics, GEPIA2021, TISIDB, and GSCA databases. RESULTS We selected 1229 DEGs between the hyperleukocytosis group and the non-hyperleukocytosis group in paediatric AML patients. Among them, 495 DEGs were significantly linked with the overall survival of paediatric AML patients. Further, we discovered that CX3CR1 was a promising target gene. Meanwhile, we identified CX3CR1 as an independent prognostic predictor. Besides, we showed that CX3CR1 had strong physical interactions with CX3CL1. Additionally, functional network analysis suggested that CX3CR1 and its coexpressed genes modulated immune response pathways. Subsequent analysis found that immune cells with a high median value of CX3CR1 were monocytes, resting NK cells and CD8 T cells. Finally, we observed that CX3CR1 expression correlated with infiltrating levels of immune cells and immune signatures. CONCLUSION Elevated CX3CR1 expression may be an adverse prognostic indicator in paediatric AML patients undergoing hyperleukocytosis. Moreover, CX3CR1 may serve as an immunotherapeutic target for AML with hyperleukocytosis in children.
Collapse
Affiliation(s)
- Nan Mei
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hong Su
- Data Science and Technology, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Sha Gong
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hanzhi Du
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaojuan Zhang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lu Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaiyu Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232415937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
|
9
|
Robilliard LD, Yu J, Anchan A, Finlay G, Angel CE, Graham ES. Comprehensive Assessment of Secreted Immuno-Modulatory Cytokines by Serum-Differentiated and Stem-like Glioblastoma Cells Reveals Distinct Differences between Glioblastoma Phenotypes. Int J Mol Sci 2022; 23:ijms232214164. [PMID: 36430641 PMCID: PMC9692434 DOI: 10.3390/ijms232214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.
Collapse
Affiliation(s)
- Laverne D. Robilliard
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Jane Yu
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Graeme Finlay
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- Correspondence:
| |
Collapse
|
10
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
11
|
Mukherjee A, Ha P, Wai KC, Naara S. The Role of ECM Remodeling, EMT, and Adhesion Molecules in Cancerous Neural Invasion: Changing Perspectives. Adv Biol (Weinh) 2022; 6:e2200039. [PMID: 35798312 DOI: 10.1002/adbi.202200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Perineural invasion (PNI) refers to the cancerous invasion of nerves. It provides an alternative route for metastatic invasion and can exist independently in the absence of lymphatic or vascular invasion. It is a prominent characteristic of specific aggressive malignancies where it correlates with poor prognosis. The clinical significance of PNI is widely recognized despite a lack of understanding of the molecular mechanisms underlying its pathogenesis. The interaction between the nerve and the cancer cells is the most pivotal PNI step which is mediated by the activation or inhibition of multiple signaling pathways that include chemokines, interleukins, nerve growth factors, and matrix metalloproteinases, to name a few. The nerve-cancer cell interaction brings about specific changes in the perineural niche, which not only affects the regular nerve functions, but also enhances the migratory, invasive, and adherent properties of the tumor cells. This review aims to elucidate the vital role of adhesion molecules, extracellular matrix, and epithelial-mesenchymal proteins that promote PNI, which may serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Katherine C Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Shorook Naara
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel.,Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| |
Collapse
|
12
|
Chronic social instability stress down-regulates IL-10 and up-regulates CX3CR1 in tumor-bearing and non-tumor-bearing female mice. Behav Brain Res 2022; 435:114063. [PMID: 35988637 DOI: 10.1016/j.bbr.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.
Collapse
|
13
|
Tang W, Jia P, Zuo L, Zhao J. Suppression of CX3CL1 by miR-497-5p inhibits cell growth and invasion through inactivating the ERK/AKT pathway in NSCLC cells. Cell Cycle 2022; 21:1697-1709. [PMID: 35485293 PMCID: PMC9302515 DOI: 10.1080/15384101.2022.2067438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer with a highest mortality rate. MiR-497-5p has been reported as tumor suppressor in many cancers, but the role and mechanism of miR-497-5p in regulating NSCLC progression are still largely unknown in vitro and in vivo. Here, miR-497-5p was significantly downregulated in human NSCLC tissues and cell lines, compared with matched adjacent tissues and normal lung epithelial cell line. Then, miR-497-5p mimic and inhibitor were, respectively, transfected into human NSCLC cells A549 and H460, CCK-8 assay, transwell assay, and flow cytometry were used to detect the capacities of cell proliferation, invasion and apoptosis. MiR-497-5p negatively regulated proliferation and invasion of NSCLC cancer cells. MiR-497-5p was demonstrated to directly bound to 3'-UTR of CX3CL1 mRNA and post-transcriptionally suppressed its expression thus inactivating its downstream oncogenic pathway ERK/AKT. Moreover, transfection with short hairpin RNA (shRNA) against CX3CL1 decreased capacity of cell proliferation and invasion and promoted cell apoptosis in NSCLC cells. In addition, ERK inhibitor U0126 attenuated the promotion effect of miR-497-5p inhibitor on activation of ERK/AKT and cell proliferation and migration. Finally, overexpression of miR-497-5p substantially suppressed activation of the ERK/AKT pathway and tumor growth in tumor-bearing mice in vivo. Taken together, our findings showed that miR-497-5p is downregulated in human NSCLC tissues and cell lines, and it inhibited tumor growth and cell invasion by targeting CX3CL1 gene to inactivate the ERK/AKT pathway in NSCLC cells.
Collapse
Affiliation(s)
- Wen Tang
- Department of Thoracic Surgery, the Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Ping Jia
- Surgery Intensive Care Unit, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Qingyang, China
| | - Lin Zuo
- Department of Radiology, Air Force Medical University, Xi'an, Xincheng, China
| | - Jia Zhao
- Department of Laboratory, Xi'an Central Hospital, Xi'an, Xincheng, China
| |
Collapse
|
14
|
Polysaccharide-Rich Fractions from Ganoderma resinaceum (Ganodermataceae) as Chemopreventive Agents in N-Diethylnitrosamine-Induced Hepatocellular Carcinoma in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8198859. [PMID: 35463072 PMCID: PMC9019406 DOI: 10.1155/2022/8198859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal diseases worldwide. Its treatment remains ineffective and the prognosis remains severe, thus favoring the emergence of a preventive approach. Mushroom-derived polysaccharides offer great opportunities because of their less toxicity and bioactivities. The present study aimed to investigate the chemopreventive effects of water-soluble polysaccharides from Ganoderma resinaceum on HCC. Two G. resinaceum polysaccharide-rich fractions (GRP I and GRP II) were obtained following hot water and alcohol precipitation. Their proteins, phenol compounds, and total neutral sugar content were assayed. The in vitro antiproliferative effect was assessed in MDA-MB 231, Hela, and HepG2 using the MTT assay. Further, for the in vivo study, seven groups of nine rats each received N-diethylnitrosamine (100 mg/kg BW), vehicle (NaCl 0.9%), doxorubicin (10 mg/kg BW), or G. resinaceum polysaccharides (125 and 250 mg/kg BW). Liver cancer initiation and progression was assessed by evaluating histomorphology of liver section, hepatic injury markers, hematology, cytokines/chemokines levels, and stress oxidative markers. GRP II presented higher protein and sugar and lower phenol compound content than GRP I. GRP exhibited CC50 of 340 and 261.7 in HepG2 cells after 48 h. Moreover, GRP I and GRP II (125 and 250 mg/kg) prevented the alteration of the histoarchitecture of the liver induced by the DEN. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alpha-fetoprotein (AFP), proinflammatory cytokines (G-CSF, IFNγ, and TNFα), and chemokines (eotaxin and fractalkine) levels were significantly decreased in the GRP I- and GRP II-treated groups, while anti-inflammatory cytokines (IL-10 and IL-12p70) levels were increased. The antioxidant defense was also stimulated by reducing malondialdehyde (MDA) and nitric oxide (NO2) levels, increasing catalase (CAT) and superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. Our results indicate that GRP I exhibits chemopreventive effects by inhibiting cell proliferation and restoring liver architecture, antioxidant enzymes, and cytokines/chemokines balance.
Collapse
|
15
|
Modulatory Effects of Fractalkine on Inflammatory Response and Iron Metabolism of Lipopolysaccharide and Lipoteichoic Acid-Activated THP-1 Macrophages. Int J Mol Sci 2022; 23:ijms23052629. [PMID: 35269771 PMCID: PMC8910483 DOI: 10.3390/ijms23052629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fractalkine (CX3CL1) acts as a chemokine as well as a regulator of iron metabolism. Fractalkine binds CX3CR1, the fractalkine receptor on the surface of monocytes/macrophages regulating different intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), phospholipase C (PLC) and NFκB contributing to the production of pro-inflammatory cytokine synthesis, and the regulation of cell growth, differentiation, proliferation and metabolism. In this study, we focused on the modulatory effects of fractalkine on the immune response and on the iron metabolism of Escherichia coli and Pseudomonas aeruginosa lipopolysaccharides (LPS) and Staphylococcus aureus lipoteichoic acid (LTA) activated THP-1 cells to get a deeper insight into the role of soluble fractalkine in the regulation of the innate immune system. Pro-inflammatory cytokine secretions of the fractalkine-treated, LPS/LTA-treated, and co-treated THP-1 cells were determined using ELISArray and ELISA measurements. We analysed the protein expression levels of signalling molecules regulated by CX3CR1 as well as hepcidin, the major iron regulatory hormone, the iron transporters, the iron storage proteins and mitochondrial iron utilization. The results showed that fractalkine treatment alone did not affect the pro-inflammatory cytokine secretion, but it was proposed to act as a regulator of the iron metabolism of THP-1 cells. In the case of two different LPS and one type of LTA with fractalkine co-treatments, fractalkine was able to alter the levels of signalling proteins (NFκB, PSTAT3, Nrf2/Keap-1) regulating the expression of pro-inflammatory cytokines as well as hepcidin, and the iron storage and utilization of the THP-1 cells.
Collapse
|
16
|
Spontaneous Physical Activity in Obese Condition Favours Antitumour Immunity Leading to Decreased Tumour Growth in a Syngeneic Mouse Model of Carcinogenesis. Cancers (Basel) 2021; 14:cancers14010059. [PMID: 35008220 PMCID: PMC8750291 DOI: 10.3390/cancers14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary With aging, a deterioration of the immune system, termed immunosenescence, leads to a loss of innate and adaptive immunity in terms of number of cells and functionality. This results in an imbalance between pro- and anti-tumour immune response. The aim of the study was to explore the impact of physical activity on the tissue environment in a murine model of breast carcinogenesis. In this model, spontaneous physical activity slows tumour growth by decreasing low-grade inflammation and promotes antitumour immunity. Abstract Our goal was to evaluate the effect of spontaneous physical activity on tumour immunity during aging. Elderly (n = 10/group, 33 weeks) ovariectomized C57BL/6J mice fed a hyperlipidic diet were housed in standard (SE) or enriched (EE) environments. After 4 weeks, orthotopic implantation of syngeneic mammary cancer EO771 cells was performed to explore the immune phenotyping in the immune organs and the tumours, as well as the cytokines in the tumour and the plasma. EE lowered circulating myostatin, IL-6 and slowed down tumour growth. Spleen and inguinal lymph node weights reduced in relation to SE. Within the tumours, EE induced a lower content of lymphoid cells with a decrease in Th2, Treg and MDCS; and, conversely, a greater quantity of Tc and TAMs. While no change in tumour NKs cells occurred, granzyme A and B expression increased as did that of perforin 1. Spontaneous physical activity in obese conditions slowed tumour growth by decreasing low-grade inflammation, modulating immune recruitment and efficacy within the tumour.
Collapse
|
17
|
Hammoudeh SM, Hammoudeh AM, Bhamidimarri PM, Al Safar H, Mahboub B, Künstner A, Busch H, Halwani R, Hamid Q, Rahmani M, Hamoudi R. Systems Immunology Analysis Reveals the Contribution of Pulmonary and Extrapulmonary Tissues to the Immunopathogenesis of Severe COVID-19 Patients. Front Immunol 2021; 12:595150. [PMID: 34262555 PMCID: PMC8273737 DOI: 10.3389/fimmu.2021.595150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.
Collapse
Affiliation(s)
- Sarah Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Arabella Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- General Surgery Department, Tawam Hospital, SEHA, Al Ain, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Respiratory Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Axel Künstner
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Hauke Busch
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Mohamed Rahmani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
18
|
Pandur E, Pap R, Montskó G, Jánosa G, Sipos K, Kovács GL. Fractalkine enhances endometrial receptivity and activates iron transport towards trophoblast cells in an in vitro co-culture system of HEC-1A and JEG-3 cells. Exp Cell Res 2021; 403:112583. [PMID: 33811904 DOI: 10.1016/j.yexcr.2021.112583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Endometrium receptivity and successful implantation require a complex network of regulatory factors whom production is strictly controlled especially at the implantation window. Many regulators like steroid hormones, prostaglandins, cytokines, extracellular matrix proteins and downstream cell signalling pathways are involved in the process of embryo-endometrium interaction. Our work reveals the effect of fractalkine (FKN), a unique chemokine on progesterone receptor, SOX-17 and NRF2 expressions in HEC-1A endometrial cell line. FKN activates fractalkine receptor signalling and the expression of SOX-17 through progesterone receptor in HEC-1A endometrial cells, and as a consequence it increases endometrial receptivity. Fractalkine also activates the NRF2-Keap-1 signal transduction pathway regulating the IL-6 and IL-1β cytokine productions, which increase endometrial receptivity, as well. The NRF2 transcription factor increases the expression of the iron exporter ferroportin in HEC-1A cells activating iron release towards JEG-3 trophoblast cells. The iron measurements show that iron content of endometrial cells decreases while heme concentration increases at FKN treatment. At the same time, the trophoblast cells show increased iron uptake and total iron content. Based on our results it seems that FKN enhances the establishment of endometrial receptivity and meanwhile it regulates the iron homeostasis of endometrium contributing to the iron availability of the trophoblast cells and the embryo.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Gergely Montskó
- Szentágothai Research Centre, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; MTA-PTE Human Reproduction Research Group, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary.
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Gábor L Kovács
- Szentágothai Research Centre, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; MTA-PTE Human Reproduction Research Group, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, H-7624, Ifjúság út 13., Pécs, Hungary.
| |
Collapse
|
19
|
Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Dorward N, Grieve J, Mendoza N, Nair R, Muquit S, Grossman AB, Korbonits M. The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 2020; 70:593-606. [PMID: 32946040 PMCID: PMC7674353 DOI: 10.1007/s12020-020-02478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Angiogenesis has been studied in pituitary neuroendocrine tumours (PitNETs), but the role of the tumour microenvironment (TME) in regulating PitNET angiogenesis remains unknown. We aimed to characterise the role of TME components in determining the angiogenetic PitNET profile, focusing on immune cells and tumour-derived cytokines. METHODS Immune cells were studied by immunohistochemistry in 24 human PitNETs (16 non-functioning-PitNETs (NF-PitNETs) and 8 somatotrophinomas): macrophages (CD68, CD163, HLA-DR), cytotoxic (CD8) and T helper (CD4) lymphocytes, regulatory T cells (FOXP3), B cells (CD20) and neutrophils (neutrophil elastase); endothelial cells were assessed with CD31. Five normal pituitaries (NP) were included for comparison. Microvessel density and vascular morphology were estimated with ImageJ. The cytokine secretome from these PitNETs were assessed on culture supernatants using a multiplex immunoassay panel. RESULTS Microvessel density/area was higher in NP than PitNETs, which also had rounder and more regular vessels. NF-PitNETs had vessels of increased calibre compared to somatotrophinomas. The M2:M1 macrophage ratio correlated with microvessel area. PitNETs with more CD4+ T cells had higher microvessel area, while tumours with more FOXP3+ cells were associated with lower microvessel density. PitNETs with more B cells had rounder vessels. Of the 42 PitNET-derived cytokines studied, CCL2, CXCL10 and CX3CL1 correlated with microvessel density and vessel architecture parameters. CONCLUSIONS M2 macrophages appear to play a role in PitNET neovascularisation, while B, CD4+ and FOXP3+ lymphocytes, as well as non-cellular TME elements such as CCL2, CXCL10 and CX3CL1, may also modulate the angiogenesis of PitNETs.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - David Collier
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Neil Dorward
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Nigel Mendoza
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Ramesh Nair
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Samiul Muquit
- Department of Neurosurgery, Derriford Hospital, Plymouth, UK
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
21
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
22
|
Muraoka S, Nishio J, Kuboi Y, Imai T, Nanki T. Rationale for and clinical development of anti-fractalkine antibody in rheumatic diseases. Expert Opin Biol Ther 2020; 20:1309-1319. [PMID: 32401060 DOI: 10.1080/14712598.2020.1764931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Rheumatic diseases are inflammatory diseases that damage target organs via multiple subsets of immune cells. Fractalkine (FKN) acts as chemoattractant as well as adhesion molecule. It contributes to the pathogenesis of rheumatoid arthritis (RA) and other rheumatic diseases through multiple mechanisms: the migration of monocytes and cytotoxic effector T cells, the proliferation and activation of fibroblast-like synoviocytes, angiogenesis, and osteoclastogenesis. FKN has potential as a new therapeutic target, and clinical trials on anti-FKN monoclonal antibodies for RA are ongoing. FKN-targeted therapy has been developed and a humanized anti-FKN monoclonal antibody is currently being tested in phase 2 clinical trials. Areas covered: This review summarizes accumulated evidence on the involvement of FKN in RA and other rheumatic diseases, including systemic lupus erythematosus (SLE), systemic sclerosis, inflammatory myositis, Sjögren's syndrome (SS), osteoarthritis, and systemic vasculitis. Expert opinion: A phase 1/2a clinical trial on anti-FKN demonstrated its safety, tolerability, and clinical efficacy. Anti-FKN therapy has potential in the treatment of atherosclerosis and interstitial lung diseases associated with RA. Based on recent findings, other rheumatic diseases, including SLE, polymyositis/dermatomyositis, and SS, may also be treated using anti-FKN therapy.
Collapse
Affiliation(s)
- Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan
| | - Junko Nishio
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan.,Department of Immunopathology and Immunoregulation, Toho University School of Medicine , Tokyo, Japan
| | | | | | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan
| |
Collapse
|
23
|
Phenotypic and Functional Changes in Peripheral Blood Natural Killer Cells in Crohn Disease Patients. Mediators Inflamm 2020; 2020:6401969. [PMID: 32148442 PMCID: PMC7049869 DOI: 10.1155/2020/6401969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Collapse
|
24
|
Molecular analysis of lymphoid tissue from rhesus macaque rhadinovirus-infected monkeys identifies alterations in host genes associated with oncogenesis. PLoS One 2020; 15:e0228484. [PMID: 32017809 PMCID: PMC6999886 DOI: 10.1371/journal.pone.0228484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
Rhesus macaque (RM) rhadinovirus (RRV) is a simian gamma-2 herpesvirus closely related to human Kaposi’s sarcoma-associated herpesvirus (KSHV). RRV is associated with the development of diseases in simian immunodeficiency virus (SIV) co-infected RM that resemble KSHV-associated pathologies observed in HIV-infected humans, including B cell lymphoproliferative disorders (LPD) and lymphoma. Importantly, how de novo KSHV infection affects the expression of host genes in humans, and how these alterations in gene expression affect viral replication, latency, and disease is unknown. The utility of the RRV/RM infection model provides a novel approach to address these questions in vivo, and utilizing the RRV bacterial artificial chromosome (BAC) system, the effects of specific viral genes on host gene expression patterns can also be explored. To gain insight into the effects of RRV infection on global host gene expression patterns in vivo, and to simultaneously assess the contributions of the immune inhibitory viral CD200 (vCD200) molecule to host gene regulation, RNA-seq was performed on pre- and post-infection lymph node (LN) biopsy samples from RM infected with either BAC-derived WT (n = 4) or vCD200 mutant RRV (n = 4). A variety of genes were identified as being altered in LN tissue samples due to RRV infection, including cancer-associated genes activation-induced cytidine deaminase (AICDA), glypican-1 (GPC1), CX3C chemokine receptor 1 (CX3CR1), and Ras dexamethasone-induced 1 (RasD1). Further analyses also indicate that GPC1 may be associated with lymphomagenesis. Finally, comparison of infection groups identified the differential expression of host gene thioredoxin interacting protein (TXNIP), suggesting a possible mechanism by which vCD200 negatively affects RRV viral loads in vivo.
Collapse
|
25
|
Boreskie KF, Oldfield CJ, Hay JL, Moffatt TL, Hiebert BM, Arora RC, Duhamel TA. Myokines as biomarkers of frailty and cardiovascular disease risk in females. Exp Gerontol 2020; 133:110859. [PMID: 32017952 DOI: 10.1016/j.exger.2020.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Frailty is a risk factor for cardiovascular disease (CVD). Biomarkers have the potential to detect the early stages of frailty, such as pre-frailty. Myokines may act as biomarkers of frailty-related disease progression, as a decline in muscle health is a hallmark of the frailty phenotype. This study is a secondary analysis of 104 females 55 years of age or older with no previous history of CVD. Differences in systemic myokine concentrations based on frailty status and CVD risk profile were examined using a case-control design. Propensity matching identified two sets of 26 pairs with pre-frailty as the exposure variable in low or elevated CVD risk groups for a total 104 female participants. Frailty was assessed using the Fried Criteria (FC) and CVD risk was assessed using the Framingham Risk Score (FRS). Factorial ANOVA compared the main effects of frailty, CVD risk, and their interaction on the concentrations of 15 myokines. Differences were found when comparing elevated CVD risk status with low for the concentrations of EPO (384.76 ± 1046.07 vs. 206.63 ± 284.61 pg/mL, p = .001), FABP3 (2772.61 ± 3297.86 vs. 1693.31 ± 1019.34 pg/mL, p = .017), FGF21 (193.17 ± 521.09 vs. 70.18 ± 139.51 pg/mL, p = .010), IL-6 (1.73 ± 4.97 vs. 0.52 ± 0.89 pg/mL, p = .023), and IL-15 (2.62 ± 10.56 vs. 0.92 ± 1.25 pg/mL, p = .022). Pre-frail females had lower concentrations of fractalkine compared to robust (27.04 ± 20.60 vs. 103.62 ± 315.45 pg/mL, p = .004). Interaction effects between frailty status and CVD risk for FGF21 and OSM were identified. In elevated CVD risk, pre-frail females, concentrations of FGF21 and OSM were lower than that of elevated CVD risk, robust females (69.10 ± 62.86 vs. 317.24 ± 719.69, p = .011; 1.73 ± 2.32 vs. 24.43 ± 69.21, p = .018, respectively). These data identified specific biomarkers of CVD risk and biomarkers of frailty that are exacerbated with CVD risk.
Collapse
Affiliation(s)
- Kevin F Boreskie
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher J Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jacqueline L Hay
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Teri L Moffatt
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Brett M Hiebert
- Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada
| | - Rakesh C Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Surgery, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
26
|
Joshi U, Pearson A, Evans JE, Langlois H, Saltiel N, Ojo J, Klimas N, Sullivan K, Keegan AP, Oberlin S, Darcey T, Cseresznye A, Raya B, Paris D, Hammock B, Vasylieva N, Hongsibsong S, Stern LJ, Crawford F, Mullan M, Abdullah L. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness. Brain Behav Immun 2019; 81:545-559. [PMID: 31325531 PMCID: PMC7155744 DOI: 10.1016/j.bbi.2019.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 10/31/2022] Open
Abstract
Gulf War Illness (GWI), affecting 30% of veterans from the 1991 Gulf War (GW), is a multi-symptom illness with features similar to those of patients with autoimmune diseases. The objective of the current work is to determine if exposure to GW-related pesticides, such as permethrin (PER), activates peripheral and central nervous system (CNS) adaptive immune responses. In the current study, we focused on a PER metabolite, 3-phenoxybenzoic acid (3-PBA), as this is a common metabolite previously shown to form adducts with endogenous proteins. We observed the presence of 3-PBA and 3-PBA modified lysine of protein peptides in the brain, blood and liver of pyridostigmine bromide (PB) and PER (PB+PER) exposed mice at acute and chronic post-exposure timepoints. We tested whether 3-PBA-haptenated albumin (3-PBA-albumin) can activate immune cells since it is known that chemically haptenated proteins can stimulate immune responses. We detected autoantibodies against 3-PBA-albumin in plasma from PB + PER exposed mice and veterans with GWI at chronic post-exposure timepoints. We also observed that in vitro treatment of blood with 3-PBA-albumin resulted in the activation of B- and T-helper lymphocytes and that these immune cells were also increased in blood of PB + PER exposed mice and veterans with GWI. These immune changes corresponded with elevated levels of infiltrating monocytes in the brain and blood of PB + PER exposed mice which coincided with alterations in the markers of blood-brain barrier disruption, brain macrophages and neuroinflammation. These studies suggest that pesticide exposure associated with GWI may have resulted in the activation of the peripheral and CNS adaptive immune responses, possibly contributing to an autoimmune-type phenotype in veterans with GWI.
Collapse
Affiliation(s)
- Utsav Joshi
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - James E. Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Heather Langlois
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nicole Saltiel
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nancy Klimas
- NOVA Southeastern University, Ft. Lauderdale, FL, USA,Miami VAMC, Miami, FL, USA
| | | | | | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Balaram Raya
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Natalia Vasylieva
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Surat Hongsibsong
- Environment and Health Research Unit, Research Institute for Health Science, Chiang Mai University, Chiang, Thailand
| | - Lawrence J. Stern
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA,Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
27
|
Ugge H, Downer MK, Carlsson J, Bowden M, Davidsson S, Mucci LA, Fall K, Andersson SO, Andrén O. Circulating inflammation markers and prostate cancer. Prostate 2019; 79:1338-1346. [PMID: 31212389 DOI: 10.1002/pros.23842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic inflammation is thought to influence the risk of prostate cancer. The purpose of this population-based case-control study was to evaluate the association of 48 circulating inflammation markers with prostate cancer, to identify candidate markers for further investigation. METHODS Serum samples collected from 235 prostate cancer patients and 198 population-based controls recruited in Örebro County, Sweden, in 1989-1991, were assessed using a multiplex bead-based immunoassay to determine concentrations of 48 circulating inflammation markers. Logistic regression was first used to evaluate the association between individual markers (highest vs lowest concentration quartile) and prostate cancer in unadjusted and mutually adjusted models. Second, patients with inflammatory conditions, metastatic or advanced prostate cancer, were excluded to address the possible influence of systemic disease on inflammation markers. RESULTS Individual analyses first identified 21 markers associated with prostate cancer (P < .05), which after mutual adjustment were reduced to seven markers. After the exclusion of men with conditions linked with systemic inflammation, associations between prostate cancer and deviant levels of C-X3-C motif chemokine ligand 1, platelet-derived growth factor subunit B homodimer, interleukin 10, C-C motif chemokine ligand (CCL) 21, and CCL11 remained statistically significant. CONCLUSIONS In this explorative study, we identified candidate inflammation markers of possible importance for prostate cancer pathophysiology, for further evaluation in prospective studies.
Collapse
Affiliation(s)
- Henrik Ugge
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mary K Downer
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Katja Fall
- Department of Clinical epidemiology and biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
28
|
Ma G, Yang J, Zhao B, Huang C, Wang R. Correlation between CCL2, CALCA, and CX3CL1 gene polymorphisms and chronic pain after cesarean section in Chinese Han women: A case control study. Medicine (Baltimore) 2019; 98:e16706. [PMID: 31441843 PMCID: PMC6716682 DOI: 10.1097/md.0000000000016706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Postoperative chronic pain is characterized by high incidence, long duration, and complex pathogenesis. The purpose of this study was to investigate the correlation between the single nucleotide polymorphisms of the CCL2 gene rs4586 (g.5974T>C), CALCA rs3781719 (-692T>C), CX3CL1 rs614230 (2342C>T), and the risk of postoperative chronic pain in Chinese Han women. METHODS We analyzed the CCL2 gene rs4586, CALCA rs3781719, CX3CL1 rs614230 single nucleotide polymorphism (SNPs) of 350 Chinese Han women with chronic postsurgical pain (CPSP) 6 months after cesarean section and 350 healthy women without chronic pain (HC). The levels of CCL2, CALCA, and CX3CL1 in serum were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS The CCL2 rs4586 T allele and the CX3CL1 gene rs614230C allele were protective factors for CPSP risk (adjusted OR = 0.766, 95% CI: 0.675-0.865 and OR = 0.336, 95% CI: 0.644-0.835). The CALCA gene rs3781719C allele was a risk factor for CPSP (adjusted OR = 1.273, 95% CI: 1.125-1.424). CCL2 rs4586, CX3CL1 gene rs614230, and CALCA gene rs3781719 locus gene polymorphisms were associated with serum CCL2, CX3CL1, and CALCA protein levels. CONCLUSION Our results support that CCL2 gene rs4586, CALCA rs3781719, CX3CL1 rs614230 gene polymorphism are associated with the occurrence of chronic pain after cesarean section in Chinese Han women.
Collapse
Affiliation(s)
- Guoping Ma
- Department of Anesthesiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai
| | - Jingli Yang
- Department of Anesthesiology, The Affiliated Shanghai Pudong Hospital of Fudan University Shanghai
| | - Bange Zhao
- Department of Anesthesiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai
| | - Chengquan Huang
- Department of Anesthesiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai
| | - Rui Wang
- Department of Anesthesiology, HanDan Central Hospital, Hebei, China
| |
Collapse
|
29
|
Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients. Cancers (Basel) 2019; 11:cancers11030321. [PMID: 30845779 PMCID: PMC6469019 DOI: 10.3390/cancers11030321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
C-X3-C motif chemokine ligand 1 (CX3CL1)/fractalkine is a chemokine released after cleavage by two metalloproteases, ADAM metallopeptidase domain 10 (ADAM10) and ADAM metallopeptidase domain 17 (ADAM17), involved in inflammation and angiogenesis in the cancer microenvironment. The role of the CX3CL1/ C-X3-C motif chemokine receptor 1(CX3CR1) axis in the multiple myeloma (MM) microenvironment is still unknown. Firstly, we analyzed bone marrow (BM) plasma levels of CX3CL1 in 111 patients with plasma cell disorders including 70 with active MM, 25 with smoldering myeloma (SMM), and 16 with monoclonal gammopathy of undetermined significance (MGUS). We found that BM CX3CL1 levels were significantly increased in MM patients compared to SMM and MGUS and correlated with BM microvessel density. Secondly, we explored the source of CX3CL1 in MM and BM microenvironment cells. Primary CD138+ cells did not express CXC3L1 but up-regulated its production by endothelial cells (ECs) through the involvement of tumor necrosis factor alpha (TNFα). Lastly, we demonstrated the presence of CX3CR1 on BM CD14+CD16+ monocytes of MM patients and on ECs, but not on MM cells. The role of CX3CL1 in MM-induced angiogenesis was finally demonstrated in both in vivo chick embryo chorioallantoic membrane and in vitro angiogenesis assays. Our data indicate that CX3CL1, present at a high level in the BM of MM patients, is a new player of the MM microenvironment involved in MM-induced angiogenesis.
Collapse
|
30
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
31
|
Jacob M, Bin Khalaf D, Alhissi S, Arnout R, Alsaud B, Al-Mousa H, Lopata AL, Alazami AM, Dasouki M, Abdel Rahman A. Quantitative profiling of cytokines and chemokines in DOCK8-deficient and atopic dermatitis patients. Allergy 2019; 74:370-379. [PMID: 30252138 DOI: 10.1111/all.13610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hyper-IgE syndromes (HIES) are a clinically overlapping, heterogeneous group of inborn errors of immunity characterized by elevated serum IgE level, eosinophilia, atopy, and immune dysregulation. Deficiency of DOCK8 protein is potentially a life-threatening autosomal recessive HIES and only curable with bone marrow transplantation. Hence, the diagnosis of DOCK8 deficiency is critical and should be sought at an early stage to initiate definitive therapy. METHODS Serum samples from patients with DOCK8 deficiency and atopic dermatitis were profiled on a cytokine/chemokine panel for potential differential expression. RESULTS CXCL10 and TNF-A were upregulated in DOCK8 patients when compared to AD, possibly contributing toward increased susceptibility to infections and cancer. In contrast, epidermal growth factor (EGF) was significantly downregulated in a subgroup of DOCK8-deficient and AD patients, while IL-31 expression was comparable between both DOCK8-deficient and AD cohorts, possibly contributing toward pruritus seen in both groups. CONCLUSION This comprehensive cytokine profile in HIES patients reveals distinctive biomarkers that differentiate between the DOCK8-deficient and AD patients. The unique expression profile of various inflammatory cytokines in patients with DOCK8 deficiency vs atopic dermatitis likely reflects disease-specific perturbations in multiple cellular processes and pathways leading to a predisposition to infections and allergies seen in these patients. These data agree with the role for EGF replacement therapy in EGF-deficient individuals with AD as well as DOCK8 deficiency through a potential shared pathway. In addition, these novel biomarkers may be potentially useful in distinguishing DOCK8 deficiency from AD allowing early-targeted treatment options.
Collapse
Affiliation(s)
- Minnie Jacob
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
- College of Public Health, Medical and Veterinary Sciences; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Queensland Australia
| | - Duaa Bin Khalaf
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Safa Alhissi
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Rand Arnout
- Department of Pediatrics; Section of Pediatric Allergy and Immunology; King Faisal Specialist Hospital & Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Bander Alsaud
- Department of Pediatrics; Section of Pediatric Allergy and Immunology; King Faisal Specialist Hospital & Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Hamoud Al-Mousa
- Department of Pediatrics; Section of Pediatric Allergy and Immunology; King Faisal Specialist Hospital & Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Andreas L. Lopata
- College of Public Health, Medical and Veterinary Sciences; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Queensland Australia
| | - Anas M. Alazami
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Majed Dasouki
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
| | - Anas M. Abdel Rahman
- Department of Genetics; King Faisal Specialist Hospital and Research Centre (KFSHRC); Riyadh Saudi Arabia
- College of Medicine; Al Faisal University; Riyadh Saudi Arabia
- Department of Chemistry; Memorial University of Newfoundland; St. John's Newfoundland and Labrador Canada
| |
Collapse
|
32
|
Biomarkers in Adult Dermatomyositis: Tools to Help the Diagnosis and Predict the Clinical Outcome. J Immunol Res 2019; 2019:9141420. [PMID: 30766892 PMCID: PMC6350546 DOI: 10.1155/2019/9141420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Dermatomyositis pathophysiology is complex. In recent years, medical research has identified molecules associated with disease activity. Besides providing insights into the driving mechanisms of dermatomyositis, these findings could provide potential biomarkers. Activity markers can be used to monitor disease activity in clinical trials and may also be useful in daily practice. This article reviews molecules that could be used as biomarkers for diagnosis and monitoring dermatomyositis disease activity.
Collapse
|
33
|
Owens AP, Robbins N, Saum K, Jones SM, Kirschner A, Woo JG, McCoy C, Slone S, Rothenberg ME, Urbina EM, Tranter M, Rubinstein J. Tefillin use induces remote ischemic preconditioning pathways in healthy men. Am J Physiol Heart Circ Physiol 2018; 315:H1748-H1758. [PMID: 30216115 DOI: 10.1152/ajpheart.00347.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study assessed whether tefillin use (tight, nonocclusive, wrapping of the arm) elicits a remote ischemic preconditioning (RIPC)-like effect in subjects with both acute and chronic use. RIPC, created by short bursts of ischemia-reperfusion, has not been successfully taken to the bedside. Several large population studies have found that Orthodox Jewish men (who wear tefillin almost daily) have decreased cardiovascular mortality compared with non-Orthodox counterparts. We hypothesized that tefillin use is a relevant component in triggering a preconditioning effect. Jewish men ( n = 20) were enrolled; 9 men were daily tefillin users (conditioned) and 11 men were nonusers of tefillin as controls (naïve). Subjects were evaluated for adherence to traditional Jewish practice, had vital signs measured, blood drawn for analysis of circulating cytokines and monocyte function, and underwent brachial flow-mediated dilation to evaluate vascular reactivity at baseline (basal) and after 30 min of using tefillin (acute treatment). Under basal conditions, both groups had similar peak systolic velocity (SV), diameter, and flow volume, although the conditioned group had higher SV at 120 s postdeflation ( P = 0.05). Acute tefillin use augmented artery diameter and flow volume in both groups, with conditioned subjects experiencing higher SV than control subjects at 90 and 120 s postdeflation ( P = 0.03 and P = 0.02, respectively). Conditioned subjects had decreased inflammation, monocyte migration and adhesion, and endothelial activation compared with control subjects at baseline. Acute use of tefillin did not significantly alter monocyte function in either group. In this pilot study, acute tefillin use improves vascular function, whereas chronic tefillin use is associated with an anti-inflammatory RIPC-like phenotype. NEW & NOTEWORTHY We hypothesized that tefillin use among Orthodox Jewish men (who practice a nonocclusive leather banding of their nondominant arm) will induce a remote ischemic preconditioning phenotype. Chronic use of tefillin in Orthodox Jewish men was associated with increased systolic velocity and attenuated inflammation and monocyte chemotaxis and adhesion versus Jewish men who do not wear tefillin. Acute use of tefillin in both populations augmented brachial artery diameter and blood flow but not inflammatory profiles compared with baseline.
Collapse
Affiliation(s)
- A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Nathan Robbins
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Keith Saum
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio.,Department of Biomedical Engineering, University of Cincinnati , Cincinnati, Ohio
| | - Shannon M Jones
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Akiva Kirschner
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Biostatistics and Epidemiology, University of Cincinnati , Cincinnati, Ohio
| | - Connie McCoy
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Cardiology, University of Cincinnati , Cincinnati, Ohio
| | - Samuel Slone
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Marc E Rothenberg
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Allergy and Immunology, University of Cincinnati , Cincinnati, Ohio
| | - Elaine M Urbina
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Cardiology, University of Cincinnati , Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
34
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
35
|
Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol 2018; 53:1544-1556. [PMID: 30066854 PMCID: PMC6086625 DOI: 10.3892/ijo.2018.4487] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Chemokines serve important roles in the development of cancer. C-X3-C motif chemokine ligand 1 (CX3CL1) has been demonstrated to promote metastases in different types of tumors. The authors' previous studies demonstrated that the CX3CL1 (also termed fractalkine)/steroid receptor coactivator (Src)/focal adhesion kinase (FAK) signaling pathway is associated with spinal metastasis. In the present study, it was observed that CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1) was overexpressed in prostate cancer tissues with spinal metastasis compared with primary tumors. Overexpression of CX3CR1 induced cell proliferation, migration and invasion, and inhibited cellular apoptosis. However, repression of CX3CR1 reduced cell proliferation, migration and invasion, and increased cellular apoptosis. In addition, the Src/FAK pathway was activated by CX3CL1, which depends on the Tyr992 residue of epidermal growth factor receptor (EGFR) for phosphorylation. The inhibitors of these kinases repressed the cell migration induced by CX3CL1 or CX3CR1 overexpression. Furthermore, overexpression of CX3CR1 induced the spinal metastasis of prostate cancer in an in vivo mouse model. Therefore, CX3CL1 and its regulation of the EGFR, Src and FAK pathways may be potential targets for the early prevention of spinal metastasis in prostate cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
36
|
TRAIL/NF-κB/CX3CL1 Mediated Onco-Immuno Crosstalk Leading to TRAIL Resistance of Pancreatic Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19061661. [PMID: 29867042 PMCID: PMC6032098 DOI: 10.3390/ijms19061661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant neoplasms and registers rising death rates in western countries. Due to its late detection in advanced stages, its extremely aggressive nature and the minimal effectiveness of currently available therapies, PDAC is a challenging problem in the clinical field. One characteristic of PDAC is a distinct desmoplasia consisting of fibroblasts, endothelial and immune cells as well as non-cellular components, contributing to therapy resistance. It is well established that the NF-κB signaling pathway controls inflammation, cancer progression and apoptosis resistance in PDAC. This study attempts to identify NF-κB target genes mediating therapy resistance of humane PDAC cell lines towards death ligand induced apoptosis. By using a genome wide unbiased approach the chemokine CX3CL1 was established as a central NF-κB target gene mediating therapy resistance. While no direct impact of CX3CL1 expression on cancer cell apoptosis was identified in co-culture assays it became apparent that CX3CL1 is acting in a paracrine fashion, leading to an increased recruitment of inflammatory cells. These inflammatory cells in turn mediate apoptosis resistance of PDAC cells. Therefore, our data dissect a bifunctional cross-signaling pathway in PDAC between tumor and immune cells giving rise to therapy resistance.
Collapse
|
37
|
Imgenberg-Kreuz J, Sandling JK, Björk A, Nordlund J, Kvarnström M, Eloranta ML, Rönnblom L, Wahren-Herlenius M, Syvänen AC, Nordmark G. Transcription profiling of peripheral B cells in antibody-positive primary Sjögren's syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature. Scand J Immunol 2018; 87:e12662. [PMID: 29655283 DOI: 10.1111/sji.12662] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
B cells play a key role in the pathogenesis of primary Sjögren's syndrome (pSS). The aim of this study was to analyse the transcriptome of CD19+ B cells from patients with pSS and healthy controls to decipher the B cell-specific contribution to pSS. RNA from purified CD19+ B cells from 12 anti-SSA antibody-positive untreated female patients with pSS and 20 healthy blood donors was subjected to whole transcriptome sequencing. A false discovery rate corrected significance threshold of α < 0.05 was applied to define differential gene expression. As validation, gene expression in B cells from 17 patients with pSS and 16 healthy controls was analysed using a targeted gene panel. RNA-sequencing identified 4047 differentially expressed autosomal genes in pSS B cells. Upregulated expression of type I and type II interferon (IFN)-induced genes was observed, establishing an IFN signature in pSS B cells. Among the top upregulated and validated genes were CX3CR1, encoding the fractalkine receptor involved in regulation of B-cell malignancies, CCL5/RANTES and CCR1. Increased expression of several members of the TNF superfamily was also identified; TNFSF4/Ox40L, TNFSF10/TRAIL, TNFSF13B/BAFF, TNFRSF17/BCMA as well as S100A8 and -A9/calprotectin, TLR7, STAT1 and STAT2. Among genes with downregulated expression in pSS B cells were SOCS1 and SOCS3, CD70 and TNFAIP3/A20. We conclude that B cells from patients with anti-SSA antibody-positive pSS display immune activation with upregulated expression of chemokines, chemokine receptors and a prominent type I and type II IFN signature, while suppressors of cytokine signalling are downregulated. This adds insight into the autoimmune process and suggests potential targets for future functional studies.
Collapse
Affiliation(s)
- J Imgenberg-Kreuz
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J K Sandling
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - A Björk
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Kvarnström
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M-L Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A-C Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Hui CW, St-Pierre A, El Hajj H, Remy Y, Hébert SS, Luheshi GN, Srivastava LK, Tremblay MÈ. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia. Front Mol Neurosci 2018; 11:13. [PMID: 29472840 PMCID: PMC5809492 DOI: 10.3389/fnmol.2018.00013] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/09/2018] [Indexed: 01/25/2023] Open
Abstract
Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C) to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.
Collapse
Affiliation(s)
- Chin W Hui
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Abygaël St-Pierre
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Hassan El Hajj
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Yvan Remy
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Giamal N Luheshi
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Lalit K Srivastava
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
39
|
Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX 3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw 2018; 18:e5. [PMID: 29503738 PMCID: PMC5833124 DOI: 10.4110/in.2018.18.e5] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023] Open
Abstract
Chemokine (C-X3-C motif) ligand 1 (CX3CL1, also known as fractalkine) and its receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) are widely expressed in immune cells and non-immune cells throughout organisms. However, their expression is mostly cell type-specific in each tissue. CX3CR1 expression can be found in monocytes, macrophages, dendritic cells, T cells, and natural killer (NK) cells. Interaction between CX3CL1 and CX3CR1 can mediate chemotaxis of immune cells according to concentration gradient of ligands. CX3CR1 expressing immune cells have a main role in either pro-inflammatory or anti-inflammatory response depending on environmental condition. In a given tissue such as bone marrow, brain, lung, liver, gut, and cancer, CX3CR1 expressing cells can maintain tissue homeostasis. Under pathologic conditions, however, CX3CR1 expressing cells can play a critical role in disease pathogenesis. Here, we discuss recent progresses of CX3CL1/CX3CR1 in major tissues and their relationships with human diseases.
Collapse
Affiliation(s)
- Myoungsoo Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Yongsung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Jihye Song
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Junhyung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| |
Collapse
|
40
|
Hou SM, Hou CH, Liu JF. CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-κB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res Ther 2017; 19:282. [PMID: 29268768 PMCID: PMC5740560 DOI: 10.1186/s13075-017-1487-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage, synovium, and subchondral bone and is the leading cause of disability in older populations. Specific diagnostic biomarkers are lacking; hence, treatment options for OA are limited. Synovial inflammation is very common in OA joints and has been associated with both OA’s symptoms and pathogenesis. Confirming the role of the synovium in OA pathogenesis is a promising strategy for mitigating the symptoms and progression of OA. CX3CL1 is the only member of the CX3C class of chemokines that combines the properties of chemoattractants and adhesion molecules. CX3CL1 levels in the synovium and serum were both discovered to be positively associated with OA pathogenesis. CX3CL1 and its receptor CX3CR1 belong to a family of G protein-coupled receptors. Matrix metalloproteinases (MMPs), which are responsible for matrix degradation, play a crucial role in OA progression. The relationship between CX3CL1 and MMPs in the pathophysiology of OA is still unclear. Methods CX3CL1-induced MMP-3 production was assessed with quantitative real-time PCR and ELISA. The mechanisms of action of CX3CL1 in different signaling pathways were studied using western blot analysis, quantitative real-time PCR and ELISA. Neutralization antibodies of integrin were achieved to block the CX3CR1 signaling pathway. Luciferase assays were used to study NF-κB promoter activity. Results We investigated the signaling pathway involved in CX3CL1-induced MMP-3 production in osteoarthritis synovial fibroblasts (OASFs). CX3CL1 was found to induce MMP-3 production in a concentration-dependent and time-dependent manner. Using pharmacological inhibitors and CX3CR1 small interfering RNA to block CX3CR1 revealed that the CX3CR1 receptor was involved in the CX3CL1-mediated upregulation of MMP-3. CX3CL1-mediated MMP-3 production was attenuated by c-Raf inhibitors (GW5074) and MEK/ERK inhibitors (PD98059 and U0126). The OASFs were stimulated using CX3CL1-activated p65 phosphorylation. Conclusions Our results demonstrate that CX3CL1 activates c-Raf, MEK, ERK, and NF-κB on the MMP-3 promoter through CX3CR1, thus contributing to cartilage destruction during OA.
Collapse
Affiliation(s)
- Sheng-Mou Hou
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wen Chang Road, Taipei, 111, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, No. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Road, Shilin, Taipei, 111, Taiwan.
| |
Collapse
|
41
|
Shiels MS, Shu XO, Chaturvedi AK, Gao YT, Xiang YB, Cai Q, Hu W, Shelton G, Ji BT, Pinto LA, Kemp TJ, Rothman N, Zheng W, Hildesheim A, Lan Q. A prospective study of immune and inflammation markers and risk of lung cancer among female never smokers in Shanghai. Carcinogenesis 2017; 38:1004-1010. [PMID: 28981818 DOI: 10.1093/carcin/bgx075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
There is a paucity of data on risk factors for lung cancer among never smokers. Here, we have carried out the first large study of circulating inflammation markers and lung cancer risk among female never smokers in Shanghai. A study of 248 lung cancer cases in female never smokers and 263 controls was nested within the Shanghai Women's Health Study (n = 75221), matched by dates of birth and blood collection (mean follow-up time = 7.5 years). Prediagnostic plasma levels of 65 inflammation markers were measured using a Luminex bead-based assay. Odds ratios (ORs) were estimated with multivariable logistic regression. Nine of 61 evaluable markers were statistically significantly associated with lung cancer risk among never smoking Chinese women (P-trend across categories <0.05). Soluble interleukin-6 receptor [sIL-6R; highest versus lowest category OR = 2.37; 95% confidence interval (CI) 1.40-4.02) and chemokine (C-C motif) ligand 2/monocyte chemotactic protein 1; (OR = 1.62; 95% CI 0.94-2.80) were associated with an increased risk of lung cancer, whereas interleukin (IL)-21 (OR = 0.53; 95%CI 0.31-0.93), chemokine (C-X3-C motif) ligand 1/fractalkine (OR = 0.54; 95% CI 0.30-0.96), soluble vascular endothelial growth factor receptor 2 (sVEGFR2, OR = 0.45; 95% CI 0.26-0.76), sVEGFR3 (OR = 0.53; 95% CI 0.32-0.90), soluble tumor necrosis factor receptor I (OR = 0.49; 95% CI 0.29-0.83), IL-10 (OR = 0.60; 95% CI 0.34-1.05) and C-reactive protein (OR = 0.63; 95% CI 0.37-1.06) were associated with a decreased risk. sIL-6R remained significantly associated with lung cancer risk >7.5 years prior to diagnosis. Markers involved in various aspects of the immune response were associated with subsequent lung cancer risk, implicating inflammation in the etiology of lung cancer among female never smokers.
Collapse
Affiliation(s)
- Meredith S Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anil K Chaturvedi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Gloriana Shelton
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Troy J Kemp
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
42
|
Jang J, Yoon Y, Oh DJ. A calpain inhibitor protects against fractalkine production in lipopolysaccharide-treated endothelial cells. Kidney Res Clin Pract 2017; 36:224-231. [PMID: 28904873 PMCID: PMC5592889 DOI: 10.23876/j.krcp.2017.36.3.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 11/06/2022] Open
Abstract
Background Fractalkine (CX3CL1) is a chemokine with a unique CX3C motif and is produced by endothelial cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interferon-γ. There have been several reports that the caspase/calpain system is activated in endotoxemia, which leads to cellular apoptosis and acute inflammatory processes. We aimed to determine the role of the caspase/calpain system in cell viability and regulation of fractalkine production in LPS-treated endothelial cells. Methods Human umbilical vein endothelial cells (HUVECs) were stimulated with 0.01–100 μg/mL of LPS to determine cell viability. The changes of CX3CL1 expression were compared in control, LPS (1 μg/mL)-, IL-1α (1 μg/mL)-, and IL-1β (1 μg/mL)-treated HUVECs. Cell viability and CX3CL1 production were compared with 50 μM of inhibitors of caspase-1, caspase-3, caspase-9, and calpain in LPS-treated HUVECs. Results Cell viability was significantly decreased from 1 to 100 μg/mL of LPS. Cell viability was significantly restored with inhibitors of caspase-1, caspase-3, caspase-9, and calpain in LPS-treated HUVECs. The expression of CX3CL1 was highest in IL-1β-treated HUVECs. CX3CL1 production was highly inhibited with a calpain inhibitor and significantly decreased with the individual inhibitors of caspase-1, caspase-3, and caspase-9. Conclusion The caspase/calpain system is an important modulator of cell viability and CX3CL1 production in LPS-treated endothelial cells.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yoosik Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea
| |
Collapse
|
43
|
Harris MA, Pearce TR, Pengo T, Kuang H, Forster C, Kokkoli E. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:85-96. [PMID: 28912042 DOI: 10.1016/j.nano.2017.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/01/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
In this work we hypothesized that the chemokine fractalkine can serve as a cancer molecular target. We engineered aptamer micelles functionalized with an outer poly(ethylene glycol) (PEG) corona, and investigated the extent and efficacy of using them as a targeting tool against fractalkine-expressing colon adenocarcinoma cells. In vitro cell binding results showed that aptamer micelles bound and internalized to fractalkine-expressing cancer cells with the majority of the micelles found free in the cytoplasm. Minimal surface binding was observed by healthy cells. Even though partial PEGylation did not prevent serum adsorption, micelles were highly resistant to endonuclease and exonuclease degradation. In vivo biodistribution studies and confocal studies demonstrated that even though both aptamer and control micelles showed tumor accumulation, only the aptamer micelles internalized into fractalkine-expressing cancer cells, thus demonstrating the potential of the approach and showing that fractalkine may serve as a specific target for nanoparticle delivery to cancer cells.
Collapse
Affiliation(s)
- Michael A Harris
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Huihui Kuang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Colleen Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
44
|
Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, Moretta A, Bottino C, Castriconi R. TGF-β1 Downregulates the Expression of CX 3CR1 by Inducing miR-27a-5p in Primary Human NK Cells. Front Immunol 2017; 8:868. [PMID: 28791023 PMCID: PMC5524732 DOI: 10.3389/fimmu.2017.00868] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression.
Collapse
Affiliation(s)
- Stefano Regis
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Caliendo
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Filomena Romano
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| |
Collapse
|
45
|
Ahn SH, Ahn JH, Ryu DR, Lee J, Cho MS, Choi YH. Effect of Necrosis on the miRNA-mRNA Regulatory Network in CRT-MG Human Astroglioma Cells. Cancer Res Treat 2017; 50:382-397. [PMID: 28546527 PMCID: PMC5912152 DOI: 10.4143/crt.2016.551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most common adult primary intracranial tumor. The remarkable features of GBM include central necrosis. MicroRNAs (miRNAs) have been considered as diagnostic/prognostic biomarkers for many cancers, including glioblastoma. However, the effect of necrosis on the miRNA expression profile and predicted miRNA-mRNA regulatory information remain unclear. The purpose of this study is to examine the effect of necrotic cells on the modulation of miRNA and mRNA expression profiles and miRNA-mRNA network in CRT-MG cells. Materials and Methods We used human astroglioma cells, CRT-MG, treated with necrotic CRT-MG cells to examine the effect of necrosis on the modulation of miRNA and mRNA by next-generation sequencing. For preparation of necrotic cells, CRT-MGcellswere frozen and thawed through cycle of liquid nitrogen–water bath. The putative miRNA-mRNA regulatory relationshipwas inferred through target information, using miRDB. Results The necrotic cells induced dysregulation of 106 miRNAs and 887 mRNAs. Among them, 11 miRNAs that had a negative correlation value of p < 0.05 by the hypergeometric test were screened, and their target mRNAs were analyzed by Gene Ontology enrichment analysis. Using the Kyoto Encyclopedia of Genes and Genomes database, we also found several necrotic cell treatment-activated pathways that were modulated by relevant gene targets of differentially expressed miRNAs. Conclusion Our result demonstrated that dysregulation of miRNA and mRNA expression profiles occurs when GBM cells are exposed to necrotic cells, suggesting that several miRNAs may have the potential to be used as biomarkers for predicting GBM progression and pathogenesis.
Collapse
Affiliation(s)
- So-Hee Ahn
- Department of Physiology, Ewha Womans University School of Medicine,Seoul, Korea.,Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea
| | - Jung-Hyuck Ahn
- Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea.,Department of Biochemistry, Ewha Womans University School of Medicine,Seoul, Korea
| | - Dong-Ryeol Ryu
- Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea.,Department of Internal medicine, Ewha Womans University School of Medicine,Seoul, Korea
| | - Jisoo Lee
- Department of Internal medicine, Ewha Womans University School of Medicine,Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, Ewha Womans University School of Medicine,Seoul, Korea
| | - Youn-Hee Choi
- Department of Physiology, Ewha Womans University School of Medicine,Seoul, Korea.,Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea
| |
Collapse
|
46
|
Boyoglu-Barnum S, Todd SO, Meng J, Barnum TR, Chirkova T, Haynes LM, Jadhao SJ, Tripp RA, Oomens AG, Moore ML, Anderson LJ. Mutating the CX3C Motif in the G Protein Should Make a Live Respiratory Syncytial Virus Vaccine Safer and More Effective. J Virol 2017; 91:e02059-16. [PMID: 28275196 PMCID: PMC5411601 DOI: 10.1128/jvi.02059-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Through a CX3C chemokine motif (182CWAIC186) in the G protein, RSV binds to the corresponding chemokine receptor, CX3CR1. Since RSV binding to CX3CR1 contributes to disease pathogenesis, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A186, within the CX3C motif, mutating it to CX4C (182CWAIAC187), which is known to block binding to CX3CR1, might decrease disease. We studied the effect of the CX4C mutation in two strains of RSV (A2 and r19F) in a mouse challenge model. We included RSV r19F because it induces mucus production and airway resistance, two manifestations of RSV infection in humans, in mice. Compared to wild-type (wt) virus, mice infected with CX4C had a 0.7 to 1.2 log10-fold lower virus titer in the lung at 5 days postinfection (p.i.) and had markedly reduced weight loss, pulmonary inflammatory cell infiltration, mucus production, and airway resistance after challenge. This decrease in disease was not dependent on decrease in virus replication but did correspond to a decrease in pulmonary Th2 and inflammatory cytokines. Mice infected with CX4C viruses also had higher antibody titers and a Th1-biased T cell memory response at 75 days p.i. These results suggest that the CX4C mutation in the G protein could improve the safety and efficacy of a live attenuated RSV vaccine.IMPORTANCE RSV binds to the corresponding chemokine receptor, CX3CR1, through a CX3C chemokine motif (182CWAIC186) in the G protein. RSV binding to CX3CR1 contributes to disease pathogenesis; therefore, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A186, within the CX3C motif, mutating it to CX4C (182CWAIAC187), known to block binding to CX3CR1, might decrease disease. The effect of this mutation and treatment with the F(ab')2 form of the anti-RSV G 131-2G monoclonal antibody (MAb) show that mutating the CX3C motif to CX4C blocks much of the disease and immune modulation associated with the G protein and should improve the safety and efficacy of a live attenuated RSV vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Chemokines, CX3C/genetics
- Chemokines, CX3C/immunology
- Chemokines, CX3C/metabolism
- Female
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/immunology
- Humans
- Immunologic Memory
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Mutation
- Protein Interaction Domains and Motifs
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Th1 Cells
- Th2 Cells
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Virus Replication
Collapse
Affiliation(s)
- S Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - S O Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - J Meng
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - T R Barnum
- University of Georgia, Odum School of Ecology, Athens, Georgia, USA
| | - T Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - L M Haynes
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, USA
| | - S J Jadhao
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - R A Tripp
- University of Georgia, Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - A G Oomens
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - M L Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - L J Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
47
|
The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7:biom7020034. [PMID: 28346397 PMCID: PMC5485723 DOI: 10.3390/biom7020034] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.
Collapse
|
48
|
Howard D, Garcia-Parra J, Healey GD, Amakiri C, Margarit L, Francis LW, Gonzalez D, Conlan RS. Antibody-drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus 2016; 6:20160054. [PMID: 27920893 PMCID: PMC5071815 DOI: 10.1098/rsfs.2016.0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gynaecological cancers: malignancies of the cervix, uterus, ovaries, vagina and vulva, are responsible for over 1.1 million new cancer cases and almost half a million deaths annually. Ovarian cancer in particular is difficult to treat due to often being diagnosed at a late stage, and the incidence of uterine and vulvar malignancies are both on the rise. The field of nanomedicine is beginning to introduce drugs into the clinic for oncological applications exemplified by the liposomal drugs, Doxil and Myocet, the nanoparticle, Abraxane and antibody-drug conjugates (ADCs), Kadcyla and Adcetris. With many more agents currently undergoing clinical trials, the field of nanomedicine promises to have a significant impact on cancer therapy. This review considers the state of the art for nanomedicines currently on the market and those being clinically evaluated for the treatment of gynaecological cancers. In particular, it focuses on ADCs and presents a methodology for their rational design and evaluation.
Collapse
Affiliation(s)
- David Howard
- Swansea University Medical School, Swansea SA2 8PP, UK
| | | | | | | | - Lavinia Margarit
- Abertawe Bro Morannwg University Health Board, Obstetrics & Gynecology Department Princess of Wales Hospital, Bridgend, CF31 1RQ, UK
| | | | | | | |
Collapse
|
49
|
Glycogen synthase kinase-3β regulates fractalkine production by altering its trafficking from Golgi to plasma membrane: implications for Alzheimer's disease. Cell Mol Life Sci 2016; 74:1153-1163. [PMID: 27832289 PMCID: PMC5309299 DOI: 10.1007/s00018-016-2408-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine-threonine kinase implicated in multiple processes and signaling pathways. Its dysregulation is associated with different pathological conditions including Alzheimer’s disease (AD). Here we demonstrate how changes in GSK-3β activity and/or levels regulate the production and subsequent secretion of fractalkine, a chemokine involved in the immune response that has been linked to AD and to other different neurological disorders. Treatment of primary cultured neurons with GSK-3β inhibitors such as lithium and AR-A014418 decreased full-length fractalkine in total cell extracts. Opposite effects were observed after neuron transduction with a lentiviral vector overexpressing the kinase. Biotinylation assays showed that those changes mainly affect the plasma membrane-associated form of the protein, an observation that positively correlates with changes in the levels of its soluble form. These effects were confirmed in lithium-treated wild type (wt) mice and in GSK-3β transgenic animals, as well as in brain samples from AD patients, evident as age-dependent (animals) or Braak stage dependent changes (humans) in both the membrane-bound and the soluble forms of the protein. Further immunohistochemical analyses demonstrated how GSK-3β exerts these effects by affecting the trafficking of the chemokine from the Golgi to the plasma membrane, in different and opposite ways when the levels/activity of the kinase are increased or decreased. This work provides for the first time a mechanism linking GSK-3β and fractalkine both in vitro and in vivo, with important implications for neurological disorders and especially for AD, in which levels of this chemokine might be useful as a diagnostic tool.
Collapse
|
50
|
Płoszaj P, Regiec A, Ryng S, Piwowar A, Kruzel ML. Influence of 5-amino-3-methyl-4-isoxazolecarbohydrazide on selective gene expression in Caco-2 cultured cells. Immunopharmacol Immunotoxicol 2016; 38:486-494. [PMID: 27748636 DOI: 10.1080/08923973.2016.1247854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 5-amino-3-methyl-4-isoxazolecarboxylic acid hydrazide (HIX) is a synthetic isoxazole derivative with a potential for development as an anti-inflammatory drug candidate. The goal of this study was to explore in vitro autoimmune and inflammatory gene modulation by HIX in human Caco-2 cultured cells. The effect of low dose of HIX was tested on the expression level of RNA in 24 h Caco-2 cultures using the QIAGEN Th17 for Autoimmunity & Inflammation RT2 Profiler PCR Array. We choose the PCR technology as the most reliable and sensitive gene expression profiling method for analyzing specific gene regulatory networks. In all experiments, Leflunomide (5-methyl-N-[4-(trifluoromethyl)phenyl]-4-isoxazolecarboxamide), an immuno-suppressive disease-modifying antirheumatic drug was used, as a reference to clinical utility of the isoxazole derivatives. Changes in RNA levels were analyzed and differentially expressed genes with at least 2-fold change were identified. For the majority of genes tested, the effects of HIX and Leflunomide were similar, including up-regulation of CX3CL1 and IL-17F, and down-regulation of IL-10 and TLR4. However twelve genes were were differently regulated by the two compounds: interleukins (IL) IL-1B, IL-6 and a chemokine CCL22 were upregulated by HIX and significantly supressed by Leflunomide. In contrary, IL-2 and IL-27 were upregulated by Leflunomide and suppressed by HIX. The network search by Ingenuity Pathway Analysis showed, that majority of differentially expressed genes were involved in cellular inflammatory responses. These results suggest that 5-amino-3-methyl-4-isoxazolecarbohydrazide has a potential for future clinical developments with structure modification as a disease modifying agent in different than Leflunomide applications.
Collapse
Affiliation(s)
- Paulina Płoszaj
- a Department of Organic Chemistry , Wrocław Medical University , Wrocław , Poland
| | - Andrzej Regiec
- a Department of Organic Chemistry , Wrocław Medical University , Wrocław , Poland
| | - Stanisław Ryng
- a Department of Organic Chemistry , Wrocław Medical University , Wrocław , Poland
| | - Agnieszka Piwowar
- b Department of Toxicology , Wrocław Medical University , Wrocław , Poland
| | - Marian L Kruzel
- c Department of Integrative Biology and Pharmacology , University of Texas Health Science Center at Houston , TX , USA
| |
Collapse
|