1
|
Lin S, Moreinos D, Mavridou AM, Novak R, Rotstein I, Abbott PV. The role of infection in signalling root resorption: A narrative review. Int Endod J 2024; 57:1727-1744. [PMID: 39291291 DOI: 10.1111/iej.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Root resorption consists of complex, multistep processes that involve cell signalling caused by inflammation and stromal cells, which promotes the secretion of receptor activator of nuclear factor κB ligand/ macrophage-colony stimulating factor (RANKL/M-CSF) resulting in a resorptive process. OBJECTIVE The aim of this narrative review was to analyse the literature related to root resorption resulting from microbial infection and to comparing it with non-microbial infection. METHODS An electronic literature search was performed using the PubMed database and applying keywords of articles published in English. Eligible papers were reviewed to reveal the descriptions of bone and root resorption processes. The abstracts were searched manually to identify articles about infection-stimulating bone and root resorption. RESULTS Three main types of root resorption were identified, two associated with primary bacterial infection and one secondary to bacterial infection. These include external inflammatory resorption, internal inflammatory resorption and external cervical (invasive) resorption. DISCUSSION The magnitude of cytokine involvement that promotes resorption and M-CSF/RANKL production depends on multiple factors, including pathogen virulence, site of infection and host genetic factors that activate the inflammation at the infection site. Two mechanisms activate the resorption mechanisms-the canonical and non-canonical pathways that can activate clastic cells independently of the RANKL/RANK canonical pathways. CONCLUSIONS Two pathways of root resorption co-exist in the body. When resorption is caused by infection, chronic inflammation due to bacterial infection prolongs the secretions of pro-inflammatory cytokines that intensify root and bone resorption. The second pathway is bacterial independent of the non-infection root resorption that is part of the wound healing process, which is limited in time due to its innate ability.
Collapse
Affiliation(s)
- S Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - D Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - A M Mavridou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - R Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Oncology Unit, Department of Orthopedic, Rambam Health Care Campus, Haifa, Israel
| | - I Rotstein
- University of Southern California, Los Angeles, California, USA
| | - P V Abbott
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Lin XJ, Yuan Q, Zhou J, Dong YL, Sunchuri D, Guo ZL. Cellular senescence: A new perspective on the suppression of periodontitis (Review). Mol Med Rep 2024; 30:238. [PMID: 39422030 PMCID: PMC11529191 DOI: 10.3892/mmr.2024.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Cellular senescence, characterized by cell cycle arrest, can result in tissue dysfunction when senescent cells persist and accumulate. Periodontitis, a chronic inflammatory condition caused by the interaction between bacteria and the immune system of the host, primarily manifests as damage to periodontal tissues. Aging and inflammation are interlinked processes that exacerbate each other. The progression of localized chronic periodontal inflammation is often accelerated in conjunction with tissue and organ aging. The presence of senescent cells and release of inflammatory cytokines, immune modulators, growth factors and proteases that are associated with the senescence‑associated secretory phenotype contribute to the deterioration of periodontal tissues. The present review aimed to elucidate the mechanisms of cellular senescence and its potential impact on periodontitis, offering novel insights for modulating the inflammatory microenvironment of periodontal tissues.
Collapse
Affiliation(s)
- Xue-Jing Lin
- School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu-Lei Dong
- School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
3
|
Pignatelli P, Mrakic-Sposta S, Bondi D, D’Antonio DL, Piattelli A, Santangelo C, Verratti V, Curia MC. The Effect of Acute High-Altitude Exposure on Oral Pathogenic Bacteria and Salivary Oxi-Inflammatory Markers. J Clin Med 2024; 13:6266. [PMID: 39458216 PMCID: PMC11508378 DOI: 10.3390/jcm13206266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The environment can alter the homeostasis of humans and human microbiota. Oral health is influenced by high altitude through symptoms of periodontitis, barodontalgia, dental barotrauma, and a decrease in salivary flow. Microbiota and inflammatory state are connected in the oral cavity. This study aimed to explore the effect of acute high-altitude exposure on the salivary microbiome and inflammatory indicators. Methods: Fifteen healthy expeditioners were subjected to oral examination, recording the plaque index (PII), gingival index (GI), the simplified oral hygiene index (OHI-S), and the number of teeth; unstimulated saliva samples were collected at an altitude of 1191 m (T1) and 4556 m (T2). TNF-α, sICAM1, ROS, and the oral bacterial species Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were quantified. Results: At T2, slCAM, TNF, and ROS increased by 85.5% (IQR 74%), 84% (IQR 409.25%), and 53.5% (IQR 68%), respectively, while Pg decreased by 92.43% (IQR 102.5%). The decrease in Pg was greater in the presence of low OHI-S. The increase in slCAM1 correlated with the reduction in Fn. Individuals with high GI and OHI-S had a limited increase in TNF-α at T2. Conclusion: Short-term exposures can affect the concentration of pathogenic periodontal bacteria and promote local inflammation.
Collapse
Affiliation(s)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Vittore Verratti
- Department of Psychology, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Tapiola A, Tapio J, Vähänikkilä H, Tegelberg P, Ylöstalo P, Koivunen P. Higher haemoglobin levels are associated with impaired periodontal status. J Clin Periodontol 2024; 51:1168-1177. [PMID: 38872488 DOI: 10.1111/jcpe.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
AIM Cellular oxygen sensing mechanisms have been linked to periodontal condition, and levels of haemoglobin (Hb) (the main carrier of oxygen) can be used as a surrogate measure for hypoxia. We aimed to examine relations between Hb levels and key periodontal health parameters in a general population. MATERIALS AND METHODS The population comprised 1711 (47% male) subjects from the Northern Finland Birth Cohort 1966, for whom an oral health examination was carried out at 46 years of age and whose Hb levels were within the Finnish reference values. Relative risks (RRs) were estimated using Poisson regression models. RESULTS The low-Hb tertile (mean Hb 133 g/L) had healthier anthropometric, metabolic and periodontal health parameters than the high-Hb tertile (mean Hb 151 g/L). Multivariable regression models adjusted for risk factors showed Hb levels to be positively associated with alveolar bone loss (ABL) and periodontal pocket depth (PPD), although the associations were weaker after adjustment for key metabolic parameters and were strongly influenced by smoking status. CONCLUSIONS Hb levels within the normal variation are positively associated with PPD and ABL. The association between Hb levels and periodontal condition appeared to be more complex than had previously been anticipated.
Collapse
Affiliation(s)
- Atte Tapiola
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Hannu Vähänikkilä
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Paula Tegelberg
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pekka Ylöstalo
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Kzar WA, Abbas RF. Association of Polymorphism with Periodontitis and Salivary Levels of Hypoxia-Inducible Factor-1α. Eur J Dent 2024. [PMID: 38744330 DOI: 10.1055/s-0044-1785530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE This investigation aims to investigate the association between HIF-1α genetic polymorphism and periodontitis and examine and contrast the levels of HIF-1α present in the saliva of subjects afflicted with periodontitis and in the control group. Additionally, this study aims to establish diagnostic proficiency of this biomarker in distinguishing between periodontal health and disease. MATERIALS AND METHODS This study entailed the collection of venous blood samples and unstimulated saliva samples from a total of 160 participants, encompassing 80 individuals diagnosed with periodontitis and 80 periodontitis-free individuals. The periodontal parameters were evaluated, involving the measurement of clinical attachment loss, the probing pocket depth, and the bleeding on probing percentage. Subsequently, genetic analysis of HIF-1α using polymerase chain reaction (PCR) technique, DNA sequencing, and enzyme-linked immunosorbent assays was conducted. RESULTS The genetic analysis of 352 bp of the HIF-1α gene revealed the presence of 66 single-nucleotide polymorphisms (SNPs) in control samples, whereas 78 SNPs were found in periodontitis sample. The nucleotide A was replaced with a C nucleotide at position 207 of the amplified PCR fragments. The homozygous AA pattern was predominant in the control group, with significant differences between the two groups. In contrast, the homozygous CC pattern was more dominant in the periodontitis group, with significant differences between the two groups. The analysis of Hardy-Weinberg equilibrium for the comparison between the observed and the expected genotypes showed significant differences between the observed and the expected values in the control and periodontitis groups, as well as the total sample. The highest mean values of the measured periodontal parameters were found in the periodontitis group (clinical attachment loss = 4.759, probing pocket depth = 4.050, and bleeding on probing = 30.950) with statistically significant differences between the groups. The periodontitis group showed significantly higher salivary HIF-1α levels compared to control group (p < 0.001). Besides, HIF-1α is a good biomarker in distinguishing between periodontal health and periodontitis. CONCLUSION rs1951795 SNP of HIF-1α has no significant impact on the progression of periodontitis and the salivary level HIF-1α. Periodontitis results in a notable elevation in HIF-1α salivary levels, with an outstanding diagnostic ability to distinguish between periodontitis and periodontal health.
Collapse
Affiliation(s)
- Wael Abdulazeez Kzar
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Raghad Fadhil Abbas
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
6
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
7
|
Sun J, Zhang Y, Zheng Z, Ding X, Sun M, Ding G. Potential mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:181-191. [PMID: 38597078 PMCID: PMC11034411 DOI: 10.7518/hxkq.2024.2023285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/17/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.
Collapse
Affiliation(s)
- Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang 261053, China
| | - Minmin Sun
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
8
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
9
|
Yang X, Cai X, Lin J, Zheng Y, Liao Z, Lin W, He X, Zhang Y, Ren X, Liu C. E. Coli LPS-induced calcium signaling regulates the expression of hypoxia-inducible factor 1α in periodontal ligament fibroblasts in a non-hypoxia-dependent manner. Int Immunopharmacol 2024; 128:111418. [PMID: 38176341 DOI: 10.1016/j.intimp.2023.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Periodontitis, an inflammatory disease, can cause significant damage to the oral tissues which support the teeth. During the early development of periodontitis, periodontal ligament fibroblasts (PDLFs) undergo metabolic reprogramming regulated by hypoxia-inducible factor 1α (HIF-1α), which is strongly linked to the progression of inflammation. However, the precise mechanisms by which PDLFs regulate HIF-1α and its associated metabolic reprogramming during early inflammation remain unclear. This study illustrated that brief and low-dose exposure to Escherichia coli (E. coli) lipopolysaccharide (LPS) can serve as a non-hypoxic stimulus, effectively replicating early periodontal inflammatory reactions. This is evidenced by the upregulation of HIF-1α expression and the activation of HIF-1α-mediated crucial glycolytic enzymes, namely lactate dehydrogenase a, pyruvate kinase, and hexokinase 2, concomitant with an augmentation in the inflammatory response within PDLFs. We observed that the effects mentioned and their impact on macrophage polarization were notably attenuated when intracellular and extracellular stores of Ca2+ were depleted using BAPTA-AM and Ca2+-free medium, respectively. Mechanistically, our findings demonstrated that the transcriptional process of HIF-1α is regulated by Ca2+ during E. coli LPS stimulation, mediated through the signal transducer and activator of transcription 3 (STAT3) pathway. Additionally, we observed that the stabilization of intracellular HIF-1α proteins occurs via the endothelin (ET)-1-endothelin A receptor pathway, independent of hypoxia. Taken together, our research outcomes underscore the pivotal involvement of Ca2+ in the onset of early periodontitis by modulating HIF-1α and glycolysis, thereby presenting novel avenues for early therapeutic interventions.
Collapse
Affiliation(s)
- Xia Yang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xuepei Cai
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, China
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Yifan Zheng
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Zhihao Liao
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Weiyin Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Ying Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - XiaoHua Ren
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China.
| |
Collapse
|
10
|
Liu G, Bae KB, Yang Y, Lee BN, Hwang YC. Icariin negatively regulated lipopolysaccharide-induced inflammation and ameliorated the odontogenic activity of human dental pulp cells in vitro. Heliyon 2023; 9:e23282. [PMID: 38144358 PMCID: PMC10746513 DOI: 10.1016/j.heliyon.2023.e23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1β (IL-1β), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.
Collapse
Affiliation(s)
- Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Ying Yang
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
11
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
12
|
Katz MS, Ooms M, Winnand P, Heitzer M, Bock A, Kniha K, Hölzle F, Modabber A. Evaluation of perfusion parameters of gingival inflammation using laser Doppler flowmetry and tissue spectrophotometry- a prospective comparative clinical study. BMC Oral Health 2023; 23:761. [PMID: 37838702 PMCID: PMC10576369 DOI: 10.1186/s12903-023-03507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND The aim of this study was to determine the values of different perfusion parameters- such as oxygen saturation, the relative amount of hemoglobin, and blood flow- in healthy subjects compared to patients with gingivitis as a non-invasive measurement method. METHODS A total of 114 subjects were enrolled in this study and separated into subjects with gingivitis (50) and without gingivitis (64) based on clinical examination. Gingival perfusion was measured at 22 points in the maxilla and mandible using laser Doppler flowmetry and tissue spectrophotometry (LDF-TS) with the "oxygen to see" device. All patients underwent measurement of gingival perfusion, followed by the clinical evaluation (measurement of probing depths, evaluation of bleeding on probing, plaque level, and biotype). Perfusion parameters were compared between the groups, associations between the non-invasive and clinical measurements were analyzed, and theoretical optimal cut-off values for predicting gingivitis were calculated with receiver operating characteristics. RESULTS The mean oxygen saturation, mean relative amount of hemoglobin, and mean blood flow all significantly differed between the groups with and without gingivitis (p = 0.005, p < 0.001, and p < 0.001, respectively). The cut-off value for predicting gingivitis was > 40 AU (p < 0.001; sensitivity 0.90, specificity 0.67). CONCLUSIONS As a non-invasive method, LDF-TS can help determine gingival hyperemia. Flow values above 40 AU indicate a higher risk of hyperemia, which can be associated with inflammation. The LDF-TS method can be used for the objective evaluation of perfusion parameters during routine examinations and can signal the progression of hyperperfusion before any change in clinical parameters is observed. TRIAL REGISTRATION All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the institutional Clinical Research Ethics Committee (Ethik-Kommission der Medizinischen Fakultät der RWTH Aachen, Decision Number 286/20) and retrospectively registered by the German Clinical Trials Register (File Number DRKS00024048, registered on the 15th of October 2021).
Collapse
Affiliation(s)
- Marie Sophie Katz
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany.
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Philipp Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Marius Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Kristian Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, Aachen, 52074, Germany
| |
Collapse
|
13
|
Chen L, Nini W, Jinmei Z, Jingmei Y. Implications of sleep disorders for periodontitis. Sleep Breath 2023; 27:1655-1666. [PMID: 36547852 DOI: 10.1007/s11325-022-02769-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease caused by multi-factors. Sleep is a natural physiologic process, and the sleep duration, quality, and patterns might be associated with periodontitis. Meanwhile, periodontitis might in turn induce systemic inflammation and thus impact sleep in different ways as well. METHODS To investigate the bidirectional relationship between sleep disorder and periodontitis, a literature search was conducted to reveal the interaction and possible mechanism between these two diseases. RESULTS The results show that sleep disorders can affect the progression of periodontitis via some pathomechanisms, and periodontitis also has a reverse impact on sleep. CONCLUSION Although the epidemiologic and clinical trials found the possible associations between sleep disorder and periodontitis, their relationship is still not that explicit. Further studies are warranted to shed light on them, to improve preventive health care.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Wang Nini
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Zhang Jinmei
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Yang Jingmei
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
14
|
Yu Z, Xiong Y, Fan M, Li J, Liang K. Metronidazole and Ketoprofen-Loaded Mesoporous Magnesium Carbonate for Rapid Treatment of Acute Periodontitis In Vitro. ACS OMEGA 2023; 8:25441-25452. [PMID: 37483201 PMCID: PMC10357566 DOI: 10.1021/acsomega.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
In the clinical pharmacological treatment of acute periodontitis, local periodontal administration is expected to be preferable to systemic administration. However, the action of the active medicine component is hindered and diminished by the limitation of drug solubility, which does not provide timely relief of the enormous pain being suffered by patients. This study aimed to develop a mesoporous magnesium carbonate (MMC) medicine loading system consisting of MMC, metronidazole (MET), and ketoprofen (KET), which was noted as MET-KET@MMC. A solvent evaporation process was utilized to load MET and KET in MMC. Scanning electron microscopy, nitrogen sorption, thermogravimetric analysis, and X-ray diffraction were performed on the MET-KET@MMC. The rapid drug release properties were also investigated through the drug release curve. The rapid antiseptic property against Porphyromonas gingivalis (P. gingivalis) and the rapid anti-inflammatory property (within 1 min) were analyzed in vitro. The cytotoxicity of MET-KET@MMC was tested in direct contact with human gingival cells and human oral keratinocytes. Crystallizations of MET and KET were completely suppressed in MMC. As compared to crystalline MET and KET, MMC induced higher apparent solubility and rapid drug release, resulting in 8.76 times and 3.43 times higher release percentages of the drugs, respectively. Over 70.11% of MET and 85.97% of KET were released from MMC within 1 min, resisting bacteria and reducing inflammation. MET-KET@MMC nanoparticles enhanced the solubility of drugs and possess rapid antimicrobial and anti-inflammatory properties. The MET-KET@MMC is a promising candidate for the pharmacotherapy of acute periodontitis with drugs, highlighting a significant clinical potential of MMC-based immediate drug release systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Xiong
- Orthopedic
Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Fan
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Qi X, Bie M, Jiang R, Kang F. HIF-1α regulates osteoclastogenesis and alveolar bone resorption in periodontitis via ANGPTL4. Arch Oral Biol 2023; 153:105736. [PMID: 37290266 DOI: 10.1016/j.archoralbio.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The mechanism of alveolar bone resorption caused by periodontitis is not fully understood. We sought to investigate whether microenvironmental changes of local hypoxia are involved in these processes. METHODS In this study, periodontitis models of control mice and knockout of Hypoxia Induced Factor 1α (HIF-1α) harboring Cathepsin K (CTSK) Cre mice were constructed to study the effect of osteoclasts affected by hypoxic environment on alveolar bone resorption. RAW264.7 cells were subsequently induced by CoCl2 to observe the effects of HIF-1α and Angiopoietin-like Protein 4 (ANGPTL4) on osteoblast differentiation and fusion. RESULTS The degree of alveolar bone resorption in the periodontitis tissues was lesser in mice with conditional knockout of HIF-1α in osteoclasts than in wild-type mice. We also observed that HIF-1α conditional knockout mice had fewer osteoclasts on the alveolar bone surface than control mice. HIF-1α increases the expression of ANGPTL4 and promotes the differentiation of RAW264.7 cells into osteoblasts and cell fusion under chemically simulated hypoxic conditions. CONCLUSION HIF-1α regulates osteoclastogenesis and participates in bone resorption in periodontitis through ANGPTL4.
Collapse
Affiliation(s)
- Xin Qi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - MiaoMiao Bie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Runyang Jiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
16
|
Zhang W, Xu T, Li X, Zhang Y, Zou X, Chen F, Yue L. Single-cell atlas of dental pulp stem cells exposed to the oral bacteria Porphyromonas gingivalis and Enterococcus faecalis. Front Cell Dev Biol 2023; 11:1166934. [PMID: 37287452 PMCID: PMC10242116 DOI: 10.3389/fcell.2023.1166934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Porphyromonas gingivalis and Enterococcus faecalis promote the development of pulpitis and periapical periodontitis. These bacteria are difficult to eliminate from the root canal systems, leading to persistent infection and poor treatment outcomes. We explored the response of human dental pulp stem cells (hDPSCs) to bacterial invasion and the mechanisms underlying the impact of residual bacteria on dental pulp regeneration. Methods: Single-cell sequencing was used to categorize the hDPSCs into clusters based on their response to P. gingivalis and E. faecalis. We depicted a single-cell transcriptome atlas of hDPSCs stimulated by P. gingivalis or E. faecalis. Results: The most differentially expressed genes in the Pg samples were THBS1, COL1A2, CRIM1, and STC1, which are related to matrix formation and mineralization, and HILPDA and PLIN2, which are related to the cellular response to hypoxia. A cell cluster characterized by high expression levels of THBS1 and PTGS2 was increased after P. gingivalis stimulation. Further signaling pathway analysis showed that hDPSCs prevented P. gingivalis infection by regulating the TGF-β/SMAD, NF-κB, and MAPK/ERK signaling pathways. Differentiation potency and pseudotime trajectory analyses showed that hDPSCs infected by P. gingivalis undergo multidirectional differentiation, particularly to the mineralization-related cell lineage. Furthermore, P. gingivalis can create a hypoxia environment to effect cell differentiation. The Ef samples were characterized by the expression of CCL2, which is related to leukocyte chemotaxis, and ACTA2, which is related to actin. There was an increased proportion of a cell cluster that was similar to myofibroblasts and exhibited significant ACTA2 expression. The presence of E. faecalis promoted the differentiation of hDPSCs into fibroblast-like cells, which highlights the role of fibroblast-like cells and myofibroblasts in tissue repair. Discussion: hDPSCs do not maintain their stem cell status in the presence of P. gingivalis and E. faecalis. They differentiate into mineralization-related cells in the presence of P. gingivalis and into fibroblast-like cells in the presence of E. faecalis. We identified the mechanism underlying the infection of hDPSCs by P. gingivalis and E. faecalis. Our results will improve understanding of the pathogenesis of pulpitis and periapical periodontitis. Furthermore, the presence of residual bacteria can have adverse effects on the outcomes of regenerative endodontic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueying Li
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaoying Zou
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Center of Stomatology, Peking University Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lin Yue
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
17
|
Wei Y, Wang K, Zhang Y, Duan Y, Tian Y, Yin H, Fu X, Ma Z, Zhou J, Yu M, Ni Q, Tang W. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation. Front Pharmacol 2023; 14:1138762. [PMID: 37007020 PMCID: PMC10063881 DOI: 10.3389/fphar.2023.1138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: It has been proven that hydrogen has obvious anti-inflammatory effects in animal experiments and clinical practice. However, the early dynamic process of the inflammatory response caused by lipopolysaccharide (LPS) and the anti-inflammatory effect of hydrogen has not been definitively reported. Methods: Inflammation in male C57/BL6J mice or RAW264.7 cells was induced with LPS, for which hydrogen was immediately administered until samples were taken. Pathological changes in lung tissue were assessed using hematoxylin and eosin (HE) staining. Levels of inflammatory factors in serum were determined using liquid protein chip. The mRNA levels of chemotactic factors in lung tissues, leukocytes, and peritoneal macrophages were measured by qRT-PCR. The expression levels of IL-1α and HIF-1α were measured by immunocytochemistry. Results: Hydrogen alleviated LPS-induced inflammatory infiltration in the lung tissues of mice. Among the 23 inflammatory factors screened, LPS-induced upregulation of IL-1α etc. was significantly inhibited by hydrogen within 1 hour. The mRNA expression of MCP-1, MIP-1α, G-CSF, and RANTES was inhibited obviously by hydrogen at 0.5 and 1 h in mouse peritoneal macrophages. In addition, hydrogen significantly blocked LPS or H2O2-induced upregulation of HIF-1α, and IL-1α in 0.5 h in RAW264.7 cells. Discussion: The results suggested that hydrogen is potentially inhibitive against inflammation by inhibiting HIF-1α and IL-1α release at early occurrence. The target of the inhibitive LPS-induced-inflammatory action of hydrogen is chemokines in macrophages in the peritoneal cavity. This study provides direct experimental evidence for quickly controlling inflammation with the translational application of a hydrogen-assisted protocol.
Collapse
Affiliation(s)
- Youzhen Wei
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- Research Center for Translational Medicine, Jinan People’s Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Kun Wang
- Office of Academic Research, Taishan Vocational College of Nursing, Taian, Shandong, China
| | - Yafang Zhang
- Department of Neonatology and NICU, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yi Duan
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tian
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Yin
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Qingbin Ni
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Regenerative Medicine, East Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| |
Collapse
|
18
|
Wu X, Wang Y, Chen H, Wang Y, Gu Y. Phosphatase and tensin homologue determine inflammatory status by differentially regulating the expression of Akt1 and Akt2 in macrophage alternative polarization of periodontitis. J Clin Periodontol 2023; 50:220-231. [PMID: 36217693 DOI: 10.1111/jcpe.13730] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 01/18/2023]
Abstract
AIM Macrophages are closely involved in periodontitis. However, the molecular mechanism by which macrophages influence periodontitis is not well understood. We investigated the effects of phosphatase and tensin homologue (PTEN) on macrophage polarization, the underlying mechanism and the regulatory roles in periodontium regeneration. MATERIALS AND METHODS PTEN expression in periodontitis macrophages was detected ex vivo. The effects of PTEN on macrophage polarization and the underlying mechanisms were investigated in vitro. We also analysed the ability of PTEN inhibitors to repair periodontitis in vivo in a ligature-induced mouse model of periodontitis. RESULTS Macrophage PTEN expression in periodontitis patients was significantly higher than that of controls. PTEN inhibition in macrophages induced alternative macrophage polarization, whereas PTEN overexpression facilitated classical polarization. PTEN inhibition facilitated activation of Akt1 while inhibiting expression of Akt2. Furthermore, Akt2 overexpression could rescue the effects of PTEN inhibition on NF-κB. Treatment with a PTEN inhibitor significantly attenuated the local inflammatory status and prevented alveolar bone resorption in the mouse model. CONCLUSIONS Our findings suggest that PTEN inhibition could induce alternative macrophage polarization by differentially regulating Akt1 and Akt2. This also changed a pro-inflammatory microenvironment to an anti-inflammatory environment by subsequently regulating the expression of NF-κB, thereby attenuating inflammatory alveolar bone resorption induced by ligature.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People's Republic of China.,Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yidi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People's Republic of China
| | - Haotian Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People's Republic of China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People's Republic of China
| |
Collapse
|
19
|
Morozova NS, Kozlitina IA, Makarov VI, Loschenov VB, Grinin VM, Ivanov SY, Kashtanova MS. Optical spectral diagnostics of the oxygenation level in periodontal tissues and photodynamic therapy using methylene blue in children with cerebral palsy. Front Public Health 2023; 11:961066. [PMID: 36794072 PMCID: PMC9922788 DOI: 10.3389/fpubh.2023.961066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Dental diseases occur in children with cerebral palsy three times higher than in healthy children. Low values of the unstimulated salivation rate (<0.3 ml per minute), pH and buffer capacity, changes in enzyme activity and sialic acid concentration, as well as increased saliva osmolarity and total protein concentration, which indicates impaired hydration, are the factors in the development of a gingiva disease in case of cerebral palsy. This leads to increased bacterial agglutination and the formation of acquired pellicle and biofilm, leading to the formation of dental plaque. There is a tendency toward an increase in the concentration of hemoglobin and a decrease in the degree of hemoglobin oxygenation, as well as an increase in the generation of reactive oxygen and nitrogen species. Photodynamic therapy (PDT) with the use of photosensitizer methylene blue improves blood circulation and the degree of oxygenation in periodontal tissues, as well as eliminates a bacterial biofilm. Analysis of back diffuse reflection spectra makes it possible to conduct non-invasive monitoring determine tissue areas with a low level of hemoglobin oxygenation for precision photodynamic exposure. Aim To improve the effectiveness of phototheranostics methods using, namely PDT with simultaneous optical-spectral control, for the treatment of gingivitis in children with complex dental and somatic status (cerebral palsy). Methods The study involved 15 children (6-18 y.o.) with various forms of cerebral palsy, in particular, spastic diplegia and atonic-astatic form and with gingivitis. The degree of hemoglobin oxygenation was measured in tissues before PDT and on the 12th day. PDT was performed using laser radiation (λ = 660 nm) with a power density of 150 mW/cm2 with a five-minute application of 0.01% MB. The total light dose was 45 ± 15 J/cm2. For statistical evaluation of the results, a paired Student's t-test was used. Results The paper presents the results of phototheranostics using methylene blue in children with cerebral palsy. An increase in the level of hemoglobin oxygenation from 50 to 67% (p < 0.001) and a decrease in blood volume in the microcirculatory bed of periodontal tissues were shown. Conclusion Photodynamic therapy methods with application of methylene blue make it possible to assess the state of the gingival mucosa tissue diseases objectively in real time, and to provide effective targeted therapy for gingivitis in children with cerebral palsy. There is a prospect that they can become widely used clinical methods.
Collapse
Affiliation(s)
- Natalia S Morozova
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Iuliia A Kozlitina
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir I Makarov
- Laser Biospectroscopy Laboratory, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.,Department of Laser Micro-, Nano- and Biotechnologies, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Victor B Loschenov
- Department of Laser Micro-, Nano- and Biotechnologies, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Laboratory of Laser Biospectroscopy, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy M Grinin
- Department of Maxillofacial Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sergey Yu Ivanov
- Department of Maxillofacial Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Maxillofacial Surgery, The Peoples' Friendship University of Russia, Moscow, Russia
| | - Maria S Kashtanova
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
20
|
Exploring the Expression of Pro-Inflammatory and Hypoxia-Related MicroRNA-20a, MicroRNA-30e, and MicroRNA-93 in Periodontitis and Gingival Mesenchymal Stem Cells under Hypoxia. Int J Mol Sci 2022; 23:ijms231810310. [PMID: 36142220 PMCID: PMC9499533 DOI: 10.3390/ijms231810310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune–inflammatory response, which should be analyzed in greater depth in future studies.
Collapse
|
21
|
Gou H, Chen X, Zhu X, Li L, Hou L, Zhou Y, Xu Y. Sequestered SQSTM1/p62 crosstalk with Keap1/NRF2 axis in hPDLCs promotes oxidative stress injury induced by periodontitis. Free Radic Biol Med 2022; 190:62-74. [PMID: 35940517 DOI: 10.1016/j.freeradbiomed.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Periodontitis is a recognized multifactorial inflammatory chronic disease, however, the exact role of oxidative stress in the pathogenesis of periodontitis is undefined. This study aims to imply the mechanism of NRF2-regulated oxidative stress and inflammatory responses under periodontitis and explored the novelty therapeutic targets. We first demonstrate that redox imbalance caused by inhibited NRF2 signaling pathway is induced in periodontium during hypoxia and bacterial events. Then we propose that LPS from P. gingivalis and hypoxia stimuli could inhibit hPDLCs proliferation and GSH level, promote ROS production, lipid peroxidation level, and pro-inflammatory cytokines such as IL-6, TNF-α, and IL-17 level caused by the inhibited PI3K/AKT/mTOR pathway and sequential sequestered crosstalk between selective autophagy SQSTM1/p62 and Keap1/NRF2 axis accompanied by the reinforced NRF2 ubiquitination degradation and inactivated NRF2 nuclear translocation. Overexpression of NRF2 and SQSTM1 can protect hPDLCs from oxidative stress and inflammation exacerbation because of enhanced NRF2 activity. Further, the antioxidant and anti-inflammation potential of puerarin is verified in vitro and in experimental periodontitis in mice through diminishing above negative feedback loop mechanically. Altogether, we speculate that NRF2-mediated redox homeostasis is a profound candidate for one of the prominent roles in periodontitis pathogenesis and suggest puerarin as a promising therapeutic target.
Collapse
Affiliation(s)
- Huiqing Gou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Xu Chen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Xiaoming Zhu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Lu Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Liguang Hou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Yi Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Yan Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
22
|
Li X, Guo L, Sato F, Kitayama T, Tewari N, Makishima M, Hamada N, Liu Y, Bhawal UK. Dec2 negatively regulates bone resorption in periodontitis. J Periodontal Res 2022; 57:1056-1069. [DOI: 10.1111/jre.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University Beijing China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology Capital Medical University Beijing China
| | - Fuyuki Sato
- Pathology Division Shizuoka Cancer Center Shizuoka Japan
| | - Toshiyasu Kitayama
- Department of Anesthesiology Nihon University School of Dentistry Tokyo Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry Centre for Dental Education and Research, All India Institute of Medical Sciences New Delhi India
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences Nihon University School of Medicine Tokyo Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology Kanagawa Dental University Yokosuka Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University Beijing China
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital Capital Medical University Beijing China
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Chiba Japan
- Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences Chennai India
| |
Collapse
|
23
|
Cai J, Liu J, Yan J, Lu X, Wang X, Li S, Mustafa K, Wang H, Xue Y, Mustafa M, Kantarci A, Xing Z. Impact of Resolvin D1 on the inflammatory phenotype of periodontal ligament cell response to hypoxia. J Periodontal Res 2022; 57:1034-1042. [PMID: 35944267 DOI: 10.1111/jre.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Periodontal ligament cells (PDLCs) are critical for wound healing and regenerative capacity of periodontal diseases. Within an inflammatory periodontal pocket, a hypoxic environment can aggravate periodontal inflammation, where PDLCs response to the inflammation would change. Resolvin D1 (RvD1) is an endogenous lipid mediator, which can impact intracellular inflammatory pathways of periodontal/oral cells and periodontal regeneration. It is not clear how hypoxia and RvD1 impact the inflammatory responses of pro-inflammatory PDLCs phenotype. Therefore, this study aimed to test hypoxia could induce changes in pro-inflammatory phenotype of PDLCs and RvD1 could reverse it. METHODS Human PDLCs were cultured from periodontal tissues from eight healthy individuals and were characterized by immunofluorescence staining of vimentin and cytokeratin. Cell viability was examined by Methyl-thiazolyl-tetrazolium (MTT) assay. To examine the effects of hypoxia and RvD1 on the inflammatory responses of pro-inflammatory PDLCs phenotype, protein levels and gene expressions of inflammatory cytokines and signal transduction molecules were measured by enzyme-linked immunosorbent assay (ELISA), western blotting (WB), and real-time quantitative reverse transcription PCR (real-time qRT-PCR). Alizarin red S staining and real-time qRT-PCR were employed to study the effects of hypoxia and RvD1 on the osteogenic differentiation of pro-inflammatory PDLCs phenotype. RESULTS It was found that hypoxia increases the expression of inflammatory factors at the gene level (p < .05). RvD1 reduced the expression of IL-1β (p < .05) in PDLCs under hypoxia both at the protein and RNA levels. There were increases in the expression of p38 mitogen-activated protein kinase (p38 MAPK, p < .01) and protein kinase B (Akt, p < .05) in response to RvD1. Also, a significantly higher density of calcified nodules was observed after treatment with RvD1 for 21 days under hypoxia. CONCLUSION Our results indicate that hypoxia up-regulated the inflammatory level of PDLCs. RvD1 can reduce under-hypoxia-induced pro-inflammatory cytokines in the inflammatory phenotype of PDLCs. Moreover, RvD1 promotes the calcium nodules in PDLCs, possibly by affecting the p38 MAPK signaling pathway through Akt and HIF-1α.
Collapse
Affiliation(s)
- Jiazheng Cai
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Yan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xuexia Lu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xiaoli Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Si Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Huihui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard University, School of Dental Medicine, Boston, Massachusetts, USA
| | - Zhe Xing
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China.,Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou, P.R. China.,RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Wang H, Wang X, Ma L, Huang X, Peng Y, Huang H, Gao X, Chen Y, Cao Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci 2022; 1516:300-311. [PMID: 35917205 DOI: 10.1111/nyas.14872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia often occurs in inflammatory tissues, such as tissues affected by periodontitis and apical periodontitis lesions. Mitochondrial biogenesis can be disrupted in hypoxia. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a core factor required for mitochondrial biogenesis. Cementoblasts are root surface lining cells that play an integral role in cementum formation. There is a dearth of research on the effect of hypoxia on cementoblasts and underlying mechanisms, particularly in relation to mitochondrial biogenesis during the hypoxic process. In this study, we found that the expression of hypoxia inducible factor-1α was elevated in apical periodontitis tissues in vivo. In contrast, periapical lesions exhibited a reduction of PGC-1α expression. For in vitro experiments, cobalt chloride (CoCl2 ) was used to induce hypoxia. We observed that CoCl2 -induced hypoxia suppressed the mineralization ability and mitochondrial biogenesis of cementoblasts, accompanied by abnormal mitochondria morphology. Furthermore, we found that CoCl2 blocked the p38 pathway, while it activated the Erk1/2 pathway, with the former upregulating the expression of PGC-1α, while the latter reversed the effects. Overall, our findings demonstrate that mitochondrial biogenesis, especially via PGC-1α, is impaired during cementogenesis in the context of CoCl2 -induced hypoxia, dependent on the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Gong A, Liu Y, Xu F, Chu Y, Wu J, Goltzman D, Miao D. Role of 1,25-dihydroxyvitamin D in alleviating alveolar bone loss and gingival inflammation in ligature-induced periodontitis. Am J Transl Res 2022; 14:3079-3091. [PMID: 35702136 PMCID: PMC9185029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The goal of this study was to assess if endogenous 1,25(OH)2D deficiency enhanced, whereas exogenous 1,25(OH)2D3 supplementation alleviated alveolar bone loss and gingival inflammation induced by ligature-induced periodontitis. METHODS A model of ligature-induced experimental periodontitis was generated in wild-type (WT) and Cyp27b1-knockout (KO) mice on a rescue diet (RD), and un-ligated genotype-matched littermates as control, or in WT mice on a normal diet (ND) with vehicle treatment or 1,25(OH)2D3 treatment, and un-ligated WT littermates as control. Alveolar bone mass and turnover, T cell infiltration and inflammatory cytokines in gingival tissues were examined. RESULTS In WT mice, ligature-induced alveolar bone loss occurred by inhibiting alveolar bone formation. This was characterized by reduction of osteoblast numbers, alkaline phosphatase activity and type I collagen synthesis, as well as by augmentation of osteoclastic alveolar bone resorption and gingival inflammation, including increases of osteoclast numbers, inflammatory positive cells and up-regulation of mRNA expression levels of inflammatory cytokines. Alveolar bone destruction and gingival inflammation were more severe in diet-matched Cyp27b1-KO mice than in WT littermates on RD. Supplementation of exogenous 1,25(OH)2D3 alleviated alveolar bone loss and gingival inflammation in ligated WT mice on ND, but those parameters did not reach levels observed in un-ligated WT ones. CONCLUSIONS Endogenous 1,25(OH)2D deficiency enhanced, whereas exogenous 1,25(OH)2D3 supplementation alleviated alveolar bone loss and gingival inflammation induced by ligature-induced periodontitis.
Collapse
Affiliation(s)
- Aixiu Gong
- Department of Stomatology, Children’s Hospital of Nanjing Medical UniversityNanjing, PR China
| | - Yining Liu
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, PR China
| | - Fangrong Xu
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, PR China
| | - Yiting Chu
- Department of Stomatology, Children’s Hospital of Nanjing Medical UniversityNanjing, PR China
| | - Jun Wu
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, PR China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill UniversityMontreal, Canada
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, PR China
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjing, PR China
| |
Collapse
|
26
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
27
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Aggravating Effects of Psychological Stress on Ligature-Induced Periodontitis via the Involvement of Local Oxidative Damage and NF-κB Activation. Mediators Inflamm 2022; 2022:6447056. [PMID: 35221795 PMCID: PMC8866020 DOI: 10.1155/2022/6447056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is the leading cause of tooth loss in adults, and psychological factors play an important role in the development of periodontitis. To elucidate the adverse effects of psychological stress on the inflammatory process and redox status of periodontitis tissue, fifty male Sprague-Dawley rats were divided into the control, experimental periodontitis, psychological stress, experimental periodontitis plus psychological stress, and experimental periodontitis plus psychological stress plus fluoxetine groups. Chronic unpredictable mild stress (CUMS) was used to establish psychological stress, and silk ligature was used to induce experimental periodontitis. Four weeks later, stressed rats showed altered behaviour, serum hormone levels, and sucrose preference. More obvious alveolar bone loss and attachment loss and higher protein expressions of inflammatory cytokines were observed in the experimental periodontitis plus psychological stress group. The combination of CUMS and periodontitis had synergistic effects on increasing hypoxia-inducible factor-1α (HIF-1α) protein expression and reactive oxygen species (ROS) and malondialdehyde (MDA) contents and decreasing antioxidant enzyme activities compared with those in the stress or periodontitis groups. Moreover, psychological stress further increased p-IκBα and p-NF-κB p65 protein levels and decreased IκBα protein levels in periodontitis rats. Fluoxetine administration alleviated the adverse effects of psychological stress on the progression of periodontitis in rats. These results hint us that psychological stress could aggravate inflammation in periodontitis tissues, which may be partly due to local worsening of oxidative damage and further activation of the nuclear factor kappa-B (NF-κB) signalling pathway.
Collapse
|
29
|
OUP accepted manuscript. Eur J Orthod 2022; 44:669-678. [DOI: 10.1093/ejo/cjac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
31
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
32
|
Kirschneck C, Straßmair N, Cieplik F, Paddenberg E, Jantsch J, Proff P, Schröder A. Myeloid HIF1α Is Involved in the Extent of Orthodontically Induced Tooth Movement. Biomedicines 2021; 9:biomedicines9070796. [PMID: 34356859 PMCID: PMC8301336 DOI: 10.3390/biomedicines9070796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Nadine Straßmair
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Eva Paddenberg
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Jonathan Jantsch
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| |
Collapse
|
33
|
Chen Y, Huang Y, Deng X. External cervical resorption-a review of pathogenesis and potential predisposing factors. Int J Oral Sci 2021; 13:19. [PMID: 34112752 PMCID: PMC8192751 DOI: 10.1038/s41368-021-00121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
34
|
Expression of deubiquitinases in human gingiva and cultured human gingival fibroblasts. BMC Oral Health 2021; 21:290. [PMID: 34092220 PMCID: PMC8180082 DOI: 10.1186/s12903-021-01655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although deubiquitinating enzymes (DUBs) such as CYLD, A20 and OTULIN are expressed in multiple tissues and thought to be linked with inflammatory diseases, their expression in periodontal tissues remains to be determined. This research was designed to assess the expression of CYLD, A20 and OTULIN in human gingiva, and to evaluate the regulation of these DUBs in human gingival fibroblasts (HGFs) upon different stimuli. Methods Immunohistochemistry assay was conducted to determine the expression of CYLD, A20 and OTULIN in human gingiva. Immunofluorescence assay was employed to observe the protein expression of CYLD, A20 and OTULIN in HGFs. RT-PCR and western blots were carried out to assess gene and protein expression changes of these DUBs in HGFs upon LPS or TNF-α. Results CYLD, A20 and OTULIN were found to be expressed in human gingiva and HGFs. The expression of CYLD, A20 and OTULIN was lower in the inflamed gingival tissue samples compared with the healthy gingival tissue samples. Further, the expression of CYLD, A20 and OTULIN in HGFs exhibited distinct regulation by different stimuli. TNF-α treatment markedly increased NF-κB activation in HGFs Conclusions Our findings suggest that CYLD, A20 and OTULIN might play a role in the progression of periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01655-4.
Collapse
|
35
|
Karami E, Esfahrood ZR, Mansouri R, Haerian A, Abdian-Asl A. Effect of epigallocatechin-3-gallate on tumor necrosis factor-alpha production by human gingival fibroblasts stimulated with bacterial lipopolysaccharide: An in vitro study. J Indian Soc Periodontol 2021; 25:11-16. [PMID: 33642735 PMCID: PMC7904023 DOI: 10.4103/jisp.jisp_323_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Evidence shows that epigallocatechin-3-gallate (EGCG) in green tea has anti-inflammatory effects. Aim: This study assessed the effect of EGCG on the production of tumor necrosis factor-alpha (TNF-α) as an inflammatory cytokine in periodontitis, which produced by human gingival fibroblasts (HGFs) stimulated with lipopolysaccharide (LPS) of Porphyromonas gingivalis. Materials and Methods: In this study, HGFs were cultured and subjected to LPS and EGCG. Cell viability of different concentrations of EGCG (10, 25, 50, 75, and 100 μM) and LPS (1, 10, 20, and 50 μg/mL) was assessed using methyl-thiazole-tetrazolium (MTT) assay. Then, the best concentrations of EGCG and P. gingivalis LPS were used simultaneously and separately to assess the production of TNF-α by HGFs using the enzyme-linked immunosorbent assay (ELISA). Assessments were done at 1, 3, and 5 days. Data were read using the ELISA reader and analyzed by the SPSS through two-way ANOVA. Results: LPS at 1, 10, and 20 and EGCG at 10.25 and 50 μM showed the least cytotoxicity in MTT assay. ELISA showed EGCG alone decreased the production of TNF-α in all days, except 10 μM on day 1. 1, 10, and 20 μg/mL LPS increased the output of TNF-α on days 1 and 3 while reducing it on day 5. The combination of EGCG and LPS showed a decrease of TNF-α in all days except on day 5 that revealed an increase in the production of TNF-α at 25 and 50 μM EGCG. Conclusion: In the combination use of EGCG and LPS, EGCG shows anti-inflammatory effects by decreasing the production of TNF-α by HGFs stimulated with P. gingivalis.
Collapse
Affiliation(s)
- Elahe Karami
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Science, Yazd, Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Blood and oncology research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Haerian
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Amir Abdian-Asl
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
36
|
The correlation of altitude with gingival status among adolescents in western China: a cross-sectional study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3151-3167. [PMID: 33528681 DOI: 10.1007/s10653-021-00812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
Periodontal disease is common in Chinese adolescents. There is little information about the effect of different altitudes on gingival health. This study aimed to investigate the gingival status at different altitudes and to identify relative factors that affect adolescents' gingival status. A total of 1033 adolescents aged 12-14 years were included in this cross-sectional study in Ganzi (plateau, 1400 m, 2560 m, 3300 m) and Suining (plain, 300 m). Gingival status was assessed by the presence of gingival bleeding on probing (BOP) and dental calculus (DC). Demographic variables, socioeconomic status, dairy habits and oral health-related knowledge, attitudes and behaviors were obtained via questionnaire. Univariate and multivariate binary logistic regression analyses were performed to identify potential relative factors. A total of 64.09% and 77.15% of adolescents had BOP and DC, respectively. The prevalence rates of BOP and DC were higher in the plateau than the plain (P < 0.05). After adjusting for all other factors and interaction terms, residence altitudes of 2560 m [300 m as reference: P < 0.001, odds ratio (OR) = 4.072] and 3300 m (300 m as reference: P = 0.002, OR = 4.053) were significant relative factors of BOP, and an altitude of 2560 m (300 m as reference: P = 0.001, OR = 3.866, 1400 m as reference: P = 0.001, OR = 3.944) was an important relative factor of DC. Gingival bleeding and calculus deposits were common at different altitudes. High altitude was a significant relative factor of gingival bleeding and calculus deposits.
Collapse
|
37
|
Ascorbic Acid: A New Player of Epigenetic Regulation in LPS- gingivalis Treated Human Periodontal Ligament Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6679708. [PMID: 33542783 PMCID: PMC7840256 DOI: 10.1155/2021/6679708] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Periodontitis is usually sustained from microorganism of oral cavity, like Porphyromonas gingivalis (P. gingivalis). Periodontal disease is an infectious disease that afflicts a large number of people. Researches are investigating on the mesenchymal stem cells (MSCs) response to inflammatory events in combination with antioxidant substances. In particular, ascorbic acid (AA) increased cell proliferation, upregulated the cells pluripotency marker expression, provide a protection from inflammation, and induced the regeneration of periodontal ligament tissue. The purpose of the present research was to investigate the effects of AA in primary culture of human periodontal ligament stem cells (hPDLSCs) exposed to P. gingivalis lipopolysaccharide (LPS-G). The effect of AA on hPDLSCs exposed to LPS-G was determined through the cell proliferation assay. The molecules involved in the inflammatory pathway and epigenetic regulation have been identified using immunofluorescence and Western blot analyses. miR-210 level was quantified by qRT-PCR, and the ROS generation was finally studied. Cells co-treated with LPS-G and AA showed a restoration in terms of cell proliferation. The expression of NFκB, MyD88, and p300 was upregulated in LPS-G exposed cells, while the expression was attenuated in the co-treatment with AA. DNMT1 expression is attenuated in the cells exposed to the inflammatory stimulus. The level of miR-210 was reduced in stimulated cells, while the expression was evident in the hPDLSCs co-treated with LPS-G and AA. In conclusion, the AA could enhance a protective effect in in vitro periodontitis model, downregulating the inflammatory pathway and ROS generation and modulating the miR-210 level.
Collapse
|
38
|
Tavares WLF, Oliveira RR, Ferreira MVL, Sobrinho APR, Braga T, Amaral RR. The use of antimicrobial photodynamic therapy in the successful management of an invasive cervical resorption class 4: A case report with five years follow-up. Photodiagnosis Photodyn Ther 2021; 33:102126. [PMID: 33444786 DOI: 10.1016/j.pdpdt.2020.102126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
A 41-year-old male with a dental history of invasive cervical resorption (ICR) was initially treated with a surgical endodontics approach and secondly with antimicrobial photodynamic therapy (aPDT) along with endodontic retreatment. The use of aPDT was essential to promote bacterial reduction in the resorption defect. Combining these techniques allowed for clinical, radiographic, and tomographic success after five years of follow-up.
Collapse
Affiliation(s)
- Warley Luciano Fonseca Tavares
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Reis Oliveira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Lucas Ferreira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Paulino Ribeiro Sobrinho
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Braga
- School of Dentistry and Oral Health Griffith University, Gold Coast, Queensland, Australia
| | - Rodrigo Rodrigues Amaral
- School of Dentistry and Oral Health Griffith University, Gold Coast, Queensland, Australia; Department of Dentistry, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Ebersole JL, Kirakodu SS, Gonzalez OA. Oral microbiome interactions with gingival gene expression patterns for apoptosis, autophagy and hypoxia pathways in progressing periodontitis. Immunology 2021; 162:405-417. [PMID: 33314069 DOI: 10.1111/imm.13292] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
Oral mucosal tissues must react with and respond to microbes comprising the oral microbiome ecology. This study examined the interaction of the microbiome with transcriptomic footprints of apoptosis, autophagy and hypoxia pathways during periodontitis. Adult Macaca mulatta (n = 18; 12-23 years of age) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Gingival tissue samples collected at baseline, 0·5, 1 and 3 months of disease and at 5 months for disease resolution were analysed via microarray. Bacterial samples were collected at identical sites to the host tissues and analysed using MiSeq. Significant changes in apoptosis and hypoxia gene expression occurred with initiation of disease, while autophagy gene changes generally emerged later in disease progression samples. These interlinked pathways contributing to cellular homeostasis showed significant correlations between altered gene expression profiles in apoptosis, autophagy and hypoxia with groups of genes correlated in different directions across health and disease samples. Bacterial complexes were identified that correlated significantly with profiles of host genes in health, disease and resolution for each pathway. These relationships were more robust in health and resolution samples, with less bacterial complex diversity during disease. Using these pathways as cellular responses to stress in the local periodontal environment, the data are consistent with the concept of dysbiosis at the functional genomics level. It appears that the same bacteria in a healthy microbiome may be interfacing with host cells differently than in a disease lesion site and contributing to the tissue destructive processes.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang S, Yuan Y, Zhang X. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif 2021; 54:e12957. [PMID: 33231338 PMCID: PMC7791173 DOI: 10.1111/cpr.12957] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is a prevalent oral inflammatory disease, which can cause periodontal ligament to a local hypoxia environment. However, the mechanism of hypoxia associated long non-coding RNAs (lncRNAs) involved in periodontitis is still largely unknown. METHODS Microarray was performed to detect the expression patterns of lncRNAs in 3 pairs of gingival tissues from patients with periodontitis and healthy controls. The expression of lncRNA 01126 (LINC01126), miR-518a-5p and hypoxia-inducible factor-1α (HIF-1α) in periodontal tissues and in human periodontal ligament cells (hPDLCs) under hypoxia was measured by quantitative real-time polymerase chain reaction or western blot. Fluorescence in situ hybridization and cell fraction assay were performed to determine the subcellular localization of LINC01126 and miR-518a-5p. Overexpression or knockdown of LINC01126 or HIF-1α was used to confirm their biological roles in hPDLCs. MTT assays were performed to evaluate hPDLCs proliferation ability. Flow cytometry was used to detect apoptosis. ELISA was used to measure the expression levels of interleukin (IL)-1β, IL-6, IL-8 and TNF-α. Dual-luciferase reporter assays were performed to assess the binding of miR-518a-5p to LINC01126 and HIF-1α. RNA immunoprecipitation assay was used to identify whether LINC01126 and miR-518a-5p were significantly enriched in AGO-containing micro-ribonucleoprotein complexes. RESULTS We selected LINC01126, which was the most highly expressed lncRNA, to further verify its functions in periodontitis-induced hypoxia. The expression of LINC01126 was increased in periodontal tissues. In vitro experiment demonstrated that LINC01126 suppressed proliferation, promoted apoptosis and inflammation of hPDLCs under hypoxia via sponging miR-518a-5p. Moreover, we identified HIF-1α acted as a direct target of miR-518a-5p in hPDLCs and LINC01126 promoted periodontitis pathogenesis by regulating the miR-518a-5p/HIF-1α/MAPK pathway. CONCLUSION LINC01126 promotes periodontitis pathogenesis of hPDLCs via miR-518a-5p/HIF-1α/MAPK pathway, providing a possible clue for LINC01126-based periodontal therapeutic approaches.
Collapse
Affiliation(s)
- Mi Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hui Hu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yineng Han
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yang Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Song Tang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Yu Yuan
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Xiaonan Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
41
|
Fu YW, Li L, Wang XQ, Zhou Y, Zhu LF, Mei YM, Xu Y. The inhibitory effect of the deubiquitinase cylindromatosis (CYLD) on inflammatory responses in human gingival fibroblasts. Oral Dis 2020; 27:1487-1497. [PMID: 33031609 DOI: 10.1111/odi.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Lee SA, Park BR, Moon SM, Shin SH, Kim JS, Kim DK, Kim CS. Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation. Arch Oral Biol 2020; 120:104944. [PMID: 33099251 DOI: 10.1016/j.archoralbio.2020.104944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate whether cynaroside protects human periodontal ligament (hPDL) cells from lipopolysaccharide (LPS)-induced damage and inflammation and to analyze the underlying mechanism. METHODS LPS was used to stimulate hPDL and RAW264.7 cells. MTT assay was used to detect cell viability, and protein expression levels were measured via western blot analysis. Nitrite oxide and prostaglandin E2 were used to quantify the inflammatory response. Alizarin Red S staining was used to detect mineralized nodules. RESULTS Cynaroside inhibited the expression of iNOS, COX-2, TNF-α, and IL-6 in LPS-stimulated hPDL and RAW264.7 cells without cytotoxicity. Furthermore, cynaroside significantly suppressed LPS-induced protein expression of matrix metalloproteinase 3. Additionally, cynaroside prevented LPS-induced NF-κB p65 subunit translocation to the nucleus by inhibiting the phosphorylation and degradation of IκB-α. Moreover, cynaroside could restore the mineralization ability of hPDL cells reduced by LPS. CONCLUSION Cynaroside protected hPDL cells from LPS-induced damage and inflammation via inhibition of NF-κB activation. These results suggest that cynaroside may be a potential therapeutic agent for the alleviation of periodontitis.
Collapse
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, College of Health and Welfare, Kyungwoon University, 730, Gangdong-ro, Gyeongsangbuk-do, 39160, Republic of Korea
| | - Sung-Min Moon
- CStech Research Institute, 38 Chumdanventuresoro, Gwangju, 61007, Republic of Korea
| | - Sang Hun Shin
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae-Sung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
43
|
Ullrich N, Schröder A, Bauer M, Spanier G, Jantsch J, Deschner J, Proff P, Kirschneck C. The role of HIF-1α in nicotine-induced root and bone resorption during orthodontic tooth movement. Eur J Orthod 2020; 43:516-526. [PMID: 33043973 DOI: 10.1093/ejo/cjaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In orthodontic tooth movement (OTM), pseudo-inflammatory processes occur that are similar to those of nicotine-induced periodontitis. Previous studies have shown that nicotine accelerates OTM, but induces periodontal bone loss and dental root resorption via synergistically increased osteoclastogenesis. This study aimed to investigate the role of hypoxia-inducible factor 1 alpha (HIF-1α) in nicotine-induced osteoclastogenesis during OTM. MATERIALS/METHODS Male Fischer-344 rats were treated with l-Nicotine (1.89 mg/kg/day s.c., N = 10) or NaCl solution (N = 10). After a week of premedication, a NiTi spring was inserted to mesialize the first upper left molar. The extent of dental root resorption, osteoclastogenesis, and HIF-1α protein expression was determined by (immuno)histology, as well as bone volume (BV/TV) and trabecular thickness (TbTh) using µCT. Receptor activator of nuclear factor of activated B-cells ligand (RANK-L), osteoprotegerin (OPG), and HIF-1α expression were examined at the protein level in periodontal ligament fibroblasts (PDLF) exposed to pressure, nicotine and/or hypoxia, as well as PDLF-induced osteoclastogenesis in co-culture experiments with osteoclast progenitor cells. RESULTS Nicotine favoured dental root resorptions and osteoclastogenesis during OTM, while BV/TV and TbTh were only influenced by force. This nicotine-induced increase does not appear to be mediated by HIF-1α, since HIF-1α was stabilized by force application and hypoxia, but not by nicotine. The in vitro data showed that the hypoxia-induced increase in RANK-L/OPG expression ratio and PDLF-mediated osteoclastogenesis was less pronounced than the nicotine-induced increase. CONCLUSIONS Study results indicate that the nicotine-induced increase in osteoclastogenesis and periodontal bone resorption during OTM may not be mediated by hypoxic effects or HIF-1α stabilization in the context of nicotine-induced vasoconstriction, but rather by an alternative mechanism.
Collapse
Affiliation(s)
- Niklas Ullrich
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Maria Bauer
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Medical Centre of Regensburg, Germany
| | - Jonathan Jantsch
- Department of Medical Microbiology and Hygiene, University Medical Centre of Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medicine Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
44
|
Aquino-Martinez R, Khosla S, Farr JN, Monroe DG. Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem? Int J Mol Sci 2020; 21:E7441. [PMID: 33050175 PMCID: PMC7587987 DOI: 10.3390/ijms21207441] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recent identification of senescent cells in periodontal tissues has the potential to provide new insights into the underlying mechanisms of periodontal disease etiology. DNA damage-driven senescence is perhaps one of the most underappreciated delayed consequences of persistent Gram-negative bacterial infection and inflammation. Although the host immune response rapidly protects against bacterial invasion, oxidative stress generated during inflammation can indirectly deteriorate periodontal tissues through the damage to vital cell macromolecules, including DNA. What happens to those healthy cells that reside in this harmful environment? Emerging evidence indicates that cells that survive irreparable genomic damage undergo cellular senescence, a crucial intermediate mechanism connecting DNA damage and the immune response. In this review, we hypothesize that sustained Gram-negative bacterial challenge, chronic inflammation itself, and the constant renewal of damaged tissues create a permissive environment for the abnormal accumulation of senescent cells. Based on emerging data we propose a model in which the dysfunctional presence of senescent cells may aggravate the initial immune reaction against pathogens. Further understanding of the role of senescent cells in periodontal disease pathogenesis may have clinical implications by providing more sophisticated therapeutic strategies to combat tissue destruction.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Xiao C, Bai G, Du Y, Jiang H, Yu X. Association of high HIF-1α levels in serous periodontitis with external root resorption by the NFATc1 pathway. J Mol Histol 2020; 51:649-658. [PMID: 32990833 DOI: 10.1007/s10735-020-09911-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023]
Abstract
Whether external root resorption is associated with hypoxia in the periodontal ligaments of teeth with severe periodontitis remains unclear. Hypoxia inducible factor-1α (HIF-1α) expression and external resorption sites in the periodontal ligaments of these teeth were observed to elaborate upon the relationship between hypoxia and external root resorption in severe periodontitis. Histological analysis was performed to observe external root resorption. The expressions of HIF-1α and Nuclear factor-activated T cells c1 (NFATc1) in the periodontal ligaments were detected by immunofluorescence, western blotting and real-time PCR. Bone marrow macrophages (BMMs) were stimulated by Porphyromonas gingivalis lipopolysaccharide (Pg.LPS) and cultured under hypoxia in vitro. High levels of HIF-1α and NFATc1 were detected in severe periodontitis. HIF-1α positive-cells were observed in the external resorption sites. Hypoxia promoted Pg.LPS-stimulated osteoclastogenesis of BMMs and bone resorption by the NFATc1 pathway. Increased HIF-1α in severe periodontitis are associated with external root resorption by the NFATc1 pathway.
Collapse
Affiliation(s)
- Changjie Xiao
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Guangliang Bai
- Department of Oral Medicine, Liaocheng Peoples Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yanmei Du
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Huan Jiang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China.
| | - Xijiao Yu
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
46
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
47
|
Sayad A, Ghafouri-Fard S, Shams B, Arsang-Jang S, Gholami L, Taheri M. Sex-specific up-regulation of p50-associated COX-2 extragenic RNA ( PACER) lncRNA in periodontitis. Heliyon 2020; 6:e03897. [PMID: 32426538 PMCID: PMC7226669 DOI: 10.1016/j.heliyon.2020.e03897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 10/28/2022] Open
Abstract
A number of recent studies have shown dysregulation of some long non-coding RNAs (lncRNAs) in affected tissues or peripheral blood of patients with periodontitis. In the current study, we investigated the role of TNF and HNRNPL related immunoregulatory (THRIL) and p50-associated COX-2 extragenic RNA (PACER) lncRNAs in periodontitis. We assessed expression of these lncRNAs in 30 affected tissue, 30 control tissue samples, 23 blood samples from patients and 18 blood samples from healthy controls. Expression of PACER was higher in total blood samples of patients compared with controls (Posterior beta of RE = 5.143, P value = 0.001). However, when assessing its expression in a gender-based manner, the difference in the expression of this lncRNA was significant only among male subgroups (Posterior beta of RE = 7.16, P value < 0.0001). Moreover, expression of PACER was significantly higher in female subjects compared with male subjects (Posterior beta of RE = 3.098, P value < 0.0001). There was no significant difference in tissue expression of PACER between study subgroups. Expression of THRIL was not significantly different between blood/tissue samples of cases and controls. However, expression of this lncRNA was higher in blood of female subjects compared with male subjects (Posterior beta of RE = 4.353, P value = 0.002). Tissue expression of THRIL was correlated with blood levels of this lncRNA (r = 0.33, P < 0.0001) and with the tissue levels of PACER (r = 0.3, P < 0.0001). Moreover, blood levels of these lncRNAs were correlated with each other (r = 0.34, P < 0.0001). However, there was no significant correlation between blood and tissue levels of PACER. Expression of these lncRNAs were not correlated with age either in males or in females. Taken together, we demonstrated a sex-based up-regulation of PACER in blood samples of patients with periodontitis which implies possible participation of this lncRNA in the pathobiology of periodontitis.
Collapse
Affiliation(s)
- Arezou Sayad
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shams
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Gholami
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Yu X, Jiang H, Cheng G, Shang W, Zhang S. High levels of HIF-1ɑ in hypoxic dental pulps associated with teeth with severe periodontitis. J Mol Histol 2020; 51:265-275. [PMID: 32394128 DOI: 10.1007/s10735-020-09878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
In this study we investigated the expression of HIF-1ɑ in dental pulps of the teeth with severe periodontitis. The expression of HIF-1ɑ in dental pulps of the teeth with severe periodontitis was detected by immunohistochemistry, immunofluorescence and real-time PCR. Bone marrow macrophages (BMMs) were cultured under hypoxia in vitro. HIF-1ɑ, osteoclast-specific factors (NFATc1, CTSK and c-fos) and RANKL-induced osteoclastogenesis were evaluated by immunofluorescence, TRAP staining and western blotting. High levels of HIF-1ɑ protein were detected in dental pulps of teeth with severe periodontitis, whereas few positive HIF-1ɑ expressions were detected in healthy dental pulps. Hypoxia occurred in the dental pulps in response to heavy periodontitis. Many HIF-1ɑ-positive infiltratory inflammatory cells were observed around blood vessels. Tooth internal resorption was found in some teeth with severe periodontitis. The HIF-1ɑ levels were upregulated in BMMs under hypoxia, which also promoted osteoclast formation and resorption by NFATc1, CTSK and c-fos. Teeth with severe periodontitis show hypoxic dental pulps and increased potential of osteoclastic differentiation.
Collapse
Affiliation(s)
- Xijiao Yu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Huan Jiang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Guannan Cheng
- Department of Orthodontics, Weihai Stomatological Hospital, Weihai, Shandong, People's Republic of China
| | - Wenzhi Shang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China.
| | - Shanyong Zhang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
| |
Collapse
|
49
|
Karatas O, Balci Yuce H, Taskan MM, Gevrek F, Lafci E, Kasap H. Histological evaluation of peri-implant mucosal and gingival tissues in peri-implantitis, peri-implant mucositis and periodontitis patients: a cross-sectional clinical study. Acta Odontol Scand 2020; 78:241-249. [PMID: 31746655 DOI: 10.1080/00016357.2019.1691256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: Aim of present study was to evaluate gingival tissue samples obtained from healthy and diseased sites of teeth and dental implants in terms of hypoxia and collagenase activity.Methods: Four study groups were created as Group-1; healthy individuals (H), Group-2; periodontitis patients with stage 3 grade B (P), Group-3; patients with peri-implant mucositis. Group-4; patients with peri-implantitis (P-IMP). Plaque index (PI), gingival index (GI) and probing pocket depth (PPD) were recorded. Gingival and peri-implant mucosal biopsies were obtained. Fibroblast and inflammatory cells were counted. Hypoxia-inducible factor (HIF)-1α, prolyl hydroxylase (PH), matrix metalloproteinase (MMP)-8, tissue inhibitor of MMPs (TIMP)-1, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) levels were determined via immunohistochemistry.Results: Healthy controls had highest fibroblast cell counts and lowest inflammatory cell counts compared to other groups. Peri-implantitis and periodontitis samples had similar fibroblast and inflammatory cell counts, while peri-implant mucositis had higher fibroblast cells and lowered inflammatory cells compared to periodontitis and peri-implantitis samples. HIF-1α, COX-2 and iNOS levels were lowest in healthy controls and increased in other groups. Peri-implant mucositis samples had significantly lower expressions of HIF-1α, COX-2 and iNOS compared to peri-implantitis and periodontitis groups. PH expressions were lower in periodontitis and peri-implantitis groups compared to healthy controls and peri-implant mucositis groups. MMP-8 levels were lower in healthy group compared to other groups while levels were similar in periodontitis, peri-implant mucositis and peri-implantitis groups. TIMP levels were similar in groups.Conclusion: Periodontitis, peri-implantitis, and peri-implant mucositis samples exhibited higher inflammation and lower fibroblast cell counts and tend to have increased tissue collagenase activity, hypoxia and inflammation compared to healthy samples.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Emre Lafci
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hayrunnisa Kasap
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
50
|
Afacan B, Keleş Yücel ZP, Paşali Ç, Atmaca İlhan H, Köse T, Emingil G. Effect of non-surgical periodontal treatment on gingival crevicular fluid hypoxia inducible factor-1 alpha, vascular endothelial growth factor and tumor necrosis factor-alpha levels in generalized aggressive periodontitis patients. J Periodontol 2020; 91:1495-1502. [PMID: 32246842 DOI: 10.1002/jper.19-0521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hypoxia-inducible angiogenic pathway involving hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) may regulate several biological processes related to inflammation. The present study aimed to assess the effect of non-surgical periodontal treatment on gingival crevicular fluid (GCF) HIF-1α, VEGF, and TNF-α levels in generalized aggressive periodontitis (G-AgP). METHODS Twenty G-AgP patients and 20 periodontally healthy individuals were included. G-AgP patients received scaling and root planning (SRP), per quadrant at a 1-week-interval, performed with ultrasonic and periodontal hand instruments. GCF samples were collected and clinical periodontal parameters including probing depth, clinical attachment level, gingival index and plaque index were recorded at baseline, 1 and 3 months after treatment. Biomarker levels in GCF were analyzed by ELISA. RESULTS At baseline all clinical parameters and GCF HIF-1α, VEGF, and TNF-α levels were significantly higher in G-AgP patients compared to healthy control (P < 0.05). All clinical parameters improved over the 3-month-period in G-AgP patients (P < 0.05). GCF HIF-1α levels in G-AgP reduced at 1 and 3 months post-treatment, however, this did not reach to statistical significance (P > 0.05). GCF VEGF and TNF-α levels remained unchanged throughout the study period (P > 0.05). CONCLUSIONS Within the limitations of the present study, although HIF-1α seems to possess a potential diagnostic value for G-AgP, it might not be a proper predictor of clinically favorable treatment outcome. SRP plus different adjunctive therapies could provide better information about the prognostic role of hypoxia-inducible angiogenic pathway in G-AgP.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | | | - Çiğdem Paşali
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Harika Atmaca İlhan
- Section of Molecular Biology, Department of Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|