1
|
Fernández-Torres J, López-Macay A, Zamudio-Cuevas Y, Martínez-Flores K. Role of HIF1A gene polymorphisms with serum uric acid and HIF-1α levels in monosodium urate crystal-induced arthritis. Clin Rheumatol 2024; 43:3477-3485. [PMID: 39256280 DOI: 10.1007/s10067-024-07129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Gouty arthritis is a metabolic disease characterized by the deposition of monosodium urate crystals in the joints, which triggers the release of interleukin-1β (IL-β) by activating the NLRP3 inflammasome. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor involved in IL-β production and as a regulator of NLRP3. OBJECTIVES The aims were to analyze the association of HIF1A rs11549465, rs11549467, and rs2057482 variants in patients with gouty arthritis, and to evaluate the correlation between urate and HIF-1α levels according to the associated genotypes. METHODS Cases and controls were genotyped using TaqMan probes, and urate and HIF-1α levels were quantified. Data were analyzed using SPSS v21 software and P-values < 0.05 were considered statistically significant. RESULTS Urate and HIF-1α levels were higher in patients than in controls (P < 0.05). Under the three inheritance models (codominant, dominant, and recessive), the AA genotype of the rs11549467 variant was associated with gout risk (OR = 5.74, P = 0.009, OR = 3.33, P = 0.024, and OR = 9.09, P = 0.003, respectively). There were significant differences in the distribution of serum levels of both HIF-1α (P < 0.0001) and urate (P = 0.016) according to the genotypes of the rs11549467 variant. CONCLUSION These results suggest that the HIF1A rs11549467 variant may play a key role in the pathogenesis of gouty arthritis. Key Points • The pathogenesis of gouty arthritis involves the HIF1A gene. • In patients with gout, the AA genotype of the rs11549467 (HIF1A) variant is associated with increased serum levels of urate and HIF-1α. • HIF-1α is involved in the regulation of IL-1β and NLRP3.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, C.P. 14389, Mexico City, Alcaldía Tlalpan, Mexico.
| | - Ambar López-Macay
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, C.P. 14389, Mexico City, Alcaldía Tlalpan, Mexico
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, C.P. 14389, Mexico City, Alcaldía Tlalpan, Mexico
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, C.P. 14389, Mexico City, Alcaldía Tlalpan, Mexico
| |
Collapse
|
2
|
Thangavelu L, Imran M, Alsharari SH, Abdulaziz AM, Alawlaqi AM, Kamal M, Rekha MM, Kaur M, Soothwal P, Arora I, Kumar MR, Chauhan AS. Exploring hypoxia-induced ncRNAs as biomarkers and therapeutic targets in lung cancer. Pathol Res Pract 2024; 263:155613. [PMID: 39383737 DOI: 10.1016/j.prp.2024.155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Lung cancer is a deadly disease, causing nearly 20 % of all cancer deaths globally. A key factor in lung cancer's development and resistance to treatment is hypoxia, a condition where tumor cells experience low oxygen levels. In this low-oxygen environment, special molecules called non-coding RNAs (ncRNAs) become critical players. NcRNAs, including lncRNAs, miRNAs, circRNAs, and siRNAs, control how genes function and how cells behave. Some ncRNAs, like HIF1A-AS2 and HOTAIR, are linked to the aggressive spread of lung cancer, making them potential targets for therapy. Others, like certain miRNAs, show promise as early detection tools due to their influence on tumor blood vessel formation and metabolism. This complex interplay between hypoxia and ncRNAs is crucial for understanding lung cancer. For example, circRNAs can control the activity of miRNAs, impacting how tumors respond to low oxygen. Additionally, siRNAs offer a potential strategy to overcome treatment resistance caused by hypoxia. By studying the intricate relationship between hypoxia and ncRNAs, scientists hope to uncover new biomarkers for lung cancer. This knowledge will pave the way for developing more effective and targeted treatments for this devastating disease.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - Akrm M Abdulaziz
- Department of Clinical Pharmacy, King Khalid Hospital, Najran 66262, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India.
| |
Collapse
|
3
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
4
|
Moreira ET, Lourenço MP, Cunha-Fernandes T, Silva TI, Siqueira LD, Castro-Faria-Neto HC, Reis PA. Minocycline inhibits microglial activation in the CA1 hippocampal region and prevents long-term cognitive sequel after experimental cerebral malaria. J Neuroimmunol 2024; 397:578480. [PMID: 39504755 DOI: 10.1016/j.jneuroim.2024.578480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Cerebral malaria is the worst complication of malaria infection, has a high mortality rate, and may cause different neurodysfunctions, including cognitive decline. Neuroinflammation is an important cause of cognitive damage in neurodegenerative diseases, and microglial cells can be activated in a disease-associated profile leading to tissue damage and neuronal death. Here, we demonstrated that treatment with minocycline reduced blood-brain barrier breakdown and modulated ICAM1 mRNA expression; reduced proinflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, and IL-6; and prevented long-term cognitive decline in contextual and aversive memory tasks. Taken together, our data suggest that microglial cells are activated during experimental cerebral malaria, leading to neuroinflammatory events that end up in cognitive damage. In addition, pharmacological modulation of microglial activation, by drugs such as minocycline may be an important therapeutic strategy in the prevention of long-term memory impairment.
Collapse
Affiliation(s)
- E T Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Universidade Cruzeiro do Sul, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - M P Lourenço
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T I Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L D Siqueira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - P A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
6
|
Schreiber T, Scharner B, Thévenod F. Insoluble HIFa protein aggregates by cadmium disrupt hypoxia-prolyl hydroxylase (PHD)-hypoxia inducible factor (HIFa) signaling in renal epithelial (NRK-52E) and interstitial (FAIK3-5) cells. Biometals 2024:10.1007/s10534-024-00631-z. [PMID: 39256317 DOI: 10.1007/s10534-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
The kidney is the main organ that senses changes in systemic O2 pressure by hypoxia-PHD-HIFa (HPH) signaling, resulting in adaptive target gene activation, including erythropoietin (EPO). The non-essential transition metal cadmium (Cd) is nephrotoxic and disrupts the renal HPH pathway, which may promote Cd-associated chronic renal disease (CKD). A deeper molecular understanding of Cd interference with renal HPH signaling is missing, and no data with renal cell lines are available. In rat kidney NRK-52E cells, which model the proximal tubule, and murine fibroblastoid atypical interstitial kidney (FAIK3-5) cells, which mimic renal EPO-producing cells, the chemical hypoxia mimetic dimethyloxalylglycine (DMOG; 1 mmol/l) or hypoxia (1% O2) activated HPH signaling. Cd2+ (2.5-20 µmol/l for ≤ 24 h) preferentially induced necrosis (trypan blue uptake) of FAIK3-5 cells at high Cd whereas NRK-52E cells specially developed apoptosis (PARP-1 cleavage) at all Cd concentrations. Cd (12.5 µmol/l) abolished HIFa stabilization and prevented upregulation of target genes (quantitative real-time polymerase chain reaction and immunoblotting) induced by DMOG or hypoxia in both cell lines, which was caused by the formation of insoluble HIFa aggregates. Strikingly, hypoxic preconditioning (1% O2 for 18 h) reduced apoptosis of FAIK3-5 and NRK-52E cells at low Cd concentrations and decreased insoluble HIFa proteins. Hence, drugs mimicking hypoxic preconditioning could reduce CKD induced by chronic low Cd exposure.
Collapse
Affiliation(s)
- Timm Schreiber
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany.
| | - Bettina Scharner
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Frank Thévenod
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany.
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Sagheb IS, Coonan TP, Randall RL, Griffin KH, Leach JK. Extracellular matrix production and oxygen diffusion regulate chemotherapeutic response in osteosarcoma spheroids. Cancer Med 2024; 13:e70239. [PMID: 39300969 PMCID: PMC11413413 DOI: 10.1002/cam4.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) survival rates and outcome have not improved in 50 years since the advent of modern chemotherapeutics. Thus, there is a critical need for an improved understanding of the tumor microenvironment to identify better therapies. Extracellular matrix (ECM) deposition and hypoxia are known to abrogate the efficacy of various chemical and cell-based therapeutics. Here, we aim to mechanistically investigate the combinatorial effects of hypoxia and matrix deposition with the use of OS spheroids. METHODS We use two murine OS cell lines with differential metastatic potential to form spheroids. We form spheroids of two sizes, use ascorbate-2-phosphate supplementation to enhance ECM deposition, and study cell response under standard (21% O2) and physiologic (5% O2) oxygen tensions. Finally, we examine chemotherapeutic responses to doxorubicin treatment. RESULTS ECM production and oxygen tension are key determinants of spheroid size through cell organization based on nutrient and oxygen distribution. Interestingly, highly metastatic OS is more susceptible to chemotherapeutics compared to less metastatic OS when matrix production increases. Together, these data suggest that dynamic interactions between ECM production and oxygen diffusion may result in distinct chemotherapeutic responses despite inherent tumor aggressiveness. CONCLUSION This work establishes OS spheroids as a valuable tool for early OS tumor formation investigation and holds potential for novel therapeutic target and prognostic indicator discovery.
Collapse
Affiliation(s)
- Isabel S. Sagheb
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Thomas P. Coonan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - R. Lor Randall
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| | - Katherine H. Griffin
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - J. Kent Leach
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| |
Collapse
|
8
|
Jia Y, Wang F, Chen S, Wang J, Gao Y. Long-term hypoxia-induced physiological response in turbot Scophthalmus maximus L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01398-3. [PMID: 39190213 DOI: 10.1007/s10695-024-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Hypoxia affects fish's survival, growth, and physiological metabolism processes. In this study, turbot plasma glucose and cortisol contents, hepatic glycolysis (hexokinase [HK], phosphofructokinase [PFK], pyruvate kinase [PK]) and lipolysis (fatty acid synthetase [FAS], lipoprotein lipase [LPL]) enzyme activities, anti-oxidant enzyme (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]) activities, malondialdehyde (MDA), lactate and glycogen contents, gill histological parameters (lamellar length [SLL], width [SLW], interlamellar distance [ID]), respiratory frequency (RF), the proportion of the secondary lamellae available for gas exchange (PAGE), and hifs (hif-1α, hif-2α, hif-3α) expression were determined during long-term hypoxia and reoxygenation. Results showed that long-term hypoxia (3.34 ± 0.17 mg L-1) significantly elevated plasma cortisol and glucose contents; increased hepatic HK, PK, PFK, FAS, and LPL activity; decreased hepatic glycogen, lactate contents, and lipid drop numbers; and caused changes of hepatocyte (vacuolation, pyknotic, and lytic nucleus) after treatment for 4 weeks. Hepatic SOD, CAT, GSH-Px activity, and MDA contents; lamellar perimeter, SLL, ID, RF, and PAGE; and hepatic hif-1α, hif-2α, and hif-3α manifested similar results. Meanwhile, hif-1α is significantly higher than hif-2α, and hif-3α. Interestingly, females and males demonstrated no sex dimorphism significantly different from the above parameters (except hepatic FAS, LPL activity, and lipid drop number) under hypoxia. The above parameters recovered to normal levels after reoxygenation treatment for 4 weeks. Thus, long-term hypoxia promotes turbot hepatic glycogenolysis and lipolysis, induces oxidative damage and stimulates hepatic antioxidant capacity, and alters gill morphology to satisfy insufficient energy demand and alleviate potential damage, while hif-1α plays critical roles in the above physiological process.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
| | - Feng Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuaiyu Chen
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiawei Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| |
Collapse
|
9
|
Tiwari M, Sodhi M, Sharma M, Sharma V, Mukesh M. Hypoxia related genes modulate in similar fashion in skin fibroblast cells of yak (Bos grunniens) adapted to high altitude and native cows (Bos indicus) adapted to tropical climate during hypoxia stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1675-1687. [PMID: 38814473 DOI: 10.1007/s00484-024-02695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/07/2024] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
The present study was conducted to understand transcriptional response of skin fibroblast of yak (Bos grunniens) and cows of Bos indicus origin to hypoxia stress. Six primary fibroblast cell lines derived from three individuals each of Ladakhi yak (Bos grunniens) and Sahiwal cows (Bos indicus) were exposed to low oxygen concentration for a period of 24 h, 48 h and 72 h. The expression of 10 important genes known to regulate hypoxia response such as HIF1A, VEGFA, EPAS1, ATP1A1, GLUT1, HMOX1, ECE1, TNF-A, GPx and SOD were evaluated in fibroblast cells of Ladakhi yak (LAY-Fb) and Sahiwal cows (SAC-Fb) during pre- and post-hypoxia stress. A panel of 10 reference genes (GAPDH, RPL4, EEF1A1, RPS9, HPRT1, UXT, RPS23, B2M, RPS15, ACTB) were also evaluated for their expression stability to perform accurate normalization. The expression of HIF1A was significantly (p < 0.05) induced in both LAY-Fb (2.29-fold) and SAC-Fb (2.07-fold) after 24 h of hypoxia stress. The angiogenic (VEGFA), metabolic (GLUT1) and antioxidant genes (SOD and GPx) were also induced after 24 h of hypoxia stress. However, EPAS1 and ATP1A1 induced significantly (p < 0.05) after 48 h whereas, ECE1 expression induced significantly (p < 0.05) at 72 h after exposure to hypoxia. The TNF-alpha which is a pro-inflammatory gene induced significantly (p < 0.05) at 24 h in SAC-Fb and at 72 h in LAY-Fb. The induction of hypoxia associated genes indicated the utility of skin derived fibroblast as cellular model to evaluate transcriptome signatures post hypoxia stress in populations adapted to diverse altitudes.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manish Sharma
- DRDO-Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Vishal Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| |
Collapse
|
10
|
Zhang XM, Min XR, Li D, Li B, Rui YX, Xie HX, Liu R, Zeng N. The protective effect and mechanism of piperazine ferulate in rats with 5/6 nephrectomy-caused chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5715-5729. [PMID: 38305866 DOI: 10.1007/s00210-024-02976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Chronic kidney disease (CKD) is a type of chronic disease in which multiple factors are responsible for the structural and functional disorders of the kidney. Piperazine ferulate (PF) has anti-platelet and anti-fibrotic effects, and its mechanism of action remains to be elucidated. This study aimed to investigate the protective effect of PF against CKD in rats and to determine its mechanism of action. Network pharmacology was used to predict potential PF action targets in the treatment of CKD and to further validate them. A rat model of CKD was established; blood was collected, etc., for the assessment of the renal function; renal pathologic damage was examined using hematoxylin and eosin (HE) staining and Masson staining; changes in the levels of TGF-β1 and α-SMA were determined with ELISA; EPOR, FN, and COL I expression were detected utilizing immunohistochemistry; and HIF-1α, HIF-2α, and EPO protein molecules were analyzed deploying western blotting. PF reduces Scr, BUN, and 24 h UP levels; decreases FN and COL I expression; and attenuates renal injury. Additionally, PF inhibited TGF-β1 and stimulated the production of HIF-1α and HIF-2α, which downregulated α-SMA and upregulated EPO. PF attenuated the progression of the CKD pathology, and the mechanism of its action is possibly associated with the promotion of HIF-1α/HIF-2α/EPO production and TGF-β1 reduction.
Collapse
Affiliation(s)
- Xiu-Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xin-Ran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Li
- Chengdu Hanpharm Pharmaceutical Co., Ltd., Pengzhou, 611930, Sichuan, China
| | - Yi-Xin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hong-Xiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
11
|
Sutkowy P, Modrzejewska M, Porzych M, Woźniak A. The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity. Int J Mol Sci 2024; 25:6915. [PMID: 39000024 PMCID: PMC11240945 DOI: 10.3390/ijms25136915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The significance of physical activity in sports is self-evident. However, its importance is becoming increasingly apparent in the context of public health. The constant desire to improve health and performance suggests looking at genetic predispositions. The knowledge of genes related to physical performance can be utilized initially in the training of athletes to assign them to the appropriate sport. In the field of medicine, this knowledge may be more effectively utilized in the prevention and treatment of cardiometabolic diseases. Physical exertion engages the entire organism, and at a basic physiological level, the organism's responses are primarily related to oxidant and antioxidant reactions due to intensified cellular respiration. Therefore, the modifications involve the body adjusting to the stresses, especially oxidative stress. The consequence of regular exercise is primarily an increase in antioxidant capacity. Among the genes considered, those that promote oxidative processes dominate, as they are associated with energy production during exercise. What is missing, however, is a look at the other side of the coin, which, in this case, is antioxidant processes and the genes associated with them. It has been demonstrated that antioxidant genes associated with increased physical performance do not always result in increased antioxidant capacity. Nevertheless, it seems that maintaining the oxidant-antioxidant balance is the most important thing in this regard.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| | - Marta Porzych
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| |
Collapse
|
12
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
13
|
Ravel-Godreuil C, Roy ER, Puttapaka SN, Li S, Wang Y, Yuan X, Eltzschig HK, Cao W. Transcriptional Responses of Different Brain Cell Types to Oxygen Decline. Brain Sci 2024; 14:341. [PMID: 38671993 PMCID: PMC11048388 DOI: 10.3390/brainsci14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Ethan R. Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Srinivas N. Puttapaka
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| |
Collapse
|
14
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Zhang D, Huang H, Gao X, Yu G, Zhang X, Jin H, Xu R, Wang Z, Zhang G. High expression of B7-H3 on monocyte/macrophages in tumor microenvironment promotes lung cancer progression by inhibiting apoptosis. Transl Oncol 2024; 41:101874. [PMID: 38262113 PMCID: PMC10832491 DOI: 10.1016/j.tranon.2023.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Monocyte/macrophages constitute a significant population of tumor-infiltrating immune cells and play a crucial role in tumor growth, invasion, and metastasis. B7-H3, has immune regulatory functions, however, it is unclear whether B7-H3 expressed on monocyte/macrophages plays a significance role in tumor progression. We found B7-H3 was high-expressed on monocyte/macrophages in tumor microenvironment compared with adjacent tissues in lung cancer, and its expression level was positively correlated with the number of monocyte/macrophages. Furthermore, the expression of B7-H3 was related to clinical stage and lymph node metastasis. Moreover, miR-29a-3p negatively regulated B7-H3, and the expression of B7-H3 on THP-1-derived macrophages was regulated by secreting exosomes containing miR-29a-3p. In addition, knockdown of B7-H3 promoted macrophage apoptosis under hypoxia. Mechanistically, B7-H3 enhanced the antiapoptotic ability of macrophage by up-regulating HIF-1ɑ via activating NF-κB. Taken together, these results imply that B7-H3 as a therapeutic target could hold promise for enhancing anti-tumor immune responses in individuals diagnosed with lung cancer.
Collapse
Affiliation(s)
- Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Haitao Huang
- Department of Thoracic surgery, The First Affiliated Hospital of Soochow University, China
| | - Xin Gao
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, China
| | - Gehua Yu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Ruyan Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Zhenxin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, China.
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
16
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
17
|
Rinaldi I, Mauludi R, Jusman SW, Sinto R, Harimurti K. HIF2-α Expression in CML Patients Receiving Hydroxyurea Prior to Imatinib That Achieved Major Molecular Response (MMR) versus in Those Not Achieving MMR. J Blood Med 2024; 15:61-67. [PMID: 38375065 PMCID: PMC10875243 DOI: 10.2147/jbm.s436015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Currently, Imatinib (IM) which is a Tyrosine Kinase Inhibitor (TKI), is the main treatment for patients with chronic myeloid leukemia (CML). Major molecular response (MMR) is used as therapeutic response. Resistance to IM may be caused by hypoxia which is regulated by hypoxia inducible factor (HIF) 2-α. The role of HIF2-α is currently not researched extensively. This study aimed to analyse the differences in HIF-2α expression between chronic phase CML patients that achieved MMR and those that did not achieve MMR. Methods This study used a cross-sectional method which analysed secondary data from whole blood samples in chronic phase CML patients aged 18-60 years that received hydroxyurea (HU) before IM, aged 18-60 years, received IM therapy for more than 12 months, and were willing to participate in the study. The exclusion criteria for this study were patients who were receiving IM at a dose of more than 400 mg/day. HIF-2α protein expression was examined using the enzyme-linked immunosorbent assay (ELISA) method. Differences between HIF-2α protein expression in groups that achieved MMR versus not achieving MMR was analysed using the Mann-Whitney test. Results A total of 79 subjects were obtained. The median HIF-2α was 90.56 pg/mg protein (3.01-4628.74). There was no statistically significant difference in expression of HIF-2α in the group that reached MMR and did not reach MMR, namely 123.45 pg/mg protein and 89.25 pg/mg protein respectively (p 0.718). Conclusion This study found no statistically significant difference between HIF-2α expression level and MMR achievement of chronic phase CML patients who received HU before IM therapy.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Radinal Mauludi
- Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Widia Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Robert Sinto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Cipto Mangunkusumo National General hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kuntjoro Harimurti
- Clinical Epidemiology Unit, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Division of Geriatrics, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Linawati L, Sitam S, Mulyawan W, Purba A, Syawqie A, Handharyani E, Subiakto Y, Amaliya A. Effect of Intermittent Hypobaric Hypoxia Exposure on HIF-1α, VEGF, and Angiogenesis in the Healing Process of Post-Tooth Extraction Sockets in Rats. Eur J Dent 2024; 18:304-313. [PMID: 37295455 PMCID: PMC10959591 DOI: 10.1055/s-0043-1768639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of intermittent hypobaric hypoxia (IHH) exposure on the expression of hypoxia-induced factor-1α (HIF-1α) messenger RNA (mRNA), vascular endothelial growth factor-a (VEGF-a) mRNA, and angiogenesis after tooth extraction in rats. MATERIALS AND METHODS On 45 male Sprague-Dawley rats were performed the removal of the maxillary left first molar, and then they were randomly divided into 9 groups, namely: 4 groups that were exposed to IHH for 30 minutes every day in the Hypobaric Chamber at an altitude of 18,000 feet, with 1 time hypobaric hypoxia (HH), 3 times HH, 5 times HH, and 7 times HH; 4 normoxia groups that were terminated on days 1, 3, 5, and 7 after tooth extraction; and the 1 control group. Real-time polymerase chain reaction measured the molecular changes in the socket tissue after tooth extraction in rats to evaluate the expression of HIF-1α mRNA and VEGF mRNA. Histological changes with hematoxylin and eosin staining were noted to evaluate the amount of angiogenesis in the socket after tooth extraction. Molecular and histological parameters were calculated at the end of each experiment on days 0, 1, 3, 5, and 7 after tooth extraction, which exhibited the improvement phase of the wound-healing process. RESULTS Increases in the expression of HIF-1α mRNA, VEGF mRNA, and angiogenesis were found in the IHH group compared with the normoxia group and the control group. The expression of HIF-1α mRNA increased significantly (p < 0.05) in the group after one time HH exposure on day 1, then decreased in the IHH group (three times HH exposure, five times HH exposure, and seven times HH exposure) approaching the control group. The expression of VEGF mRNA and angiogenesis began to increase after one time HH exposure on day 1, and increased again after three times HH exposure on day 3, then increased even more after five times HH exposure on day 5, and increased very significantly (**p < 0.05) after seven times HH exposure on day 7. It showed that repeated or intermittent exposure to HH conditions induced a protective response that made cells adapt under hypoxia conditions. CONCLUSION IHH exposure accelerates the socket healing of post-tooth extraction, which is proven by changes in HIF-1α mRNA expression and increase in VEGF mRNA expression as stimuli for angiogenesis in post-tooth extraction sockets under hypobaric hypoxic condition, which also stimulates the formation of new blood vessels, thereby increasing blood supply and accelerating wound healing.
Collapse
Affiliation(s)
- Linawati Linawati
- Doctoral Degree Study Program in Military Dentistry Science, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Suhardjo Sitam
- Department of Radiology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Mulyawan
- Department of Community Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ambrosius Purba
- Division of Physiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Achmad Syawqie
- Department of Oral Biology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Yuli Subiakto
- Military Pharmacy Faculty, Universitas Pertahanan, Jakarta, Indonesia
| | - Amaliya Amaliya
- Departement of Periodontology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
- Centre for Military Dentistry Research, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
19
|
Hussain NM, O'Halloran M, McDermott B, Elahi MA. Fetal monitoring technologies for the detection of intrapartum hypoxia - challenges and opportunities. Biomed Phys Eng Express 2024; 10:022002. [PMID: 38118183 DOI: 10.1088/2057-1976/ad17a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Intrapartum fetal hypoxia is related to long-term morbidity and mortality of the fetus and the mother. Fetal surveillance is extremely important to minimize the adverse outcomes arising from fetal hypoxia during labour. Several methods have been used in current clinical practice to monitor fetal well-being. For instance, biophysical technologies including cardiotocography, ST-analysis adjunct to cardiotocography, and Doppler ultrasound are used for intrapartum fetal monitoring. However, these technologies result in a high false-positive rate and increased obstetric interventions during labour. Alternatively, biochemical-based technologies including fetal scalp blood sampling and fetal pulse oximetry are used to identify metabolic acidosis and oxygen deprivation resulting from fetal hypoxia. These technologies neither improve clinical outcomes nor reduce unnecessary interventions during labour. Also, there is a need to link the physiological changes during fetal hypoxia to fetal monitoring technologies. The objective of this article is to assess the clinical background of fetal hypoxia and to review existing monitoring technologies for the detection and monitoring of fetal hypoxia. A comprehensive review has been made to predict fetal hypoxia using computational and machine-learning algorithms. The detection of more specific biomarkers or new sensing technologies is also reviewed which may help in the enhancement of the reliability of continuous fetal monitoring and may result in the accurate detection of intrapartum fetal hypoxia.
Collapse
Affiliation(s)
- Nadia Muhammad Hussain
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Martin O'Halloran
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Barry McDermott
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
- College of Medicine, Nursing & Health Sciences, University of Galway, Ireland
| | - Muhammad Adnan Elahi
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| |
Collapse
|
20
|
Moloudi K, Abrahamse H, George BP. Nanotechnology-mediated photodynamic therapy: Focus on overcoming tumor hypoxia. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1937. [PMID: 38072393 DOI: 10.1002/wnan.1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 03/09/2024]
Abstract
The oxygen level in the tumor is a critical marker that determines response to different treatments. Cancerous cells can adapt to hypoxia and low pH conditions within the tumor microenvironment (TME) to regulate tumor metabolism, proliferation, and promote tumor metastasis as well as angiogenesis, consequently leading to treatment failure and recurrence. In recent years, widespread attempts have been made to overcome tumor hypoxia through different methods, such as hyperbaric oxygen therapy (HBOT), hyperthermia, O2 carriers, artificial hemoglobin, oxygen generator hydrogels, and peroxide materials. While oxygen is found to be an essential agent to improve the treatment response of photodynamic therapy (PDT) and other cancer treatment modalities, the development of hypoxia within the tumor is highly associated with PDT failure. Recently, the use of nanoparticles has been a hot topic for researchers and exploited to overcome hypoxia through Oxygen-generating hydrogels, O2 nanocarriers, and O2 -generating nanoparticles. This review aimed to discuss the role of nanotechnology in tumor oxygenation and highlight the challenges, prospective, and recent advances in this area to improve PDT outcomes. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P George
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
Yang F, Xie T, Hu Z, Chu Z, Lu H, Wu Q, Qin D, Sun S, Luo Z, Luo F. Exploration on anti-hypoxia properties of peptides: a review. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 38116946 DOI: 10.1080/10408398.2023.2291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Peptides are important components of human nutrition and health, and considered as safe, nontoxic, and easily absorbed potential drugs. Anti-hypoxia peptides are a kind of peptides that can prevent hypoxia or hypoxia damage. In this paper, the sources, preparations, and molecular mechanisms of anti-hypoxia peptides were systemically reviewed. The combination of bioinformatics, chemical synthesis, enzymatic hydrolysis, and microbial fermentation are recommended for efficient productions of anti-hypoxic peptides. The mechanisms of anti-hypoxic peptides include interference with glycolytic process and HIF-1α pathway, mitochondrial apoptosis, and inflammatory response. In addition, bioinformatics analysis, including virtual screening and molecular docking, provides an alternative or auxiliary method for exploring the potential anti-hypoxic activities and mechanisms of peptides. The potential challenges and prospects of anti-hypoxic peptides are also discussed. This paper can provide references for researchers in this field and promote further research and clinical applications of anti-hypoxic peptides in the future.
Collapse
Affiliation(s)
- Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tiantian Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxing Chu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Han Lu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuguo Sun
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
22
|
Palacios C, Wang P, Wang N, Brown MA, Capatosto L, Du J, Jiang J, Zhang Q, Dahal N, Lamichhaney S. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae). Mol Biol Evol 2023; 40:msad214. [PMID: 37768198 PMCID: PMC10583571 DOI: 10.1093/molbev/msad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Species residing across elevational gradients display adaptations in response to environmental changes such as oxygen availability, ultraviolet radiation, and temperature. Here, we study genomic variation, gene expression, and long-term adaptation in Tibetan Partridge (Perdix hodgsoniae) populations residing across the elevational gradient of the Tibetan Plateau. We generated a high-quality draft genome and used it to carry out downstream population genomic and transcriptomic analysis. The P. hodgsoniae populations residing across various elevations were genetically distinct, and their phylogenetic clustering was consistent with their geographic distribution. We identified possible evidence of gene flow between populations residing in <3,000 and >4,200 m elevation that is consistent with known habitat expansion of high-altitude populations of P. hodgsoniae to a lower elevation. We identified a 60 kb haplotype encompassing the Estrogen Receptor 1 (ESR1) gene, showing strong genetic divergence between populations of P. hodgsoniae. We identified six single nucleotide polymorphisms within the ESR1 gene fixed for derived alleles in high-altitude populations that are strongly conserved across vertebrates. We also compared blood transcriptome profiles and identified differentially expressed genes (such as GAPDH, LDHA, and ALDOC) that correlated with differences in altitude among populations of P. hodgsoniae. These candidate genes from population genomics and transcriptomics analysis were enriched for neutrophil degranulation and glycolysis pathways, which are known to respond to hypoxia and hence may contribute to long-term adaptation to high altitudes in P. hodgsoniae. Our results highlight Tibetan Partridges as a useful model to study molecular mechanisms underlying long-term adaptation to high altitudes.
Collapse
Affiliation(s)
- Catalina Palacios
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Nan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Megan A Brown
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lukas Capatosto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jiahu Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingze Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
23
|
Sánchez-Gloria JL, Martínez-Olivares CE, Del Valle-Mondragón L, Cortés-Camacho F, Zambrano-Vásquez OR, Hernández-Pando R, Sánchez-Muñoz F, Sánchez-Lozada LG, Osorio-Alonso H. Allicin, an Emerging Treatment for Pulmonary Arterial Hypertension: An Experimental Study. Int J Mol Sci 2023; 24:12959. [PMID: 37629140 PMCID: PMC10454707 DOI: 10.3390/ijms241612959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We assessed whether allicin, through its antihypertensive and antioxidant effects, relieves vascular remodeling, endothelial function, and oxidative stress (OS), thereby improving experimental pulmonary arterial hypertension (PAH). Allicin (16 mg/kg) was administered to rats with PAH (monocrotaline 60 mg/kg). Allicin encouraged body weight gain and survival rate, and medial wall thickness and the right ventricle (RV) hypertrophy were prevented. Also, angiotensin II concentrations in the lung (0.37 ± 0.01 vs. 0.47 ± 0.06 pmoles/mL, allicin and control, respectively) and plasma (0.57 ± 0.05 vs. 0.75 ± 0.064, allicin and control respectively) and the expressions of angiotensin-converting enzyme II and angiotensin II type 1 receptor in lung tissue were maintained at normal control levels with allicin. In PAH rats treated with allicin, nitric oxide (NO) (31.72 ± 1.22 and 51.4 ± 3.45 pmoles/mL), tetrahydrobiopterin (8.43 ± 0.33 and 10.14 ± 0.70 pmoles/mL), cyclic guanosine monophosphate (5.54 ± 0.42 and 5.64 ± 0.73 pmoles/mL), and Ang-(1-7) (0.88 ± 0.23 and 0.83 ± 0.056 pmoles/mL) concentrations increased in lung tissue and plasma, respectively. In contrast, dihydrobiopterin increase was prevented in both lung tissue and plasma (5.75 ± 0.3 and 5.64 ± 0.73 pmoles/mL); meanwhile, phosphodiesterase-5 was maintained at normal levels in lung tissue. OS in PAH was prevented with allicin through the increased expression of Nrf2 in the lung. Allicin prevented the lung response to hypoxia, preventing the overexpression of HIF-1α and VEGF. Allicin attenuated the vascular remodeling and RV hypertrophy in PAH through its effects on NO-dependent vasodilation, modulation of RAS, and amelioration of OS. Also, these effects could be associated with the modulation of HIF-1α and improved lung oxygenation. The global effects of allicin contribute to preventing endothelial dysfunction, remodeling of the pulmonary arteries, and RV hypertrophy, preventing heart failure, thus favoring survival. Although human studies are needed, the data suggest that, alone or in combination therapy, allicin may be an alternative in treating PAH if we consider that, similarly to current treatments, it improves lung vasodilation and increase survival. Allicin may be considered an option when there is a lack of efficacy, and where drug intolerance is observed, to enhance the efficacy of drugs, or when more than one pathogenic mechanism must be addressed.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Constanza E. Martínez-Olivares
- Experimental Pathology Department, Experimental Pathology Laboratory, Instituto Nacional de Ciencia Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fernando Cortés-Camacho
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Oscar R. Zambrano-Vásquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, Experimental Pathology Laboratory, Instituto Nacional de Ciencia Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura G. Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.C.-C.); (O.R.Z.-V.); (L.G.S.-L.)
| |
Collapse
|
24
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
25
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Wei JY, Hu MY, Chen XQ, Wei JS, Chen J, Qin XK, Lei FY, Zou JS, Zhu SQ, Qin YH. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway. Curr Med Sci 2023:10.1007/s11596-023-2744-3. [PMID: 37264195 DOI: 10.1007/s11596-023-2744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/03/2023]
Abstract
OBJECTIVE The hypersensitivity of the kidney makes it susceptible to hypoxia injury. The involvement of neutrophil extracellular traps (NETs) in renal injury resulting from hypobaric hypoxia (HH) has not been reported. In this study, we aimed to investigate the expression of NETs in renal injury induced by HH and the possible underlying mechanism. METHODS A total of 24 SD male rats were divided into three groups (n=8 each): normal control group, hypoxia group and hypoxia+pyrrolidine dithiocarbamate (PDTC) group. Rats in hypoxia group and hypoxia+PDTC group were placed in animal chambers with HH which was caused by simulating the altitude at 7000 meters (oxygen partial pressure about 6.9 kPa) for 7 days. PDTC was administered at a dose of 100 mg/kg intraperitoneally once daily for 7 days. Pathological changes of the rat renal tissues were observed under a light microscope; the levels of serum creatinine (SCr), blood urea nitrogen (BUN), cell-free DNA (cf-DNA) and reactive oxygen species (ROS) were measured; the expression levels of myeloperoxidase (MPO), citrullinated histone H3 (cit-H3), B-cell lymphoma 2 (Bcl-2), Bax, nuclear factor kappa B (NF-κB) p65 and phospho-NF-κB p65 (p-NF-κB p65) in rat renal tissues were detected by qRT-qPCR and Western blotting; the localization of NF-κB p65 expression in rat renal tissues was observed by immunofluorescence staining and the expression changes of NETs in rat renal tissues were detected by multiplex fluorescence immunohistochemical staining. RESULTS After hypoxia, the expression of NF-κB protein in renal tissues was significantly increased, the levels of SCr, BUN, cf-DNA and ROS in serum were significantly increased, the formation of NETs in renal tissues was significantly increased, and a large number of tubular dilatation and lymphocyte infiltration were observed in renal tissues. When PDTC was used to inhibit NF-κB activation, NETs formation in renal tissue was significantly decreased, the expression level of Bcl-2 in renal tissues was significantly increased, the expression level of Bax was significantly decreased, and renal injury was significantly alleviated. CONCLUSION HH induces the formation of NETs through the NF-κB signaling pathway, and it promotes apoptosis and aggravates renal injury by decreasing Bcl-2 and increasing Bax expression.
Collapse
Affiliation(s)
- Jun-Yu Wei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Miao-Yue Hu
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiu-Qi Chen
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jin-Shuang Wei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jie Chen
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xuan-Kai Qin
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Feng-Ying Lei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jia-Sen Zou
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Shi-Qun Zhu
- Shenzhen Children's Hospital, Shenzhen, 518034, China
| | - Yuan-Han Qin
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
27
|
Wong SL, Kardia E, Vijayan A, Umashankar B, Pandzic E, Zhong L, Jaffe A, Waters SA. Molecular and Functional Characteristics of Airway Epithelium under Chronic Hypoxia. Int J Mol Sci 2023; 24:ijms24076475. [PMID: 37047450 PMCID: PMC10095024 DOI: 10.3390/ijms24076475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Collapse
Affiliation(s)
- Sharon L Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abhishek Vijayan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Jaffe
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
29
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
30
|
Timon R, Martinez-Guardado I, Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:19. [PMID: 36843041 PMCID: PMC9968673 DOI: 10.1186/s40798-023-00560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Aging is a degenerative process that is associated with an increased risk of diseases. Intermittent hypoxia has been investigated in reference to performance and health-related functions enhancement. This systematic review aimed to summarize the effect of either passive or active intermittent normobaric hypoxic interventions compared with normoxia on health-related outcomes in healthy older adults. METHODS Relevant studies were searched from PubMed and Web of Science databases in accordance with PRISMA guidelines (since their inceptions up until August 9, 2022) using the following inclusion criteria: (1) randomized controlled trials, clinical trials and pilot studies; (2) Studies involving humans aged > 50 years old and without any chronic diseases diagnosed; (3) interventions based on in vivo intermittent systemic normobaric hypoxia exposure; (4) articles focusing on the analysis of health-related outcomes (body composition, metabolic, bone, cardiovascular, functional fitness or quality of life). Cochrane Collaboration recommendations were used to assess the risk of bias. RESULTS From 509 articles initially found, 17 studies were included. All interventions were performed in moderate normobaric hypoxia, with three studies using passive exposure, and the others combining intermittent hypoxia with training protocols (i.e., using resistance-, whole body vibration- or aerobic-based exercise). CONCLUSIONS Computed results indicate a limited effect of passive/active intermittent hypoxia (ranging 4-24 weeks, 2-4 days/week, 16-120 min/session, 13-16% of fraction of inspired oxygen or 75-85% of peripheral oxygen saturation) compared to similar intervention in normoxia on body composition, functional fitness, cardiovascular and bone health in healthy older (50-75 years old) adults. Only in specific settings (i.e., intermediate- or long-term interventions with high intensity/volume training sessions repeated at least 3 days per week), may intermittent hypoxia elicit beneficial effects. Further research is needed to determine the dose-response of passive/active intermittent hypoxia in the elderly. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION PROSPERO 2022 CRD42022338648.
Collapse
Affiliation(s)
- Rafael Timon
- Sport Sciences Faculty, Universidad de Extremadura, Av/ Universidad s/n, 10004, Cáceres, Spain.
| | - Ismael Martinez-Guardado
- grid.464701.00000 0001 0674 2310BRABE Group. Faculty of Life and Nature Sciences, Universidad de Nebrija, Madrid, Spain
| | - Franck Brocherie
- grid.418501.90000 0001 2163 2398Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
31
|
Ding M, Lu Y, Huang X, Xing C, Hou S, Wang D, Zhang Y, Wang W, Zhang C, Zhang M, Meng F, Liu K, Liu G, Zhao J, Song L. Acute hypoxia induced dysregulation of clock-controlled ovary functions. Front Physiol 2022; 13:1024038. [PMID: 36620217 PMCID: PMC9816144 DOI: 10.3389/fphys.2022.1024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
High altitudes or exposure to hypoxia leads to female reproductive disorders. Circadian clocks are intrinsic time-tracking systems that enable organisms to adapt to the Earth's 24-h light/dark cycle, which can be entrained by other environmental stimuli to regulate physiological and pathological responses. In this study, we focused on whether ovarian circadian clock proteins were involved in regulating female reproductive dysfunction under hypoxic conditions. Hypobaric hypoxia was found to induce a significantly prolonged estrous cycle in female mice, accompanied by follicular atresia, pituitary/ovarian hormone synthesis disorder, and decreased LHCGR expression in the ovaries. Under the same conditions, the levels of the ovarian circadian clock proteins, CLOCK and BMAL1, were suppressed, whereas E4BP4 levels were upregulated. Results from granulosa cells (GCs) further demonstrated that CLOCK: BMAL1 and E4BP4 function as transcriptional activators and repressors of LHCGR in ovarian GCs, respectively, whose responses were mediated by HIF1ɑ-dependent (E4BP4 upregulation) and ɑ-independent (CLOCK and BMAL1 downregulation) manners. The LHCGR agonist was shown to efficiently recover the impairment of ovulation-related gene (EREG and PGR) expression in GCs induced by hypoxia. We conclude that hypoxia exposure causes dysregulation of ovarian circadian clock protein (CLOCK, BMAL1, and E4BP4) expression, which mediates female reproductive dysfunction by impairing LHCGR-dependent signaling events. Adjusting the timing system or recovering the LHCGR level in the ovaries may be helpful in overcoming female reproductive disorders occurring in the highlands.
Collapse
Affiliation(s)
- Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yarong Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Dongxue Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
| | - Fanfei Meng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guangchao Liu
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Jincheng Zhao
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
- School of Pharmacy, Jiamus University, Jiamusi, China
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
32
|
Schmitz C, Pepelanova I, Ude C, Lavrentieva A. Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture. J Tissue Eng Regen Med 2022; 16:977-986. [PMID: 35962761 DOI: 10.1002/term.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.
Collapse
Affiliation(s)
- Carola Schmitz
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Christian Ude
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
33
|
Ji L, Su S, Xin M, Zhang Z, Nan X, Li Z, Lu D. Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154329. [PMID: 35843187 DOI: 10.1016/j.phymed.2022.154329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease with poor prognosis and high mortality. Hypoxia induced pulmonary hypertension (HPH) is a persistent threat to human health, especially to people who live on high altitude plateau. Pulmonary vascular endothelial cell is involved in numerous pathophysiological processes, including in vasoconstriction, oxidative stress, cell growth and differentiation. Endothelial cells (ECs) are the first layer to be exposed to changed oxygen levels and hypoxia could lead to ECs dysfunction. Endothelial-derived nitric oxide (NO) is the most important bioactive molecule, which could regulate endothelial homeostasis. PH pathophysiology has been linked to the disruption of NO pathways. PURPOSE Luteolin is a kind of plant active ingredient with multiple pharmacological activities. The purpose of this study is to detect the effect of luteolin on HPH with in vivo, ex vivo and in vitro analyses and to further elucidate luteolin's pharmaceutical mechanism with NO related signaling pathway regulation. METHODS Hypobaric chamber was used to establish HPH animal model. Rats were intragastrically administrated luteolin for 28 days. Then hemodynamic indexes, histopathological changes, pulmonary artery endothelial function, NO content and arginase activity in lung tissue, NO related pathway proteins expression were measured to evaluate the effect of luteolin on HPH. PAECs were treated with 1% O2 and incubated with or without luteolin. PAECs vitality, NO content in cells supernatant, and NO related pathway proteins expression were tested to reveal the protective mechanism of luteolin. RESULTS Luteolin decreased mean pulmonary hypertension of HPH rats, alleviated right ventricular and pulmonary vascular remodeling. Immunofluorescence staining (vWF), isolated perfused/ventilated rat lung experiment indicated that luteolin protected pulmonary vascular endothelial function of HPH rats. Luteolin increased NO content in PAECs supernatant while decreased NO level in lung tissues of HPH rats. Further, it was demonstrated that luteolin inhibited HIF-2α-Arg axis in PAECs and HPH rats. PI3K-AKT-eNOS signaling pathway was upregulated in PAECs, but which was downregulated in lung tissues of HPH rats. Pharmacological effect of luteolin was equivalent or better than sildenafil. CONCLUSION Luteolin ameliorated HPH in rats by protecting pulmonary vascular endothelial function via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. This study may provide a novel perspective and approach to alleviate the devastating disease of HPH.
Collapse
Affiliation(s)
- Lei Ji
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Qinghai Provincial People's Hospital, Xining, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Mingyuan Xin
- Medical College, Qinghai University, Xining, China
| | - Zhaoxia Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xingmei Nan
- Medical College, Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
34
|
Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14:453-472. [PMID: 36157530 PMCID: PMC9350626 DOI: 10.4252/wjsc.v14.i7.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The use of mesenchymal stem-cells (MSC) in cell therapy has received considerable attention because of their properties. These properties include high expansion and differentiation in vitro, low immunogenicity, and modulation of biological processes, such as inflammation, angiogenesis and hematopoiesis. Curiously, the regenerative effect of MSC is partly due to their paracrine activity. This has prompted numerous studies, to investigate the therapeutic potential of their secretome in general, and specifically their extracellular vesicles (EV). The latter contain proteins, lipids, nucleic acids, and other metabolites, which can cause physiological changes when released into recipient cells. Interestingly, contents of EV can be modulated by preconditioning MSC under different culture conditions. Among them, exposure to hypoxia stands out; these cells respond by activating hypoxia-inducible factor (HIF) at low O2 concentrations. HIF has direct and indirect pleiotropic effects, modulating expression of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and cell apoptosis. Expression of these genes is reflected in the contents of secreted EV. Interestingly, numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia. In this review, we show the implications of hypoxia responses in relation to tissue regeneration. In addition, hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV, with a high potential for clinical use in regenerative medicine that can be applied to different pathologies.
Collapse
Affiliation(s)
- Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
35
|
Huang S, Zhao Y, Liu J. HIF-1α enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in neonatal rats under hypoxia. Int J Biochem Cell Biol 2022; 149:106259. [PMID: 35779841 DOI: 10.1016/j.biocel.2022.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
In the cochlea, various factors, such as noise, aging, and inflammation, induce hypoxia, resulting in the up-regulation of hypoxia inducible factor-1α (HIF-1α). The role of HIF-1α in hypoxic marginal cells (MCs) of the stria vascularis is unknown. This study examined HIF-1α-mediated autophagy in MCs of neonatal rats and its mechanism of action. We found that an increase in HIF-1α expression was associated with autophagy and apoptosis. Treatment with PX478, a specific inhibitor of HIF-1α, decreased the HIF-1α level, and the degree of autophagy decreased in hypoxic and apoptotic MCs. By contrast, treatment with DMOG, an activator of HIF-1α, increased autophagy and decreased apoptosis. Both PX478 and DMOG had no effect on the apoptotic rate after treatment with 3-methyladenine, an inhibitor of autophagy, indicating that HIF-1α promoted autophagy to protect MCs from hypoxia-induced apoptosis. Lastly, we silenced Bnip3(Bcl-2/adenovirus E1B 19-kDa interacting protein) in MCs to identify the mechanism of action. Our results show that the HIF-1α-BNIP3 pathway mediates the anti-apoptotic effects through an increase in autophagy.
Collapse
Affiliation(s)
- Sihan Huang
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanyun Zhao
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
36
|
Babaei A, Asadpour R, Mansouri K, Sabrivand A, Kazemi‐Darabadi S. Lycopene improves testicular damage and sperm quality in experimentally induced varicocele: Relationship with apoptosis, hypoxia, and hyperthermia. Food Sci Nutr 2022; 10:1469-1480. [PMID: 35592276 PMCID: PMC9094497 DOI: 10.1002/fsn3.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Varicocele is considered the main reason for male infertility. Antioxidants are common drugs used to reduce the complications of varicocele in these patients. So, we investigated the effects of lycopene on sperm quality, testicular histology, and the expression of some genes in experimentally induced varicocele. Fifty adult male Wistar rats were divided into three groups: control (n = 12), sham (n = 5), and varicocele (n = 33) groups. After 2 months of induced varicocele, five rats were randomly sacrificed and induced varicocele was investigated in each group. Finally, 35 rats were divided into five groups: the control, varicocele, varicocele reserving solvent, and varicocele reserving lycopene (4 and 10 mg/kg) for 2 months. At the end of the experiment, sperm viability, membrane integrity, the expression of Bax, Bcl2, hypoxia (hypoxia‐inducible factor 1α [HIF1‐α]), heat‐shock protein (heat‐shock protein A2 [HSPA2]) genes, and the histology of testes were measured. The results showed a significant decrease in the sperm viability, membrane integrity, Johnson's score, and the expression of the Bcl2 gene in the varicocele group compared to the control group. Also, there was a significant increase in Bax, HSPA2, and HIF1‐α expressions in the varicocele group compared to the control group. Although the administration of lycopene (10 mg/kg) in rats with varicocele improved sperm viability and membrane integrity, Johnson's score, and Bax expression compared to the varicocele group. Our findings indicated that the administration of lycopene in the varicocele group improved sperm quality and testicular injury induced by varicocele via decreasing apoptosis.
Collapse
Affiliation(s)
- Atefeh Babaei
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Reza Asadpour
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Kamran Mansouri
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Adel Sabrivand
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Siamak Kazemi‐Darabadi
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| |
Collapse
|
37
|
Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095339. [PMID: 35564732 PMCID: PMC9103404 DOI: 10.3390/ijerph19095339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Aging is associated with metabolic alterations, and with a loss of strength, muscle and bone mass. Moderate intermittent hypoxia has been proposed as a new tool to enhance health-related function. The aim of this study was to evaluate the effect of moderate intermittent hypoxia exposures on parameters related to cardiovascular and bone health in older adults. A total of 38 healthy older adults (aged 65-75 years) were divided into two groups: control group (C), and hypoxia group (H) that was subjected to an intermittent hypoxia exposure (at simulated altitude of 2500 m asl) during a 24-week period (3 days/week). Body composition, blood pressure, metabolic parameters (Cholesterol, triglycerides and glucose), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), interleukin 8 (IL-8), interleukin 10 (IL-10), N-terminal propeptide of type I procollagen (PINP) and beta C-terminal telopeptide of collagen bone formation (b-CTX) were analyzed before and after the intervention. A repeated measures analysis of variance was performed to evaluate between-group differences. The results showed that the hypoxia group achieved after the intervention a decrease in fat mass, CRP (pro-inflammatory biomarker) and b-CTX (bone resorption biomarker), as well as an increase in PINP (bone formation biomarker). In conclusion, the intermittent hypoxia might be a useful therapeutic tool to deal with problems associated with aging, such as the increase in body fat, the loss of bone mass or low-grade inflammation.
Collapse
|
38
|
Muñiz-García A, Romero M, Falcόn-Perez JM, Murray P, Zorzano A, Mora S. Hypoxia-induced HIF1α activation regulates small extracellular vesicle release in human embryonic kidney cells. Sci Rep 2022; 12:1443. [PMID: 35087095 PMCID: PMC8795438 DOI: 10.1038/s41598-022-05161-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosures released by eukaryotic cells that carry bioactive molecules and serve to modulate biological responses in recipient cells. Both increased EV release and altered EV composition are associated with the development and progression of many pathologies including cancer. Hypoxia, a feature of rapidly growing solid tumours, increases the release of EVs. However, the molecular mechanisms remain unknown. The hypoxia inducible factors (HIFs) are transcription factors that act as major regulators of the cellular adaptations to hypoxia. Here, we investigated the requirement of HIF pathway activation for EV release in Human Embryonic Kidney Cells (HEK293). Time course experiments showed that EV release increased concomitantly with sustained HIF1α and HIF2α activation following the onset of hypoxia. shRNA mediated knock-down of HIF1α but not HIF2α abrogated the effect of hypoxia on EV release, suggesting HIF1α is involved in this process. However, stabilization of HIF proteins in normoxic conditions through: (i) heterologous expression of oxygen insensitive HIF1α or HIF2α mutants in normoxic cells or (ii) chemical inhibition of the prolyl hydroxylase 2 (PHD2) repressor protein, did not increase EV release, suggesting HIF activation alone is not sufficient for this process. Our findings suggest HIF1α plays an important role in the regulation of EV release during hypoxia in HEK293 cells, however other hypoxia triggered mechanisms likely contribute as stabilization of HIF1α alone in normoxia is not sufficient for EV release.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain
| | - Montserrat Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Manuel Falcόn-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, 48015, Bilbao, Bizkaia, Spain
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Mora
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
39
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
40
|
Vacek L, Dvorak A, Bechynska K, Kosek V, Elkalaf M, Trinh MD, Fiserova I, Pospisilova K, Slovakova L, Vitek L, Hajslova J, Polak J. Hypoxia Induces Saturated Fatty Acids Accumulation and Reduces Unsaturated Fatty Acids Independently of Reverse Tricarboxylic Acid Cycle in L6 Myotubes. Front Endocrinol (Lausanne) 2022; 13:663625. [PMID: 35360057 PMCID: PMC8963465 DOI: 10.3389/fendo.2022.663625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Obstructive sleep apnea syndrome, characterized by repetitive episodes of tissue hypoxia, is associated with several metabolic impairments. Role of fatty acids and lipids attracts attention in its pathogenesis for their metabolic effects. Parallelly, hypoxia-induced activation of reverse tricarboxylic acid cycle (rTCA) with reductive glutamine metabolism provides precursor molecules for de novo lipogenesis. Gas-permeable cultureware was used to culture L6-myotubes in chronic hypoxia (12%, 4% and 1% O2) with 13C labelled glutamine and inhibitors of glutamine uptake or rTCA-mediated lipogenesis. We investigated changes in lipidomic profile, 13C appearance in rTCA-related metabolites, gene and protein expression of rTCA-related proteins and glutamine transporters, glucose uptake and lactate production. Lipid content increased by 308% at 1% O2, predominantly composed of saturated fatty acids, while triacylglyceroles containing unsaturated fatty acids and membrane lipids (phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositol) decreased by 20-70%. rTCA labelling of malate, citrate and 2-hydroxyglutarate increased by 4.7-fold, 2.2-fold and 1.9-fold in 1% O2, respectively. ATP-dependent citrate lyase inhibition in 1% O2 decreased lipid amount by 23% and increased intensity of triacylglyceroles containing unsaturated fatty acids by 56-80%. Lactate production increased with hypoxia. Glucose uptake dropped by 75% with progression of hypoxia from 4% to 1% O2. Protein expression remained unchanged. Altogether, hypoxia modified cell metabolism leading to lipid composition alteration and rTCA activation.
Collapse
Affiliation(s)
- Lukas Vacek
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ales Dvorak
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kamila Bechynska
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Vit Kosek
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Minh Duc Trinh
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ivana Fiserova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Pospisilova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Slovakova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Hajslova
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jan Polak,
| |
Collapse
|
41
|
Wegge M, Dok R, Nuyts S. Hypoxia and Its Influence on Radiotherapy Response of HPV-Positive and HPV-Negative Head and Neck Cancer. Cancers (Basel) 2021; 13:5959. [PMID: 34885069 PMCID: PMC8656584 DOI: 10.3390/cancers13235959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cancers are a heterogeneous group of cancers that arise from the upper aerodigestive tract. Etiologically, these tumors are linked to alcohol/tobacco abuse and infections with high-risk human papillomavirus (HPV). HPV-positive HNSCCs are characterized by a different biology and also demonstrate better therapy response and survival compared to alcohol/tobacco-related HNSCCs. Despite this advantageous therapy response and the clear biological differences, all locally advanced HNSCCs are treated with the same chemo-radiotherapy schedules. Although we have a better understanding of the biology of both groups of HNSCC, the biological factors associated with the increased radiotherapy response are still unclear. Hypoxia, i.e., low oxygen levels because of an imbalance between oxygen demand and supply, is an important biological factor associated with radiotherapy response and has been linked with HPV infections. In this review, we discuss the effects of hypoxia on radiotherapy response, on the tumor biology, and the tumor microenvironment of HPV-positive and HPV-negative HNSCCs by pointing out the differences between these two tumor types. In addition, we provide an overview of the current strategies to detect and target hypoxia.
Collapse
Affiliation(s)
- Marilyn Wegge
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Jia T, Wang X, Tang Y, Yu W, Li C, Cui S, Zhu J, Meng W, Wang C, Wang Q. Sacubitril Ameliorates Cardiac Fibrosis Through Inhibiting TRPM7 Channel. Front Cell Dev Biol 2021; 9:760035. [PMID: 34778271 PMCID: PMC8586221 DOI: 10.3389/fcell.2021.760035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure caused by cardiac fibrosis has become a major challenge of public health worldwide. Cardiomyocyte programmed cell death (PCD) and activation of fibroblasts are crucial pathological features, both of which are associated with aberrant Ca2+ influx. Transient receptor potential cation channel subfamily M member 7 (TRPM7), the major Ca2+ permeable channel, plays a regulatory role in cardiac fibrosis. In this study, we sought to explore the mechanistic details for sacubitril, a component of sacubitril/valsartan, in treating cardiac fibrosis. We demonstrated that sacubitril/valsartan could effectively ameliorate cardiac dysfunction and reduce cardiac fibrosis induced by isoprotereno (ISO) in vivo. We further investigated the anti-fibrotic effect of sacubitril in fibroblasts. LBQ657, the metabolite of sacubitril, could significantly attenuate transforming growth factor-β 1 (TGF-β1) induced cardiac fibrosis by blocking TRPM7 channel, rather than suppressing its protein expression. In addition, LBQ657 reduced hypoxia-induced cardiomyocyte PCD via suppression of Ca2+ influx regulated by TRPM7. These findings suggested that sacubitril ameliorated cardiac fibrosis by acting on both fibroblasts and cardiomyocytes through inhibiting TRPM7 channel.
Collapse
Affiliation(s)
- Tian Jia
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaozhi Wang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Ilias I, Kaltsas G, Barkas K, Chrousos GP. Inherited/Genetically-Associated Pheochromocytoma/ Paraganglioma Syndromes and COVID-19. ACTA ACUST UNITED AC 2021; 57:medicina57101033. [PMID: 34684070 PMCID: PMC8538054 DOI: 10.3390/medicina57101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022]
Abstract
In some subjects with inherited pheochromocytoma/paraganglioma (PPG) syndromes, hypoxia-inducible factor 1 alpha (HIF1α) stabilization/activation could lead to an increase in angiotensin converting enzymes (ACE). This would result in the stimulation of angiotensin (AT) II production and, hence, reduce the availability of ACE 2. The latter would provide decreased numbers of binding sites for the spike protein of SARS-CoV-2 and, therefore, result in less points of viral entry into cells. Thus, subjects with HIF1α-associated PPG syndromes may benefit from an inherent protective effect against COVID-19. Such an implication of HIF1α vis-à-vis COVID-19 could open ways of therapeutic interventions.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, “Elena Venizelou” Hospital, GR-11521 Athens, Greece
- Correspondence: ; Tel.: +30-2132051389
| | - Gregory Kaltsas
- 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece;
| | - Konstantinos Barkas
- Department of Neurosurgery, “Agios Panteleimon” General Hospital of Nikaia-Pireas, GR-12351 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, GR-11527 Athens, Greece;
- UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, GR-11527 Athens, Greece
| |
Collapse
|
44
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
45
|
Shi C, Zhang S, Guo C, Tie J. Yap-Hippo Signaling Activates Mitochondrial Protection and Sustains Breast Cancer Viability under Hypoxic Stress. JOURNAL OF ONCOLOGY 2021; 2021:5212721. [PMID: 34567116 PMCID: PMC8463197 DOI: 10.1155/2021/5212721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Yes-associated protein (Yap) is a transcriptional regulator that upregulates oncogenes and downregulates tumor repressor genes. In this study, we analyzed protein expression, RNA transcription, and signaling pathways to determine the function and mechanism of Yap in breast cancer survival during hypoxic stress. Yap transcription was drastically upregulated by hypoxia in a time-dependent manner. siRNA-mediated Yap knockdown attenuated breast cancer viability and impaired cell proliferation under hypoxic conditions. Yap knockdown induced mitochondrial stress, including mitochondrial membrane potential reduction, mitochondrial oxidative stress, and ATP exhaustion after exposure to hypoxia. It also repressed mitochondrial protective systems, including mitophagy and mitochondrial fusion upon exposure to hypoxia. Finally, our data showed that Yap knockdown suppresses MCF-7 cell migration by inhibiting F-actin transcription and promoting lamellipodium degradation under hypoxic stress. Taken together, Yap maintenance of mitochondrial function and activation of F-actin/lamellipodium signaling is required for breast cancer survival, migration, and proliferation under hypoxic stress.
Collapse
Affiliation(s)
- Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Siyuan Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Changkuo Guo
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jian Tie
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
46
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
47
|
Expression of Hypoxia-Inducible Factor1-α in Varicocele Disease: a Comprehensive Systematic Review. Reprod Sci 2021; 29:2731-2743. [PMID: 34313997 DOI: 10.1007/s43032-021-00696-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
Hypoxia has been suggested as an important pathophysiological feature in varicocele disease. On the other hand, the expression of hypoxia-inducible factor 1-alpha (HIF1-α) is associated with the incidence of hypoxia. In this study, we investigated the expression of HIF1-α in varicocele disease through a comprehensive systematic review. We searched PubMed, Scopus, Web of Science, and Embase databases to identify the related studies published up to February 2021. Human studies have demonstrated an increase in the HIF-1α protein expression in the internal spermatic vein (ISV) of the varicocele testicle. HIF-1α mRNA expression in the seminal plasma was significantly higher in infertile varicocele patient compared with fertile ones. Similarly, most animal studies demonstrated a significant increase in HIF-1α gene and protein expression in varicocele testicular tissue compared with control groups. The studies illustrated that hypoxia followed by increased expression of hypoxia-inducible factor 1-alpha (HIF1-α) mRNA and protein occurs in varicocele disease. Expression of HIF-1α regulates the expression of many genes, including VEGF, p53, GLUT, Bax, and Caspase-3, that could be involved in many of the varicocele pathophysiological effects such as DNA fragmentation and apoptosis of sperm cells. Further studies with a large number of patients are necessary and can provide more definitive evidence.
Collapse
|
48
|
Ju S, Lim L, Wi K, Park C, Ki YJ, Choi DH, Song H. LRP5 Regulates HIF-1α Stability via Interaction with PHD2 in Ischemic Myocardium. Int J Mol Sci 2021; 22:ijms22126581. [PMID: 34205318 PMCID: PMC8235097 DOI: 10.3390/ijms22126581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) has been studied as a co-receptor for Wnt/β-catenin signaling. However, its role in the ischemic myocardium is largely unknown. Here, we show that LRP5 may act as a negative regulator of ischemic heart injury via its interaction with prolyl hydroxylase 2 (PHD2), resulting in hypoxia-inducible factor-1α (HIF-1α) degradation. Overexpression of LRP5 in cardiomyocytes promoted hypoxia-induced apoptotic cell death, whereas LRP5-silenced cardiomyocytes were protected from hypoxic insult. Gene expression analysis (mRNA-seq) demonstrated that overexpression of LRP5 limited the expression of HIF-1α target genes. LRP5 promoted HIF-1α degradation, as evidenced by the increased hydroxylation and shorter stability of HIF-1α under hypoxic conditions through the interaction between LRP5 and PHD2. Moreover, the specific phosphorylation of LRP5 at T1492 and S1503 is responsible for enhancing the hydroxylation activity of PHD2, resulting in HIF-1α degradation, which is independent of Wnt/β-catenin signaling. Importantly, direct myocardial delivery of adenoviral constructs, silencing LRP5 in vivo, significantly improved cardiac function in infarcted rat hearts, suggesting the potential value of LRP5 as a new target for ischemic injury treatment.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Korea; (S.J.); (K.W.)
| | - Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea;
| | - Kwanhwan Wi
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Korea; (S.J.); (K.W.)
| | - Changwon Park
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju 61452, Korea; (Y.-J.K.); (D.-H.C.)
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju 61452, Korea; (Y.-J.K.); (D.-H.C.)
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Korea; (S.J.); (K.W.)
- Correspondence: ; Tel.: +82-62-230-6290
| |
Collapse
|
49
|
Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021; 14:ph14050416. [PMID: 34062710 PMCID: PMC8147235 DOI: 10.3390/ph14050416] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frequently underestimated, encephalopathy or delirium are common neurological manifestations associated with sepsis. Brain dysfunction occurs in up to 80% of cases and is directly associated with increased mortality and long-term neurocognitive consequences. Although the central nervous system (CNS) has been classically viewed as an immune-privileged system, neuroinflammation is emerging as a central mechanism of brain dysfunction in sepsis. Microglial cells are major players in this setting. Here, we aimed to discuss the current knowledge on how the brain is affected by peripheral immune activation in sepsis and the role of microglia in these processes. This review focused on the molecular pathways of microglial activity in sepsis, its regulatory mechanisms, and their interaction with other CNS cells, especially with neuronal cells and circuits.
Collapse
Affiliation(s)
- Carolina Araújo Moraes
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
| | - Camila Zaverucha-do-Valle
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
| | - Renaud Fleurance
- UCB Biopharma SRL, 1420 Braine L’Alleud, Belgium;
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Université de Paris Sciences et Lettres, 75006 Paris Paris, France
| | - Tarek Sharshar
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Joana Costa d’Avila
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
- School of Medicine, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil
- Correspondence:
| |
Collapse
|
50
|
Prikhodko VA, Selizarova NO, Okovityi SV. [Molecular mechanisms for hypoxia development and adaptation to it. Part I]. Arkh Patol 2021; 83:52-61. [PMID: 33822555 DOI: 10.17116/patol20218302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypoxia is a typical pathological process characterized by the occurrence of oxygen deficiency in tissues and cells and accompanied by the development of immediate and delayed compensatory and adaptive reactions. Reprogramming of the mitochondrial electron transport chain (ETC) function is one the most essential regulatory mechanisms that allow for immediate adaptation to hypoxia. Succinic acid, or succinate, is involved in this process not only as one of the intermediates of the tricarboxylic acid (TAC) cycle, but also as a signaling molecule. In this connection, the purpose of this review was to systematize the available data on the molecular mechanisms for the development of hypoxia and its adaptation at the ETC/TAC coupling site, as well as on the role of succinic acid in these processes.
Collapse
Affiliation(s)
- V A Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - N O Selizarova
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - S V Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|