1
|
Ye C, Li Y, Shi J, He L, Shi X, Yang W, Lei W, Quan S, Lan X, Liu S. Network pharmacology analysis revealed the mechanism and active compounds of jiao tai wan in the treatment of type 2 diabetes mellitus via SRC/PI3K/AKT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118898. [PMID: 39374878 DOI: 10.1016/j.jep.2024.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao-tai-wan (JTW) is a traditional Chinese herbal prescription, exerts its therapeutic effects on type 2 diabetes mellitus (T2DM). However, its mechanisms and active components remain unclear. AIM OF THE STUDY To investigate the therapeutic mechanisms of JTW in treating type 2 diabetes mellitus (T2DM), focusing on identifying active components, their targets, and validating efficacy through SRC/PI3K/AKT signaling pathway modulation in vitro and in vivo. MATERIALS AND METHODS Active ingredients were retrieved from the Traditional Chinese Medicine System Pharmacology (TCMSP) and Comprehensive Traditional Chinese Medicine Database (TCMID). Targets for these components were identified using the ChemMapper database based on 3D structural similarity. T2DM-related genes were sourced from the DisGeNET and Gene Expression Omnibus (GEO) databases. Protein-protein interaction (PPI) analysis and functional enrichment analysis were conducted to construct a pathway network of "herbs-active ingredients-candidate targets", identifying core molecular mechanisms and key active ingredients. SwissDock was used for molecular docking to predict ligands for candidate targets. The diabetic models were established using C57BL/6 mice and human liver HepG2 cell lines. Their Effectiveness and key molecules were verified through biochemical detection and immunoblotting. RESULTS Total 30 active compounds, 597 active ingredient targets, 9631 T2DM-related genes, and 521 overlapping candidate targets were found for JTW on T2DM. Go enrichment indicated the core pathways enriched on insulin and glucose metabolism. The auto-docking demonstrated SRC has potential binds to ingredients of JTW. In vivo, JTW can reduce blood glucose, and blood lipid levels, and HOMA-IR, and increase HOMA-ISI levels in T2DM mice with reduced ALT, AST, MDA levels and increased SOD levels. Meanwhile, decreased phosphorylation of SRC, along with increased levels of phosphorylated PI3K, PI3K, and phosphorylated AKT, were observed. HE staining of liver tissues further confirmed that JTW administration improved liver morphology, reducing inflammation and necrosis. In vitro, JTW significantly ameliorates upstream dysregulation by reducing SRC phosphorylation while enhancing phosphorylated PI3K, PI3K, and AKT phosphorylation levels. CONCLUSION JTW may alleviate glucose, insulin resistance, and lipid metabolism disorders by the SRC/PI3K/AKT signaling pathway, that provide a novel view of potential active compounds and essential targets in treating T2DM.
Collapse
Affiliation(s)
- Cunsi Ye
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jiayin Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Liena He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Xinyan Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wei Yang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| |
Collapse
|
2
|
Ben Selma W, Ferjeni S, Farouk A, Marzouk M, Boukadida J. Antimicrobial activity of Cinnamomum zeylanicum essential oil against colistin-resistant gram-negative bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:169-181. [PMID: 38695857 DOI: 10.1080/09603123.2024.2348094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 01/02/2025]
Abstract
In the current study, we evaluated the antimicrobial activity of Cinnamomum zeylanicum Blume essential oil (Cinn-EO) against a group of thirteen clinical colistin-resistant Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The GCMS analysis showed that cinnamaldehyde was the major compound (94.29%) of the Cinn-EO. The diameter of the inhibition zone by Cinn-EO varied from 24 to 37 mm. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values ranged between 0.625 and 5 mg/mL. Interestingly, the MBC/MIC was equal to 1 for most tested bacterial strains, indicating an advanced bactericidal effect of Cinn-EO against colistin-resistant Gram-negative bacteria. The absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction showed good pharmacokinetic properties of the tested cinnamaldehyde. The results suggest that cinnamaldehyde could be a potential alternative to treat infection caused by colistin-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Walid Ben Selma
- Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Sana Ferjeni
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Center, Cairo, Egypt
| | - Manel Marzouk
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Jalel Boukadida
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
3
|
Wu J, Jia W, Min D, Yang G. Cinnamon for Metabolic Diseases and Their Cardiovascular and Hepatic Complications: A Mechanistic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2403-2421. [PMID: 39702975 DOI: 10.1142/s0192415x24500915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cinnamon is one of the world's oldest and most popular spices, and is derived from the inner bark of several tree species from the genus Cinnamomum. During the last two decades, cinnamon has demonstrated beneficial metabolic effects not only in animal experiments but also in clinical trials. Even recent meta-analyses have shown the protective effects of cinnamon on different components of metabolic syndrome and their complications. In the last 5 years, several experimental studies have unraveled the intricate molecular mechanisms underlying the antihypertensive, antihyperglycemic, lipid-lowering, weight-lowering, and cardioprotective properties of cinnamon. This review paper will discuss how cinnamon and its active components, particularly cinnamaldehyde, suppress inflammation and oxidative stress, modulate mitochondrial dysfunction, and regulate glucose uptake, insulin resistance, lipogenesis, beta-oxidation, Ca2+ signaling, and other cellar events at the molecular level. Specifically, we will delve into the molecular mechanisms involved in the metabolic effects of cinnamon to provide a deeper insight into how cinnamon can bring such beneficial effects. This review hopes to encourage the use of cinnamon in clinical settings, guide the combination of cinnamon with other drugs used to treat different components of metabolic syndrome based on their mechanism of action, and support the concept of complementary medicine for metabolic diseases.
Collapse
Affiliation(s)
- Junpeng Wu
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Wenhan Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Dongyu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Guanlin Yang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| |
Collapse
|
4
|
Mahmoud VL, Shayesteh R, Foong Yun Loh TK, Chan SW, Sethi G, Burgess K, Lee SH, Wong WF, Looi CY. Comprehensive review of opportunities and challenges of ethnomedicinal plants for managing type 2 diabetes. Heliyon 2024; 10:e39699. [PMID: 39687111 PMCID: PMC11648782 DOI: 10.1016/j.heliyon.2024.e39699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetes mellitus is a prevalent metabolic disorder worldwide. A variety of antidiabetic medications have been developed to help manage blood glucose levels in diabetic patients, but adverse reactions and efficacy loss over time have spurred research into new therapeutic agents. In view of this, investigations into the antidiabetic effect of herbal products have been encouraged due to their potential availability, inexpensiveness, and relatively minimal side effects. This review explores the antidiabetic potentials of the eight most promising medicinal plants in terms of molecular mechanisms, phytochemistry, toxicology, and efficacy. These plant extracts have gone through clinical trials and demonstrated good control of blood glucose levels by increasing serum insulin levels, enhancing tissue glucose uptake, and/or decreasing intestinal glucose uptake. Yet, medicinal plants are far from being able to replace conventional antidiabetic drugs for patient management but they have the potential for further development if rigorous clinical trials on their mechanisms, delivery, and dose regimen are performed. To date, no study has been performed to isolate and characterize active compounds in these plant extracts, suggesting that further investigations in this area would be the next step to advance this field.
Collapse
Affiliation(s)
- Valizadeh Lakeh Mahmoud
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ramtin Shayesteh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sook Wah Chan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Food Security & Nutrition Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX, 77842, USA
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| |
Collapse
|
5
|
Refaei M, Karami Z, Kazemi F, Moradkhani S, Masoumi SZ, Jenabi E, Jafari M. Cinnamon potential in alleviating early postmenopause symptoms: a randomized clinical trial. Menopause 2024; 31:1078-1084. [PMID: 39579099 DOI: 10.1097/gme.0000000000002444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
OBJECTIVE Menopause is a substantial physical, mental, and emotional transition in a woman's life. Most women suffer symptoms during menopause, impacting their quality of life for a decade or more. This study aimed to determine the effect of cinnamon on the severity of postmenopause symptoms. METHODS A randomized, triple-blind, parallel clinical trial was conducted on 60 postmenopausal women in the health centers of Hamadan, Iran. The study included women aged 45 to 60 years who were 1 to 3 years after their last menstrual period. The participants were assigned to two groups using a permuted block randomization method. The intervention group received a daily dose of one cinnamon capsule (1 g) for 2 months, whereas the control group received a placebo. The participants, researchers, and statistical analysts were all blinded. The study measured the severity of menopause symptoms using the Menopause Rating Scale before and 2 months later. Data were analyzed using Stata-13 software. RESULTS Data from 59 individuals were analyzed. The analyses were adjusted for baseline Menopause Rating Scale scores. After the intervention, the severity of menopause symptoms was lower in the intervention group (13.95 ± 4.16) compared to the control group (16.64 ± 4.16) (P = 0.01), with an effect size of 0.65 (95% CI, 0.12-1.17). Additionally, the intervention group had lower scores for psychological symptoms compared to the control group (P = 0.006), with an effect size of 0.74 (95% CI, 0.21-1.27). CONCLUSIONS The consumption of cinnamon in postmenopausal women has been found to improve the severity of menopause symptoms, with a particular emphasis on the psychological domain.
Collapse
Affiliation(s)
- Mansoureh Refaei
- From the Department of Mother and Child Health, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Karami
- From the Department of Mother and Child Health, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farideh Kazemi
- Department of Midwifery and Reproductive Health, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedeh Zahra Masoumi
- Department of Midwifery and Reproductive Health, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mobina Jafari
- From the Department of Mother and Child Health, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Cinnamaldehyde-Mediated Suppression of MMP-13, COX-2, and IL-6 Through MAPK and NF-κB Signaling Inhibition in Chondrocytes and Synoviocytes Under Inflammatory Conditions. Int J Mol Sci 2024; 25:12914. [PMID: 39684628 DOI: 10.3390/ijms252312914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory disorders encompass a range of conditions, including osteoarthritis (OA), characterized by the body's heightened immune response to diverse stimuli. OA is a prevalent degenerative joint disease characterized by the progressive deterioration of joint cartilage and subchondral bone, leading to pain, limited mobility, and physical disability. Synovitis, the inflammation of the synovial membrane, is increasingly recognized as a critical factor in OA pathogenesis and progression. This study evaluates the therapeutic potential of cinnamaldehyde (CA), a bioactive compound derived from cinnamon, on synovial and articular inflammation in OA. Given CA's established anti-inflammatory, antioxidant, and antibacterial properties, this research explores its specific impact on OA and synovitis. The cytotoxicity of CA was assessed using a CCK-8 assay in human IL-1β pretreated chondrocytes and synoviocytes, which serve as in vitro models of OA and synovitis. The study further examined the effects of CA on the expression of proinflammatory cytokines, including IL-6, COX-2, and TNF-α, utilizing multiple analytical techniques. Additionally, the production of matrix metalloproteinases (MMP-3 and MMP-13) and the activation of the NF-κB signaling pathway, particularly the phosphorylation of p65 (pp65), were investigated. The role of the NF-κB inhibitor 5HPP-33 and its downstream effects on gene expression, including COX-2 and IL-6, as well as the MAPK pathway components (p38, ERK, and JNK), were also explored. An MEK inhibitor (U0126) was employed to assess its downstream impact on COX-2 and IL-6 expressions. The results demonstrated that CA significantly inhibited the expression of proinflammatory cytokines and suppressed NF-κB activation in IL-1β pretreated chondrocytes and synoviocytes. These findings suggest that CA, in a dose-dependent manner, may serve as an effective therapeutic agent for preventing OA and synovitis, offering valuable insights into its potential role in managing synovial inflammation and OA.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 519-763, Jeollanam-do, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| |
Collapse
|
7
|
Samreen, Siddiqui SA, Ahmad I. Harnessing anti-infective efficacy of Cinnamomum verum in synergy with β-lactam and fluoroquinolones drugs to combat virulence and biofilms of Pseudomonas aeruginosa PAO1. Microb Pathog 2024; 197:107097. [PMID: 39489355 DOI: 10.1016/j.micpath.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Multidrug resistance (MDR) Gram-negative bacteria are increasingly resistant to multiple antibiotics, posing a serious challenge to infection control and treatment. Combining plant-derived bioactives with antibiotics offers a promising approach to overcome the challenges posed by MDR pathogens like Pseudomonas aeruginosa. This study investigated the synergistic effects of Cinnamomum verum with beta-lactam and fluoroquinolones against P. aeruginosa PAO1. The ethyl acetate fraction of C. verum (CVEF) was obtained through fractionation in organic solvents with progressively higher polarity. The interaction of CVEF with selected antibiotics was assessed by checkerboard synergy assay. The effects of synergistic combinations on pyocyanin, pyoverdine, protease, EPS production, and biofilm development were measured using spectroscopic assays. CVEF combined with cefepime, ceftazidime, and levofloxacin significantly enhanced antibacterial efficacy with FICIs between 0.156 and 0.5. The most active combinations i.e., CVEF-cefepime and CVEF-ceftazidime inhibited viable cell count of growth by 3.6 and 4.2 log10 CFU/ml respectively. The combination also inhibited virulence factors (>75 %) and biofilms (>80 %) at lower 1/2 × FICs. The viable count of biofilm cells was also reduced from 6.4 to 3.3 and 3.6 log10 CFU/ml. Membrane permeability was decreased by 60.34 % and biofilm cell viability by 22.53-38.44 %. Key phytochemicals analyzed by GC/MS and LC/MS/MS, include cinnamaldehyde, trans-chlorogenic acid, quercetin, and quercetin 3'-O-glucuronide. In molecular docking investigations, quercetin 3'-O-glucuronide had the highest binding affinity with quorum sensing (QS) and biofilm-associated protein. The findings suggest CVEF, in combination with antibiotics, effectively targets resistance phenotypes of P. aeruginosa, impairing growth, virulence, and biofilms. This supports further research into natural compounds alongside antibiotics to treat drug-resistant infections.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Shirjeel Ahmad Siddiqui
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
8
|
Mottaghi M, Karami P, Hesari Z, Nemati S, Mohammad Rahimi H, Mirjalali H. Evaluation of anti-Toxoplasma effects of solid lipid nanoparticles carrying Cinnamon zeylanicum and Moringa oleifera oil extracts. BMC Complement Med Ther 2024; 24:375. [PMID: 39449016 PMCID: PMC11515455 DOI: 10.1186/s12906-024-04677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The fabrication of anti-Toxoplasma drugs with less side effects and desirable efficacy is one of the important research goals facing with toxoplasmosis. This study aimed to determine the anti-Toxoplasma effects of Cinnamon zeylanicum (CZ), Moringa oleifera (MO) oil encapsulated into solid lipid nanoparticles (SLNs). METHODS Vero cells were cultured with serial concentrations (1 mg/mL to 100 µg/mL) of CZ-SLNs and MO-SLNs in DMEM culture medium. The morphological, physical, and chemical features of nanoparticles were calculated. The cell viability assays and anti-T. gondii effects of CZ-SLNs and MO-SLNs were evaluated. The CC50 and IC50 indices of SLNs-enveloped extracts were calculated. RESULTS The particle sizes of MO-SLNs and CZ-SLNs were 411.5 and 365 nm, while PDI indices were 0.53 and 0.7, respectively. Transmission electron microscopy (TEM) showed that both MO-SLNs and CZ-SLNs were smoothed spherical nanoparticles with rounded edges. The cytotoxicity assay showed the CC50 value of MO-SLNs at concentrations of ˃10 mg/mL. In addition, 60% of T. gondii-infected Vero cells remained alive at the concentrations ≤ 1 mg/ml, while the MO-SLNs killed at least 90% of T. gondii tachyzoites with an IC50 > 1 µg/ml. The cytotoxicity of CZ-SLNs extract showed the CC50 at the concentration 0.1 mg/mL. More than 50% of Vero cells, infected with T. gondii tachyzoites, survived at a concentration less than 0.1 mg/mL (IC50 ˂ 0.1 mg/mL), while the CZ-SLNs killed at least 85% of T. gondii tachyzoites in all concentrations. CONCLUSION The current results represented that the use of SLNs as a nano-carrier for M. oleifera and C. zeylanicum could kill T. gondii tachyzoites with low cytotoxicity, suggesting the effectiveness of these nano-emulsions along with the chemical agents in the treatment of Toxoplasma.
Collapse
Affiliation(s)
- Mahsa Mottaghi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Karami
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Guilan, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Elshahawy MF, Mohamed RD, Ali AEH, Raafat AI, Ahmed NA. Electron beam irradiation developed cinnamon oil- (polyvinyl alcohol/gum tragacanth)/graphene oxide dressing hydrogels: Antimicrobial and healing assessments. Int J Biol Macromol 2024; 277:134384. [PMID: 39098683 DOI: 10.1016/j.ijbiomac.2024.134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to develop hydrogel dressings for wound healing composed of gum tragacanth (TG) and polyvinyl alcohol (PVA) loaded with Graphene oxide (GO) and Cinnamon oil (CMO) using electron beam irradiation. The impact of the preparation conditions and the incorporation of GO and CMO on the characteristic properties of the prepared CMO-(PVA/TG)-GO wound dressings was evaluated. The healing-related characteristics were assessed, including fluid absorption and retention, water vapor transmission rate (WVTR), hemolytic assay, and antimicrobial potential. Wound healing efficacy was evaluated using a scratch wound healing assay. FTIR analysis verified the chemical structure, whereas scanning electron microscopy demonstrated an appropriate porosity structure necessary for optimal wound healing. The gel content increases with the initial total polymer concentration and the irradiation dose increases. Higher GO and CMO content improve the gel content and decreases swelling. WVTR decreases with the rise in CMO content. In vitro, cytotoxicity and hemolytic potency assessments confirmed their biocompatibility. The incorporation of GO and CMO enhances the antimicrobial activity and wound-healing capability. Based on the above findings, CMO-(PVA/TG)-GO dressings show promising potential as candidates for wound care.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Randa D Mohamed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
11
|
Bakhach H, Nuffer M, Tall Bull S, Nuffer W. A Systematic Review Evaluating Cinnamon's Effects on Glucose Utilizing a Ranking System to Assess Bias and Study Quality. J Med Food 2024; 27:814-823. [PMID: 38466959 DOI: 10.1089/jmf.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the context of diabetes, the use of cinnamon continues to be among the most popular supplements taken by patients for glucose control. To strategically evaluate the available literature comparing various cinnamon species and statistically significant glucose effects after ranking studies based on two tools to assess bias and overall study quality, to clarify cinnamon's role in glucose control. The authors performed a systematic search based upon PRISMA guidelines. The search was conducted utilizing PubMed, AMED, CINAHL, EMBASE, Cochrane, and Medline databases, with the final search performed in September 2022 with restrictions to human subjects and English language. Electronic searches were conducted utilizing the keywords "diabetes mellitus" combined with Cinnamomum zeylanicum/Cinnamomum cassia/Cinnamomum verum combined with blood glucose (BG). A second search utilized "cinnamomum zeylanicum/cinnamomum cassia/cinnamomum verum" combined with "blood glucose," and a final search utilized "diabetes mellitus" combined with "cinnamon." Data extraction and ranking of included studies utilizing the risk of bias 2 tool and modified Heyland Methodological Quality Scoring tool were performed independently by two review authors. These authors compared their results and reconciled any differences in scoring to generate a final ranking of studies. A third author was available for any discrepancies that could not be resolved but was not needed. Forty-five studies were included in the review and were scored for bias and quality. Overall 62% demonstrated statistical significance for positive effects in at least one parameter around BG control. Applying the ranking systems reduced the percentage closer to 50%. Safety was extremely well documented across studies with few adverse effects. Results are limited by heterogeneity of glucose parameters, leading to studies being ranked individually and not synthesized. Cinnamon supplementation likely has a modest positive effect on BG. Based upon the strong safety profile, utilization of this spice as an adjunct to pharmacologic therapy is reasonable.
Collapse
Affiliation(s)
- Hebat Bakhach
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Monika Nuffer
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Shasta Tall Bull
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Wesley Nuffer
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| |
Collapse
|
12
|
da Silva ASR, Fernandes CC, Dos Santos DA, Mazza MCM, Silva JBA, Magalhães LG, Pires RH, Miranda MLD, Crotti AEM. Antileishmanial and Antifungal Activities of Volatile Oils from Cinnamomum Cassia Bark and Schinus Molle Leaves. Chem Biodivers 2024; 21:e202401076. [PMID: 38899851 DOI: 10.1002/cbdv.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
This study reports on the chemical composition and antileishmanial and anticandidal activities of volatile oils (VOs) of Schinus molle dried leaves (SM), Cinnamomum cassia branch bark (CC) and their blends. Major constituents of SM were spathulenol (26.93 %), β-caryophyllene (19.90 %), and caryophyllene oxide (12.69 %), whereas (E)-cinnamaldehyde (60.11 %), cinnamyl acetate (20.90 %) and cis-2-methoxycinnamic acid (10.37 %) were predominant in CC. SM (IC50=21.45 μg/mL) and CC (IC50=23.27 μg/mL) displayed good activity against L. amazonensis promastigotes, besides having good or moderate activity against nine Candida strains, with Minimum Inhibitory Concentration (MIC) values ranging from 31.25 to 250 μg/mL. While the three SM and CC blends were not more active than the VOs tested individually, they exhibited remarkably high antileishmanial activity, with IC50 values ranging between 3.12 and 7.04 μg/mL, which is very similar to the IC50 of amphotericin B (positive control).
Collapse
Affiliation(s)
- Aternoskaires S R da Silva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, 75.901-970, Rio Verde, GO, Brazil
| | - Cassia C Fernandes
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, 75.901-970, Rio Verde, GO, Brazil
| | | | | | - Jackson B A Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP-14040-901, Ribeirão Preto, Brazil
| | | | - Regina H Pires
- Universidade de Franca, CEP, 14404-600, Franca, SP, Brazil
| | - Mayker L D Miranda
- lnstituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Uberlândia, Centro, CEP, MG-38411-104, Uberlândia, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP-14040-901, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Karczewska M, Wang AY, Narajczyk M, Słomiński B, Szalewska-Pałasz A, Nowicki D. Antibacterial activity of t-cinnamaldehyde: An approach to its mechanistic principle towards enterohemorrhagic Escherichia coli (EHEC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155845. [PMID: 38964154 DOI: 10.1016/j.phymed.2024.155845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.
Collapse
Affiliation(s)
- Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ai Yan Wang
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
14
|
Xiaomei Z, Xiaoyan F. Effect of cinnamon as a Chinese herbal medicine on markers of cardiovascular risk in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2024; 300:253-261. [PMID: 39053085 DOI: 10.1016/j.ejogrb.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Polycystic Ovary Syndrome (PCOS) is a hormonal disorder in women associated with increased cardiovascular risk. Cinnamon, a Chinese herbal medicine, is known for its anti-inflammatory and insulin-sensitizing properties, making it a potential therapeutic agent for PCOS-related cardiovascular complications. This systematic review and meta-analysis aimed to assess the impact of cinnamon supplementation on cardiovascular risk markers in women diagnosed with PCOS. METHODS Twelve randomized controlled trials (RCTs) were included in the analysis. The primary outcomes assessed were body weight, insulin resistance measured by Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and fasting blood sugar (FBS). RESULTS The meta-analysis revealed a statistically significant effect of cinnamon on reducing weight. Under the random-effects model, the pooled weighted mean difference (WMD) was -0.47 kg (95 % CI: -0.80 to -0.15, p < 0.001; I2 = 0.0 %). There was also a beneficial impact on insulin resistance, with reduced HOMA-IR scores following cinnamon supplementation (SMD=0.5015, 95 % CI: 0.2496 to 0.7533, p < 0.0001). Additionally, there was a significant improvement in FBS levels (pooled WMD: -7.72 mg/dL, 95 % CI: -12.33 to -3.12, p < 0.001; I2 = 91.3 %). The meta-analysis indicated a tendency towards reduced total cholesterol (WMD: -11.12 mg/dL, 95 % CI: -19.06 to -3.18, p = 0.01; I2 = 0.0 %) and LDL levels (WMD: -11.11 mg/dL, 95 % CI: -18.22 to -4.00, p < 0.01; I2 = 0.0 %) following cinnamon intervention. Substantial heterogeneity was observed among the studies, indicating the need for further research with larger sample sizes and standardized methodologies. CONCLUSION Cinnamon supplementation demonstrates promising effects on body weight, blood sugar, total cholesterol, LDL, and insulin resistance in women with PCOS, indicating its potential in mitigating cardiovascular risk factors associated with this condition.
Collapse
Affiliation(s)
- Zhou Xiaomei
- Department of Traditional Chinese Medicine, Ruian People's Hospital (the Third Affiliated Hospital of Wenzhou Medical University), Ruian City 325200, China
| | - Fan Xiaoyan
- Department of Traditional Chinese Medicine, Ruian People's Hospital (the Third Affiliated Hospital of Wenzhou Medical University), Ruian City 325200, China.
| |
Collapse
|
15
|
Mohamed IE, Osman EE, Saeed A, Ming LC, Goh KW, Razi P, Abdullah ADI, Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer's pathogenesis. Heliyon 2024; 10:e35943. [PMID: 39229544 PMCID: PMC11369442 DOI: 10.1016/j.heliyon.2024.e35943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Intisar E. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Bahri, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Elbadri E. Osman
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Ahmed Saeed
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box 2404, Khartoum, 12223, Sudan
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| |
Collapse
|
16
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
17
|
Gholami M, Mokhtari E, Abolghasemi J, Vafa M. The effect of cinnamon supplementation on eating disorder indices among people suffering from binge eating disorder: a randomized controlled trial. BMC Nutr 2024; 10:109. [PMID: 39113092 PMCID: PMC11308252 DOI: 10.1186/s40795-024-00916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Binge eating disorder is one of the main eating disorders that is characterized by recurrent binge eating episodes that lead to complications like high blood pressure, diabetes, dyslipidemia, etc. Many psychological and biological factors can lead to binge eating disorder and one of the main physiological reasons is insulin resistance. Cinnamon is an old favorite that has positive effects on insulin sensitivity. So, we examined the effect of cinnamon on binge eating disorder in this study. METHODS This study was conducted on 40 binge eating disorder patients with a BMI between 25 and 39.9 kg/m2. They were divided into two groups one of them consumed 6 g of cinnamon per day while the other group consumed 6 g of white wheat as a placebo. Before and after the study we examined weight, height, Body Shape Questionnaire (BSQ), and Binge Eating Scale (BES) scale in all participants and did the statistical analysis. RESULTS There were no significant differences in baseline characteristics, gender, height, weight, BMI, education, and marriage status between the two groups. There were no significant changes between BSQ, BES, weight, and height after the study either. CONCLUSION According to our findings, although the weight of the patients in the cinnamon group decreased significantly, after the end of the study, no significant difference was observed in the weight, BMI, and BAS and BSQ indices between the two groups. TRIAL REGISTRATION The study protocol was registered in the Iran Registry of Clinical Trials (IRCT) center (IRCT code: IRCT20090822002365N26, Registration date: 2021/11/7).
Collapse
Affiliation(s)
- Mahan Gholami
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Abolghasemi
- Department of Biostatistics, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O.BOX: 1449614535, Tehran, Iran.
| |
Collapse
|
18
|
Bahçıvan A, Şaylan M, Sagdic O, Bakırdere S. CoSn(OH) 6 nanocubes as a solid sorbent for the effective preconcentration of copper ions in cinnamon (Cinnamomum zeylanicum) extract. Food Chem 2024; 447:139037. [PMID: 38513484 DOI: 10.1016/j.foodchem.2024.139037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
This study was aimed at developing a simple and efficient CoSn(OH)6 nanocubes-based preconcentration method for the preconcentration of copper ions from cinnamon extracts for determination by flame atomic absorption spectrometry. The cube-shaped sorbent was synthesized using the simple stoichiometric co-precipitation method under ambient conditions. Experimental factors of the method were evaluated with a comprehensive optimization approach to maximize the extraction efficiency for the analyte. Under the optimal conditions, the limit of detection (LOD), limit of quantitation (LOQ), and linear dynamic range were recorded as 0.98 µg/L, 3.28 µg/L, and 4.0-75 µg/L, respectively. The enhancement factor was calculated as 101.6-fold by comparing the LODs of the optimized and direct analysis systems. Percent recoveries were found to be within an acceptable range (77.6-115 %), with high repeatability using matrix matching calibration strategy. Results validated the proposed method as a highly efficient extraction approach for the monitoring of copper ions in herbal cinnamon extracts.
Collapse
Affiliation(s)
- Aleyna Bahçıvan
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Meltem Şaylan
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; İstanbul Health and Technology University, Department of Pharmacy, 34421 İstanbul, Turkiye
| | - Osman Sagdic
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Turkiye.
| |
Collapse
|
19
|
Gutiérrez-Cuevas J, López-Cifuentes D, Sandoval-Rodriguez A, García-Bañuelos J, Armendariz-Borunda J. Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:967. [PMID: 39065815 PMCID: PMC11280341 DOI: 10.3390/ph17070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Doctorate in Sciences in Molecular Biology in Medicine, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud (EMCS), Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
20
|
Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD. Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World J Diabetes 2024; 15:1603-1614. [PMID: 39099809 PMCID: PMC11292323 DOI: 10.4239/wjd.v15.i7.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a metabolic disease of impaired glucose utilization and a major cause of cardiovascular disease (CVD). The pathogenesis of both diseases shares common risk factors and mechanisms, and both are significant contributors to global morbidity and mortality. Supplements of natural products for T2D mellitus (T2DM) and CVD can be seen as a potential preventive and effective therapeutic strategy. AIM To critically evaluate the therapeutic potential of natural products in T2D and coronary artery disease (CAD). METHODS By using specific keywords, we strategically searched the PubMed database. Randomized controlled trials (RCTs) were searched as the primary focus that examined the effect of natural products on glycemic control, oxidative stress, and antioxidant levels. We focused on outcomes such as low blood glucose levels, adjustment on markers of oxidative stress and antioxidants. After screening full-length papers, we included 9 RCTs in our review that met our inclusion criteria. RESULTS In the literature search on the database, we found that various natural products like plant secondary metabolites play a diverse role in the management of CAD. American ginseng, sesame oil and cocoa flavanols proved effective in lowering blood glucose levels and controlling blood pressure, which are key factors in managing T2DM and CVD. In diabetic patients Melissa officinalis effectively reduce inflammation and shows diabetes prevention. Both fish oil and flaxseed oil reduced insulin levels and inflammatory markers, suggesting benefits for both conditions. The lipid profile and endothelial function were enhanced by Nigella sativa oil and Terminalia chebula, which is significant for the management of cardiovascular risk factors in T2DM. Additionally Bilberry extract also showed promise for improving glycemic control in patients with T2DM. CONCLUSION The high level of antioxidant, anti-inflammatory, and anti-angiogenic properties found in natural products makes them promising therapeutic options for the management of CAD, with the potential benefit of lowering the risk of CAD.
Collapse
Affiliation(s)
- Dharmsheel Shrivastav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Satyam Kumar Kumbhakar
- Department of Biotechnology, Govt Veer Surendra Say P.G. College, Gariaband 493889, Chhattisgarh, India
| | - Shivangi Srivastava
- Department of Life Science, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| |
Collapse
|
21
|
Singh MP, Goel B, Kumar R, Rathor S. Phytochemical and pharmacological aspects of genus Amaranthus. Fitoterapia 2024; 176:106036. [PMID: 38801891 DOI: 10.1016/j.fitote.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The variety of bioactive compounds found in different species of Amaranthus, an herb that is a staple food in many parts of India. The plethora of herb Amaranthus has been a rich source of bioactive compounds like essential oils, sesquiterpenes, diterpenes, triterpenes, phenolic acids, flavonoids, etc. The traditional uses of Amaranthus, spp. have been established scientifically and were shown due to the presence of different phytochemicals. Although the pharmacological activities of Amaranthus genus have been well-documented, further studies are needed to fully understand their mechanisms of action and clinical applications. In conclusion, the phytochemistry and pharmacological activity of genus Amaranthus make it a promising source of natural products for drug discovery and development. The present is review mainly concise to the ethnopharmacological relevance and pharmacological studies of Amaranthus species. This conclusive review work may on Amaranthus species provided the interconnection of bioactive molecules with its ethno pharmacological utility of plant species.
Collapse
Affiliation(s)
- Manish Pal Singh
- Department of Pharmacology, Sharda School of Pharmacy, Sharda University, Agra 282007, Uttar Pradesh, India.
| | - Bharat Goel
- Bond Life Sciences Center, MU Metabolomics Center, University of Missouri-Columbia, MO 65211, USA
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep Rathor
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala 133207, Haryana, India
| |
Collapse
|
22
|
de Moura SL, Gomes BGR, Guilarducci MJ, Coelho OGL, Guimarães NS, Gomes JMG. Effects of cinnamon supplementation on metabolic biomarkers in individuals with type 2 diabetes: a systematic review and meta-analysis. Nutr Rev 2024:nuae058. [PMID: 38917435 DOI: 10.1093/nutrit/nuae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
CONTEXT The global prevalence of type 2 diabetes mellitus (DM2) has been rising significantly over the years. Recent studies have shown beneficial effects of cinnamon on metabolic biomarkers. OBJECTIVE The objective of this review was to assess the effect of cinnamon supplementation on metabolic biomarkers in patients with DM2. DATA SOURCES The Pubmed/MEDLINE, Cochrane CENTRAL, and Embase databases were searched up to November 10, 2022. DATA EXTRACTION A systematic search was performed for randomized controlled trials (RCTs) evaluating the effect of cinnamon supplementation on metabolic biomarkers, in adults and the elderly with DM2, and comparing the data for a cinnamon intervention group with that for a placebo group or a control group. The main exclusion criteria were studies (1) with other types of diabetes (ie, gestational diabetes or type 1 diabetes), (2) without cinnamon consumption, (3) that did not evaluate metabolic biomarkers, or (4) in vitro and animal studies. Two researchers independently screened 924 records, evaluated full-text studies, extracted data, and appraised their quality. A third researcher was consulted to resolve any discrepancies. The data were pooled using random-effects models and expressed as the weighted mean difference (WMD) with 95% CI. Heterogeneity was assessed using Cochran's Q test and quantified using I2 statistics. Risk of bias was assessed using the Joanna Briggs Institute (JBI) instrument. Sensitivity analysis and the GRADE system were used to assess the robustness and certainty of the findings. DATA ANALYSIS In total, 28 RCTs with a duration ranging from 30 to 120 days and a total enrollment of 3054 patients with DM2 were included. Participants consuming cinnamon showed a significant reduction in fasting blood glucose (FBG) (WMD: -15.26 mg/dL; 95% CI: -22.23 to -8.30; I2 = 88%), postprandial glucose (WMD: -39.22 mg/dL; 95% CI: -63.90 to -14.55; I2 = 100%), HbA1c (WMD: -0.56 mg/dL; 95% CI: -0.99 to -0.13; I2 = 94%), and HOMA-IR (WMD = -0.76, 95% CI: -1.13 to -0.39; I2 = 22%) compared with the control group. An intervention of cinnamon in capsule form reduced FBG (WMD:-18.43 mg/dL, 95% CI: -26.32 to -10.53; I2 = 89%), postprandial glucose (WMD: -44.83 mg/dL, 95% CI: -70.67 to -18.99; I2 = 100%), HbA1c (WMD: -0.56 mg/dL, 95% CI: -1.02 to -0.09; I2 = 94%), total cholesterol (WMD: -13.39 mg/dL; 95% CI: -24.71 to -2.07; I2 = 96%), LDL-C (WMD: -6.49 mg/dL, 95% CI: -12.69 to -0.29; I2 = 92%), and triglycerides (WND: -19.75 mg/dL; 95% CI, -33.71 to -5.80; I2 = 88%). Both doses (≤2 g/day and >2 g/day) reduced FBG and postprandial glucose. Only cinnamon doses of ≤2 g/day reduced HbA1c (WMD: -0.68 mg/dL, 95% CI: -1.16 to -0.1; I2 = 92%), HOMA-IR (WMD: -0.94 mg/dL; 95% CI: -1.21 to -0.67; I2 = 0%), and BMI (WMD: -1.18 kg/m2; 95% CI: -1.97 to -0.39; I2 = 0%). CONCLUSION The data suggest that cinnamon improves the glycemic and lipid profile and reduces the BMI, particularly in DM2 patients who receive cinnamon supplementation in capsule form and at a dose of ≤2 g/day. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022370332.
Collapse
Affiliation(s)
- Suzana Laís de Moura
- Federal Institute of Education, Science and Technology of the Southeast of Minas Gerais-Campus Barbacena-IF Sudeste MG, Barbacena, MG, 36.205-018, Brazil
| | - Bruna Gabrielle Rocha Gomes
- Federal Institute of Education, Science and Technology of the Southeast of Minas Gerais-Campus Barbacena-IF Sudeste MG, Barbacena, MG, 36.205-018, Brazil
| | | | | | - Nathalia Sernizon Guimarães
- Department of Nutrition, Federal University of Minas Gerais School of Nursing, Belo Horizonte, MG, 30.130-100, Brazil
| | - Júnia Maria Geraldo Gomes
- Federal Institute of Education, Science and Technology of the Southeast of Minas Gerais-Campus Barbacena-IF Sudeste MG, Barbacena, MG, 36.205-018, Brazil
| |
Collapse
|
23
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
24
|
Arul Raj JS, Aliyas S, Poomany Arul Soundara Rajan YA, Murugan K, Karuppiah P, Arumugam N, Almansour AI, Karthikeyan P. Spontaneous nanoemulsification of cinnamon essential oil: Formulation, characterization, and antibacterial and antibiofilm activity against fish spoilage caused by Serratia rubidaea BFMO8. Biotechnol Appl Biochem 2024; 71:512-524. [PMID: 38253987 DOI: 10.1002/bab.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The contemporary food industry's uses of nanoemulsions (NEs) include food processing, effective nutraceutical delivery, the development of functional chemicals, and the synthesis of natural preservatives, such as phytocompounds. Although cinnamon essential oil (CEO) is widely used in the cosmetic, pharmaceutical, and food industries, it is difficult to add to aqueous-based food formulations due to its weak stability and poor water solubility. This study describes the formulation of a CEO nanoemulsion (CEONE) by spontaneous emulsification and evaluates its antibacterial and antibiofilm properties against biofilm-forming Serratia rubidaea BFMO8 isolated from spoiled emperor fish (Lethrinus miniatus). Bacteria causing spoilage in emperor fish were isolated and identified as S. rubidaea using common morphological, cultural, and 16S RNA sequencing methods, and their ability to form biofilms and their susceptibility to CEONE were assessed using biofilm-specific methods. The spontaneous emulsification formulation of CEONE was accomplished using water and Tween 20 surfactant by manipulating organic and aqueous phase interface properties and controlling particle growth by capping surfactant increases. The best emulsification, with highly stable nano-size droplets, was accomplished at 750 rpm and a 1:3 ratio concentration. The stable CEONE droplet size, polydispersity index, and zeta potential values were 204.8 nm, 0.115, and -6.05 mV, respectively. FTIR and high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analyses have revealed carboxyl, carbonyl, and phenol-like primary phytochemical functional groups in CEO and CEONE, which contribute to their antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Jasmin Suriya Arul Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sheena Aliyas
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Perumal Karthikeyan
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Li J, Lu T, Chu Y, Zhang Y, Zhang J, Fu W, Sun J, Liu Y, Liao X, Zhou Y. Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus. MLIFE 2024; 3:291-306. [PMID: 38948140 PMCID: PMC11211666 DOI: 10.1002/mlf2.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 07/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and β-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to β-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on β-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with β-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to β-lactams. Furthermore, CIN fully restored the anti-MRSA activities of β-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a β-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Tingyin Lu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuefei Chu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuejun Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Yantai Fushan Center for Animal Disease Control and PreventionYantaiChina
| | - Wenzhen Fu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Feng Zhou
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
26
|
Champati BB, Das PK, Sahoo C, Ray A, Jena S, Sahoo A, Nayak S, Lata S, Panda PC. Chemical fingerprinting and multicomponent quantitative analysis for quality control of Cinnamomum tamala collected from Western Himalaya by HPLC-DAD. Heliyon 2024; 10:e30361. [PMID: 38737243 PMCID: PMC11088263 DOI: 10.1016/j.heliyon.2024.e30361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Cinnamomum tamala, commonly known as "Indian bay leaf" or "Tejpat", is an economically important plant widely used in medicine, food and cosmetic industries. Growing demand for its leaf and bark in the herbal trade and non-availability of quality materials lead to large-scale species admixture and adulteration in the global market. The present study aims at developing a validated HPLC-DAD (High-performance liquid chromatography coupled with diode array detection) method and multiple markers-based chemical fingerprints for quality evaluation of C. tamala leaf extracts. Five bioactive compounds, viz., coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate, were identified and quantified in 28 samples collected from the western Himalayan region of India. The chromatographic separation was achieved on Shimadzu Shimpak C18 column (dimension 250 × 4.6 mm, pore size 5 μm) with a gradient elution of mobile phase using acetonitrile and 0.1 percent phosphate buffer and the chromatograms were obtained at a wavelength of 265 nm. The method validation was done by analyzing the linearity, LOD, LOQ, precision, stability, repeatability and recovery rates of standard compounds for quantitative analysis. The values of coefficient of correlation (R2) were found to be close to 1 for linearity and similarity analysis; and standard deviation was less than 3 percent in case of precision, stability, repeatability and recovery rates. The content of target compounds such as coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate varied in the range of 0-1.09, 0-0.05, 0.07-0.51, 0.39-1.27 and 0-0.27 percent, respectively. In the chemical fingerprint of C. tamala leaves, a total of 13 peaks were assigned as common peaks. The results of the study indicated that the HPLC method now developed combining chemical fingerprint with quantification of analytes could serve as a useful tool for quality evaluation of herbal raw materials of C. tamala and a valuable reference for further study.
Collapse
Affiliation(s)
- Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Swaran Lata
- ICFRE-Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171 013, Himachal Pradesh, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| |
Collapse
|
27
|
Zych S, Adaszyńska-Skwirzyńska M, Szewczuk MA, Szczerbińska D. Interaction between Enrofloxacin and Three Essential Oils (Cinnamon Bark, Clove Bud and Lavender Flower)-A Study on Multidrug-Resistant Escherichia coli Strains Isolated from 1-Day-Old Broiler Chickens. Int J Mol Sci 2024; 25:5220. [PMID: 38791259 PMCID: PMC11121375 DOI: 10.3390/ijms25105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 μg/mL, three were classified as intermediate (0.5-1 μg/mL) and three as sensitive at ≤0.25 μg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.
Collapse
Affiliation(s)
- Sławomir Zych
- Laboratory of Chromatography and Mass Spectrometry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland
| | - Michalina Adaszyńska-Skwirzyńska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| | - Małgorzata Anna Szewczuk
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| | - Danuta Szczerbińska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| |
Collapse
|
28
|
Zou Z, Guo B, Guo Y, Ma X, Luo S, Feng L, Pan Z, Deng L, Pan S, Wei J, Su Z. A comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis to systematically evaluate spice quality: Cinnamomum cassia as an example. Food Chem 2024; 439:138142. [PMID: 38081096 DOI: 10.1016/j.foodchem.2023.138142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Spices have long been popular worldwide. Besides serving as aromatic and flavorful food and cooking ingredients, many spices exhibit notable bioactivity. Quality evaluation methods are essential for ensuring the quality and flavor of spices. However, existing methods typically focus on the content of particular components or certain aspects of bioactivity. For a systematic evaluation of spice quality, we herein propose a comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis. Cinnamomum cassia was used as a representative example to illustrate this approach. Near-infrared spectroscopy and chemometric methods were combined to predict the geographical origin, cinnamaldehyde content, ash content, antioxidant activity, and integrated membership function value. All the optimal prediction models displayed good predictive ability (correlation coefficient of prediction > 0.9, residual predictive deviation > 2.1). The proposed approach can provide a valuable reference for the rapid and comprehensive quality evaluation of spices.
Collapse
Affiliation(s)
- Ziwei Zou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning 530022, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaolong Ma
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Sanshan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning 530021, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning 530021, China.
| |
Collapse
|
29
|
Su YS, Cheng MJ, Kwan AL, Huang SP, Tyan YC, Chai CY, Huang B. The crude extract obtained from Cinnamomum macrostemon Hayata regulates oxidative stress and mitophagy in keratinocytes. Biosci Biotechnol Biochem 2024; 88:529-537. [PMID: 38509025 DOI: 10.1093/bbb/zbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/10/2024] [Indexed: 03/22/2024]
Abstract
Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.
Collapse
Affiliation(s)
- Yung-Shun Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Jen Cheng
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Phan LTK, Le ATH, Hoang NTN, Debonne E, De Saeger S, Eeckhout M, Jacxsens L. Evaluation of the efficacy of cinnamon oil on Aspergillus flavus and Fusarium proliferatum growth and mycotoxin production on paddy and polished rice: Towards a mitigation strategy. Int J Food Microbiol 2024; 415:110636. [PMID: 38422676 DOI: 10.1016/j.ijfoodmicro.2024.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
In the present investigation, the effect of cinnamon oil (CO) (10, 30, 50 and 70 %) on the growth rate (mm/day) and aflatoxin B1 (AFB1) and fumonisin B1 (FB1) production of Aspergillus flavus (AF01) and Fusarium proliferatum (FP01) isolates, respectively was determined at optimum water activities (0.95 and 0.99 aw) and temperatures (25, 30 and 35 °C) on paddy and polished rice grains. The results showed that the growth rate, AFB1 and FB1 production of all the fungal isolates decreased with an increase in CO concentrations on both matrices. AF01 and FP01 failed to grow under all conditions on paddy at 50 % of CO concentration whereas both fungi were completely inhibited (No Growth-NG) at 70 % of CO on polished rice. Regarding mycotoxin production, 30 % of CO concentrations could inhibit AFB1 and FB1 production in both matrices (No Detection-ND). In this study, the production of mycotoxins was significantly influenced by cinnamon oil compared to the growth of both fungi. These results indicated the promising potential of CO in improving the quality of rice preservation in post-harvest; however, further investigations should be evaluated on the effects on the qualitative characteristics of grains. Especially, the prospective application of CO in rice storage in industry scales to mitigate mycotoxin contamination need also to be further researched. Moreover, collaboration between researchers, agricultural experts, and food industry should be set up to achieve effective and sustainable strategies for preserving rice.
Collapse
Affiliation(s)
- Lien Thi Kim Phan
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Anh Thi Hong Le
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Nhon Thi Ngoc Hoang
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Els Debonne
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Mia Eeckhout
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
31
|
Muthusamy P, Wankhar D, Paul J, Ravishankar N, Rajan R. Assessment of Cinnamaldehyde's Potency on Heat Stress-induced Testicular Impairments in Wistar Rats. J Hum Reprod Sci 2024; 17:102-111. [PMID: 39091438 PMCID: PMC11290720 DOI: 10.4103/jhrs.jhrs_27_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background Male sterility results from high testicular temperatures, which affect mammalian spermatogenesis. High testicular temperatures affect sperm motility, morphology and fertility according to their magnitude and duration. Aim The aim of the current study is to examine the effects of heat-induced oxidative stress and cinnamaldehyde on Wistar rat testicular structure and function. Settings and Design The rats used in this experiment were Wistar albino rats. Materials and Methods This research has six animals per group. Male Wistar albino rats of 2.5-3 months old and 275-300 g. (I) control, (II) heat stress (HS) in a closed chamber at 41°C for 14 days and (III) HS with cinnamaldehyde (CA) 50 mg/kg body weight for 14 days. (IV) CA alone. After the study, the animals were euthanised, and test samples were taken for sperm count, morphology, haematoxylin and eosin stain for normal cellular morphology, antioxidants and DNA integrity assessments. Statistical Analysis Used The data were analysed statistically using one- and two-way ANOVA tests for comparisons between groups. Results The stress group had significantly lower sperm counts and poor sperm morphology. The stress group's antioxidant capacity is much lower than that of the control group. Animals under stress have fragmented DNA. Treatment with cinnamaldehyde increased overall antioxidant capacity and seminal parameters, and rats behaved most like controls. Conclusion CA restores malondialdehyde levels, total antioxidant capacity, sperm characteristics and mitigates testicular damage in rats exposed to experimental HS.
Collapse
Affiliation(s)
| | - Dapkupar Wankhar
- Faculty of Paramedical Sciences, Assam Down Town University, Guwahati, Assam, India
| | - Jeyakumari Paul
- Department of Physiology, Dr. ALM PG IBMS, University of Madras, Chennai, Tamil Nadu, India
| | - Nivetha Ravishankar
- Department of Physiology, Dr. ALM PG IBMS, University of Madras, Chennai, Tamil Nadu, India
| | - Ravindran Rajan
- Department of Physiology, Dr. ALM PG IBMS, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Iseppi R, Truzzi E, Sabia C, Messi P. Efficacy and Synergistic Potential of Cinnamon ( Cinnamomum zeylanicum) and Clove ( Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics (Basel) 2024; 13:319. [PMID: 38666995 PMCID: PMC11047545 DOI: 10.3390/antibiotics13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
The presence of microbial pathogens in ready-to-eat produce represents a serious health problem. The antibacterial activity of cinnamon (Cinnamomum zeylanicum) and clove (Syzygium aromaticum L. Merr. & Perry) essential oils (EOs) was determined toward food-borne pathogens by agar disk diffusion and minimum inhibitory concentration (MIC) assays. The growth kinetics of all strains, both in a buffer suspension assay and "on food" in artificially contaminated samples, were also investigated. The two EOs demonstrated a good antibacterial effect both alone and in combination (EO/EO). The use of EO/EO led to a synergistic antibacterial effect, also confirmed by the growth kinetics studies, where the EOs were active after 10 h of incubation (p < 0.0001) at significantly lower concentrations than those when alone. In the "on food" studies performed on artificially contaminated fruit samples stored at 4 °C for 8 days, the greatest killing activity was observed at the end of the trial (8 days) with a reduction of up to 7 log CFU/g compared to the control. These results confirm the good antibacterial activity of the EOs, which were more effective when used in combination. Data from the "on food" studies suggest cinnamon and clove essential oils, traditionally used in the food industry, as a possible natural alternative to chemical additives.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| |
Collapse
|
33
|
Mohammadabadi T, Jain R. Cinnamon: a nutraceutical supplement for the cardiovascular system. Arch Med Sci Atheroscler Dis 2024; 9:e72-e81. [PMID: 38846056 PMCID: PMC11155465 DOI: 10.5114/amsad/184245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 06/09/2024] Open
Abstract
Common therapies for cardiovascular diseases (CVDs) are associated with wide side effects. Thus, herbal medicines have been regarded due to fewer side effects, availability, cultural beliefs, and being cheap. For thousand years, herbal medicine has been used for bacterial infections, colds, coughs, and CVDs. Cinnamon bark contains phenolic compounds such as cinnamaldehyde and cinnamic acid with protective properties which can reduce the risk of cardiovascular diseases, cardiac ischemia and hypertrophy, and myocardial infarction. Furthermore, cinnamon has antioxidant and anti-inflammatory properties and exhibits beneficial effects on the complications of diabetes, obesity, hypercholesterolemia, and hypertension which cause CVDs. Although the protective effects of cinnamon on the heart have been reported in many studies, it needs more clinical studies to prove the pharmaceutical and therapeutic efficacy of cinnamon on risk factors of CVDs.
Collapse
Affiliation(s)
- Taherah Mohammadabadi
- Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University, Khuzestan, Iran
| | | |
Collapse
|
34
|
Luty-Błocho M, Cyndrowska J, Rutkowski B, Hessel V. Synthesis of Gold Clusters and Nanoparticles Using Cinnamon Extract-A Mechanism and Kinetics Study. Molecules 2024; 29:1426. [PMID: 38611706 PMCID: PMC11013221 DOI: 10.3390/molecules29071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.
Collapse
Affiliation(s)
- Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jowita Cyndrowska
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Bogdan Rutkowski
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
35
|
Zelicha H, Yang J, Henning SM, Huang J, Lee RP, Thames G, Livingston EH, Heber D, Li Z. Effect of cinnamon spice on continuously monitored glycemic response in adults with prediabetes: a 4-week randomized controlled crossover trial. Am J Clin Nutr 2024; 119:649-657. [PMID: 38290699 DOI: 10.1016/j.ajcnut.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Previous clinical studies showing that cinnamon spice lowers blood glucose concentrations had inconsistent results. OBJECTIVES To determine the effect of daily cinnamon spice supplementation in an amount commonly used for seasoning on glucose concentrations in adults with obesity and prediabetes. METHODS Following a 2-wk run-in period of maintaining a low polyphenol/fiber diet, 18 participants with obesity and prediabetes underwent a 10-wk randomized, controlled, double-blind, crossover trial (mean age 51.1 y; mean fasting plasma glucose 102.9 mg/dL). The participants were randomly assigned to take cinnamon (4 g/d) or placebo for 4-wk, followed by a 2-wk washout period, and then crossed over to the other intervention for an additional 4-wk. Glucose changes were measured with continuous glucose monitoring. Oral glucose tolerance testing immediately following ingestion of cinnamon or placebo was performed at 4-time points to assess their acute effects both at the baseline and end of each intervention phase. Digestive symptom logs were obtained daily. RESULTS There were 694 follow-up days with 66,624 glucose observations. When compared with placebo, 24-h glucose concentrations were significantly lower when cinnamon was administered [mixed-models; effect size (ES) = 0.96; 95 % confidence interval (CI): -2.9, -1.5; P < 0.001]. Similarly, the mean net-area-under-the-curve (netAUC) for glucose was significantly lower than for placebo when cinnamon was given (over 24 h; ES = -0.66; 95 % CI: 2501.7, 5412.1, P = 0.01). Cinnamon supplementation resulted in lower glucose peaks compared with placebo (Δpeak 9.56 ± 9.1 mg/dL compared with 11.73 ± 8.0 mg/dL; ES = -0.57; 95 % CI: 0.8, 3.7, P = 0.027). Glucose-dependent-insulinotropic-polypeptide concentrations increased during oral glucose tolerance testing + cinnamon testing (mixed-models; ES = 0.51; 95 % CI: 1.56, 100.1, P = 0.04), whereas triglyceride concentrations decreased (mixed-models; ES = 0.55; 95 % CI: -16.0, -1.6, P = 0.02). Treatment adherence was excellent in both groups (cinnamon: 97.6 ± 3.4 % compared with placebo: 97.9 ± 3.7 %; ES = -0.15; 95 % CI: -1.8, 0.2, P = 0.5). No differences were found in digestive symptoms (abdominal pain, borborygmi, bloating, excess flatus, and stools/day) between cinnamon and placebo groups. CONCLUSIONS Cinnamon, a widely available and low-cost supplement, may contribute to better glucose control when added to the diet in people who have obesity-related prediabetes. This trial was registered at clinicaltrials.gov as NCT04342624.
Collapse
Affiliation(s)
- Hila Zelicha
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jieping Yang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Susanne M Henning
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Jianjun Huang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Ru-Po Lee
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Gail Thames
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Edward H Livingston
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Heber
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Zhaoping Li
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States.
| |
Collapse
|
36
|
Choockong C, Itharat A, Pipatrattanaseree W, Ninlaor T, Piwngam K, Intharit N, Sukkhum S, Davies NM. The most commonly used spices in Thai traditional medicine: in vitro evaluation of anti-hyperglycemic, antioxidant, polyphenol content, and nitric oxide production inhibitory activities. Res Pharm Sci 2024; 19:13-28. [PMID: 39006980 PMCID: PMC11244707 DOI: 10.4103/1735-5362.394817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Diabetes mellitus is a persistent hyperglycemic condition. Thai cuisine and medicine incorporate spices: nutmeg, mace, clove buds, cardamom, cinnamon, and coriander. The in vitro impacts of these spices on anti-diabetic, antioxidant, anti-inflammatory, and total phenolic and flavonoid content were assessed. Experimental approach Alpha-amylase and alpha-glucosidase inhibition assays were conducted. Antioxidant potential was measured through DPPH and ABTS assays. Anti-inflammatory activity was determined by inhibiting nitric oxide generation in RAW 264.7 cells. Total phenolic content was quantified using the Folin Ciocalteu method, while total flavonoid content was estimated via the aluminum chloride colorimetric method. Findings/Results Ethanolic and aqueous extracts of a blend of spices (Siam cardamom, nutmeg, mace, and clove buds), denoted as 4-GlurE and 4-GlurA, displayed concentration-dependent inhibition of alpha-glucosidase, with IC50 values of 0.373 and 0.435 mg/mL, respectively. 4-GlurE and 4-GlurA exhibited antioxidant activity, by ABTS·+ radical and DPPH scavenging capabilities. 4-GlurE demonstrated anti-inflammatory potential by reducing nitric oxide generation (IC50: 43.95 ± 2.47 μg/mL). 4-GlurE and 4-GlurA possessed total phenolic content (TPC) of 122.47 ± 1.12 and 148.72 ± 0.14 mg GAE/g, respectively. 4-GlurE exhibited a higher total flavonoid content (TFC) compared to the aqueous extract (340.33 ± 4.77 and 94.17 ± 3.36 mg QE/g). Cinnamon and clove aqueous extracts were more potent than acarbose in alpha-glucosidase inhibition with the highest antioxidant activity. Polyphenol levels (TPC and TFC) exhibited strong correlations with antioxidant capacity. Conclusions and implications Findings are consistent with the traditional use of 4-Glur, with cinnamon, for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Chadchom Choockong
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Applied Thai Traditional Medicine Research (CEATMR), Faculty of Medicine, Thammasat University, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Theeraphong Ninlaor
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Krit Piwngam
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Ninnart Intharit
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Division of Applied Thai Traditional Medicine, Faculty of Public Health, Naresuan University, Phitsanulok 65000, Thailand
| | - Supon Sukkhum
- Department of Thai Traditional Medicine, Sirindhorn College of Public Health, Trang 92110, Thailand
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
37
|
Kolekar AG, Nille OS, Koparde SV, Patil AS, Waghmare RD, Sohn D, Anbhule PV, Kolekar GB, Gokavi GS, More VR. Green, facial zinc doped hydrothermal synthesis of cinnamon derived fluorescent carbon dots (Zn-Cn-CDs) for highly selective and sensitive Cr 6+ and Mn 7+ metal ion sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123413. [PMID: 37741103 DOI: 10.1016/j.saa.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Carbon dots have demonstrated a great potential as luminescent nanoparticles in energy, drug delivery, sensors, and various biomedical applications as well as environmental pollutants and water analysis. Although, such nanoparticles appear to exhibit low toxicity compared to other semiconductor and metal based luminescent nanomaterials. Today, we know that toxicity of carbon dots (CDs) strongly depends on the protocol of fabrication. The various dopants or heteroatoms have been used to enhance the optical and physicochemical properties. In this work, zinc doped aqueous fluorescent Zn-Cn-CDs have been synthesized from cinnamon by hydrothermal synthesis method. The synthesized Zn-Cn-CDs were confirmed for their physicochemical properties by using various characterization techniques viz. UV-Vis. and spectrofluorometer for optical properties, Fourier transform infrared spectroscopy (FTIR) and XRD, as well as TEM and XPS, was done for morphological and chemical analysis. The successfully synthesized Zn-Cn-CDs showed outstanding optical performance for metal ion sensing applications. The developed heteroatom doped Zn-Cn-CDs as a fluorescent probe exhibited higher selectivity and sensitivity for Cr6+ and Mn7+ metal ions. The obtained results showed a better linear range with excellent limit of detection (LOD) 3.97 µg/mL and 2.05 µg/mL for Cr6+ and Mn7+ metal ions respectively. The low cost, simple and highly fluorescent probe can be effectively applicable for development of environmental pollutants sensing purposes.
Collapse
Affiliation(s)
- Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Akshay S Patil
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Ravindra D Waghmare
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | | | | |
Collapse
|
38
|
Liu Z, Mu Y, Xing T, Zhao L, Li J, Zhou J, Zhang L, Gao F. Coated oregano essential oil and cinnamaldehyde compounds supplementation improves growth performance, enhances immune responses, and inhibits cecal Escherichia coli proliferation of broilers. J Anim Sci 2024; 102:skae324. [PMID: 39434684 PMCID: PMC11544625 DOI: 10.1093/jas/skae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Plant essential oils are unstable due to high volatility and easy oxidation, while microencapsulation provides a potentially effective strategy for increasing the stability of natural essential oils and preserving their function. This study examined the effects of feeding coated oregano essential oil and cinnamaldehyde (COEC) compounds on growth, immune organ development, intestinal morphology, mucosal immune function, and the cecal microbiota populations of broilers. Three hundred one-day-old male Arbor Acres broiler chicks were organized into 5 groups: 1) negative control fed basal diet alone (NC), 2) positive control receiving basal diet plus 50 mg/kg of chlortetracycline (CTC), 3) basal diet plus 150 mg/kg COEC (COEC150), 4) plus 300 mg/kg COEC (COEC300), and 5) plus 450 mg/kg COEC (COEC450). The supplement trial was continued for 42 d. The results showed that CTC, COEC300, and COEC450 treatments decreased the feed conversion ratio of broilers both in the starter and whole experiment phases, increased the height of jejunal villi at 21 d and the number of goblet cells and IgA-producing cells at 21 or 42 d compared with NC group (P < 0.05). Members of the COEC300 treatment group had a higher thymus weight index and jejunum length index than birds of NC or CTC groups at 21 d (P < 0.05). CTC and all COEC treatments decreased malondialdehyde content in jejunal mucosa at 42 d (P < 0.05). The population of Escherichia coli (E. coli) in the cecal digesta at 21 d was lower in the CTC, COEC300, and COEC450 treatment groups compared with the NC group (P < 0.05). In contrast to the CTC group, COEC supplementation dose-dependently accelerated body weight gain, improved jejunal morphology, decreased malondialdehyde content in jejunal mucosa, increased numbers of jejunal goblet cells and IgA-producing cells, and decreased the E. coli population in cecal digesta at 21 or 42 d (P < 0.05). Thus, we concluded that feeding broiler chickens with 300 or 450 mg/kg in antibiotic-free diets can improve growth performance, enhance immune responses, and inhibit the proliferation of cecal pathogenic bacteria.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingqi Mu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Sharma K, Nuri Farzina Rahman, Sahaniyaz Laskar, Sahjahan Ali, Md. A. Ahmed, Wearank Terang, Ningthoujam Dabung Meitei, Haider Khan, Md. Iliyash Ahamad, Akshay Kumar Haloi, Rituraj Bharadwaj. Unravelling the Potential of Herbal Therapy for Polycystic Ovarian Disorder. JOURNAL OF NATURAL REMEDIES 2024:1-13. [DOI: 10.18311/jnr/2024/34761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2025]
Abstract
Polycystic Ovarian Disorder is among the most well-known hormonal diseases influencing many women overall prompting the development of cysts on the ovaries. Albeit, the specific ground for its improvement isn’t very much revealed till now, however a mix of hereditary, ecological and way of life factors were considered as noticeable contributing variables for its development and advancement. The ongoing treatments for polycystic ovarian disorder incorporate a way of life alteration, utilization of oral contraceptives, anti-androgen therapy and insulin-sensitizing agents, ovulation induction and assisted reproductive technologies. Even though these ongoing treatments are well dependent to some degree in females enduring polycystic ovarian issues, various secondary effects are being accounted for to be related to these treatments. Herbal treatment could be an option for polycystic ovarian problems as it offers compelling recuperation with immaterial aftereffects. Herbal treatment frequently focuses on the main driver of the sickness instead of alleviating symptoms, expecting to re-establish general well-being and prosperity. In this ongoing review, we have compiled the purposes of specific spices for the treatment of polycystic ovarian disorders including cinnamon, fenugreek, gymnema, saw palmetto, spearmint, liquorice, turmeric and berberine - containing plants. These plants were accounted for too effective against polycystic ovarian disorder with their system of activity as portrayed. Escalated research on these plants will clear many new courses towards the advancement of medication disclosure and medication plans for the powerful treatment of polycystic ovarian issues.
Collapse
|
40
|
Shahrajabian MH, Sun W. The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East. Rev Recent Clin Trials 2024; 19:159-175. [PMID: 38409705 DOI: 10.2174/0115748871276544240212105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
41
|
Sultana A, Borgohain R, Rayaji A, Saha D, Kumar Das B. Promising Phytoconstituents in Diabetes-related Wounds: Mechanistic Insights and Implications. Curr Diabetes Rev 2024; 21:e270224227477. [PMID: 38424430 DOI: 10.2174/0115733998279112240129074457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The onset of diabetes mellitus (DM), a metabolic disorder characterized by high blood glucose levels and disrupted glucose metabolism, results in 20% of people with diabetes suffering from diabetes-related wounds worldwide. A minor wound, such as a cut or abrasion, can lead to infections and complications in diabetic patients. We must understand the mechanism/s contributing to this delayed wound healing to develop effective prevention strategies. The potential benefits of bioactive phytochemicals for diabetic wound healing have been reported in numerous studies. METHOD A bioactive compound may have multiple actions, including antioxidants, antiinflammatory, antimicrobial, and angiogenesis. Compounds derived from these plants have shown promising results in wound healing, inflammation reduction, collagen synthesis, and neovascularization improvement. RESULTS Consequently, this review provides an update to our understanding of how phytoconstituents promote wound healing in diabetics. A thorough literature review was conducted on diabetes, wound healing, and phytoconstituents for this study. Only English publications until June 2023 were included in the search, which used multiple search engines and the main keywords. Summing up, phytochemical-based interventions might improve the quality of life for diabetics by improving wound healing. CONCLUSION However, to fully understand the efficacy and safety of these phytochemicals in managing diabetic wounds, more research and clinical trials are needed.
Collapse
Affiliation(s)
- Arjina Sultana
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ranadeep Borgohain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ashwini Rayaji
- Department of Pharmaceutical Chemistry, KRE's Karnataka College of Pharmacy, Bidar 585403, Karnataka, India
| | - Dipankar Saha
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
42
|
Zareie A, Bagherniya M, Sahebkar A, Sharma M, Khorvash F, Hasanzadeh A, Askari G. Effects of cinnamon on anthropometric indices and headache-related disability of patients with migraine: A randomized double-blind placebo-controlled trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:1-12. [PMID: 38948170 PMCID: PMC11210698 DOI: 10.22038/ajp.2023.22874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 07/02/2024]
Abstract
Objective Increased body mass index (BMI) seems to be a risk factor for migraine attacks. Cinnamon has anti-inflammatory, neuroprotective, and anti-obesity effects. This study aimed to assess the effects of cinnamon on anthropometric indices and headache-related disability of patients with migraine. Materials and Methods This study was conducted as a randomized, double-blind, placebo-controlled trial involving 50 migraine patients. Patients were randomized to receive either 600 mg cinnamon powder or placebo capsules for two months. Height, body weight (BW), waist circumference (WC), and hip circumference (HC) were measured.Furthermore, Minimal or Infrequent Disability (MIDAS) and Headache Daily Result (HDR) Questionnaires were recorded. Results At the end of the treatment period, BW and BMI did not change in the intervention group; however, both factors were significantly increased in the placebo group (p=0.001). The change of WC, HDR and MIDAS was significantly different between the intervention and placebo groups (p<0.001). Furthermore, HC and WHR significantly decreased (p=0.001). Conclusion Cinnamon seems to have beneficial effects on anthropometric indices and headache disability of migraine patients.
Collapse
Affiliation(s)
- Azadeh Zareie
- Nutrition andFood Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition andFood Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manoj Sharma
- Environmental & Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hasanzadeh
- Departments of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition andFood Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Agrawal A, Keerthipati S, Sreerama S, Singla D, Acharya S, Mehta D, Kumar S, Paiwal K. Effect of herbal mouthrinsein dental ultrasonic scalers among Indians. Bioinformation 2023; 19:1104-1110. [PMID: 38046514 PMCID: PMC10692984 DOI: 10.6026/973206300191104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
The use of herbal mouthrinse is gaining momentum in recent years. Therefore, it is of interest to evaluate the effect of 2 herbal mouthrinse (curcumin, cinnamon) in comparison with2 conventional mouthrinse (povidone iodine, chlorhexidine) when used as coolant in dental ultrasonic scalers. Hence, 200 participants were included in this study. Analysis of gingival index, periodontal index at baseline and one month follow up was completed. The inhibitory effects of both conventional and herbal mouth rinse in gingival health are similar. However, cinnamon and curcumin owing to its minimal adverse effects and low cost is useful as an alternative to chlorhexidine for reducing bacterial load in dental aerosols produced due to ultrasonic scalers.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Conservative and Endodontics, Buddha Institute of Dental Sciences and Hospital, Patna, Bihar, India
| | - Shilpa Keerthipati
- Department of Orthodontics, Gitam Dental College and Hospital, Visakhapatnam, India
| | | | - Deepika Singla
- Department of Conservative Dentistry & Endodontics, Desh Bhagat Dental College & Hospital, Mandi Gobindgarh, Punjab, India
| | - Sonu Acharya
- Department of Pediatric and Preventive Dentistry, Institute of Dental Sciences, Siksha Anusandhan (Deemed to be) University, Bhubaneswar, India
| | - DhavalNiranjan Mehta
- Department of Oral Medicine and Radiology, Narsinbhai Patel Dental College and Hospital, Sankalchand PatelUniversity, Visnagar, Gujarat, India
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, Gujarat, India
| | - Kapil Paiwal
- Department of Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, India
| |
Collapse
|
44
|
Sulieman AME, Abdallah EM, Alanazi NA, Ed-Dra A, Jamal A, Idriss H, Alshammari AS, Shommo SAM. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential. Pharmaceuticals (Basel) 2023; 16:1451. [PMID: 37895922 PMCID: PMC10610427 DOI: 10.3390/ph16101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Throughout history, spices have been employed for their pharmaceutical attributes and as a culinary enhancement. The food industry widely employs artificial preservatives to retard the deterioration induced by microbial proliferation, enzymatic processes, and oxidative reactions. Nevertheless, the utilization of these synthetic preservatives in food products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. These risks encompass a spectrum of adverse effects, including but not limited to gastrointestinal disorders, the disruption of gut microbiota, allergic reactions, respiratory complications, and concerns regarding their carcinogenic properties. Consequently, consumers are displaying an increasing reluctance to purchase preserved food items that contain such additives. Spices, known for their antimicrobial value, are investigated for their potential as food preservatives. The review assesses 25 spice types for their inherent antimicrobial properties and their applicability in inhibiting various foodborne microorganisms and suggests further future investigations regarding their use as possible natural food preservatives that could offer safer, more sustainable methods for extending shelf life. Future research should delve deeper into the use of natural antimicrobials, such as spices, to not only replace synthetic preservatives but also optimize their application in food safety and shelf-life extension. Moreover, there is a need for continuous innovation in encapsulation technologies for antimicrobial agents. Developing cost-effective and efficient methods, along with scaling up production processes, will be crucial to competing with traditional antimicrobial options in terms of both efficacy and affordability.
Collapse
Affiliation(s)
- Abdel Moneim E. Sulieman
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Naimah Asid Alanazi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M’ghila Campus, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | | |
Collapse
|
45
|
Ghidotti M, Papoci S, Pietretti D, Ždiniaková T, de la Calle Guntiñas MB. Use of elemental profiles determined by energy-dispersive X-ray fluorescence and multivariate analyses to detect adulteration in Ceylon cinnamon. Anal Bioanal Chem 2023; 415:5437-5449. [PMID: 37587311 PMCID: PMC10444698 DOI: 10.1007/s00216-023-04817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The price of Cinnamomum verum (Ceylon cinnamon) is around twice as high as that of the other cinnamon varieties commonly grouped under the name cassia cinnamon, making the former spice an attractive target for fraudsters. This work demonstrates that elemental profiles obtained by energy-dispersive X-ray fluorescence in combination with multivariate analyses can be used as a screening method to detect Ceylon cinnamon adulteration. Thirty-six elements were analysed in 52 commercially available cinnamon samples, 29 Ceylon, 8 cassia, and 15 for which no indication about variety was provided. Fifty-eight percent of the samples were either adulterated or did not meet international quality criteria. Four of the ground cinnamon samples labelled as Ceylon cinnamon were found to be pure cassia or a mixture with a high cassia content, and 26 samples were suspected of other types of adulteration including replacement of bark with other parts of the cinnamon tree. Headspace gas chromatography-mass spectrometry and ash determination by thermogravimetric analysis confirmed the conclusions reached by elemental analysis. Only one sample labelled as Ceylon cinnamon and that according to its volatile composition was cassia cinnamon was not flagged as suspicious by elemental analysis.
Collapse
Affiliation(s)
| | - Sergej Papoci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | | | | |
Collapse
|
46
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
47
|
Dhawan K, Rasane P, Singh J, Kaur S, Kaur D, Avinashe H, Mahato DK, Kumar P, Gunjal M, Capanoglu E, Haque S. Effect of Spice Incorporation on Sensory and Physico-chemical Properties of Matcha-Based Hard Candy. ACS OMEGA 2023; 8:29247-29252. [PMID: 37599978 PMCID: PMC10433358 DOI: 10.1021/acsomega.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
The present study was carried out to formulate and determine the sensory, proximate, phytochemical, and antioxidant properties of matcha hard candies incorporated with spices such as ginger (Zingiber officinale Rosc.), cinnamon (Cinnamomum zeylanicum and Cinnamon cassia), and holy basil (tulsi) (Ocimum sanctum L.). Standardized matcha (Camellia sinensis) hard candy was taken as a control, and spices/herbs were incorporated in different concentrations. The best formulation was GC5 (2% ginger powder) for matcha ginger hard candy, CZ10 (0.9% cinnamon powder) for matcha cinnamon hard candy, and TC7 (3% tulsi powder) for matcha tulsi hard candy. These formulations were selected based on the organoleptic evaluation. Furthermore, these selected hard candies were evaluated for the determination of proximate, phytochemical, and antioxidant profiles which exhibited significant results. This study demonstrates the excellent nutritional and phytochemical potential that spiced matcha hard candy has for use as a nutraceutical food product.
Collapse
Affiliation(s)
- Kajal Dhawan
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prasad Rasane
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jyoti Singh
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sawinder Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Damanpreet Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshal Avinashe
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dipendra Kumar Mahato
- CASS
Food Research Centre, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria 3125, Australia
| | - Pradeep Kumar
- Department
of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Mahendra Gunjal
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and
Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| |
Collapse
|
48
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
49
|
Qarani W, Husna F, Yulia W, Zulkarnain Z, Syahrizal D, Gani BA, Sary NL, Wardhani BWK. Antioxidant and antiaging activities of Cinnamomum burmannii, Michelia champaca and their combinations. NARRA J 2023; 3:e111. [PMID: 38454977 PMCID: PMC10919706 DOI: 10.52225/narra.v3i2.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 03/09/2024]
Abstract
Aging is a natural skin process that occurs due to intrinsic and extrinsic factors, such as excessive exposure to ultraviolet light (photoaging). The mechanism of damage involves the production of excess free radicals that trigger oxidative stress in the skin. Determining the natural products that have high antioxidant activities as antiaging is important. Cinnamomum burmannii and Michelia champaca are typical Aceh plants that are believed to have high antioxidant effects. The aim of this study was to determining the contents of C. burmannii and M. champaca as well as to determine the antioxidant and antiaging activities of either individually or combinations. The qualitative phytochemical and semi-quantitative analysis of the extracts were measured using gas chromatography-mass spectroscopy (GC-MS). The antioxidant activity was examined by radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method while the antiaging activity was measured using the tyrosinase enzyme inhibition test. The phenolic and flavonoid contents of C. burmannii were higher than M. champaca (66.34 vs 24.71 mg gallic acid equivalent/gr and 80.52 vs 60.20 mg quercetin equivalent/gr, respectively. The inhibitory concentration (IC50) of M. champaca extract in inhibiting DPPH indicated that M. champaca had a better antioxidant activity than C. burmannii. The combination of C. burmannii and M. champaca extracts had a lower IC50 compared to M. champaca alone. C. burmannii and M. champaca extracts had a weak potential to inhibit tyrosinase activity (IC50 value ≥1000 μg/mL). In conclusion, this study indicates that M. champaca and C. burmannii have strong antioxidant activities and these might associate with polyphenol contents.
Collapse
Affiliation(s)
- Waisul Qarani
- Magister of Biomedical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fauzul Husna
- Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Winda Yulia
- Department of Microbiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Zulkarnain Zulkarnain
- Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Dedy Syahrizal
- Department of Biochemistry, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Basri A. Gani
- Department of Oral Biology, Faculty of Dentistry Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Nirwana L. Sary
- Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | | |
Collapse
|
50
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|