1
|
Malan-Müller S, Martín-Hernández D, Caso JR, Matthijnssens J, Rodríguez-Urrutia A, Lowry CA, Leza JC. Metagenomic symphony of the intestinal ecosystem: How the composition affects the mind. Brain Behav Immun 2025; 123:510-523. [PMID: 39368785 DOI: 10.1016/j.bbi.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Amanda Rodríguez-Urrutia
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Ahmad A, Ashfaq M, Rashid M. Editorial: The intricate web of gastrointestinal virome, mycome and archaeome: implications for gastrointestinal diseases. Front Genet 2024; 15:1463350. [PMID: 39184347 PMCID: PMC11341467 DOI: 10.3389/fgene.2024.1463350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Asrar Ahmad
- Center for Sickle Cell Disease, Howard University, Washington, DC, United States
| | - Mohammad Ashfaq
- The University Centre for Research and Development (UCRD), Chandigarh University, Mohali, Punjab, India
| | - Mudasir Rashid
- Department of Medicine and Cancer Center, Howard University, Washington, DC, United States
| |
Collapse
|
3
|
Tian X, Li S, Wang C, Zhang Y, Feng X, Yan Q, Guo R, Wu F, Wu C, Wang Y, Huo X, Ma X. Gut virome-wide association analysis identifies cross-population viral signatures for inflammatory bowel disease. MICROBIOME 2024; 12:130. [PMID: 39026313 PMCID: PMC11256409 DOI: 10.1186/s40168-024-01832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The gut virome has been implicated in inflammatory bowel disease (IBD), yet a full understanding of the gut virome in IBD patients, especially across diverse geographic populations, is lacking. RESULTS In this study, we conducted a comprehensive gut virome-wide association study in a Chinese cohort of 71 IBD patients (15 with Crohn's disease and 56 with ulcerative colitis) and 77 healthy controls via viral-like particle (VLP) and bulk virome sequencing of their feces. By utilizing an integrated gut virus catalog tailored to the IBD virome, we revealed fundamental alterations in the gut virome in IBD patients. These characterized 139 differentially abundant viral signatures, including elevated phages predicted to infect Escherichia, Klebsiella, Enterococcus_B, Streptococcus, and Veillonella species, as well as IBD-depleted phages targeting Prevotella, Ruminococcus_E, Bifidobacterium, and Blautia species. Remarkably, these viral signatures demonstrated high consistency across diverse populations such as those in Europe and the USA, emphasizing their significance and broad relevance in the disease context. Furthermore, fecal virome transplantation experiments verified that the colonization of these IBD-characterized viruses can modulate experimental colitis in mouse models. CONCLUSIONS Building upon these insights into the IBD gut virome, we identified potential biomarkers for prognosis and therapy in IBD patients, laying the foundation for further exploration of viromes in related conditions. Video Abstract.
Collapse
Affiliation(s)
- Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yanyan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Chunxue Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Yan Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Peddinti V, Avaghade MM, Suthar SU, Rout B, Gomte SS, Agnihotri TG, Jain A. Gut instincts: Unveiling the connection between gut microbiota and Alzheimer's disease. Clin Nutr ESPEN 2024; 60:266-280. [PMID: 38479921 DOI: 10.1016/j.clnesp.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by neuroinflammation and gradual cognitive decline. Recent research has revealed that the gut microbiota (GM) plays an important role in the pathogenesis of AD through the microbiota-gut-brain axis. However, the mechanism by which GM and microbial metabolites alter brain function is not clearly understood. GM dysbiosis increases the permeability of the intestine, alters the blood-brain barrier permeability, and elevates proinflammatory mediators causing neurodegeneration. This review article introduced us to the composition and functions of GM along with its repercussions of dysbiosis in relation to AD. We also discussed the importance of the gut-brain axis and its role in communication. Later we focused on the mechanism behind gut dysbiosis and the progression of AD including neuroinflammation, oxidative stress, and changes in neurotransmitter levels. Furthermore, we highlighted recent developments in AD management, such as microbiota-based therapy, dietary interventions like prebiotics, probiotics, and fecal microbiota transplantation. Finally, we concluded with challenges and future directions in AD research based on GM.
Collapse
Affiliation(s)
- Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Manoj Mohan Avaghade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Sunil Umedmal Suthar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
5
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Leal Rodríguez C, Shah SA, Rasmussen MA, Thorsen J, Boulund U, Pedersen CET, Castro-Mejía JL, Poulsen CE, Poulsen CS, Deng L, Larsen FAN, Widdowson M, Zhang Y, Sørensen SJ, Moineau S, Petit MA, Chawes B, Bønnelykke K, Nielsen DS, Stokholm J. The infant gut virome is associated with preschool asthma risk independently of bacteria. Nat Med 2024; 30:138-148. [PMID: 38102298 DOI: 10.1038/s41591-023-02685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Bacteriophage (also known as phage) communities that inhabit the gut have a major effect on the structure and functioning of bacterial populations, but their roles and association with health and disease in early life remain unknown. Here, we analyze the gut virome of 647 children aged 1 year from the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort, all deeply phenotyped from birth and with longitudinally assessed asthma diagnoses. Specific temperate gut phage taxa were found to be associated with later development of asthma. In particular, the joint abundances of 19 caudoviral families were found to significantly contribute to this association. Combining the asthma-associated virome and bacteriome signatures had additive effects on asthma risk, implying an independent virome-asthma association. Moreover, the virome-associated asthma risk was modulated by the host TLR9 rs187084 gene variant, suggesting a direct interaction between phages and the host immune system. Further studies will elucidate whether phages, alongside bacteria and host genetics, can be used as preclinical biomarkers for asthma.
Collapse
Affiliation(s)
- Cristina Leal Rodríguez
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Morten Arendt Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christina Egeø Poulsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Casper Sahl Poulsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Widdowson
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Yichang Zhang
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, Agroparistech, Micalis Institute, Jouy-en-Josas, France
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark.
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Thijssen M, Tacke F, Van Espen L, Cassiman D, Naser Aldine M, Nevens F, Van Ranst M, Matthijnssens J, Pourkarim MR. Plasma virome dynamics in chronic hepatitis B virus infected patients. Front Microbiol 2023; 14:1172574. [PMID: 37228370 PMCID: PMC10203228 DOI: 10.3389/fmicb.2023.1172574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The virome remains an understudied domain of the human microbiome. The role of commensal viruses on the outcome of infections with known pathogens is not well characterized. In this study we aimed to characterize the longitudinal plasma virome dynamics in chronic hepatitis B virus (HBV) infected patients. Eighty-five longitudinal plasma samples were collected from 12 chronic HBV infected individuals that were classified in the four stages of HBV infection. The virome was characterized with an optimized viral extraction protocol and deep-sequenced on a NextSeq 2500 platform. The plasma virome was primarily composed of members of the Anello- Flavi-, and Hepadnaviridae (HBV) families. The virome structure and dynamics did not correlate with the different stages of chronic HBV infection nor with the administration of antiviral therapy. We observed a higher intrapersonal similarity of viral contigs. Genomic analysis of viruses observed in multiple timepoint demonstrated the presence of a dynamic community. This study comprehensively assessed the blood virome structure in chronic HBV infected individuals and provided insights in the longitudinal development of this viral community.
Collapse
Affiliation(s)
- Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lore Van Espen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Leuven, Belgium
| | - Mahmoud Naser Aldine
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
8
|
Pinchera B, Moriello NS, Buonomo AR, Zappulo E, Viceconte G, Villari R, Gentile I. Microbiota and hepatitis C virus in the era of direct-acting antiviral agents. Microb Pathog 2023; 175:105968. [PMID: 36626945 DOI: 10.1016/j.micpath.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
The gut microbiota plays a fundamental role in Hepatitis C Virus (HCV)-related liver disease. Indeed, HCV infection alters the gut microbiota, whereas intestinal dysbiosis induces an underlying inflammatory state. This status may lead to liver disease progression. The advent of direct acting antivirals (DAAs) was a turning point in the history of HCV infection, which enhances the chances of recovery. Beyond the elimination of the virus, DAA therapy can affect the gut microbiota of the HCV patient. The study of the gut microbiota in the patient with HCV-related liver disease could be the first step in understanding the etiopathogenesis of hepatopathy thereby opening the way to new therapeutic opportunities. Herein we evaluate current knowledge regarding the gut microbiota in patients with HCV infection and the impact of DAA therapy.
Collapse
Affiliation(s)
- Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
| | - Nicola Schiano Moriello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giulio Viceconte
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Riccardo Villari
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
11
|
Analysis of RNA virome in rectal swabs of healthy and diarrheic pigs of different age. Comp Immunol Microbiol Infect Dis 2022; 90-91:101892. [PMID: 36274336 DOI: 10.1016/j.cimid.2022.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
|
12
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
13
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Chelluboina B, Kieft K, Breister A, Anantharaman K, Vemuganti R. Gut virome dysbiosis following focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2022; 42:1597-1602. [PMID: 35702025 PMCID: PMC9441728 DOI: 10.1177/0271678x221107702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Stroke leads to gut bacterial dysbiosis that impacts the post-stroke outcome. The gut microbiome also contains a high abundance of viruses which might play a crucial role in disease progression and recovery by modulating the metabolism of both host and host's gut bacteria. We presently analyzed the virome composition (viruses and phages) by shotgun metagenomics in the fecal samples obtained at 1 day of reperfusion following transient focal ischemia in adult mice. Viral genomes, viral auxiliary metabolic genes, and viral protein networks were compared between stroke and sham conditions (stroke vs sham, exclusive to sham and exclusive to stroke). Following focal ischemia, abundances of 2 viral taxa decreased, and 5 viral taxa increased compared with the sham. Furthermore, the abundance of Clostridia-like phages and Erysipelatoclostridiaceae-like phages were altered in the stroke compared with the sham cohorts. This is the first report to show that the gut virome responds acutely to stroke.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of
Wisconsin-Madison, Madison, WI, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison,
Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison,
Madison, WI, USA
| | | | - Raghu Vemuganti
- Department of Neurological Surgery, University of
Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Veterans Administration Hospital, Madison,
WI, USA
| |
Collapse
|
15
|
Marascio N, Rotundo S, Quirino A, Matera G, Liberto MC, Costa C, Russo A, Trecarichi EM, Torti C. Similarities, differences, and possible interactions between hepatitis E and hepatitis C viruses: Relevance for research and clinical practice. World J Gastroenterol 2022; 28:1226-1238. [PMID: 35431515 PMCID: PMC8968488 DOI: 10.3748/wjg.v28.i12.1226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) and hepatitis C virus (HCV) are both RNA viruses with a tropism for liver parenchyma but are also capable of extrahepatic manifestations. Hepatitis E is usually a viral acute fecal-oral transmitted and self-limiting disease presenting with malaise, jaundice, nausea and vomiting. Rarely, HEV causes a chronic infection in immunocompromised persons and severe fulminant hepatitis in pregnant women. Parenteral HCV infection is typically asymptomatic for decades until chronic complications, such as cirrhosis and cancer, occur. Despite being two very different viruses in terms of phylogenetic and clinical presentations, HEV and HCV show many similarities regarding possible transmission through organ transplantation and blood transfusion, pathogenesis (production of antinuclear antibodies and cryoglobulins) and response to treatment with some direct-acting antiviral drugs. Although both HEV and HCV are well studied individually, there is a lack of knowledge about coinfection and its consequences. The aim of this review is to analyze current literature by evaluating original articles and case reports and to hypothesize some interactions that can be useful for research and clinical practice.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Chiara Costa
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
16
|
Yu K, Chen Z. Risks of anastomotic leakage in patients with colorectal cancer after operation and how to effectively avoid it. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1031-1040. [PMID: 34707015 PMCID: PMC10930173 DOI: 10.11817/j.issn.1672-7347.2021.200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Indexed: 11/03/2022]
Abstract
Despite the considerable progress in surgical level and imaging examination methods, anastomotic leakage is still the major complication after intestinal surgery with high incidence rate and mortality rate. Moreover, anastomotic leakage has become one of the serious complications threatening the postoperative life safety, prognosis and quality of life. The occurrence of anastomotic leakage involves the changes of a variety of pathophysiological factors, and is affected by intestinal microbiota, inflammation and immune system. Preoperative intestinal preparation will change the type and number of microbial population in the intestine. Intraoperative anastomotic mode and bleeding volume are also closely related to the occurrence of anastomotic leakage. In addition, the occurrence of anastomotic leakage is associated with local recurrence of colorectal cancer after surgery. Intraoperative protective stoma is confirmed to reduce the incidence of anastomotic leakage. Combined preoperative adjustment of nutritional status and inflammatory factors is important for avoiding anastomotic leakage after surgery.
Collapse
Affiliation(s)
- Kexun Yu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zihua Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
17
|
Bruland T, Østvik AE, Sandvik AK, Hansen MD. Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms221910851. [PMID: 34639191 PMCID: PMC8509287 DOI: 10.3390/ijms221910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence:
| |
Collapse
|
18
|
Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of Bacteriophages with Animal and Human Organisms-Safety Issues in the Light of Phage Therapy. Int J Mol Sci 2021; 22:8937. [PMID: 34445641 PMCID: PMC8396182 DOI: 10.3390/ijms22168937] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. Modulations of cancer cells by bacteriophages are indicated. Direct and indirect effects of virulent and temperate phages are discussed. We conclude that interactions of bacteriophages with animal and human organisms are robust, and they must be taken under consideration when using these viruses in medicine, especially in phage therapy, and in biotechnological applications.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Katarzyna Kosznik-Kawśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| |
Collapse
|
19
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
20
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
21
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Yan Q, Wang Y, Chen X, Jin H, Wang G, Guan K, Zhang Y, Zhang P, Ayaz T, Liang Y, Wang J, Cui G, Sun Y, Xiao M, Kang J, Zhang W, Zhang A, Li P, Liu X, Ulllah H, Ma Y, Li S, Ma T. Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evol 2021; 7:veab022. [PMID: 33959381 PMCID: PMC8087960 DOI: 10.1093/ve/veab022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remains unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, for example ethnic origin, on the gut virome is rarely investigated. Here, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing twenty-four healthy adults and six children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals' gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were not only inherited from that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between viruses and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (P < 0.001), and they both correlated the holistic bacterial composition and vice versa. This study provides an overview of the gut viral community in Chinese and visiting Pakistanis and proposes a considerable role of ethnic origin in shaping the virome.
Collapse
Affiliation(s)
- Qiulong Yan
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yu Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- Institute of Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 210029, China
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Hao Jin
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Kuiqing Guan
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Yue Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai 200032, China
| | - Taj Ayaz
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yanshan Liang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Junyi Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Guangyi Cui
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Yuanyuan Sun
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Manchun Xiao
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Jian Kang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Wei Zhang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Aiqin Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Peng Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Xueyang Liu
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Hayan Ulllah
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yufang Ma
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Shenghui Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| |
Collapse
|
23
|
Zong X, Fu J, Xu B, Wang Y, Jin M. Interplay between gut microbiota and antimicrobial peptides. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:389-396. [PMID: 33364454 PMCID: PMC7750803 DOI: 10.1016/j.aninu.2020.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Metagenomic Analysis of the Enteric RNA Virome of Infants from the Oukasie Clinic, North West Province, South Africa, Reveals Diverse Eukaryotic Viruses. Viruses 2020; 12:v12111260. [PMID: 33167516 PMCID: PMC7694487 DOI: 10.3390/v12111260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Establishing a diverse gut microbiota after birth is essential for preventing illnesses later in life. However, little knowledge exists about the total viral population (virome) present in the gut of infants during the early developmental stage, with RNA viruses being generally overlooked. Therefore, this small pilot longitudinal study investigated the diversity and changes in the enteric RNA virome in healthy infants from South Africa. Faecal samples (n = 12) were collected from four infants at three time points (on average at 8, 13, and 25 weeks), and then sequenced on an Illumina MiSeq platform. The genomic analysis revealed a diverse population of human enteric viruses from the infants’ stools, and changes in the enteric virome composition were observed over time. The Reoviridae family, more specifically the Rotavirus genus, was the most common and could be linked to viral shedding due to the administration of live-attenuated oral vaccines in South Africa, followed by the Picornaviridae family including parechoviruses, echoviruses, coxsackieviruses, enteroviruses, and polioviruses. Polioviruses were also linked to vaccine-related shedding. Astroviridae (astroviruses) and Caliciviridae (noroviruses) were present at low abundance. It is evident that an infant’s gut is colonized by distinct viral populations irrespective of their health state. Further characterization of the human virome (with a larger participant pool) is imperative to provide more conclusive insights into the viral community structure and diversity that has been shown in the current study, despite the smaller sample size.
Collapse
|
25
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
26
|
Morales-Marroquin E, Hanson B, Greathouse L, de la Cruz-Munoz N, Messiah SE. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes Rev 2020; 21:e13025. [PMID: 32249534 DOI: 10.1111/obr.13025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Substantial differences in the response of gut microbial composition to metabolic and bariatric surgery have been reported. Therefore, the goal of the present review is to evaluate if methodological differences could be driving this lack of consistency. A search was conducted using PUBMED, Web of Science, Science Direct and COCHRANE using the following inclusion criteria: human studies written in English with a baseline sampling point, using gut microbiota as an outcome and either Roux-n-Y gastric bypass or sleeve gastrectomy. Sixteen articles were selected (total 221 participants). Roux-n-Y gastric bypass caused more alterations in gut microbial composition in comparison with sleeve gastrectomy. Substantial variability was found in study designs, data collection and analyses across studies. Increases in several families and genera from the phylum Proteobacteria and Bacteroidetes, the family Streptococcaceae, the species Akkermansia muciniphila and Streptococcus salivarius and a decrease in the phylum Firmicutes and the family Bifidobacteriaceae were reported. There is a need for standardization not only of microbial analysis but also of study designs when analysing the effect of bariatric surgery on the human gut microbiome. In addition, outcomes from different surgical procedures should not be combined as they produce distinctive effects on gut microbial composition.
Collapse
Affiliation(s)
- Elisa Morales-Marroquin
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Blake Hanson
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Leigh Greathouse
- Robbins College of Health and Human Services, Baylor University Waco, Texas, USA
| | | | - Sarah E Messiah
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| |
Collapse
|
27
|
Bao H, Zhang H, Zhou Y, Zhu S, Pang M, Shahin K, Olaniran A, Schmidt S, Wang R. Transient carriage and low-level colonization of orally administrated lytic and temperate phages in the gut of mice. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Many studies have shown the efficacy of phage therapy in reducing gastrointestinal pathogens. However, it is unclear whether phages can successfully colonize the gut when administered in an adequate amount for a long time. About 1 × 108 PFU/mL of purified lytic phage PA13076 or temperate phage BP96115 were fed daily to mice via drinking water over 31 days, to elucidate the distribution of phages in the gastrointestinal tract. At day 16 and 31, six different segments of the gastrointestinal tract with their contents, including stomach, duodenum, jejunum, ileum, cecum, colon, and fresh feces, were aseptically collected. The phage titers were determined using the double-layered plate method with S. Enteritidis ATCC 13076 or S. Pullorum SPu-109 used as host cells. The results indicated that a small portion of administered phages survived exposure to gastric acid and entered the intestinal tract. The prevalence of phages in the gastrointestinal tract was lower than 1% of the primary phage count. Highest phage titers were detected in the cecum with 104 ~ 105 PFU/g, and most of the phages were eliminated from the body via feces with 106 PFU/g. On day 16 and day 31, the same level of phage titers in different segments of the gastrointestinal tract indicated that the colonization of phages had reached saturation at day 16. These results demonstrate transient phage carriage and low-level colonization of orally administrated lytic and temperate gut phages in mice.
Graphical abstract
Collapse
|
28
|
Cao J, Zhang Y, Dai M, Xu J, Chen L, Zhang F, Zhao N, Wang J. Profiling of Human Gut Virome with Oxford Nanopore Technology. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Ansari MH, Ebrahimi M, Fattahi MR, Gardner MG, Safarpour AR, Faghihi MA, Lankarani KB. Viral metagenomic analysis of fecal samples reveals an enteric virome signature in irritable bowel syndrome. BMC Microbiol 2020; 20:123. [PMID: 32429898 PMCID: PMC7236503 DOI: 10.1186/s12866-020-01817-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Changes in the enteric microbiota have been suggested to contribute to gastrointestinal diseases, including irritable bowel syndrome. Most of the published work is on bacterial dysbiosis with meager data on the role of the virome in irritable bowel syndrome and other gastrointestinal diseases. In the current study, we therefore aimed to investigate the viral community composition of the gut and test for potential dysbiosis linked to irritable bowel syndrome. RESULTS A metagenomics analysis on fecal samples of 50 individuals - 30 of whom met the Rome IV criteria for IBS and 20 healthy controls- was conducted. There was a noticeable alteration in viral taxa observed in association with irritable bowel syndrome when compared to healthy individuals - where some eukaryotic viral taxa noticeably prevail over others. We observed a significant decrease in the diversity and abundance of enteric virome particularly in eukaryotic viruses of Megavirales in patients with irritable bowel syndrome. CONCLUSIONS These findings shed light on a new hypothesis that the alteration of the viral taxa contributes to the pathogenesis of irritable bowel syndrome and related symptoms, and therefore, pave the way for developing a new diagnostic biomarker or anti-viral drugs for the treatment of irritable bowel syndrome.
Collapse
Affiliation(s)
- Mina Hojat Ansari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehregan Ebrahimi
- Department of Biology, Shiraz University, Shiraz, Fars Province, Iran
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian Bayan Gene Research and Training Center, Dr. Faghihi's Medical Genetics Center, Shiraz, Iran
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
31
|
Foppa C, Ng SC, Montorsi M, Spinelli A. Anastomotic leak in colorectal cancer patients: New insights and perspectives. Eur J Surg Oncol 2020; 46:943-954. [PMID: 32139117 DOI: 10.1016/j.ejso.2020.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Anastomotic leak (AL) remains a potentially life-threatening sequela of colorectal surgery impacting on mortality, short- and long-term morbidity, quality of life, local recurrence (LR) and disease-free survival. Despite technical improvements and the identification of several surgery- and patient-related factors associated to the risk of AL, its incidence has not significantly changed over time. In this context, the clarification of the mechanisms underlying anastomotic healing remains an important unmet need, crucial for improving patients' outcomes. This review concentrates on novel key findings in the etiopathogenesis of AL, how they can contribute in determining LR, and measures which may contribute to reducing its incidence. AL results from a complex, dynamic interplay of several factors and biological processes, including host genetics, gut microbiome, inflammation and the immune system. Many of these factors seem to act in concert to drive both AL and LR, even if the exact mechanisms remain to be elucidated. The next generation sequencing technology, including the microbial metagenomics, could lead to tailored bowel preparations targeting only those pathogens that can cause AL. Significant progress is being made in each of the reviewed areas, moving toward translational and targeted therapeutic strategies to prevent the difficult complication of AL.
Collapse
Affiliation(s)
- Caterina Foppa
- Division of Colon and Rectal Surgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy.
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, Division of Gastroenterology and Hepatology, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Marco Montorsi
- Division of General and Digestive Surgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.
| | - Antonino Spinelli
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi) - Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy.
| |
Collapse
|
32
|
Altmäe S, Franasiak JM, Mändar R. The seminal microbiome in health and disease. Nat Rev Urol 2019; 16:703-721. [PMID: 31732723 DOI: 10.1038/s41585-019-0250-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Owing to the fact that there are more microbial than human cells in our body and that humans contain more microbial than human genes, the microbiome has huge potential to influence human physiology, both in health and in disease. The use of next-generation sequencing technologies has helped to elucidate functional, quantitative and mechanistic aspects of the complex microorganism-host interactions that underlie human physiology and pathophysiology. The microbiome of semen is a field of increasing scientific interest, although this microbial niche is currently understudied compared with other areas of microbiome research. However, emerging evidence is beginning to indicate that the seminal microbiome has important implications for the reproductive health of men, the health of the couple and even the health of offspring, owing to transfer of microorganisms to the partner and offspring. As this field expands, further carefully designed and well-powered studies are required to unravel the true nature and role of the seminal microbiome.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. .,Competence Centre on Health Technologies, Tartu, Estonia. .,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
| | | | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
33
|
Gut DNA Virome Diversity and Its Association with Host Bacteria Regulate Inflammatory Phenotype and Neuronal Immunotoxicity in Experimental Gulf War Illness. Viruses 2019; 11:v11100968. [PMID: 31640184 PMCID: PMC6832151 DOI: 10.3390/v11100968] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease, chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained conditions. Results using a murine model show that enteric viral populations especially bacteriophages were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2 protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature in GWI, decreased tight junction protein level was followed by the presence an activation of innate immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome diversity had a positive correlation with serum IL-6, IL-1β, and IFN-γ, intestinal inflammation (IFN-γ), and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral compound to suppress virus alteration in the gut showed significant improvement in epithelial tight junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in GWI and could be a novel therapeutic target in GWI.
Collapse
|
34
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2449] [Impact Index Per Article: 408.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Sartorius R, D'Apice L, Prisco A, De Berardinis P. Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies. Pharmaceutics 2019; 11:E437. [PMID: 31480551 PMCID: PMC6781307 DOI: 10.3390/pharmaceutics11090437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), 80131 CNR Naples, Italy
| | | |
Collapse
|
36
|
Cheng HY, Ning MX, Chen DK, Ma WT. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Front Immunol 2019; 10:607. [PMID: 30984184 PMCID: PMC6449424 DOI: 10.3389/fimmu.2019.00607] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestine is colonized by over a trillion microbes that comprise the "gut microbiota," a microbial community which has co-evolved with the host to form a mutually beneficial relationship. Accumulating evidence indicates that the gut microbiota participates in immune system maturation and also plays a central role in host defense against pathogens. Here we review some of the mechanisms employed by the gut microbiota to boost the innate immune response against pathogens present on epithelial mucosal surfaces. Antimicrobial peptide secretion, inflammasome activation and induction of host IL-22, IL-17, and IL-10 production are the most commonly observed strategies employed by the gut microbiota for host anti-pathogen defense. Taken together, the body of evidence suggests that the host gut microbiota can elicit innate immunity against pathogens.
Collapse
Affiliation(s)
- Hong-Yu Cheng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Meng-Xia Ning
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
37
|
Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 2018; 11:E10. [PMID: 30585199 PMCID: PMC6356784 DOI: 10.3390/v11010010] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
The human body is host to large numbers of bacteriophages (phages)⁻a diverse group of bacterial viruses that infect bacteria. Phage were previously regarded as bystanders that only impacted immunity indirectly via effects on the mammalian microbiome. However, it has become clear that phages also impact immunity directly, in ways that are typically anti-inflammatory. Phages can modulate innate immunity via phagocytosis and cytokine responses, but also impact adaptive immunity via effects on antibody production and effector polarization. Phages may thereby have profound effects on the outcome of bacterial infections by modulating the immune response. In this review we highlight the diverse ways in which phages interact with human cells. We present a computational model for predicting these complex and dynamic interactions. These models predict that the phageome may play important roles in shaping mammalian-bacterial interactions.
Collapse
Affiliation(s)
- Jonas D Van Belleghem
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, Sicheritz-Pontén T. Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand 2018; 60:61. [PMID: 30309375 PMCID: PMC6182802 DOI: 10.1186/s13028-018-0415-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut. Results We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut. Conclusions Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging. Electronic supplementary material The online version of this article (10.1186/s13028-018-0415-3) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, Danese S. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 2018; 10:149-158. [PMID: 30252582 PMCID: PMC6546319 DOI: 10.1080/19490976.2018.1511664] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis is one of the causes underlying the pathogenesis of inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD). Besides bacteria, microbiota comprises both prokaryotic and eukaryotic viruses, that together compose the gut virome. Few works have defined the viral composition of stools, while the virome populating intestinal mucosae from early-diagnosed IBD patients has never been studied. Here we show that, by in-depth metagenomic analysis of RNA-Seq data obtained from gut mucosae of young treatment-naïve patients, early-diagnosed for CD and UC, and from healthy subjects (Ctrl), UC patients display significantly higher levels of eukaryotic Hepadnaviridae transcripts by comparison with both Ctrl and CD patients, whereas CD patients show increased abundance of Hepeviridae versus Ctrl. Moreover, we found that UC gut mucosa is characterized by lower levels of Polydnaviridae and Tymoviridae, whereas the mucosa of patients with CD showed a reduced abundance of Virgaviridae. Our findings support the idea that certain eukaryotic viruses might trigger intestinal inflammation and contribute to IBD pathogenesis and pave the way not only for the discovery of novel diagnostic biomarkers but also for the development of anti-viral drugs for the treatment of IBD.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
40
|
Gokulan K, Bekele AZ, Drake KL, Khare S. Responses of intestinal virome to silver nanoparticles: safety assessment by classical virology, whole-genome sequencing and bioinformatics approaches. Int J Nanomedicine 2018; 13:2857-2867. [PMID: 29844669 PMCID: PMC5961469 DOI: 10.2147/ijn.s161379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Effects of silver nanoparticles (AgNP) on the intestinal virome/phage community are mostly unknown. The working hypothesis of this study was that the exposure of pharmaceutical/nanomedicine and other consumer-use material containing silver ions and nanoparticles to the gastrointestinal tract may result in disturbance of the beneficial gut viruses/phages. Methods This study assesses the impact of AgNP on the survival of individual bacteriophages using classical virology cultivation and electron microscopic techniques. Moreover, how the ingested AgNP may affect the intestinal virus/phages was investigated by conducting whole-genome sequencing (WGS). Results The viral cultivation methods showed minimal effect on selected viruses during short-term exposure (24 h) to 10 nm AgNP. However, long-term exposure (7 days) resulted in significant reduction in the viral/phage population. Data obtained from WGS were filtered and compared with a nonredundant viral database composed of the complete viral genomes from NCBI using KRAKEN (confidence scoring threshold of 0.5). To compare the relative differential changes, the sequence counts in each treatment group were normalized to account for differences in DNA sequencing library sizes. Bioinformatics techniques were developed to visualize the virome comparative changes in a phylogenic tree graph. The computed data revealed that AgNP had an impact on several intestinal bacteriophages that prey on bacterial genus Enterobacteria, Yersinia and Staphylococcus as host species. Moreover, there was an independent effect of nanoparticles and released ions. Conclusion Overall, this study reveals that the small-size AgNP could lead to perturbations of the gut microbial ecosystem, leading to the inactivation of resident phages that play an important role in influencing gastrointestinal health.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Aschalew Z Bekele
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Sangeeta Khare
- Division of Microbiology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
41
|
Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocr Rev 2018; 39:133-153. [PMID: 29309555 DOI: 10.1210/er.2017-00192] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput sequencing technologies has substantially expanded our understanding of the role of the gut microbiome in modulation of host metabolism and (cardio)metabolic disease development. Nevertheless, evidence for a role of the gut microbiome as a causal, driving factor in disease development mainly originates from studies in mouse models: data showing causality in humans are scarce. In this review, we will discuss the quality of evidence supporting a causal role for the gut microbiome in the development of obesity and diabetes, in particular T2DM, in humans. Considering overlap in potential mechanisms, the role of the gut microbiome in type 1 diabetes mellitus will also be addressed. We will elaborate on factors that drive microbiome composition in humans and discuss how alterations in microbial composition or microbial metabolite production contribute to disease development. Challenging aspects in determining causality in humans will be postulated together with strategies that might hold potential to overcome these challenges. Furthermore, we will discuss means to modify gut microbiome composition in humans to help establish causality and discuss systems biology approaches that might hold the key to unravelling the role of the gut microbiome in obesity and T2DM.
Collapse
Affiliation(s)
- Abraham S Meijnikman
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Department of Internal Medicine, MC Slotervaart, Amsterdam, Netherlands
| | - Victor E Gerdes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Department of Internal Medicine, MC Slotervaart, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands.,Diabetes Center, Department of Internal medicine, VU University Medical Center, Amsterdam, Netherlands.,ICAR, VU University Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
42
|
Gootenberg DB, Paer JM, Luevano JM, Kwon DS. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Curr Opin Infect Dis 2018; 30:31-43. [PMID: 27922852 PMCID: PMC5325247 DOI: 10.1097/qco.0000000000000341] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text Purpose of review Despite HIV therapy advances, average life expectancy in HIV-infected individuals on effective treatment is significantly decreased relative to uninfected persons, largely because of increased incidence of inflammation-related diseases, such as cardiovascular disease and renal dysfunction. The enteric microbial community could potentially cause this inflammation, as HIV-driven destruction of gastrointestinal CD4+ T cells may disturb the microbiota–mucosal immune system balance, disrupting the stable gut microbiome and leading to further deleterious host outcomes. Recent findings Varied enteric microbiome changes have been reported during HIV infection, but unifying patterns have emerged. Community diversity is decreased, similar to pathologies such as inflammatory bowel disease, obesity, and Clostridium difficile infection. Many taxa frequently enriched in HIV-infected individuals, such as Enterobacteriaceae and Erysipelotrichaceae, have pathogenic potential, whereas depleted taxa, such as Bacteroidaceae and Ruminococcaceae, are more linked with anti-inflammatory properties and maintenance of gut homeostasis. The gut viral community in HIV has been found to contain a greater abundance of pathogenesis-associated Adenoviridae and Anelloviridae. These bacterial and viral changes correlate with increased systemic inflammatory markers, such as serum sCD14, sCD163, and IL-6. Summary Enteric microbial community changes may contribute to chronic HIV pathogenesis, but more investigation is necessary, especially in the developing world population with the greatest HIV burden (Video, Supplemental Digital Content 1, which includes the authors’ summary of the importance of the work).
Collapse
Affiliation(s)
- David B Gootenberg
- aRagon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge bHarvard Medical School, Boston cDivision of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
43
|
Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial Ecology along the Gastrointestinal Tract. Microbes Environ 2017; 32:300-313. [PMID: 29129876 PMCID: PMC5745014 DOI: 10.1264/jsme2.me17017] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the human gastrointestinal (GI) tract traverses a number of environmental, chemical, and physical conditions because it runs from the oral cavity to the anus. These differences in conditions along with food or other ingested substrates affect the composition and density of the microbiota as well as their functional roles by selecting those that are the most suitable for that environment. Previous studies have mostly focused on Bacteria, with the number of studies conducted on Archaea, Eukarya, and Viruses being limited despite their important roles in this ecosystem. Furthermore, due to the challenges associated with collecting samples directly from the inside of humans, many studies are still exploratory, with a primary focus on the composition of microbiomes. Thus, mechanistic studies to investigate functions are conducted using animal models. However, differences in physiology and microbiomes need to be clarified in order to aid in the translation of animal model findings into the context of humans. This review will highlight Bacteria, Archaea, Fungi, and Viruses, discuss differences along the GI tract of healthy humans, and perform comparisons with three common animal models: rats, mice, and pigs.
Collapse
Affiliation(s)
- Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Hang Lu
- Department of Animal Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Tianming Yao
- Department of Food Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue UniversityWest Lafayette, Indiana 47907USA
| |
Collapse
|
44
|
Preveden T, Scarpellini E, Milić N, Luzza F, Abenavoli L. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28621554 DOI: 10.1080/17474124.2017.1343663] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health problem with 150 million infected people worldwide. Liver can be greatly affected by changes in gut microbiota due to increased intestinal permeability with passage of microbial antigens into the liver through the portal circulation. The concept of 'gut-liver' axis is important to understand the pathophysiology of several liver diseases. Several recent studies also revealed that an altered gut microbiota can be implicated in the pathogenesis of HCV-induced chronic liver disease (CHC). Areas covered: An overview of intestinal microflora composition, host reaction during CHC, and a description of relevant clinical trials on the use of probiotics in this field. Expert commentary: HCV patients gut microbiota composition is stable over liver disease stages. This is a unique example of gut disbiosis stability vs. NAFLD, HBV, HIV, and HCV co-infected patients. The impact of HCV infection on intestinal permeability allows gut disbiosis starting, maintenance and its proinflammatory effect until liver cirrhosis and HCC development. HCV eradication has unraveled the strong impact of gut microbiota unbalance on liver disease development with possible future implications for probiotics use to change the natural history of cirrhosis progression.
Collapse
Affiliation(s)
- Tomislav Preveden
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia
| | - Emidio Scarpellini
- b Division of Gastroenterology , La Sapienza University, Umberto I University Hospital , Rome , Italy
| | - Natasa Milić
- c Faculty of Medicine, Department of Pharmacy , University of Novi Sad , Novi Sad , Serbia
| | - Francesco Luzza
- d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| | - Ludovico Abenavoli
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia.,d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| |
Collapse
|
45
|
Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep 2017; 7:8004. [PMID: 28808331 PMCID: PMC5556114 DOI: 10.1038/s41598-017-08336-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
The ability of bacteriophages to kill bacteria is well known, as is their potential use as alternatives to antibiotics. As such, bacteriophages reach high doses locally through infection of their bacterial host in the human body. In this study we assessed the gene expression profile of peripheral blood monocytes from six donors for twelve immunity-related genes (i.e. CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI and TNFA) induced by Staphylococcus aureus phage ISP and four Pseudomonas aeruginosa phages (i.e. PNM, LUZ19, 14-1 and GE-vB_Pae-Kakheti25). The phages were able to induce clear and reproducible immune responses. Moreover, the overall immune response was very comparable for all five phages: down-regulation of LYZ and TGFBI, and up-regulation of CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, SOCS3 and TNFA. The observed immune response was shown to be endotoxin-independent and predominantly anti-inflammatory. Addition of endotoxins to the highly purified phages did not cause an immune response comparable to the one induced by the (endotoxin containing) phage lysate. In addition, the use of an intermediate level of endotoxins tipped the immune response to a more anti-inflammatory response, i.e. up-regulation of IL1RN and a strongly reduced expression of CXCL1 and CXCL5.
Collapse
Affiliation(s)
- Jonas D Van Belleghem
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Frédéric Clement
- Center for Vaccinology, Ghent University Hospital, Ghent, Belgium
| | - Maya Merabishvili
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium
- Laboratory for Molecular and Cellular Technology (LabMCT) Queen Astrid Military Hospital, Bruynstraat 1, 1120, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Medical Research Building II, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
46
|
Rascovan N, Duraisamy R, Desnues C. Metagenomics and the Human Virome in Asymptomatic Individuals. Annu Rev Microbiol 2017; 70:125-41. [PMID: 27607550 DOI: 10.1146/annurev-micro-102215-095431] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput sequencing technologies have revolutionized how we think about viruses. Investigators can now go beyond pathogenic viruses and have access to the thousands of viruses that inhabit our bodies without causing clinical symptoms. By studying their interactions with each other, with other microbes, and with host genetics and immune systems, we can learn how they affect health and disease. This article reviews current knowledge of the composition and diversity of the human virome in physiologically healthy individuals. It focuses on recent results from metagenomics studies and discusses the contribution of bacteriophages and eukaryotic viruses to human health.
Collapse
Affiliation(s)
- Nicolás Rascovan
- Faculté de Médecine, Aix Marseille Université, 13385 Marseille, France.,URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 13385 Marseille, France;
| | - Raja Duraisamy
- Faculté de Médecine, Aix Marseille Université, 13385 Marseille, France.,URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 13385 Marseille, France;
| | - Christelle Desnues
- Faculté de Médecine, Aix Marseille Université, 13385 Marseille, France.,URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 13385 Marseille, France;
| |
Collapse
|
47
|
Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation. Adv Drug Deliv Rev 2017. [PMID: 28625828 DOI: 10.1016/j.addr.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological immunotherapies are a key component of post-transplant therapy in solid-organ and hematopoietic stem cell transplantation. In current clinical practice, immunotherapies largely follow a one-size fits all approach, leaving a large portion of transplant recipients either over- or under-immunosuppressed, and consequently at risk of infections or immune-mediated complications. Our goal here is to review recent and rapid advances in precision and genomic medicine approaches to monitoring of post-transplant immunotherapies. We will discuss recent advances in precision measurements of pharmacological immunosuppression, measurements of the plasma and gut microbiome, strategies to monitor for allograft injury and post-transplant malignancies via circulating cell-free DNA, and comprehensive measurements of the B and T cell immune cell repertoire.
Collapse
|
48
|
Intraluminal Flagellin Differentially Contributes to Gut Dysbiosis and Systemic Inflammation following Burn Injury. PLoS One 2016; 11:e0166770. [PMID: 27907005 PMCID: PMC5131931 DOI: 10.1371/journal.pone.0166770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Burn injury is associated with a loss of gut barrier function, resulting in systemic dissemination of gut-derived bacteria and their products. The bacterial protein and TLR5 agonist, flagellin, induces non-specific innate immune responses. Because we detected flagellin in the serum of burn patients, we investigated whether gut-derived flagellin was a primary or secondary contributor to intestinal dysfunction and systemic inflammation following burn injury. The apical surface of polarized human intestinal epithelial cells (IECs), Caco-2BBe, were exposed to 50 or 500 ng of purified flagellin and 1 x 105 of an intestinal E. coli (EC) isolate as follows: 1) flagellin added 30 min prior to EC, 2) flagellin and EC added simultaneously, or 3) EC added 30 min prior to flagellin. Our results showed that luminal flagellin and EC modulated each other's biological actions, which influenced their ability to induce basolateral secretion of inflammatory cytokines and subsequent translocation of bacteria and their products. A low dose of flagellin accompanied by an enteric EC in the lumen, tempered inflammation in a dose- and time-dependent manner. However, higher doses of flagellin acted synergistically with EC to induce both intestinal and systemic inflammation that compromised barrier integrity, increasing systemic inflammation following burn injury, a process we have termed flagellemia. In a murine model of burn injury we found that oral gavage of flagellin (1 μg/mouse) significantly affected the gut microbiome after burn injury. In these mice, flagellin disseminated out of the intestine into the serum and to distal organs (mesenteric lymph nodes and lungs) where it induced secretion of monocyte chemoattractant protein (MCP-1) and CXCL1/KC (mouse equivalent of human IL-8) at 24 and 48h post-burn. Our results illustrated that gut-derived flagellin alone or accompanied by a non-pathogenic enteric EC strain can function as an initiator of luminal and systemic inflammation following burn injury.
Collapse
|
49
|
Emerging Technologies for Gut Microbiome Research. Trends Microbiol 2016; 24:887-901. [PMID: 27426971 DOI: 10.1016/j.tim.2016.06.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
Abstract
Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies, including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches, will improve the efficiency and quality of microbiome research. Here, we discuss emerging technologies and their potential impact on gut microbiome studies.
Collapse
|
50
|
Abstract
In 1675, Antoni Van Leeuwenhoeck was the first to observe several forms using an optical microscope that he named "animalcules", realizing later that these were microorganisms. The first classification of living organisms proposed by Ehrenberg in 1833 was based on what we could visualize. The failure of this kind of classification arises from viral culture, which preceded direct observations that were finally achieved during the 20th century by electron microscopy. The number of prokaryotic species is estimated at approximately 10 million, although only 1800 were known in 1980, and 14,000 to date, thanks to the advent of 16S rRNA amplification and sequencing. This highlights our inability to access the entire diversity. Indeed, a large number of bacteria are only, known as Operational Taxonomic Units (OTUs) and detected as a result of metagenomics studies, revealing an unexplored world known as the "dark matter". Recently, the rebirth of bacterial culture through the example of culturomics has dramatically increased the human gut repertoire as well as the 18SrRNA sequencing allowed to largely extend the repertoire of Eukaryotes. Finally, filtration and co-culture on free-living protists associated with high-throughput culture elucidated a part of the megavirome. While the majority of studies currently performed on the human gut microbiota focus on bacterial diversity, it appears that several other prokaryotes (including archaea) and eukaryotic populations also inhabit this ecosystem; their detection depending exclusively on the tools used. Rational and comprehensive establishment of this ecosystem will allow the understanding of human health associated with gut microbiota and the potential to change this.
Collapse
|