1
|
Findik BT, Yildiz H, Akdeniz M, Yener I, Yilmaz MA, Cakir O, Ertas A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem 2024; 455:139921. [PMID: 38843718 DOI: 10.1016/j.foodchem.2024.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 μg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 μg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 μg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.
Collapse
Affiliation(s)
- Bahar Tuba Findik
- Nevsehir Hacı Bektas Veli University, Faculty of Arts and Sciences, Department of Chemistry, 50300 Nevsehir, Turkiye.
| | - Hilal Yildiz
- Nevsehir Hacı Bektas Veli University, Faculty of Engineering and Architecture, Department of Food Engineering, 50300 Nevsehir, Turkiye.
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, 21280 Diyarbakir, Turkiye
| | - Ismail Yener
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye.
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| | - Ozlem Cakir
- Bayburt University, Faculty of Engineering, Department of Food Engineering, 69000 Bayburt, Turkiye.
| | - Abdulselam Ertas
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| |
Collapse
|
2
|
Arthur R, Navik U, Kumar P. Artemisinin Ameliorates the Neurotoxic Effect of 3-Nitropropionic Acid: A Possible Involvement of the ERK/BDNF/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04487-9. [PMID: 39313657 DOI: 10.1007/s12035-024-04487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Neurodegenerative disorders like Huntington's disease (HD) are a major threat to human health, with severe gait abnormalities and pathological changes (oxidative stress, neuroinflammation, and apoptosis) playing important roles in their development. The effects of artemisinin (ART) alone and in combination with the ERK antagonist PD98059 against 3-nitropropionic acid (3-NPA)-induced cell death and oxidative stress in SH-SY5Y cells were determined using the MTT and DCFH-DA assays, as well as RT-qPCR assays. In vivo, possible neuroprotective effects of ART (10, 20, and 40 mg/kg i.p.) against the neurotoxicity generated by 21-day 3-NPA (10 mg/kg i.p.) treatment was evaluated in rats by assessing behavioral parameters on days 1, 14, and 21. Further, various biochemical, inflammatory, apoptotic markers, histopathological changes, and protein expression were assessed using brain striatal samples. ART significantly mitigated the neurotoxic effect of 3-NPA in SH-SY5Y cells by regulating the mRNA expression of ERK, Bax, Bcl2, and cytochrome C. However, ART's neuroprotective activity was reduced in the presence of PD98059. Also, ART treatment for 21 days substantially alleviated the behavioral impairments associated with 3-NPA toxicity. It reduced the oxidative stress induced by 3-NPA, as evidenced by the lower levels of MDA, nitrite, and improved catalase, SOD activity, and GSH levels. ART treatment restored 3-NPA-induced histopathological alterations in the striatal area. ART effectively suppressed neuroinflammatory (IL-6) and apoptotic markers (caspase 3 and 9), increasing BDNF levels and restoring the p-ERK1/2, Nrf2, and HO-1 expression. ART could exert its neuroprotective effect via antioxidant, anti-inflammatory, and antiapoptotic properties with a possible involvement of the ERK/BDNF/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Chávez-Delgado EL, Gastélum-Estrada A, Pérez-Carrillo E, Ramos-Parra PA, Estarrón-Espinosa M, Reza-Zaldívar EE, Hernández-Brenes C, Mora-Godínez S, de Los Santos BE, Guerrero-Analco JA, Monribot-Villanueva JL, Orozco-Sánchez NE, Jacobo-Velázquez DA. Bioactive properties of spearmint, orange peel, and baby sage oleoresins obtained by supercritical CO 2 extraction and their integration into dark chocolate. Food Chem 2024; 463:141306. [PMID: 39303416 DOI: 10.1016/j.foodchem.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO2 and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins. In vitro studies demonstrated anti-obesogenic, antioxidant, anti-inflammatory, and neuroprotective properties of the emulsified oleoresins. However, only physicochemical properties were determined for the formulations of dark chocolate with these emulsified oleoresins. Chocolate formulations fortified with these emulsions displayed a softer texture, lower water activity, and solid-like behavior. The findings suggest that these oleoresins could serve as nutraceutical agents for mitigating metabolic syndrome and associated pathologies. Incorporating them into chocolate matrices offers a practical approach to formulating functional foods. Further research is warranted to explore the preventive and therapeutic efficacy in an in vivo model.
Collapse
Affiliation(s)
- Emily Lorena Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Alejandro Gastélum-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Perla Azucena Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Mirna Estarrón-Espinosa
- Food Techology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Zapopan, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Shirley Mora-Godínez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Beatriz Estefanía de Los Santos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - José Antonio Guerrero-Analco
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | | | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico.
| |
Collapse
|
4
|
Ipe R, Oh JM, Kumar S, Ahmad I, Nath LR, Bindra S, Patel H, Kolachi KY, Prabhakaran P, Gahtori P, Syed A, Elgorbanh AM, Kim H, Mathew B. Inhibition of monoamine oxidases and neuroprotective effects: chalcones vs. chromones. Mol Divers 2024:10.1007/s11030-024-10959-w. [PMID: 39145880 DOI: 10.1007/s11030-024-10959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Eighteen compounds derived from two sub-series, (HC1-HC9) and (HF1-HF9), were synthesized and evaluated for their inhibitory activities against monoamine oxidase (MAO). HC (chalcone) series showed higher inhibitory activity against MAO-B than against MAO-A, whereas the HF (chromone) series showed reversed inhibitory activity. Compound HC4 most potently inhibited MAO-B with an IC50 value of 0.040 μM, followed by HC3 (IC50 = 0.049 μM), while compound HF4 most potently inhibited MAO-A (IC50 = 0.046 μM), followed by HF2 (IC50 = 0.075 μM). The selectivity index (SI) values of HC4 and HF4 were 50.40 and 0.59, respectively. Structurally, HC4 (4-OC2H5 in B-ring) showed higher MAO-B inhibition than other derivatives, suggesting that the -OC2H5 substitution of the 4-position in the B-ring contributes to the increase of MAO-B inhibition, especially -OC2H5 (HC4) > -OCH3 (HC3) > -F (HC7) > -CH3 (HC2) > -Br (HC8) > -H (HC1) in order. In MAO-A inhibition, the substituent 4-OC2H5 in the B-ring of HF4 contributed to an increase in inhibitory activity, followed by -CH3 (HF2), -F (HF7), -Br (HF8), -OCH3 (HF3), and-H (HF1). In the enzyme kinetics and reversibility study, the Ki value of HC4 for MAO-B was 0.035 ± 0.005 μM, and that of HF4 for MAO-A was 0.035 ± 0.005 μM, and both were reversible competitive inhibitors. We confirmed that HC4 and HF4 significantly ameliorated rotenone-induced neurotoxicity, as evidenced by the reactive oxygen species and superoxide dismutase assays. This study also supports the significant effect of HC4 and HF4 on mitochondrial membrane potential in rotenone-induced toxicity. A lead molecule was used for molecular docking and dynamic simulation studies. These results show that HC4 is a potent selective MAO-B inhibitor and HF4 is a potent MAO-A inhibitor, suggesting that both compounds can be used as treatment agents for neurological disorders.
Collapse
Affiliation(s)
- Reshma Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, 424002, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sandeep Bindra
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Krishna Yallappa Kolachi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorbanh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
5
|
Salau VF, Erukainure OL, Olofinsan KO, Msomi NZ, Ijomone OM, Islam MS. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose-streptozotocin induced diabetic rats. Arch Physiol Biochem 2024; 130:169-182. [PMID: 34752171 DOI: 10.1080/13813455.2021.1988981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study investigated the antidiabetic effect of vanillin using in vitro, in silico, and in vivo experimental models. METHODOLOGY Type 2 diabetes (T2D) was induced in male Sprague-Dawley (SD) rats using fructose-streptozotocin (STZ), then orally administered low (150 mg/kg bodyweight) or high (300 mg/kg bodyweight) dose of vanillin for 5 weeks intervention period. RESULTS Vanillin suppressed the levels of blood glucose, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, uric acid, when elevated serum insulin, HDL-cholesterol, and concomitantly improved pancreatic β-cell function, glucose tolerance, and pancreatic morphology. It also elevated both serum and pancreatic tissue GSH level, SOD and catalase activities, and hepatic glycogen level, while depleting malondialdehyde level, α-amylase, lipase, acetylcholinesterase, ATPase, ENTPDase and 5'-nucleotidase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glycogen phosphorylase activities. CONCLUSIONS The results indicate the potent antidiabetic effect of vanillin against T2D and its associated complications.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Kolawole O Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nontokozo Z Msomi
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Almostafa MM, Mohamed ME, Younis NS. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways. Int Immunopharmacol 2024; 129:111657. [PMID: 38335655 DOI: 10.1016/j.intimp.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Epilepsy is a severe neurological disorder associated with substantial morbidity and mortality. Vanillin (Van) is a natural phenolic aldehyde with beneficial pharmacological properties. This study investigated the neuroprotective effects of Van in epilepsy and elucidated its mechanism of action. METHODS Swiss albino mice were divided into the following five groups: "normal group", 0.9 % saline; "pentylenetetrazole (PTZ) group", intraperitoneal administration of 35 mg/kg PTZ on alternate days up to 42 days; and "PTZ + Van 20", "PTZ + Van 40", and "PTZ + sodium valproate (Val)" groups received PTZ injections in conjunction withVan 20 mg, Van 40 mg/kg, and Val 300 mg/kg, respectively. Behavioural tests and hippocampal histopathological analysis were performed in all groups. The Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways, oxidative stress, neuro-inflammation, and apoptotic markers were analysed. Furthermore, brain acetylcholinesterase (AChE) activity and levels of dopamine (DA), gamma-aminobutyric acid GABA, and serotonin 5-HT were assessed. RESULTS Van prolonged seizure manifestations and improved electroencephalogram (EEG)criteriain conjunction with 100 mg/kg PTZ once daily. Van administration increased Nrf2/HO-1/NQO1 levels, with subsequent attenuation of malondialdehyde (MDA) and nitric oxide (NO) levels with elevated glutathione (GSH) levels and intensified superoxide dismutase (SOD) and catalase activities. Van reduced the gene and protein expression of HMGB1/RAGE/TLR4/NFκB and decreased the levels of inflammatory and apoptotic markers. In addition, Van reduced AChE activity, and elevated glial fibrillary acidic proteins (GFAP) increased neurotransmitter and brain-derived neurotrophic factors (BDNF). CONCLUSION By increasing Nrf2/HO-1/NQO1 levels and downregulating the HMGB1/RAGE/TLR4/ NFκB pathway, Van offered protection in PTZ-kindled mice with subsequent attenuation in lipid peroxidation, upregulation in antioxidant enzyme activities, and reduction in inflammation and apoptosis.
Collapse
Affiliation(s)
- Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
7
|
Wang F, Wan J, Liao Y, Liu S, Wei Y, Ouyang Z. Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ. Anti-Amnesia-like Effect of Pinus densiflora Extract by Improving Apoptosis and Neuroinflammation on Trimethyltin-Induced ICR Mice. Int J Mol Sci 2023; 24:14084. [PMID: 37762386 PMCID: PMC10531555 DOI: 10.3390/ijms241814084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aβ accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1β. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| |
Collapse
|
9
|
May N, de Sousa Alves Neri JL, Clunas H, Shi J, Parkes E, Dongol A, Wang Z, Jimenez Naranjo C, Yu Y, Huang XF, Charlton K, Weston-Green K. Investigating the Therapeutic Potential of Plants and Plant-Based Medicines: Relevance to Antioxidant and Neuroprotective Effects. Nutrients 2023; 15:3912. [PMID: 37764696 PMCID: PMC10535096 DOI: 10.3390/nu15183912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is a common characteristic of psychiatric, neurological, and neurodegenerative disorders. Therefore, compounds that are neuroprotective and reduce oxidative stress may be of interest as novel therapeutics. Phenolic, flavonoid and anthocyanin content, ORAC and DPPH free radical scavenging, and Cu2+ and Fe2+ chelating capacities were examined in variations (fresh/capsule) of Queen Garnet plum (QGP, Prunus salicina), black pepper (Piper nigrum) clove (Syzygium aromaticum), elderberry (Sambucus nigra), lemon balm (Melissa officinalis) and sage (Salvia officinalis), plus two blends (Astralagus membranaceus-lemon balm-rich, WC and R8). The ability of samples to prevent and treat H2O2-induced oxidative stress in SH-SY5Y cells was investigated. Pre-treatment with WC, elderberry, QGP, and clove prevented the oxidative stress-induced reduction in cell viability, demonstrating a neuroprotective effect. Elderberry increased cell viability following oxidative stress induction, demonstrating treatment effects. Clove had the highest phenolic and flavonoid content, DPPH, and Cu2+ chelating capacities, whereas QGP and elderberry were highest in anthocyanins. Black pepper had the highest ORAC and Fe2+ chelating capacity. These findings demonstrate that plant extracts can prevent and treat oxidative stress-induced apoptosis of neuron-like cells in vitro. Further research into phytochemicals as novel therapeutics for oxidative stress in the brain is needed.
Collapse
Affiliation(s)
- Naomi May
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Julianna Lys de Sousa Alves Neri
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Helen Clunas
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Jiahua Shi
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ella Parkes
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anjila Dongol
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhizhen Wang
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Carlos Jimenez Naranjo
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Yinghua Yu
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu-Feng Huang
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Karen Charlton
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
10
|
Dilnashin H, Birla H, Keswani C, Singh SS, Zahra W, Rathore AS, Singh R, Keshri PK, Singh SP. Neuroprotective Effects of Tinospora cordifolia via Reducing the Oxidative Stress and Mitochondrial Dysfunction against Rotenone-Induced PD Mice. ACS Chem Neurosci 2023; 14:3077-3087. [PMID: 37579290 DOI: 10.1021/acschemneuro.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
11
|
Iqbal Z, Quds R, Mahmood R. Vanillin attenuates CdCl 2-induced cytotoxicity in isolated human erythrocytes. Toxicol In Vitro 2023; 91:105633. [PMID: 37336463 DOI: 10.1016/j.tiv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Cadmium is a toxic heavy metal with no physiological role in the human body. Cadmium has high mobility due to its widespread industrial use, with no safe and effective therapeutic management. Cadmium toxicity manifests by increasing oxidative stress in target cells. We have explored the potential role of vanillin, a plant phenolic aldehyde and antioxidant, in mitigating cadmium chloride (CdCl2) induced hemotoxicity using isolated human erythrocytes. CdCl2 was added to erythrocytes, in the absence and presence of vanillin. Incubation of erythrocytes with CdCl2 alone inhibited methemoglobin reductase and enhanced methemoglobin level. Heme degradation and release of free iron (Fe2+), along with protein and membrane lipid oxidation, were also increased. A CdCl2-induced enhancement in reactive oxygen and nitrogen species was also seen, lowering the overall antioxidant power of cells. However, pre-incubation of erythrocytes with vanillin resulted in significant decreased generation of reactive species and prevented heme degradation and heme oxidation. Vanillin augmented the erythrocyte antioxidant capacity and reinstated the activities of major antioxidant, plasma membrane-bound and glucose metabolism enzymes. Scanning electron microscopy showed that CdCl2 treatment led to the formation of echinocytes which was prevented by vanillin. In all cases, no harmful effects of vanillin alone were seen. Thus, vanillin alleviates the toxicity of cadmium and can be potentially employed as a chemoprotectant against the damaging effects of this heavy metal.
Collapse
Affiliation(s)
- Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
12
|
Alawad AO, Alagrafi FS, Alfahad AJ, Alamari HA, Alghamdi FO, Fallatah HM, Aodah AH, Alyousef SS, Bakhrebah MA, Alanazi IO, Fallatah MM. Effects of Rhazya Stricta plant organic extracts on human induced pluripotent stem cells derived neural stem cells. PLoS One 2023; 18:e0288032. [PMID: 37478090 PMCID: PMC10361509 DOI: 10.1371/journal.pone.0288032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/18/2023] [Indexed: 07/23/2023] Open
Abstract
Rhazya Stricta (R. stricta) has been employed as a natural remedy for several diseases for centuries. Numerous studies revealed that R. stricta extracts contain alkaloids, tannins, and flavonoids that possess antimicrobial, anticancer, antihypertensive, and antioxidant activities. In this study, we examined the effects of organic extracts from different parts of R. stricta plant on human pluripotent stem cells (hiPSCs)-derived neural stem cells (NSCs) for medical purposes. NSCs were incubated with different concentrations of organic extracts from the leaves, stem, and fruits, and we assessed the growth and viability of the cells by using MTS assay and the chemical composition of the potential plant extract by using gas chromatography-mass spectrometry (GC/MS). Our results revealed that the methanolic extract from the stem increased NSCs growth significantly, particularly at a concentration of 25 μg/ml. GC/MS analysis was utilized to identify the potential compounds of the methanolic extract. In conclusion, our results demonstrated for the first time that methanolic stem extract of R. stricta contains compounds that can positively impact NSCs growth. These compounds can be further investigated to determine the potential bioactive compounds that can be used for research and medical purposes.
Collapse
Affiliation(s)
- Abdullah Othman Alawad
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Faisal Sultan Alagrafi
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ahmed Jaman Alfahad
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Abdulrahman Alamari
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fatimah Othman Alghamdi
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hussam Mokhtar Fallatah
- Waste Management and Recycling Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Alhassan Hamood Aodah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sultan Suleiman Alyousef
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muhammed Adnan Bakhrebah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ibrahim Oqla Alanazi
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohannad Mokhtar Fallatah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Anand A, Khurana N, Kaur S, Ali N, AlAsmari AF, Waseem M, Iqbal M, Alzahrani FM, Sharma N. The multifactorial role of vanillin in amelioration of aluminium chloride and D-galactose induced Alzheimer's disease in mice. Eur J Pharmacol 2023:175832. [PMID: 37329974 DOI: 10.1016/j.ejphar.2023.175832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
The onset and progression of Alzheimer's disease (AD) are influenced by a variety of factors. These include oxidative stress, overexpression of acetylcholinesterase (AChE), depletion of acetylcholine levels, increased beta-secretase mediated conversion of Amyloid Precursor Protein (APP) to Amyloid Beta (Abeta), accumulation of Abeta oligomers, decrease in Brain Derived Neurotrophic factor (BDNF) and accelerated neuronal apoptosis due to elevated levels of caspase-3. The currently available therapeutic approaches are inadequate in affecting these pathological processes except maybe the overexpression of AChE (AChE inhibitors like donepezil, rivastigmine). There is an urgent need to develop disease modifying pharmacotherapeutic interventions which have appreciable safety and cost effectiveness. From previously reported in vitro studies and a preliminary assessment of neuroprotective effect in scopolamine induced dementia-like cognitive impairment in mice, vanillin has been used as the compound of interest in the present study. Vanillin, a phytoconstituent, has been used in humans, safely, in the form of a flavouring agent for various foods, beverages, and cosmetics. Owing to its chemical nature i.e. being a phenolic aldehyde, it has an additional antioxidant property that is congruent to the desirable characteristics that are sought in a suitable novel anti-AD agent. In our study, vanillin proved to have a nootropic effect in healthy Swiss albino mice as well as an ameliorative effect in aluminium chloride and D-galactose induced AD model in mice. Apart from tackling oxidative stress, vanillin was found to reduce the levels of AChE, beta secretase, caspase-3, enhance degradation of Abeta plaques and elevate the levels of BDNF, in cortical and hippocampal regions. Vanillin is a promising candidate for being incorporated into the search for safe and effective anti-AD molecules. However, further research might be needed to warrant its application clinically.
Collapse
Affiliation(s)
- Abhinav Anand
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara- 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara- 144411, Punjab, India.
| | - Satinder Kaur
- Khalsa College of Pharmacy, Amritsar- 143001, Punjab, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara- 144411, Punjab, India
| |
Collapse
|
14
|
Rani L, Ghosh B, Ahmad MH, Mondal AC. Evaluation of Potential Neuroprotective Effects of Vanillin Against MPP +/MPTP-Induced Dysregulation of Dopaminergic Regulatory Mechanisms in SH-SY5Y Cells and a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023:10.1007/s12035-023-03358-z. [PMID: 37145378 DOI: 10.1007/s12035-023-03358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition. The pathogenesis of PD is still unknown, and drugs available for PD treatment either have side effects or have suboptimal efficacy. Flavonoids are potent antioxidants having little toxicity with extended use, suggesting they might hold promising therapeutic potential against PD. Vanillin (Van) is a phenolic compound that has exhibited neuroprotective properties in various neurological disorders, including PD. However, the neuroprotective role of Van in PD and its underlying mechanisms are scarce and therefore need more exploration. Here, we evaluated the neuroprotective potential of Van and its associated mechanisms against MPP+/MPTP-induced neuronal loss in differentiated human neuroblastoma (SH-SY5Y) cells and the mouse model of PD. In the present study, Van treatment significantly enhanced the cell viability and alleviated oxidative stress, mitochondrial membrane potential, and apoptosis in MPP+-intoxicated SH-SY5Y cells. Moreover, Van significantly ameliorated the MPP+-induced dysregulations in protein expression of tyrosine hydroxylase (TH) and mRNA expressions of GSK-3β, PARP1, p53, Bcl-2, Bax, and Caspase-3 genes in SH-SY5Y cells. Similar to our in vitro results, Van significantly alleviated MPTP-induced neurobehavioral dysregulations, oxidative stress, aberrant TH protein expressions, and immunoreactivity in SNpc of mice brains. Treatment of Van also prevented MPTP-mediated loss of TH-positive intrinsic dopaminergic neurons to SNpc and TH-fibers projecting to the striatum of mice. Thus, Van exhibited promising neuroprotective properties in the current study against MPP+/MPTP-intoxicated SH-SY5Y cells and mice, indicating its potential therapeutic properties against PD pathology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Balaram Ghosh
- Midnapore Medical College and Hospital, West Medinipur, Kolkata, West Bengal, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| |
Collapse
|
15
|
Mamashli F, Meratan AA, Ghasemi A, Obeidi N, Salmani B, Atarod D, Pirhaghi M, Moosavi-Movahedi F, Mohammad-Zaheri M, Shahsavani MB, Habibi-Kelishomi Z, Goliaei B, Gholami M, Saboury AA. Neuroprotective Effect of Propolis Polyphenol-Based Nanosheets in Cellular and Animal Models of Rotenone-Induced Parkinson's Disease. ACS Chem Neurosci 2023; 14:851-863. [PMID: 36750431 DOI: 10.1021/acschemneuro.2c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Considering the central role of oxidative stress in the onset and progress of Parkinson's diseases (PD), search for compounds with antioxidant properties has attracted a growing body of attention. Here, we compare the neuroprotective effect of bulk and nano forms of the polyphenolic fraction of propolis (PFP) against rotenone-induced cellular and animal models of PD. Mass spectrometric analysis of PFP confirmed the presence of multiple polyphenols including kaempferol, naringenin, coumaric acid, vanillic acid, and ferulic acid. In vitro cellular experiments indicate the improved efficiency of the nano form, compared to the bulk form, of PFP in attenuating rotenone-induced cytotoxicity characterized by a decrease in cell viability, release of lactate dehydrogenase, increased ROS generation, depolarization of the mitochondrial membrane, decreased antioxidant enzyme activity, and apoptosis induction. In vivo experiments revealed that while no significant neuroprotection was observed relating to the bulk form, PFP nanosheets were very effective in protecting animals, as evidenced by the improved behavioral and neurochemical parameters, including decreased lipid peroxidation, increased GSH content, and antioxidant enzyme activity enhancement. We suggest that improved neuroprotective effects of PFP nanosheets may be attributed to their increased water solubility and enrichment with oxygen-containing functional groups (such as OH and COOH), leading to increased antioxidant activity of these compounds.
Collapse
Affiliation(s)
- Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Nahal Obeidi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj 3149968111, Iran
| | - Bahram Salmani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | | | - Mahya Mohammad-Zaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz 7196484334, Iran
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
16
|
Iannuzzi C, Liccardo M, Sirangelo I. Overview of the Role of Vanillin in Neurodegenerative Diseases and Neuropathophysiological Conditions. Int J Mol Sci 2023; 24:ijms24031817. [PMID: 36768141 PMCID: PMC9915872 DOI: 10.3390/ijms24031817] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Nowadays, bioactive natural products play key roles in drug development due to their safety profile and strong antioxidant power. Vanillin is a natural phenolic compound found in several vanilla beans and widely used for food, cosmetic, and pharmaceutical products. Besides its industrial applications, vanillin possesses several beneficial effects for human health, such as antioxidant activity in addition to anti-inflammatory, anti-mutagenic, anti-metastatic, and anti-depressant properties. Moreover, vanillin exhibits neuroprotective effects on multiple neurological disorders and neuropathophysiological conditions. This study reviews the mechanisms of action by which vanillin prevents neuroinflammation and neurodegeneration in vitro and in vivo systems, in order to provide the latest views on the beneficial properties of this molecule in chronic neurodegenerative diseases and neuropathophysiological conditions.
Collapse
|
17
|
Oluremi BB, Osamudiamen PM, Adeniji JA, Aiyelaagbe OO. Anti-Measles Virus Activity of 4-Hydroxy-3-Methoxy Benzaldehyde (Vanillin) isolated from Xylopia aethiopica (Dunal) A. Rich. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Lu C, Qu S, Zhong Z, Luo H, Lei SS, Zhong HJ, Su H, Wang Y, Chong CM. The effects of bioactive components from the rhizome of gastrodia elata blume (Tianma) on the characteristics of Parkinson's disease. Front Pharmacol 2022; 13:963327. [PMID: 36532787 PMCID: PMC9748092 DOI: 10.3389/fphar.2022.963327] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease caused by the death and degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The decrease of the neurotransmitter dopamine in the patient's brain leads to various motor symptoms. PD drugs mainly enhance dopamine levels but cannot prevent or slow down the loss of dopaminergic neurons. In addition, they exhibit significant side effects and addiction issues during long-term use. Therefore, it is particularly urgent to develop novel drugs that have fewer side effects, can improve PD symptoms, and prevent the death of dopaminergic neurons. The rhizome of Gastrodia elata Blume (Tianma) is a well-known medicinal herb and has long been used as a treatment of nervous system-related diseases in China. Several clinical studies showed that formula comprising Tianma could be used as an add-on therapy for PD patients. Pharmacological studies indicated that Tianma and its bioactive components can reduce the death of dopaminergic neurons, α-synuclein accumulation, and neuroinflammation in various PD models. In this review, we briefly summarize studies regarding the effects of Tianma and its bioactive components' effects on major PD features and explore the potential use of Tianma components for the treatment of PD.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
19
|
Anand A, Khurana N, Ali N, AlAsmari AF, Alharbi M, Waseem M, Sharma N. Ameliorative effect of vanillin on scopolamine-induced dementia-like cognitive impairment in a mouse model. Front Neurosci 2022; 16:1005972. [PMID: 36408377 PMCID: PMC9672091 DOI: 10.3389/fnins.2022.1005972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia, which is among the top five causes of death in the United States. It is a neurodegenerative disorder that causes permanent loss of memory and cognition. The current pharmacotherapy for AD is based on providing symptomatic relief only and has many side effects. There is a need for a safer, disease-modifying drug for the treatment of AD. EXPERIMENTAL APPROACH The PASS online software was used to screen phytoconstituents based on their predicted effects on various AD-related targets. Vanillin was selected as the compound of interest, as it has not been researched elaborately on any animal model of AD. The acetylcholinesterase inhibitory activity of vanillin was established in vitro. Thereafter, ameliorative effect of vanillin was evaluated using the exteroceptive memory model in scopolamine-induced cognitive impairment mice model. RESULTS Vanillin showed an acetylcholinesterase inhibitory activity in vitro, and the IC50 value was calculated to be 0.033 mM. Vanillin significantly reversed the memory and behavioral deficits caused by scopolamine as demonstrated by significant improvement in memory in negative reinforcement, elevated plus maze, and spatial learning paradigms. Vanillin also proved to have a nootropic effect. Also, vanillin proved to have significantly better antioxidant and acetylcholinesterase inhibitory effects in vivo than donepezil hydrochloride. The potential anti-AD activity of vanillin was also confirmed by the reduction in IL-6 levels and TNF-α levels. CONCLUSION Our results suggest that vanillin is a safe and effective natural drug candidate having a great potential for the treatment of AD. However, more research is required to evaluate its effect on A beta plaques and Tau neurofibrillary tangles in vivo.
Collapse
Affiliation(s)
- Abhinav Anand
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
20
|
Diagnosis and Simultaneous Treatment of Musculoskeletal Injury Using H 2O 2-Triggered Echogenic Antioxidant Polymer Nanoparticles in a Rat Model of Contusion Injury. NANOMATERIALS 2021; 11:nano11102571. [PMID: 34685012 PMCID: PMC8537538 DOI: 10.3390/nano11102571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Ultrasound is clinically used for diagnosis and interventions for musculoskeletal injuries like muscle contusion, but contrast of ultrasonography still remains a challenge in the field of the musculoskeletal system. A level of hydrogen peroxide (H2O2) is known to be elevated during mechanical tissue damage and therefore H2O2 can be exploited as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillin-oxalate) (PVO) as an inflammation-responsive polymeric prodrug of vanillin, which is designed to rapidly respond to H2O2 and exert antioxidant and anti-inflammatory activities. The primary aim of this study is to verify whether PVO nanoparticles could serve as contrast agents as well as therapeutic agents for musculoskeletal injuries simultaneously. In a rat model of contusion-induced muscle injury, PVO nanoparticles generated CO2 bubbles to enhance the ultrasound contrast in the injury site. A single intramuscular injection of PVO nanoparticles also suppressed contusion-induced muscle damages by inhibiting the expression of pro-inflammatory cytokines and inflammatory cell infiltration. We, therefore, anticipate that PVO nanoparticles have great translational potential as not only ultrasound imaging agents but also therapeutic agents for the musculoskeletal disorders such as contusion.
Collapse
|
21
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
22
|
Mani A, Ahamed A, Ali D, Alarifi S, Akbar I. Dopamine-Mediated Vanillin Multicomponent Derivative Synthesis via Grindstone Method: Application of Antioxidant, Anti-Tyrosinase, and Cytotoxic Activities. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:787-802. [PMID: 33654383 PMCID: PMC7914109 DOI: 10.2147/dddt.s288389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to determine the extent of contribution of dopamine to antioxidant and anti-tyrosinase activities, by dopamine addition to vanillin. This study achieved the synthesis of dopamine-associated vanillin Mannich base derivatives prepared via a one-step reaction involving a green chemistry approach, and investigation of antioxidant and anti-tyrosinase activities. Methods Novel one-pot synthesis of Mannich base dopamine-connected vanillin (1a-l) derivatives can be achieved via green chemistry without using a catalyst. Newly-prepared compounds were characterised with FTIR and NMR (1H and 13C) spectra, mass spectra, and elemental analyses. In total, 12 compounds (1a-l) were synthesised and their antioxidant and anti-tyrosinase activities evaluated. Antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), hydrogen peroxide (H2O2), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and diammonium assays, ABTS•+ radical scavenging, and linoleic acid peroxidation were used to screen all synthesised compounds (1a-l) for anti-tyrosinase activities and cytotoxicity against MCF-7 and Vero cell lines;. Results The compound 1k inhibited (IC50:11.02µg/mL) the DPPH-scavenging activity to a greater extent than the standard BHT (IC50:25.17µg/mL), and showed high activity in H2O2 and NO scavenging assays. Compound 1e was more potent (96.21%) against ABTS and compound 1k was more potent (95.28%) against 2,2ʹ-azobis(2-amidinopropane)dihydrochloride antioxidant than the standard trolox. All synthesised compounds were screened for anti-tyrosinase inhibitory activity. Compound 1e had higher activity against tyrosinase (IC50=10.63 µg/mL), than kojic acid (IC50=21.52µg/mL), and was more cytotoxic (GI50 0.01µM) against MCF-7 cell line than the doxorubicin standard and other tested compounds. Conclusion In this study, all compounds were found to possess significant antioxidant and anti-tyrosinase activities. Compounds 1e and 1k performed well, compared with other compounds, in all assays. In addition, this study successfully identified several promising molecules that exhibited antioxidant and anti-tyrosinase activities.
Collapse
Affiliation(s)
- Arunadevi Mani
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti -621007, Tiruchirappalli District, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Sciences, King Saud University (KSU), Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Sciences, King Saud University (KSU), Riyadh, 11451, Saudi Arabia
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti -621007, Tiruchirappalli District, Tamil Nadu, India
| |
Collapse
|
23
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|
24
|
Noonong K, Sobhon P, Sroyraya M, Chaithirayanon K. Neuroprotective and Neurorestorative Effects of Holothuria scabra Extract in the MPTP/MPP +-Induced Mouse and Cellular Models of Parkinson's Disease. Front Neurosci 2020; 14:575459. [PMID: 33408606 PMCID: PMC7779621 DOI: 10.3389/fnins.2020.575459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracts from Holothuria scabra (HS) have been shown to possess anti-inflammation, anti-oxidant and anti-cancer activities. More recently, it was shown to have neuroprotective potential in Caenorhabditis elegans PD model. Here, we assessed whether HS has neuroprotective and neurorestorative effects on dopaminergic neurons in both mouse and cellular models of PD. We found that both pre-treatment and post-treatment with HS improved motor deficits in PD mouse model induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as determined by grid walk test. This was likely mediated by HS protective and restorative effects on maintaining the numbers of dopaminergic neurons and fibers in both substantia nigra pars compacta (SNpc) and striatum. In a cellular model of PD, HS significantly attenuated 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of DAergic-like neurons differentiated from SH-SY5Y cells by enhancing the expression of Bcl-2, suppressing the expression of cleaved Caspase 3 and preventing depolarization of mitochondrial membrane. In addition, HS could stimulate the expression of tyrosine hydroxylase (TH) and suppressed the formation of α-synuclein protein. Taken together, our in vivo and in vitro findings suggested that HS is an attractive candidate for the neuroprotection rather than neurorestoration in PD.
Collapse
Affiliation(s)
- Kunwadee Noonong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Morakot Sroyraya
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
25
|
Abuthawabeh R, Abuirmeileh AN, Alzoubi KH. The beneficial effect of vanillin on 6-hydroxydopamine rat model of Parkinson's disease. Restor Neurol Neurosci 2020; 38:369-373. [PMID: 32986633 DOI: 10.3233/rnn-201028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder that is related to neuroinflammation. Vanillin, which possesses both antioxidant, and anti-inflammatory properties, can be a candidate for neuroprotection in PD. OBJECTIVE This study was aimed to investigate the effects of vanillin on the 6-hydroxydopamine (6-OHDA) rodent model of PD. METHODS Male Wistar rats were administrated intraperitoneal (i.p) or oral vanillin at a dose of 20 mg/kg/day for 7 days that was started at three days before or seven days after intracerebral injection of 6-OHDA. The 6-OHDA-induced lesions were assessed behaviorally using the apomorphine rotation test, neurochemically via measuring striatal dopamine concentrations, and through immunohistochemistry. RESULTS Both oral and IP vanillin at three days before or seven days after 6-OHDA lesioning exhbited significantly lower tight contralateral rotations upon apomorphine challenge, and higher striatal dopamine concentrations. CONCLUSIONS Vanillin seems to offer protective properties against 6-OHDA lesion via preserving striatal dopamine levels.
Collapse
Affiliation(s)
- Rasha Abuthawabeh
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Israa University, Amman, Jordan
| | - Amjad N Abuirmeileh
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Israa University, Amman, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
26
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
27
|
Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam MS. Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe 2+-induced brain tissues damage. Metab Brain Dis 2020; 35:727-738. [PMID: 32065337 DOI: 10.1007/s11011-020-00545-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
The therapeutic effect of phenolics on neurodegenerative diseases has been attributed to their potent antioxidant properties. In the present study, the neuroprotective activities of vanillin and vanillic acid were investigated in Fe2+- induced oxidative toxicity in brain tissues by investigating their therapeutic effects on oxidative imbalance, cholinergic and nucleotide-hydrolyzing enzymes activities, dysregulated metabolic pathways. Their cytotoxicity was investigated in hippocampal neuronal cell lines (HT22). The reduced glutathione level, SOD and catalase activities were ameliorated in tissues treated with the phenolics, with concomitant depletion of malondialdehyde and nitric oxide levels. They inhibited acetylcholinesterase and butyrylcholinesterase activities, while concomitantly elevated ATPase activity. Treatment with vanillin led to restoration of oxidative-depleted metabolites and reactivation of the pentose phosphate and purine metabolism pathways, with concomitant activation of pathways for histidine and selenoamino metabolisms. While vanillic acid restored and reactivated oxidative-depleted metabolites and pathways but did not activate any additional pathway. Both phenolics portrayed good binding affinity for catalase, with vanillic acid having the higher binding energy of -7.0 kcal/mol. Both phenolics were not cytotoxic on HT22 cells, and their toxicity class were predicted to be 4. Only vanillin was predicted to be permeable across the blood brain barrier (BBB). These results insinuate that vanillin and vanillic acid confer a neuroprotective effect on oxidative brain damage, when vanillin being the most potent.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Tosin A Olasehinde
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
28
|
Xiong YJ, Song YZ, Zhu Y, Zuo WQ, Zhao YF, Shen X, Wang WJ, Liu YL, Wu JC, Liang ZQ. Neuroprotective effects of olanzapine against rotenone-induced toxicity in PC12 cells. Acta Pharmacol Sin 2020; 41:508-515. [PMID: 32123301 PMCID: PMC7468335 DOI: 10.1038/s41401-020-0378-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Olanzapine is an antipsychotic drug used to treat patients with schizophrenia due to its lower incidence of extrapyramidal symptoms. Previous studies have shown that olanzapine activates AMP-activated protein kinase (AMPK), and induce autophagy in SH-SY5Y cell line. In this study, we investigated whether olanzapine protected against rotenone-induced neurotoxicity in PC12 cells. We showed that treatment with olanzapine increased the phosphorylation of AMPK in both dose- and time-dependent manners in PC12 cells. In addition, olanzapine activated autophagy and increased autophagic vacuoles. Furthermore, olanzapine pretreatment could protect PC12 cells from rotenone-induced apoptosis. Besides, olanzapine pretreatment could suppress the rotenone-induced depolarization of mitochondrial potential and thus protect the cells. Moreover, pretreatment with specific AMPK inhibitor compound C or with autophagy inhibitor 3-methyladenine impaired the protective effect of olanzapine on rotenone-treated PC12 cells. In summary, our results show for the first time that olanzapine ameliorates rotenone-induced injury by activating autophagy through AMPK pathway.
Collapse
|
29
|
Deng Y, Liu K, Pan Y, Ren J, Shang J, Chen L, Liu H. TLR2 antagonism attenuates the hippocampal neuronal damage in a murine model of sleep apnea via inhibiting neuroinflammation and oxidative stress. Sleep Breath 2020; 24:1613-1621. [PMID: 32170671 DOI: 10.1007/s11325-020-02030-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) in humans chronically promotes the neuronal damage in the hippocampus. Toll-like receptor 2 (TLR2) is pivotal for the development of numerous hippocampal diseases. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA. Here in our study, the effects of TLR2 antagonism on the neural damage elicited by CIH were examined. METHODS Ortho-vanillin (O-vanillin) is an inhibitor of TLR2. Adult male mice were subjected to 8 h of intermittent hypoxia per day with or without O-vanillin for 28 days. Neuronal damage, the number of microglia, the interaction of TLR2 with its adapter protein myeloid differentiation factor 88 (MYD88), the expressions of inflammatory cytokines, and the oxidative stress were observed. RESULTS O-vanillin inhibited the increased interaction of TLR2 and MyD88, the activation of NFκB, the aggregation of microglia, the overexpression of proinflammatory agents, the elevation of oxidative stress, and hippocampal neuron cell apoptosis induced by CIH. CONCLUSIONS Our experiments indicate that TLR2 antagonism may alleviate the hippocampal neuronal damage caused by CIH via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yueying Pan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
30
|
Bezerra-Filho CS, Barboza JN, Souza MT, Sabry P, Ismail NS, de Sousa DP. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress. Mini Rev Med Chem 2019; 19:1681-1693. [DOI: 10.2174/1389557519666190312164355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Many phenolic compounds found in foods and medicinal plants have shown interesting
therapeutic potential and have attracted the attention of the pharmaceutical industry as promising
pharmacologically active compounds in health promotion and disease prevention. Vanillin is a phenolic
aldehyde, widely used as a flavoring agent in the food, pharmaceutical, and cosmetics industries. A
variety of pharmacological activities has been attributed to this compound and its main metabolites,
vanillic acid and vanillyl alcohol, including their anti-inflammatory ability. The relationship of the anti-
inflammatory effects of vanillin, vanillic acid, and vanillyl alcohol and their actions on oxidative
stress is well established. Considering that the inflammatory process is related to several pathologies,
including new diseases with few therapeutic options, and limited efficiency, the search for effective
treatment strategies and discovery of new anti-inflammatory agents capable of modulating inflammation
becomes necessary. Therefore, in this review, we discuss the therapeutic potential of vanillin and
its main metabolites for the treatment of inflammatory diseases and their actions on redox status. In
addition, the molecular docking evaluation of vanillin, its metabolites and isoeugenol were carried out
into the phospholipase A2 binding site.
Collapse
Affiliation(s)
| | - Joice N. Barboza
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| | - Marilia T.S. Souza
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristóvao, Brazil
| | - Peter Sabry
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Nasser S.M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Damião P. de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
31
|
Lee JW, Ryu HW, Lee SU, Kim MG, Kwon OK, Kim MO, Oh TK, Lee JK, Kim TY, Lee SW, Choi S, Li WY, Ahn KS, Oh SR. Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide‑induced pulmonary inflammation by inhibiting interleukin‑8 production and NF‑κB activation. Int J Mol Med 2019; 44:949-959. [PMID: 31257455 PMCID: PMC6657956 DOI: 10.3892/ijmm.2019.4247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Pistacia weinmannifolia (PW) has been used in traditional Chinese medicine to treat headaches, dysentery, enteritis and influenza. However, PW has not been known for treating respiratory inflammatory diseases, including chronic obstructive pulmonary disease (COPD). The present in vitro analysis confirmed that PW root extract (PWRE) exerts anti-inflammatory effects in phorbol myristate acetate- or tumor necrosis factor α (TNF-α)-stimulated human lung epithelial NCI-H292 cells by attenuating the expression of interleukin (IL)-8, IL-6 and Mucin A5 (MUC5AC), which are closely associated with the pulmonary inflammatory response in the pathogenesis of COPD. Thus, the aim of the present study was to evaluate the protective effect of PWRE on pulmonary inflammation induced by cigarette smoke (CS) and lipopoly-saccharide (LPS). Treatment with PWRE significantly reduced the quantity of neutrophils and the levels of inflammatory molecules and toxic molecules, including tumor TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, neutrophil elastase and reactive oxygen species, in the bronchoalveolar lavage fluid of mice with CS- and LPS-induced pulmonary inflammation. PWRE also attenuated the influx of inflammatory cells in the lung tissues. Furthermore, PWRE downregulated the activation of nuclear factor-κB and the expression of phosphodiesterase 4 in the lung tissues. Therefore, these findings suggest that PWRE may be a valuable adjuvant treatment for COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Mun Ok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Tae Kyu Oh
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Jae Kyoung Lee
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Tae Young Kim
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, P.R. China
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| |
Collapse
|
32
|
Sefi M, Elwej A, Chaâbane M, Bejaoui S, Marrekchi R, Jamoussi K, Gouiaa N, Boudawara-Sellemi T, El Cafsi M, Zeghal N, Soudani N. Beneficial role of vanillin, a polyphenolic flavoring agent, on maneb-induced oxidative stress, DNA damage, and liver histological changes in Swiss albino mice. Hum Exp Toxicol 2019; 38:619-631. [PMID: 30782018 DOI: 10.1177/0960327119831067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vanillin, a widely used flavoring agent, has antimutagenic and antioxidant properties. The current study was performed to evaluate its beneficial role against hepatotoxicity induced by maneb, a dithiocarbamate fungicide. Mice were divided into four groups of six each: group 1, serving as negative controls which received by intraperitoneal way only distilled water, a solvent of maneb; group 2, received daily, by intraperitoneal way, maneb (30 mg kg-1 body weight (BW)); group 3, received maneb at the same dose of group 2 and 50 mg kg-1 BW of vanillin by intraperitoneal way; and group 4, serving as positive controls, received daily only vanillin. After 10 days of treatment, mice of all groups were killed. Our results showed that vanillin significantly reduced the elevated hepatic levels of malondialdehyde, hydrogen peroxide, and advanced oxidation protein product and attenuated DNA fragmentation induced by maneb. In addition, vanillin modulated the alterations of antioxidant status: enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) and nonenzymatic (reduced glutathione, nonprotein thiol, and vitamin C) antioxidants in the liver of maneb-treated mice. This natural compound was also able to ameliorate plasma biochemical parameters (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, and total protein). The protective effect of vanillin was further evident through the histopathological changes produced by maneb in the liver tissue. Thus, we concluded that vanillin might be beneficial against maneb-induced hepatic damage in mice.
Collapse
Affiliation(s)
- M Sefi
- 1 Animal Physiology Laboratory, Department of Life Sciences, University of Sfax, Sfax, Tunisia.,2 Physiology and Aquatic Environment Unit, Department of Biological Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - A Elwej
- 1 Animal Physiology Laboratory, Department of Life Sciences, University of Sfax, Sfax, Tunisia
| | - M Chaâbane
- 1 Animal Physiology Laboratory, Department of Life Sciences, University of Sfax, Sfax, Tunisia
| | - S Bejaoui
- 2 Physiology and Aquatic Environment Unit, Department of Biological Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - R Marrekchi
- 3 Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - K Jamoussi
- 3 Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - N Gouiaa
- 4 Histopathology Laboratory, Department of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - T Boudawara-Sellemi
- 4 Histopathology Laboratory, Department of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - M El Cafsi
- 2 Physiology and Aquatic Environment Unit, Department of Biological Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - N Zeghal
- 1 Animal Physiology Laboratory, Department of Life Sciences, University of Sfax, Sfax, Tunisia
| | - N Soudani
- 1 Animal Physiology Laboratory, Department of Life Sciences, University of Sfax, Sfax, Tunisia.,2 Physiology and Aquatic Environment Unit, Department of Biological Sciences, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
33
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
34
|
Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease. Neurotox Res 2018; 35:505-515. [DOI: 10.1007/s12640-018-9978-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
|
35
|
Nepali S, Kim DK, Lee HY, Ki HH, Kim BR, Hwang SW, Park M, Kim DK, Lee YM. Euphorbia supina extract results in inhibition of high‑fat‑diet‑induced obesity in mice. Int J Mol Med 2018; 41:2952-2960. [PMID: 29484428 DOI: 10.3892/ijmm.2018.3495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
The present study was undertaken to investigate the anti‑obesity effect of a 50% ethanol extract of Euphorbia supina (ESEE) in high‑fat‑diet (HFD)‑induced obese C57BL/6J mice. Mice were fed a HFD with or without ESEE (2, 10, or 50 mg/kg) or with Garcinia cambogia (positive control) for 6 weeks. ESEE supplementation significantly reduced body, epididymal white adipose tissue (eWAT), and organ weights (P<0.05). ESEE also reduced hepatic steatosis and improved serum lipid profiles. In addition, ESEE significantly reduced serum leptin levels and increased adiponectin levels, and significantly downregulated the mRNA and protein levels of proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer‑binding protein alpha (C/EPBα) in eWAT and liver tissues (all P<0.05). These results suggested that ESEE supplementation protects against HFD‑induced obesity by downregulating PPARγ and C/EPBα, and that ESEE may be beneficial for the prevention and treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Do-Kuk Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Bo-Ram Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Min Park
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
36
|
Ramkumar M, Rajasankar S, Gobi VV, Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Chidambaram R, Chidambaram SB, Guillemin GJ. Demethoxycurcumin, a Natural Derivative of Curcumin Abrogates Rotenone-induced Dopamine Depletion and Motor Deficits by Its Antioxidative and Anti-inflammatory Properties in Parkinsonian Rats. Pharmacogn Mag 2018; 14:9-16. [PMID: 29576695 PMCID: PMC5858249 DOI: 10.4103/pm.pm_113_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder (NDD) associated with the loss of dopaminergic neurons in the substantia nigra and subsequently has an effect on motor function and coordination. The pathology of PD is multifactorial, in which neuroinflammation and oxidative damage are the two of the main protagonists. Objectives: The present study aims to assess the potential antioxidant and anti-inflammatory effects of demethoxycurcumin (DMC), a natural derivative of curcumin, against rotenone-induced PD in rats. Materials and Methods: Rats were randomized and divided into six groups: control, rotenone (0.5 mg/kg/day, intraperitoneal in sunflower oil) treated for 7 days, rotenone and DMC (5, 10, and 20 mg/kg b.w) cotreated, and DMC (20 mg/kg b.w) alone treated groups. Results: Based on the dopamine concentration and biochemical estimations, the effective dose of DMC was selected and the chronic study was performed. At the end of the experimental period, behavioral studies and protein expression patterns of inflammatory markers were analyzed. Rotenone treatment led to motor dysfunctions, neurochemical deficits, and oxidative stress and enhanced expressions of inflammatory markers, whereas oral administration of DMC attenuated all the above. Conclusion: Even though further research is needed to prove its efficacy in clinical trial, the results of our study showed that DMC may offer a promising and new therapeutic lead for the treatment of NDDs including PD. SUMMARY Curcumin and their derivatives have been shown to be potent neuroprotective effect Demethoxycurcumin (DMC) amolerated the rotenone induced behavioural alterations DMC abrogated the rotenone induced dopamine deficits DMC attenuated the rotenone induced oxidative stress DMC diminished the rotenone mediated inflammation.
Abbreviations used: COX-2: Cyclooxygenase-2; DA: Dopamine; DMC: Demethoxycurcumin; DMRT: Duncan's multiple range test; GSH: Reduced glutathione; GPx: Glutathione peroxidase; IL-1 β: Interleukin-1 β; IL-6: Interleukin-6; iNOS: Inducible nitric oxide synthase; PD: Parkinson's disease; SN: Substantia nigra; SOD: Superoxide dismutase; TBARS: Thiobarbituric acid reactive substances; TNF-α: Tumor necrosis factor-α.
Collapse
Affiliation(s)
- Muthu Ramkumar
- Department of Anatomy, Bharath University, Selaiyur, Chennai, India
| | | | | | - Udaiyappan Janakiraman
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Ranganathan Chidambaram
- Department of Radiology, Sri Lakshminarayana Institute of Medical Sciences, Puducherry, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS University, SS Nagar, Mysore, Karnataka, India
| | - Giles J Guillemin
- Neuroinflammation Group, Department of Biomedical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
37
|
Gay NH, Phopin K, Suwanjang W, Songtawee N, Ruankham W, Wongchitrat P, Prachayasittikul S, Prachayasittikul V. Neuroprotective Effects of Phenolic and Carboxylic Acids on Oxidative Stress-Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells. Neurochem Res 2018; 43:619-636. [DOI: 10.1007/s11064-017-2463-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/26/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
|
38
|
Elseweidy MM, Askar ME, Elswefy SE, Shawky M. Vanillin as a new modulator candidate for renal injury induced by cisplatin in experimental rats. Cytokine 2017; 99:260-265. [PMID: 28784590 DOI: 10.1016/j.cyto.2017.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
|
39
|
Naz H, Tarique M, Khan P, Luqman S, Ahamad S, Islam A, Ahmad F, Hassan MI. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol Cell Biochem 2017; 438:35-45. [PMID: 28744811 DOI: 10.1007/s11010-017-3111-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.
Collapse
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences,Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences,Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shahzaib Ahamad
- Department of Biotechnology, College of Engineering & Technology, IFTM University, Lodhipur-Rajput, Delhi Road, Moradabad, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences,Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences,Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences,Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
40
|
Ramkumar M, Rajasankar S, Gobi VV, Dhanalakshmi C, Manivasagam T, Justin Thenmozhi A, Essa MM, Kalandar A, Chidambaram R. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:217. [PMID: 28420370 PMCID: PMC5395846 DOI: 10.1186/s12906-017-1720-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Background Mitochondrial dysfunction and oxidative stress are the main toxic events leading to dopaminergic neuronal death in Parkinson’s disease (PD) and identified as vital objective for therapeutic intercession. This study investigated the neuro-protective effects of the demethoxycurcumin (DMC), a derivative of curcumin against rotenone induced neurotoxicity. Methods SH-SY5Y neuroblastoma cells are divided into four experimental groups: untreated cells, cells incubated with rotenone (100 nM), cells treated with DMC (50 nM) + rotenone (100 nM) and DMC alone treated. 24 h after treatment with rotenone and 28 h after treatment with DMC, cell viability was assessed using the MTT assay, and levels of ROS and MMP, plus expression of apoptotic protein were analysed. Results Rotenone induced cell death in SH-SY5Y cells was significantly reduced by DMC pretreatment in a dose-dependent manner, indicating the potent neuroprotective effects of DMC. Rotenone treatment significantly increases the levels of ROS, loss of MMP, release of Cyt-c and expression of pro-apoptotic markers and decreases the expression of anti-apoptotic markers. Conclusions Even though the results of the present study indicated that the DMC may serve as a potent therapeutic agent particularly for the treatment of neurodegenerative diseases like PD, further pre-clinical and clinical studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1720-5) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Yan X, Liu DF, Zhang XY, Liu D, Xu SY, Chen GX, Huang BX, Ren WZ, Wang W, Fu SP, Liu JX. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway. Int J Mol Sci 2017; 18:ijms18020389. [PMID: 28208679 PMCID: PMC5343924 DOI: 10.3390/ijms18020389] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.
Collapse
Affiliation(s)
- Xuan Yan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dian-Feng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiang-Yang Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dong Liu
- Animal Husbandry and Veterinary Medicine, Cangzhou Technic College, Cangzhou 061001, China.
| | - Shi-Yao Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guang-Xin Chen
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Bing-Xu Huang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wen-Zhi Ren
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shou-Peng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ju-Xiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
42
|
Bahar E, Lee GH, Bhattarai KR, Lee HY, Choi MK, Rashid HO, Kim JY, Chae HJ, Yoon H. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis. Int J Mol Sci 2017; 18:ijms18020300. [PMID: 28146110 PMCID: PMC5343836 DOI: 10.3390/ijms18020300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 11/18/2022] Open
Abstract
Manganese (Mn) is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD)-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES) on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD) male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and reducing power capacity (RPC) assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH) level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm) and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg) to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Geum-Hwa Lee
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Kashi Raj Bhattarai
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hwa-Young Lee
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Min-Kyung Choi
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Harun-Or Rashid
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Ji-Ye Kim
- Department of Pathology, Severance Hospital and Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Han-Jung Chae
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
43
|
Abdulrahman AA, Faisal K, Meshref AAA, Arshaduddin M. Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats. Neurol Res 2017; 39:264-270. [DOI: 10.1080/01616412.2016.1275456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Kunnathodi Faisal
- Scientific Research Center, Medical Services Department, Riyadh, Saudi Arabia
| | - Ali Al Amri Meshref
- Department of Pharmacy and Pharmaceutical Sciences, Medical Services Department, Riyadh, Saudi Arabia
| | | |
Collapse
|
44
|
Puangmalai N, Thangnipon W, Soi-Ampornkul R, Suwanna N, Tuchinda P, Nobsathian S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen Res 2017; 12:1492-1498. [PMID: 29089996 PMCID: PMC5649471 DOI: 10.4103/1673-5374.215262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology in vivo and in vitro through alteration of cholinergic system. N-benzylcinnamide (PT-3), purified from Piper submultinerve, has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress. We proposed a hypothesis that PT3 has a neuroprotective effect against scopolamine-induced cholinergic dysfunction. PT-3 (125–200 nM) pretreatment was performed in human neuroblastoma SH-SY5Y cell line following scopolamine induction. PT-3 (125–200 nM) inhibited scopolamine (2 mM)-induced generation of reactive oxygen species, cellular apoptosis, upregulation of acetylcholinesterase activity, downregulation of choline acetyltransferase level, and activation of p38 and JNK signalling pathways. These findings revealed the underlying mechanisms of scopolamine-induced Alzheimer's disease-like cellular dysfunctions, which provide evidence for developing drugs for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Rungtip Soi-Ampornkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nirut Suwanna
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kampaeng Saen, Nakhonpathom, Thailand
| | | | - Saksit Nobsathian
- Nakhon Sawan Campus, Mahidol University, Phayuhakiri, Nakhon Sawan, Thailand
| |
Collapse
|
45
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
46
|
Overview of the Role of Vanillin on Redox Status and Cancer Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9734816. [PMID: 28077989 PMCID: PMC5204113 DOI: 10.1155/2016/9734816] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
Bioactive natural products play critical roles in modern drug development, especially anticancer agents. It has been widely reported that various pharmacological activities of such compounds are related to their antioxidant properties. Vanillin is a natural substance widely found in many plant species and often used in beverages, foods, cosmetics, and pharmaceutical products. Antioxidant and anticancer potential have been described for this compound. Considering the importance of vanillin in the area of human health and food and pharmaceuticals sectors, in this review, we discuss the role of vanillin on redox status and its potential contribution to the prevention and the treatment of cancer.
Collapse
|
47
|
Venkatesh Gobi V, Rajasankar S, Ramkumar M, Dhanalakshmi C, Manivasagam T, Justin Thenmozhi A, Essa MM, Chidambaram R. Agaricus blazeiextract attenuates rotenone-induced apoptosis through its mitochondrial protective and antioxidant properties in SH-SY5Y neuroblastoma cells. Nutr Neurosci 2016; 21:97-107. [DOI: 10.1080/1028415x.2016.1222332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Srinivasagam Rajasankar
- Department of Anatomy, Velammal Medical College and Hospital, Madurai, Tamil Nadu 625009, India
| | - Muthu Ramkumar
- Department of Anatomy, Bharath University, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Chinnasamy Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu 600094, India
| | - Ranganathan Chidambaram
- Department of Radiology, Sri Lakshminarayana Institute of Medical Sciences, Puducherry, India
| |
Collapse
|
48
|
Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease. Neurochem Res 2016; 41:1899-910. [PMID: 27038927 DOI: 10.1007/s11064-016-1901-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/14/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.
Collapse
|