1
|
Zueva L, Tsytsarev V, Alves J, Inyushin M. Melanin in the Retinal Epithelium and Magnetic Sensing: A Review of Current Studies. BIOPHYSICA 2024; 4:466-476. [PMID: 39464574 PMCID: PMC11500728 DOI: 10.3390/biophysica4040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Coming in a variety of forms, melanin is one of the most abundant, stable, diverse, and evolutionarily ancient pigments found in living things in nature. These pigments often serve protective functions, typically well-adapted to their specific roles. One such protective function is metal chelation and cation exchange, which help regulate and buffer metal concentrations within cells. By binding to certain metals, melanin can acquire magnetic properties. Because of this, it may play a role in magnetic effects and possibly in the response of organisms to external magnetic fields and magnetic sensing. While there is melanin in plants, microbes, fungi, and invertebrates, certain types of melanin are specifically associated with the retina in vertebrates, including migrating bird and fish species. In this review, we examine studies focusing on the properties of melanin in these parts of the body and their possible association with magnetic sensing, and generally, magnetic sensing in the retina.
Collapse
Affiliation(s)
- Lidia Zueva
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Janaina Alves
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Mikhail Inyushin
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| |
Collapse
|
2
|
Guimarães-Moreira M, Marques CI, Afonso S, Lacerda B, Carneiro M, Araújo PM. A missense mutation in the tyrosinase gene explains acromelanism in domesticated canaries. Anim Genet 2024; 55:838-842. [PMID: 39377483 DOI: 10.1111/age.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Acromelanism is a form of albinism observed in several vertebrate species. In mammals, acromelanism is known to be caused by mutations in the tyrosinase gene (TYR) that induce a temperature-sensitive behavior of melanin synthesis, resulting in a characteristic hair color gradient. In birds, several phenotypes consistent with acromelanism have been reported, but their genetic basis remains unknown. This study aimed to identify the genetic basis of an acromelanistic phenotype in domesticated canaries known as pearl and test whether it is caused by the same molecular mechanism described for mammals. To do this, we compared the genomes of pearl and non-pearl canaries and searched for potentially causative genetic mutations. Our results suggest that the pearl phenotype is caused by a mutation in the TYR gene encoding a TYR-P45H missense substitution. Our findings further suggest that reports of acromelanism in other bird species might be explained by TYR mutations.
Collapse
Affiliation(s)
- Margarida Guimarães-Moreira
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Beatriz Lacerda
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Natural History Museum of London, London, UK
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro M Araújo
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
3
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
4
|
Diaz Appella MN, Kolender A, Oppezzo OJ, López NI, Tribelli PM. The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles. FEBS Lett 2024. [PMID: 39152523 DOI: 10.1002/1873-3468.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
Collapse
Affiliation(s)
- Mateo N Diaz Appella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adriana Kolender
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Flake A, Vercruysse K. The Invisible Fraction within Melanin Capable of Absorbing UV Light and with Fluorescent Properties: Is It Lacking Consideration? Int J Mol Sci 2024; 25:8490. [PMID: 39126061 PMCID: PMC11313076 DOI: 10.3390/ijms25158490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Expanding on earlier observations, we show that many melanin materials, in vitro synthesized from a wide range of precursors, can be fractionated into a dark-colored precipitate and a near-colorless, dispersible fraction. The dispersible fractions exhibited absorbance in the UVA and UVB range of the electromagnetic spectrum, but none in the visible range. In addition, fluorescent properties were associated with all dispersible fractions obtained. FT-IR spectroscopic analyses were performed to compare both types of fractions. Overall, it appears that some of the properties associated with melanin (UV absorbance, fluorescence) may not necessarily reside in the dark-colored portion of melanin, but in a colorless fraction of the material. It remains to be seen whether any of these in vitro observations have any relevance in vivo. However, we raise the possibility that the presence of a colorless fraction within melanin materials and their associated properties may have received inadequate attention. Given the important association between melanin, UV protection, and skin cancer, it is worthwhile to consider this additional aspect of melanin chemistry.
Collapse
Affiliation(s)
| | - Koen Vercruysse
- Chemistry Department, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
6
|
Motovilov KA, Mostert AB. Melanin: Nature's 4th bioorganic polymer. SOFT MATTER 2024; 20:5635-5651. [PMID: 39012013 DOI: 10.1039/d4sm00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pigments known as the melanins are widely recognized for their responsibility in the coloration of human skin, eyes, hair, and minimising the harmful effects of solar ultraviolet radiation. But specialists are aware that the melanins are present in all living kingdoms, barring viruses, and have functionality that extends beyond neutralizing ionising radiation. The ubiquitous presence of melanin in almost all human organs, recognized in recent years, as well as the presence of melanin in organisms that are evolutionarily distant from each other, indicate the fundamental importance of this class of material for all life forms. In this review, we argue for the need to accept melanins as the fourth primordial class of biological polymers, along with nucleic acids, proteins and polysaccharides. We consistently compare the properties of these canonical biological polymers with the properties of melanin and highlight key features that fundamentally distinguish melanins, their function and its mysteries.
Collapse
Affiliation(s)
- K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141701, Moscow Region, Russia.
| | - A B Mostert
- Department of Physics and Centre for Integrative Semiconductor Materials, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| |
Collapse
|
7
|
Shen Y, Su R, Altug H, Liu Z, Zhang X, Xu X, Liang Y, Kong J, Li Q, Wang Y, Qi W. Bioinspired Three-Component System to Prepare Full-Color Functional Biomimetic Pigments. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042762 DOI: 10.1021/acsami.4c06070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Nature provides a great source of inspiration for the development of sustainable materials with excellent properties, among which melanin with optical, electronic, and radiation protection properties are considered to be promising coloring materials. However, compared to chemical pigments, the single color, complex oxidation process, and poor solubility of natural melanin strongly limit their further applications. Here, we introduce a series of melanin-like polymeric pigments with amino acid-encoded physicochemical properties by a simple three-component reaction system. Our protocol enables artificial control of the chromophore structures through the rational design of the substrates and dopants, thereby combining the safety and functionality of biopigments with the color richness of chemical dyes. Similar to the photoprotective effect of natural melanin, the polymeric pigments showed excellent antioxidant activity in reducing free radicals and have the advantages of iridescent color, strong tinting strength, stability, and affordability. Furthermore, due to their ability to dye substrates, these biomimetic are expected to become new low-cost bioactive chromophores and find various biochemical applications such as in clothing and hair dyeing, food addition, and anticounterfeiting detection.
Collapse
Affiliation(s)
- Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Zekai Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xuelin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Pang M, Xu R, Xi R, Yao H, Bao K, Peng R, Zhi H, Zhang K, He R, Su Y, Liu X, Ming D. Molecular understanding of the therapeutic potential of melanin inhibiting natural products. RSC Med Chem 2024; 15:2226-2253. [PMID: 39026645 PMCID: PMC11253861 DOI: 10.1039/d4md00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
With the development of society and the improvement of people's living standards, there is an increasing demand for melanin-inhibiting products that prioritize health, safety, and efficacy. Therefore, the development of natural products that can safely and efficiently inhibit melanin synthesis is of great social significance and has significant market potential. In this paper, by reviewing the literature reported in recent years, we summarized the natural products with inhibition of melanin synthesis effects that have been put into or not yet put into the market, and classified them according to the chemical groups of their compounds or the extraction methods of the natural products. Through the summary analysis, we found that these compounds mainly include terpenoids, phenylpropanoids, flavonoids and so on, while the natural product extracts mainly include methanol extracts, ethanol extracts, and aqueous extracts. Their main inhibition of melanin synthesis mechanisms include: (1) direct inhibition of tyrosinase activity; (2) down-regulation of the α-MSH-MC1R, Wnt, NO, PI3K/Akt and MAPK pathways through the expression of MITF and its downstream genes TYR, TRP-1, and TRP-2; (3) antioxidant; (4) inhibition of melanocyte growth through cytotoxicity; (5) inhibition of melanosome production and transport. This paper provides an in-depth discussion on the research progress of whitening natural products and their market value. The aim is to offer guidance for future research and development of natural skin whitening products.
Collapse
Affiliation(s)
- Meijun Pang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Ruitian Xu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rongjiao Xi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hong Yao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kechen Bao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rui Peng
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hui Zhi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kuo Zhang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Runnan He
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Yanfang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital 154 Anshan Street, Heping District 300052 Tianjin China
| | - Xiuyun Liu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Dong Ming
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| |
Collapse
|
9
|
B T SK, Hebbar UH, Annapurna Singh S. Isolation, purification, and physio-chemical characterization of melanin pigment from nigerseed hulls ( Guizotia abyssinica). Prep Biochem Biotechnol 2024:1-9. [PMID: 38995969 DOI: 10.1080/10826068.2024.2376579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Plant melanin, a natural pigment, has gained significant attention recently due to its potential therapeutic and industrial applications. In this study, melanin pigments were extracted from Nigerseed hulls (NH) via alkali and acid extraction methods, followed by acid hydrolysis, organic solvent treatment, and repeated precipitation. The solubility of NH melanin was assessed, revealing solubility in alkali and dimethyl sulfoxide (DMSO) but insolubility in other common organic solvents. High-performance liquid chromatography (HPLC) was employed to measure the purity of NH melanin in comparison to standard melanin, while elemental analysis indicated a similarity between melanin extracted from nigerseed hulls and the standard counterpart. LC-MS data revealed a molecular weight of NH melanin. Furthermore, the stability of melanin was evaluated under varying conditions including temperature, oxidants, reducing agents, light exposure, and metal ion presence. Results demonstrated significant effects of Mg2+, Cu2+, and Fe2+ metal ions on melanin stability, with a minor effect observed for Ca2+, while sodium hyposulfite was found to destabilize the pigments. Our findings suggest that nigerseed hulls hold promise as a novel source for efficient melanin production, with potential applications in the food sector, food packaging, and biomedical fields.
Collapse
Affiliation(s)
- Sunil Kumar B T
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Umesh H Hebbar
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridevi Annapurna Singh
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38989821 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Megan E Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
11
|
Muñoz-Torres P, Cárdenas-Ninasivincha S, Aguilar Y. Exploring the Agricultural Applications of Microbial Melanin. Microorganisms 2024; 12:1352. [PMID: 39065119 PMCID: PMC11278939 DOI: 10.3390/microorganisms12071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.
Collapse
Affiliation(s)
- Patricio Muñoz-Torres
- Laboratorio de Patología Vegetal y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile; (S.C.-N.); (Y.A.)
| | | | | |
Collapse
|
12
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
13
|
Ortega-Sanhueza I, Girard V, Ziegler-Devin I, Chapuis H, Brosse N, Valenzuela F, Banerjee A, Fuentealba C, Cabrera-Barjas G, Torres C, Méndez A, Segovia C, Pereira M. Preparation and Characterization of Lignin Nanoparticles from Different Plant Sources. Polymers (Basel) 2024; 16:1610. [PMID: 38891555 PMCID: PMC11174508 DOI: 10.3390/polym16111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
This article presents new research on producing lignin nanoparticles (LNPs) using the antisolvent nanoprecipitation method. Acetone (90%) served as the lignin solvent and water (100%) as the antisolvent, using five types of lignins from various sources. Comprehensive characterization techniques, including NMR, GPC, FTIR, TEM, and DLS, were employed to assess both lignin and LNP properties. The antioxidant activity of the LNPs was evaluated as well. The results demonstrated the successful formation of spherical nanoparticles below 100 nm with initial lignin concentrations of 1 and 2%w/v. The study highlighted the crucial role of lignin purity in LNP formation and colloidal stability, noting that residual carbohydrates adversely affect efficiency. This method offers a straightforward, environmentally friendly approach using cost-effective solvents, applicable to diverse lignin sources. The innovation of this study lies in its demonstration of a cost-effective and eco-friendly method to produce stable, nanometric-sized spherical LNPs. These LNPs have significant potential as reinforcement materials due to their reinforcing capability, hydrophilicity, and UV absorption. This work underscores the importance of starting material purity for optimizing the process and achieving the desired nanometric dimensions, marking a pioneering advancement in lignin-based nanomaterials.
Collapse
Affiliation(s)
- Isidora Ortega-Sanhueza
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - Victor Girard
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Hubert Chapuis
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Francisca Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.V.); (A.B.)
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.V.); (A.B.)
| | - Cecilia Fuentealba
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 Mail 3, Concepción, Chile;
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackena, 4860, Santiago 7820436, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Camilo Torres
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - Alejando Méndez
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - César Segovia
- Centre d’Essais Textile Lorrain, CETELOR—Université de Lorraine, 27 rue Philippe Seguin, 88051 Epinal, France;
| | - Miguel Pereira
- Facultad de Ingeniería, Departamento de Ingeniería Química, Universidad de Concepción, Concepción 4070374, Chile
| |
Collapse
|
14
|
Zhang S, Yuan G, Peng Z, Li X, Huang Y, Yin C, Cui L, Xiao G, Jiao Z, Wang L, Deng X, Qiu Z, Yan C. Chemical composition analysis and transcriptomics reveal the R2R3-MYB genes and phenol oxidases regulating the melanin formation in black radish. Int J Biol Macromol 2024; 271:132627. [PMID: 38797290 DOI: 10.1016/j.ijbiomac.2024.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guoli Yuan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhaoxin Peng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Xiaoyao Li
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yan Huang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Lei Cui
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guilin Xiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhenbiao Jiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Liping Wang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiaohui Deng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| |
Collapse
|
15
|
Vercruysse KP. The "Unconventional" Effect of Cysteine on the In Vitro Synthesis of Melanin. ACS OMEGA 2024; 9:22794-22800. [PMID: 38826551 PMCID: PMC11137686 DOI: 10.1021/acsomega.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
This report details some of our observations regarding the impact of cysteine on the air-mediated oxidation of catecholamines, particularly epinephrine. The intent was to synthesize light-colored, pheomelanin-like materials. Pheomelanin is commonly described as a material generated from a mixture of catecholamines and cysteine. However, we observed that (1) the presence of cysteine resulted in a concentration-dependent delay in the onset of color formation and (2) the presence of cysteine resulted in darker, more eumelanin-like materials. These effects were particularly impactful in the case of epinephrine. More elaborate studies involving other amino acids or scaled-up reactions were conducted with epinephrine as the precursor. These studies show that other amino acids, e.g., methionine or serine, could lead to darker materials, but none were as impactful as cysteine. Although our results are in contrast to typical descriptions regarding the impact of cysteine on the synthesis of melanin, they may reflect crucial differences between the in vitrovsin vivo synthesis of pheomelanin.
Collapse
Affiliation(s)
- Koen P. Vercruysse
- Chemistry Department, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, Tennessee 37209, United States
| |
Collapse
|
16
|
He K, Ye Y, Liu S, Yuan P, Sun W, Tang J. Polylevodopa nanoplatform for lateral flow immunochromatography assay of SARS-CoV-2 and influenza A virus. Biochem Biophys Res Commun 2024; 709:149821. [PMID: 38537597 DOI: 10.1016/j.bbrc.2024.149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
At the end of 2019, an unprecedented outbreak of novel coronavirus pneumonia ravaged the global landscape, inflicting profound harm upon society. Following numerous cycles of transmission, we find ourselves in an epoch where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coexists alongside influenza viruses (Flu A). Swift and accurate diagnosis of SARS-CoV-2 and Flu A is imperative to stem the spread of these maladies and administer appropriate treatment. Presently, colloidal gold-based lateral flow immunoassays (Au-LFIAs) constructed through electrostatic adsorption are beset by challenges such as diminished sensitivity and feeble binding stability. In this context, we propose the adoption of black polylevodopa nanoparticles (PLDA NPs) featuring abundant carboxyl groups as labeling nanomaterials in LFIA to bolster the stability and sensitivity of SARS-CoV-2 antigens and influenza A virus identifications. The engineered PLDA-LFIAs exhibit the capacity to detect SARS-CoV-2 and Flu A within 30 min, boasting a detection threshold of 5 pg/ml for the SARS-CoV-2 antigen and 0.1 ng/ml for the Flu A H1N1 antigen, thereby underscoring their heightened sensitivity relative to Au-LFIAs. These PLDA-LFIAs hold promise for the early detection of SARS-CoV-2 and Flu A, underscoring the potential of PLDA NPs as a discerning labeling probe to heighten the sensitivity of LFIA across diverse applications.
Collapse
Affiliation(s)
- Kangsong He
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Yabing Ye
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Shang Liu
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Pengcheng Yuan
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Sun
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
18
|
Asadi M, Fayazi F, Iraji A, Sabourian R, Azizian H, Hajimahmoodi M, Larijani B, Mahdavi M, Amanlou M. Nitrophenylpiperazine derivatives as novel tyrosinase inhibitors: design, synthesis, and in silico evaluations. BMC Chem 2024; 18:67. [PMID: 38581040 PMCID: PMC10998383 DOI: 10.1186/s13065-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
A novel series of 4-nitrophenylpiperazine derivatives (4a-m) was designed and synthesized as potential tyrosinase inhibitors. Comprehensive characterization using 1H-NMR, 13C-NMR, CNH, and IR techniques was performed for all target compounds. Subsequently, the derivatives were evaluated for their inhibitory activity against tyrosinase. Among them, compound 4l, featuring an indole moiety at the N-1 position of the piperazine ring, exhibited a significant tyrosinase inhibitory effect with an IC50 value of 72.55 μM. Enzyme kinetics analysis revealed that 4l displayed mixed inhibition of the tyrosinase enzymatic reaction. Molecular docking was carried out in the enzyme's active site to further investigate the enzyme-inhibitor interactions. Based on the findings, compound 4l shows promise as a lead structure for the design of potent tyrosinase inhibitors. This study paves the way for the development of more effective tyrosinase inhibitors for potential applications in various fields.
Collapse
Affiliation(s)
- Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Fayazi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Furlani F, Pota G, Rossi A, Luciani G, Campodoni E, Mocerino F, D'Errico G, Pezzella A, Panseri S, Vitiello G, Sandri M. Designing bioinspired multifunctional nanoplatforms to support wound healing and skin regeneration: Mg-hydroxyapatite meets melanins. Colloids Surf B Biointerfaces 2024; 235:113756. [PMID: 38278033 DOI: 10.1016/j.colsurfb.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from two different monomeric precursors, i.e. 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and dopamine (DA), demonstrating to be able to polymerize on the surface of MgHA nanostructures, thus leading to a melanin coating. This functionalization was realized by a simple and green preparation method requiring mild conditions in an aqueous medium and room temperature. Complementary spectroscopy and electron imaging analyses were carried out to define the effective formation of a stable coating, the percentage of the organic compounds, and the structural properties of resulting melanin-coated nanostructures, which showed good antioxidant activity. The in vitro interaction with a cell model, i.e. mouse fibroblasts, was investigated. The excellent biocompatibility of all bioinspired nanostructures was confirmed from a suitable cell proliferation. Finally, the enhanced biological performances of the nanostructures coated with melanin from DHICA were confirmed by scratch assays. Jointly our findings indicated that low crystalline MgHA and melanin pigments can be efficiently combined, and the resulting nanostructures are promising candidates as multifunctional platforms for a more efficient approach for skin regeneration and protection.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy.
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Arianna Rossi
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98166 Messina, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| | - Fabio Mocerino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Florence, Italy
| | - Alessandro Pezzella
- Institute for Polymers Composites and Biomaterials (IPCB) CNR, Via Campi Flegrei 34, IT-80078 Pozzuoli (Na), Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Piazza S. Marco, 4, Florence, Naples 50121, Italy; Department of Physics "Ettore Pancini", University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy, Via Campi Flegrei 34, IT-80078 Pozzuoli (Na), Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Florence, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| |
Collapse
|
20
|
Liu R, Mo C, Meng X, Wei X, Ma A. Production, physico-chemical properties and antioxidant activity of melanin from Annulohypoxylon stygium (Lév.) Y.M. Ju, J.D. Rogers and H.M. Hsieh. Nat Prod Res 2024:1-10. [PMID: 38425101 DOI: 10.1080/14786419.2024.2320741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/10/2023] [Indexed: 03/02/2024]
Abstract
To obtain higher melanin production in liquid culture, culture conditions of Annulohypoxylon stygium (Lév.) Y.M. Ju, J.D. Rogers and H.M. Hsieh were optimised. The results showed that using single factor experiment and orthogonal test, the optimised production of melanin reached 2.20 g/L, which was 2.06 times higher than that of the control group. In addition, it was speculated that A. stygium melanin (AsM) was 3,4-dihydroxyphenylalanine (DOPA) melanin and showed an amorphous irregular structure. Moreover, it had good solubility in alkaline solution. AsM showed good antioxidant activity at a concentration of 500 mg/L, with DPPH, ABTS and OH radicals scavenging activities of 90.83%, 75.36% and 70.90%, respectively. AsM prevented alcohol-induced oxidative damage and oxidative stress in HepG2 cells by inhibiting the decrease of antioxidant key enzyme activity under alcohol stimulation. It was proved to have a great potential for application as a natural antioxidant and a substitute for synthetic pigments.
Collapse
Affiliation(s)
- Ruofan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Cuiyuan Mo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xianfu Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Microbial Resources and Utilization, Wuhan, PR China
| |
Collapse
|
21
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Choudhary Y, Atia-Tul-Wahab, Zafar H, Siddiqui S, Khan M, Khan KM, Asseri AH, Choudhary MI, Atta-Ur-Rahman. Biochemical and In Silico Studies on Triazole Derivatives as Tyrosinase Inhibitors: Potential Treatment of Hyperpigmentation Related Skin Disorders. Med Chem 2024; 20:397-413. [PMID: 38425108 DOI: 10.2174/0115734064271581231219111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation. METHODS The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 μM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 μM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid. RESULTS The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line. CONCLUSION The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.
Collapse
Affiliation(s)
- Yusra Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Salman Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Majid Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Khalid M Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam-31441, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
- KAU-Oxford Artificial Intelligence in Precision Medicine Centre, Jeddah-21589, Saudi Arabia
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Atta-Ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
23
|
Elattar KM, Ghoniem AA, Al-Askar AA, El-Gazzar UB, El-Hersh MS, Elsherbiny EA, Eldadamony NM, Saber WIA. Melanin Synthesized by the Endophytic Aureobasidium Pullulans AKW: A Multifaceted Biomolecule with Antioxidant, Wound Healing, and Selective Anti-Cancer Activity. Curr Top Med Chem 2024; 24:2141-2160. [PMID: 39161142 DOI: 10.2174/0115680266300091240730111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION This study explores the potential of the endophytic fungus Aureobasidium pullulans AKW for melanin production and its anticancer activity. METHOD We report a significant achievement: A. pullulans AKW synthesized 4.89 g/l of melanin in a simple fermentation medium devoid of tyrosine, a precursor typically required for melanin biosynthesis. This suggests a potentially novel pathway for melanin production compared to previous studies relying on complex media and tyrosine. Furthermore, the isolated and characterized melanin exhibited promising selectivity as an anti-cancer agent. It triggered apoptosis in A431 cancer cells, demonstrating some selectivity compared to normal cells. This selectivity was confirmed by IC50 values and further supported by gene expression changes in A431 cells. Melanin treatment downregulated the anti-apoptotic Bcl2 gene while upregulating pro-apoptotic Bax and p53 genes, indicating its ability to induce programmed cell death in cancer cells. RESULT Our results demonstrate that A. pullulans AKW-derived melanin exhibits cytotoxic effects against A431, HEPG2, and MCF7 cell lines. Interestingly, the present fungal strain synthesized melanin in a simple medium without requiring precursors. CONCLUSION The selective activity of the current melanin towards cancer cells, its ability to induce apoptosis, and its relatively low toxicity towards normal cells warrant further investigation for its development as a novel therapeutic option.
Collapse
Affiliation(s)
- Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Abdulaziz A Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Usama Bhgat El-Gazzar
- Department of Medical Biochemistry, Damietta Faculty of Medicine, Al-Azhar University, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Elsherbiny A Elsherbiny
- Department of Biology, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU), 67663Kaiserslautern, Germany
| | - Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| |
Collapse
|
24
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
25
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
26
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
27
|
Silvestri B, Armanetti P, Pota G, Vitiello G, Pezzella A, Menichetti L, Giannini V, Luciani G. Enhanced Photoacoustic Response by Synergistic Ag-Melanin Interplay at the Core of Ternary Biocompatible Hybrid Silica-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46756-46764. [PMID: 37774145 PMCID: PMC10571004 DOI: 10.1021/acsami.3c13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisting of ternary hybrid nanoparticles with a silver core and a melanin component embedded into a silica matrix. Although preliminary evidence suggested a crucial role of the Ag sonophore and the melanin-containing nanoenvironment, whether and in what manner the PA response is controlled and affected by the self-structured hybrid nanosystems remained unclear. Because of their potential as multifunctional platforms for biomedical applications, a detailed investigation of the metal-polymer-matrix interplay underlying the PA response was undertaken to understand the physical and chemical factors determining the enhanced response and to optimize the architecture, composition, and performance of the nanoparticles for efficient imaging applications. Herein, we provide the evidence for a strong synergistic interaction between eumelanin and Ag which suggests an important role in the in situ-generated metal-organic interface. In particular, we show that a strict ratio between melanin and silver precursors and an accurate choice of metal nanoparticle dimension and the kind of metal are essential for achieving strong enhancements of the PA response. Systematic variation of the metal/melanin component is thus shown to offer the means of tuning the stability and intensity of the photoacoustic response for various biomedical and theranostic applications.
Collapse
Affiliation(s)
- Brigida Silvestri
- Department
of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Fuorigrotta, Naples, Italy
| | - Paolo Armanetti
- Institute
of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Giulio Pota
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
- CSGI,
Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande
Interfase, Sesto Fiorentino, via della Lastruccia 3, 50019 Firenze, Italy
| | - Alessandro Pezzella
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Institute
for Polymers, Composites and Biomaterials (IPCB), CNR, Via Campi Flegrei 34, I-80078 Pozzuoli (NA), Italy
- Department
of Physics Ettore Pancini, University of
Naples “Federico II” Via Cintia 4, I-80126 Naples, Italy
| | - Luca Menichetti
- Institute
of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Giannini
- Instituto
de Estructura de la Materia (IEM), Consejo Superior de Investigaciones
Científicas (CSIC), Serrano 121, Madrid 28006, Spain
- Technology
Innovation Institute, Building B04C, P.O. Box, Abu Dhabi 9639, United Arab Emirates
| | - Giuseppina Luciani
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
28
|
Umar A, Abid I, Elshikh MS, Dufossé L, Abdel-Azeem AM, Ali I. Agitation role (Dissolved Oxygen) in production of laccase from newly identified Ganoderma multistipitatum sp. nov. and its effect on mycelium morphology. BMC Microbiol 2023; 23:280. [PMID: 37784032 PMCID: PMC10544602 DOI: 10.1186/s12866-023-03009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Agitation speed influenced the production rate of laccase. Orbital speed not only influenced the enzyme production, but was also effective to dissolve the oxygen during growth of mycelium, spores, and chlamydospores. Shear effects of speed greatly influenced the morphology of mycelium. METHODS Ganoderma multistipitatum was identified by ITS marker. Phylogenetic tree was constructed for species identification. Qualitatively by plate method contained guaiacol indicator, while quantitatively by submerged fermentation and Central Composite Design applied on agitation parameter for maximum laccase potential of this species. The effects of agitation speed on mycelium morphology were observed under compound and scanning electron microscope. RESULTS Statistical optimization of agitation conditions were performed by using response surface methodology to enhance the production of laccase from Ganoderma multistipitatum sp. nov. Maximum laccase yield (19.44 × 105 ± 0.28 U/L) was obtained at 150 rpm grown culture, which was higher than predicted value of laccase production (19.18 × 105 U/L) under aerobic conditions (150 rpm). The 150 rpm provided the continuous flush of oxygen. The DO (dissolved oxygen) was maximum (65%) for "27 h" incubation at 150 rpm during laccase synthesis. The statistical value of laccase production was minimum under anaerobic or nearly static condition of 50 rpm. The predicted (12.78 × 105 U/L) and obtained (12.82 × 105 U/L) yield was low at 50 rpm. Optimization of orbital shaking for aeration conditions were performed by the use of "Response Surface Methodology". The submerged shaking flasks were utilized as a nutrients growth medium to maximize the production of laccase from G. multistipitatum. The minimum incubation time highly influenced the laccase yield from 7 to 15 days via utilization of less cost-effective medium under a promising and eco-friendly method. The morphological effects of rpm on mycelium were examined under compound and scanning electron microscopy. Higher rpm (200, 230) shear the mycelium, while 150 to 200 rpm exhibited smoother and highly dense branches of mycelia. CONCLUSION The shear forces of 200 rpm caused the damages of mycelium and cells autolysis with less laccase production. This study concluded that 150 rpm saved the life of mycelium and enhanced the production rate of enzymes.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), ESIROI Département agroalimentaire, Université de La Réunion, 15 avenue René Cassin, Saint-Denis, 97490, France
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, Republic of South Africa.
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
29
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
30
|
Suthar M, Dufossé L, Singh SK. The Enigmatic World of Fungal Melanin: A Comprehensive Review. J Fungi (Basel) 2023; 9:891. [PMID: 37754999 PMCID: PMC10532784 DOI: 10.3390/jof9090891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Synthetic dyes are generally not safe for human health or the environment, leading to the continuous search and growing demand for natural pigments that are considered safer, biodegrade more easily, and are environmentally beneficial. Among micro-organisms, fungi represent an emerging source of pigments due to their many benefits; therefore, they are readily viable on an industrial scale. Among all the bioactive pigments produced by fungi, melanin is an enigmatic, multifunctional pigment that has been studied for more than 150 years. This dark pigment, which is produced via the oxidative polymerization of phenolic compounds, has been investigated for its potential to protect life from all kingdoms, including fungi, from biotic and abiotic stresses. Over time, the research on fungal melanin has attracted a significant amount of scientific interest due to melanin's distinct biological activities and multifarious functionality, which is well-documented in the literature and could possibly be utilized. This review surveys the literature and summarizes the current discourse, presenting an up-to-date account of the research performed on fungal melanin that encompasses its types, the factors influencing its bioactivity, the optimization of fermentation conditions to enhance its sustainable production, its biosynthetic pathways, and its extraction, as well as biochemical characterization techniques and the potential uses of melanin in a wide range of applications in various industries. A massive scope of work remains to circumvent the obstacles to obtaining melanin from fungi and exploring its future prospects in a diverse range of applications.
Collapse
Affiliation(s)
- Malika Suthar
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (ChemBioPro), ESIROI Agroalimentaire, Université de La Réunion, F-97400 Saint-Denis, France
| | - Sanjay K. Singh
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| |
Collapse
|
31
|
Michael HSR, Subiramanian SR, Thyagarajan D, Mohammed NB, Saravanakumar VK, Govindaraj M, Maheswari KM, Karthikeyan N, Ramesh Kumar C. Melanin biopolymers from microbial world with future perspectives-a review. Arch Microbiol 2023; 205:306. [PMID: 37580645 DOI: 10.1007/s00203-023-03642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.
Collapse
Affiliation(s)
| | - Shri Ranjani Subiramanian
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Divyavaahini Thyagarajan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Nazneen Bobby Mohammed
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur Dist, Andhra Pradesh, India
| | | | - Mageswari Govindaraj
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | | | - Naresh Karthikeyan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Charu Ramesh Kumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| |
Collapse
|
32
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
33
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:622-631. [DOI: doi.org/10.1002/jobm.202200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l‐tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l‐tyrosine to l‐dihydroxyphenylalanine (l‐DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l‐DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA‐binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
34
|
Kim HD, Choi H, Abekura F, Park JY, Yang WS, Yang SH, Kim CH. Naturally-Occurring Tyrosinase Inhibitors Classified by Enzyme Kinetics and Copper Chelation. Int J Mol Sci 2023; 24:ijms24098226. [PMID: 37175965 PMCID: PMC10178891 DOI: 10.3390/ijms24098226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Currently, there are three major assaying methods used to validate in vitro whitening activity from natural products: methods using mushroom tyrosinase, human tyrosinase, and dopachrome tautomerase (or tyrosinase-related protein-2, TRP-2). Whitening agent development consists of two ways, melanin synthesis inhibition in melanocytes and downregulation of melanocyte stimulation. For melanin levels, the melanocyte cell line has been used to examine melanin synthesis with the expression levels of TRP-1 and TRP-2. The proliferation of epidermal surfaced cells and melanocytes is stimulated by cellular signaling receptors, factors, or mediators including endothelin-1, α-melanocyte-stimulating hormone, nitric oxide, histamine, paired box 3, microphthalmia-associated transcription factor, pyrimidine dimer, ceramide, stem cell factors, melanocortin-1 receptor, and cAMP. In addition, the promoter region of melanin synthetic genes including tyrosinase is upregulated by melanocyte-specific transcription factors. Thus, the inhibition of growth and melanin synthesis in gene expression levels represents a whitening research method that serves as an alternative to tyrosinase inhibition. Many researchers have recently presented the bioactivity-guided fractionation, discovery, purification, and identification of whitening agents. Melanogenesis inhibition can be obtained using three different methods: tyrosinase inhibition, copper chelation, and melanin-related protein downregulation. There are currently four different types of inhibitors characterized based on their enzyme inhibition mechanisms: competitive, uncompetitive, competitive/uncompetitive mixed-type, and noncompetitive inhibitors. Reversible inhibitor types act as suicide substrates, where traditional inhibitors are classified as inactivators and reversible inhibitors based on the molecule-recognizing properties of the enzyme. In a minor role, transcription factors can also be downregulated by inhibitors. Currently, the active site copper iron-binding inhibitors such as kojic acid and chalcone exhibit tyrosinase inhibitory activity. Because the tyrosinase catalysis site structure is important for the mechanism determination of tyrosinase inhibitors, understanding the enzyme recognition and inhibitory mechanism of inhibitors is essential for the new development of tyrosinase inhibitors. The present review intends to classify current natural products identified by means of enzyme kinetics and copper chelation to exhibit tyrosinase enzyme inhibition.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Republic of Korea
- Zoonotic and Vector Borne Disease Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - Woong-Suk Yang
- National Institute of Nanomaterials Technology (NINT), POSTECH, 77, Cheongam-ro, Nam-gu, Pohang-si 37676, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| |
Collapse
|
35
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
36
|
Islam ATMR, Shinzato K, Miyaoka H, Komaguchi K, Koike K, Arakawa K, Kitamura K, Tanaka N. Isolation and characterization of blackish-brown BY2-melanin accumulated in cultured tobacco BY-2 cells. Biosci Biotechnol Biochem 2023; 87:395-410. [PMID: 36592962 DOI: 10.1093/bbb/zbac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
The tobacco BY-2 cell line is one of the most utilized plant cell lines. After long-term culture, the cells turn brown to black, but the causal pigment is unknown. We successfully isolated a blackish-brown pigment from BY-2 cells cultured for 3 weeks. Morphological and spectroscopic analyses indicated that the pigment had similar features to a melanin-like substance reported previously. Furthermore, physicochemical analyses revealed that this pigment possessed most of the properties of melanin-like pigments. In addition, the high nitrogen content suggested that it differed from common plant melanins classified as allomelanins, suggesting a novel eumelanin-like pigment: "BY2-melanin". This is the first example showing that eumelanin-like pigments are produced in the cultures of plant cells for which the accumulation of melanin has not been reported. This tobacco BY-2 cell culture technique may represent a customizable and sustainable alternative to conventional melanin production platforms, with significant potential for industrial and pharmacological applications.
Collapse
Affiliation(s)
- Abul Taher Mohammed Rafiqul Islam
- Genome Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Botany, Faculty of Biosciences, University of Barishal, Barishal 8254, Bangladesh
| | - Keita Shinzato
- Advanced Materials Division, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroki Miyaoka
- Advanced Materials Division, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Komaguchi
- Materials Analytical Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kanae Koike
- Facility Management Division, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Arakawa
- Cell Biochemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Kitamura
- Genome Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Gene Science, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nobukazu Tanaka
- Genome Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Gene Science, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
37
|
Biopigments of Microbial Origin and Their Application in the Cosmetic Industry. COSMETICS 2023. [DOI: 10.3390/cosmetics10020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Along with serving as a source of color, many microbial pigments have gained attention as interesting bioactive molecules with potential health advantages. These pigments have several applications in the food, agrochemical, medicine, and cosmetic industries. They have attracted the attention of these industries due to their high production value, low cost, stability, and biodegradability. Recently, many consumers worldwide have noted the impact of synthetic dyes; thus, natural pigments are more in demand than synthetic colors. On the other hand, the cosmetic industry has been moving toward greener manufacturing, from the formulation to the packaging material. Microbial pigments have several applications in the field of cosmetics due to their photoprotection, antioxidant, and antiaging properties, including inhibiting melanogenesis and acting as natural colorants for cosmetics, as some microorganisms are rich in pigments. More investigations are required to estimate the safety and efficacy of employing microbial pigments in cosmetic products. Furthermore, it is necessary to obtain information about DNA sequencing, metabolic pathways, and genetic engineering. In addition, unique habitats should be explored for novel pigments and new producing strains. Thus, new microbial pigments could be of consideration to the cosmetic industry, as they are ideal for future cosmetics with positive health effects.
Collapse
|
38
|
Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent Advances and Progress on Melanin: From Source to Application. Int J Mol Sci 2023; 24:4360. [PMID: 36901791 PMCID: PMC10002160 DOI: 10.3390/ijms24054360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.
Collapse
Affiliation(s)
- Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
39
|
D’Amora U, Ronca A, Scialla S, Soriente A, Manini P, Phua JW, Ottenheim C, Pezzella A, Calabrese G, Raucci MG, Ambrosio L. Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:772. [PMID: 36839140 PMCID: PMC9963483 DOI: 10.3390/nano13040772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally derived eumelanin extracted from the black soldier fly (BSF-Eumel), or hydroxyapatite nanoparticles (HAp), synthesized by the sol-gel method. Different ink formulations based on GGMA (2 and 4% (w/v)), BSF-Eumel, at a selected concentration (0.3125 mg/mL), or HAp (10 and 30% wHAp/wGGMA) were developed and processed by three-dimensional (3D) printing. All the functionalized GGMA-based ink formulations allowed obtaining 3D-printed GGMA-based scaffolds with a well-organized structure. For both bioactive signals, the scaffolds with the highest GGMA concentration (4% (w/v)) and the highest percentage of infill (45%) showed the best performances in terms of morphological and mechanical properties. Indeed, these scaffolds showed a good structural integrity over 28 days. Given the presence of negatively charged groups along the eumelanin backbone, scaffolds consisting of GGMA/BSF-Eumel demonstrated a higher stability. From a mechanical point of view, GGMA/BSF-Eumel scaffolds exhibited values of storage modulus similar to those of GGMA ones, while the inclusion of HAp at 30% (wHAp/wGGMA) led to a storage modulus of 32.5 kPa, 3.5-fold greater than neat GGMA. In vitro studies proved the capability of the bioactivated 3D-printed scaffolds to support 7F2 osteoblast cell growth and differentiation. BSF-Eumel and HAp triggered a different time-dependent physiological response in the osteoblasts. Specifically, while the ink with BSF-Eumel acted as a stimulus towards cell proliferation, reaching the highest value at 14 days, a higher expression of alkaline phosphatase activity was detected for scaffolds consisting of GGMA and HAp. The overall findings demonstrated the possible use of these biomaterial inks for 3D-printed bone tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Jun Wei Phua
- Insectta, 60 Jalan Penjara, Singapore 149375, Singapore
| | | | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
40
|
Muzata TS, Gebrekrstos A, Orasugh JT, Ray SS. An overview of recent advances in polymer composites with improved
UV
‐shielding properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tanyaradzwa S. Muzata
- Department of Polymer Technology and Engineering Harare Institute of Technology Harare Zimbabwe
| | - Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
41
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023. [PMID: 36734183 DOI: 10.1002/jobm.202200692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
42
|
Volkov VV, Sadaf A, Perry CC. Raman microscopy tracks maturity of melanin intermediates in Botrytis cinerea, a plant pathogen. RSC Adv 2023; 13:1381-1391. [PMID: 36686955 PMCID: PMC9817083 DOI: 10.1039/d2ra06439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
We use Raman microscopy to describe the structure and chemical composition of both conidiophore and hyphae of Botrytis cinerea, a common plant pathogen. To interpret experimental data, we use density functional theory (DFT) to compute Raman tensors specific to an important fungal glycopeptide, a segment of α-chitin, and several naphthalene-based precursors of increasing complexity, which we propose play a role in the melanin synthesis pathway. Using spectral interpretations based on quantum chemical validation, we review microscopy images reconstructed for specific Raman activities and describe differences in distributions of structural components, photo-protective secondary naphthalene-based pigments, and proteins in both spores and hyphal filaments. Comparison of our results with literature data on other fungi suggests an example of convergent evolution expressed at the level of secondary metabolites specific to plant pathogenic fungi. Our results indicate that pre-resonant Raman monitoring of melanin precursors may help assessment of local Botrytis population biology to aid agricultural production.
Collapse
Affiliation(s)
- Victor V. Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| | - Ayesha Sadaf
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| | - Carole C. Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| |
Collapse
|
43
|
Lino V, Manini P, Galeotti M, Salamone M, Bietti M, Crescenzi O, Napolitano A, d'Ischia M. Antioxidant Activities of Hydroxylated Naphthalenes: The Role of Aryloxyl Radicals. Chempluschem 2023; 88:e202200449. [PMID: 36680302 DOI: 10.1002/cplu.202200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Herein is delineated a first systematic framework for the definition of structure-antioxidant property relationships in the dihydroxynaphthalene (DHN) series. The results obtained by a combined experimental and theoretical approach revealed that 1,8-DHN is the best performing antioxidant platform, with its unique hydrogen-bonded peri-hydroxylation pattern contributing to a fast H atom transfer process. Moreover, the comparative analysis of the antioxidant properties of DHNs carried out by performing DPPH and FRAP assays and laser flash photolysis experiments, revealed the higher antioxidant power associated with an α-substitution pattern (i. e. in 1,8- and 1,6-DHN) with respect to DHNs exhibiting a β-substitution pattern (i. e. in 2,6- and 2,7-DHN). DFT calculations and isolation and characterization of the main oligomer intermediates formed during the oxidative polymerization of DHNs supported this evidence by providing unprecedented insight into the generation and fate of the intermediate naphthoxyl radicals, which emerged as the main factor governing the antioxidant activity of DHNs.
Collapse
Affiliation(s)
- Valeria Lino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
44
|
Medeiros WB, Medina KJD, Sponchiado SRP. Improved natural melanin production by Aspergillus nidulans after optimization of factors involved in the pigment biosynthesis pathway. Microb Cell Fact 2022; 21:278. [PMID: 36585654 PMCID: PMC9801647 DOI: 10.1186/s12934-022-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Melanin is a natural pigment that can be applied in different fields such as medicine, environment, pharmaceutical, and nanotechnology. Studies carried out previously showed that the melanin produced by the mel1 mutant from Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities, without any cytotoxic or mutagenic effect. These results taken together suggest the potential application of melanin from A. nidulans in the pharmaceutical industry. In this context, this study aimed to evaluate the effect of factors L-tyrosine, glucose, glutamic acid, L-DOPA, and copper on melanin production by the mel1 mutant and to establish the optimal concentration of these factors to maximize melanin production. RESULTS The results showed that L-DOPA, glucose, and copper sulfate significantly affected melanin production, where L-DOPA was the only factor that exerted a positive effect on melanin yield. Besides, the tyrosinase activity was higher in the presence of L-DOPA, considered a substrate required for enzyme activation, this would explain the increased production of melanin in this condition. After establishing the optimal concentrations of the analyzed factors, the melanin synthesis was increased by 640% compared to the previous studies. CONCLUSIONS This study contributed to elucidating the mechanisms involved in melanin synthesis in A. nidulans as well as to determining the optimal composition of the culture medium for greater melanin production that will make it possible to scale the process for a future biotechnological application.
Collapse
Affiliation(s)
- William Bartolomeu Medeiros
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
- Division of Microbial Resources - Research Center for Agriculture, Biology, and Chemical, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Kelly Johana Dussán Medina
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
45
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
46
|
D’Amora U, Soriente A, Ronca A, Scialla S, Perrella M, Manini P, Phua JW, Ottenheim C, Di Girolamo R, Pezzella A, Raucci MG, Ambrosio L. Eumelanin from the Black Soldier Fly as Sustainable Biomaterial: Characterisation and Functional Benefits in Tissue-Engineered Composite Scaffolds. Biomedicines 2022; 10:biomedicines10112945. [PMID: 36428512 PMCID: PMC9687302 DOI: 10.3390/biomedicines10112945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
An optimized extraction protocol for eumelanins from black soldier flies (BSF-Eumel) allows an in-depth study of natural eumelanin pigments, which are a valuable tool for the design and fabrication of sustainable scaffolds. Here, water-soluble BSF-Eumel sub-micrometer colloidal particles were used as bioactive signals for developing a composite biomaterial ink for scaffold preparation. For this purpose, BSF-Eumel was characterized both chemically and morphologically; moreover, biological studies were carried out to investigate the dose-dependent cell viability and its influence on human mesenchymal stem cells (hMSCs), with the aim of validating suitable protocols and to find an optimal working concentration for eumelanin-based scaffold preparation. As proof of concept, 3D printed scaffolds based on methacrylated hyaluronic acid (MEHA) and BSF-Eumel were successfully produced. The scaffolds with and without BSF-Eumel were characterized in terms of their physico-chemical, mechanical and biological behaviours. The results showed that MEHA/BSF-Eumel scaffolds had similar storage modulus values to MEHA scaffolds. In terms of swelling ratio and stability, these scaffolds were able to retain their structure without significant changes over 21 days. Biological investigations demonstrated the ability of the bioactivated scaffolds to support the adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
- Correspondence: (A.R.); (P.M.)
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
| | - Martina Perrella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (A.R.); (P.M.)
| | - Jun Wei Phua
- Insectta, 60 Jalan Penjara, Singapore 149375, Singapore
| | | | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80135 Naples, Italy
| |
Collapse
|
47
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
48
|
Liu W, Yu Y, Cheng W, Zhou M, Cui L, Wang P, Wang Q. Melanin-like nanoparticles loaded with Ag NPs for rapid photothermal sterilization and daily protection of textiles. Colloids Surf B Biointerfaces 2022; 219:112829. [PMID: 36137339 DOI: 10.1016/j.colsurfb.2022.112829] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
The dual-function antibacterial and photothermal melanin-like nanoparticles (Ag NPs@Fe3+-SMNPs) were prepared and used for fabric modification. The modified fabric had excellent photothermal and antibacterial performance. By Xenon lamp irradiation, the temperature of the fabric surface rises rapidly to over 80 °C in 30 s. The modified fabric had the photothermal sterilization rates of 99% against E. coli or S. aureus after 10 min of Xenon lamp irradiation. Meanwhile, Ag NPs provided excellent antibacterial properties to the modified fabric used in daily life, and the antibacterial rate of the modified fabric was 99%. Additionally, the modified fabric showed excellent air and moisture permeability, and had excellent photothermal and antibacterial properties after 20 times of washing and 100 times of rubbing. The modified fabric was modified with the antibacterial and photothermal dual-function melanin-like nanoparticles, showing great potential in personal protective equipment (such as masks) to meet people's needs in the future.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
49
|
Characterization of Physicochemical Properties of Melanin Produced by Gluconobacter oxydans FBFS 97. FERMENTATION 2022. [DOI: 10.3390/fermentation8110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to characterize melanin pigment extracted from Gluconobacter oxydans FBFS 97. After 14 days of culture at 28 °C in GY (glucose and yeast extract) liquid-state medium, G. oxydans FBFS97 produce the maximum melanin, up to about 12–15 mg/L. The physicochemical characteristics of the extracted melanin showed an ability to dissolve in 1 mol/L NaOH or 1 mol/L KOH, and insolubility in water and most organic solvents, such as chloroform and petroleum ether. The extracted melanin was confirmed to be exact melanin by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectroscopy, thin-layer chromatography, elemental analysis, and scanning electron microscopy. The UV-visible spectrum of G. oxydans FBFS97 exhibited a maximum absorption peak at 230 nm. Extracted melanin demonstrated significant free radical-scavenging activity by DPPH and ABTS methods. The IC50 value of the extracted melanin for scavenging 50% DPPH radicals was 36.94 μg/mL, and the IC50 value of antioxidant activity for ABTS was 4.06 μg/mL. Hence, G. oxydans FBFS97 has the potential to be a new candidate for melanin production.
Collapse
|
50
|
Markiewicz E, Idowu OC. Evaluation of Personalized Skincare Through in-silico Gene Interactive Networks and Cellular Responses to UVR and Oxidative Stress. Clin Cosmet Investig Dermatol 2022; 15:2221-2243. [PMID: 36284733 PMCID: PMC9588296 DOI: 10.2147/ccid.s383790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Purpose Personalized approaches in dermatology are designed to match the specific requirements based on the individual genetic makeup. One major factor accounting for the differences in skin phenotypes is single nucleotide polymorphism (SNP) within several genes with diverse roles that extend beyond skin tone and pigmentation. Therefore, the cellular sensitivities to the environmental stress and damage linked to extrinsic aging could also underlie the individual characteristics of the skin and dictate the unique skin care requirements. This study aimed to identify the likely biomarkers and molecular signatures expressed in skin cells of different ethnic backgrounds, which could aid further the design of personalized skin products based on specific demands. Methods Using data mining and in-silico modeling, the association of SNP-affected genes with three major skin types of European, Asian and African origin was analyzed and compared within the structure-function gene interaction networks. Cultured dermal fibroblasts were subsequently subjected to ultraviolet radiation and oxidative stress and analyzed for DNA damage and senescent markers. The protective applications of two cosmetic ingredients, Resveratrol and Quercetin, were validated in both cellular and in-silico models. Results Each skin type was characterized by the presence of SNPs in the genes controlling facultative and constitutive pigmentation, which could also underlie the major differences in responses to photodamage, such as oxidative stress, inflammation, and barrier homeostasis. Skin-type-specific dermal fibroblasts cultured in-vitro demonstrated distinctive sensitivities to ultraviolet radiation and oxidative stress, which could be modulated further by the bioactive compounds with the predicted capacities to interact with some of the genes in the in-silico models. Conclusion Evaluation of the SNP-affected gene networks and likely sensitivities of skin cells, defined as low threshold levels to extrinsic stress factors, can provide a valuable tool for the design and formulation of personalized skin products that match more accurately diverse ethnic backgrounds.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| | - Olusola C Idowu
- Hexis Lab, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK,Correspondence: Olusola C Idowu, HexisLab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK, Tel +44 1394 825487, Email
| |
Collapse
|