1
|
Dolatshahi M, Sanjari Moghaddam H, Saberi P, Mohammadi S, Aarabi MH. Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies. Diabetes Res Clin Pract 2023; 205:110645. [PMID: 37004976 DOI: 10.1016/j.diabres.2023.110645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
AIMS Type 1 diabetes mellitus (T1DM) is a chronic childhood disease with potentially persistent CNS disruptions. In this study, we aimed to systematically review diffusion tensor imaging studies in patients with T1DM to understand the microstructural effects of this entity on individuals' brains METHODS: We performed a systematic search and reviewed the studies to include the DTI studies in individuals with T1DM. The data for the relevant studies were extracted and a qualitative synthesis was performed. RESULTS A total of 19 studies were included, most of which showed reduced FA widespread in optic radiation, corona radiate, and corpus callosum, as well as other frontal, parietal, and temporal regions in the adult population, while most of the studies in the juvenile patients showed non-significant differences or a non-persistent pattern of changes. Also, reduced AD and MD in individuals with T1DM compared to controls and non-significant differences in RD were noted in the majority of studies. Microstructural alterations were associated with clinical profile, including age, hyperglycemia, diabetic ketoacidosis and cognitive performance. CONCLUSION T1DM is associated with microstructural brain alterations including reduced FA, MD, and AD in widespread brain regions, especially in association with glycemic fluctuations and in adult age.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- NeuroImaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, United States; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Parastoo Saberi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soheil Mohammadi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Cai LY, Tanase C, Anderson AW, Patel NJ, Lee CA, Jones RS, LeStourgeon LM, Mahon A, Taki I, Juvera J, Pruthi S, Gwal K, Ozturk A, Kang H, Rewers A, Rewers MJ, Alonso GT, Glaser N, Ghetti S, Jaser SS, Landman BA, Jordan LC. Exploratory Multisite MR Spectroscopic Imaging Shows White Matter Neuroaxonal Loss Associated with Complications of Type 1 Diabetes in Children. AJNR Am J Neuroradiol 2023; 44:820-827. [PMID: 37263786 PMCID: PMC10337627 DOI: 10.3174/ajnr.a7895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND PURPOSE Type 1 diabetes affects over 200,000 children in the United States and is associated with an increased risk of cognitive dysfunction. Prior single-site, single-voxel MRS case reports and studies have identified associations between reduced NAA/Cr, a marker of neuroaxonal loss, and type 1 diabetes. However, NAA/Cr differences among children with various disease complications or across different brain tissues remain unclear. To better understand this phenomenon and the role of MRS in characterizing it, we conducted a multisite pilot study. MATERIALS AND METHODS In 25 children, 6-14 years of age, with type 1 diabetes across 3 sites, we acquired T1WI and axial 2D MRSI along with phantom studies to calibrate scanner effects. We quantified tissue-weighted NAA/Cr in WM and deep GM and modeled them against study covariates. RESULTS We found that MRSI differentiated WM and deep GM by NAA/Cr on the individual level. On the population level, we found significant negative associations of WM NAA/Cr with chronic hyperglycemia quantified by hemoglobin A1c (P < .005) and a history of diabetic ketoacidosis at disease onset (P < .05). We found a statistical interaction (P < .05) between A1c and ketoacidosis, suggesting that neuroaxonal loss from ketoacidosis may outweigh that from poor glucose control. These associations were not present in deep GM. CONCLUSIONS Our pilot study suggests that MRSI differentiates GM and WM by NAA/Cr in this population, disease complications may lead to neuroaxonal loss in WM in children, and deeper investigation is warranted to further untangle how diabetic ketoacidosis and chronic hyperglycemia affect brain health and cognition in type 1 diabetes.
Collapse
Affiliation(s)
- L Y Cai
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
| | - C Tanase
- Departments of Psychiatry and Behavioral Sciences (C.T.)
| | - A W Anderson
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - N J Patel
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - R S Jones
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - A Mahon
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - I Taki
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - J Juvera
- Department of Psychiatry (J.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Pruthi
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - K Gwal
- Departments of Radiology (K.G., A.O.)
| | - A Ozturk
- Departments of Radiology (K.G., A.O.)
| | - H Kang
- Biostatistics (H.K.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - M J Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | | | - N Glaser
- Pediatrics (N.G.), University of California Davis Health, University of California Davis School of Medicine, Sacramento, California
| | - S Ghetti
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - S S Jaser
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | - B A Landman
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Department of Electrical and Computer Engineering (B.A.L.), Vanderbilt University, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - L C Jordan
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
- Neurology (C.A.L., L.C.J.)
| |
Collapse
|
3
|
Harrell W, Gipson DS, Belger A, Matsuda-Abedini M, Bjornson B, Hooper SR. Functional Magnetic Resonance Imaging Findings in Children and Adolescents With Chronic Kidney Disease: Preliminary Findings. Semin Nephrol 2021; 41:462-475. [PMID: 34916008 DOI: 10.1016/j.semnephrol.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This cross-sectional study provides preliminary findings from one of the first functional brain imaging studies in children with chronic kidney disease (CKD). The sample included 21 children with CKD (ages, 14.4 ± 3.0 y) and 11 healthy controls (ages, 14.5 ± 3.4 y). Using functional magnetic resonance imaging during a visual-spatial working memory task, findings showed that the CKD group and healthy controls invoked similar brain regions for encoding and retrieval phases of the task, but significant group differences were noted in the activation patterns for both components of the task. For the encoding phase, the CKD group showed lower activation in the posterior cingulate, anterior cingulate, precuneus, and middle occipital gyrus than the control group, but more activation in the superior temporal gyrus, middle frontal gyrus, middle temporal gyrus, and the insula. For the retrieval phase, the CKD group showed underactivation for brain systems involving the posterior cingulate, medial frontal gyrus, occipital lobe, and middle temporal gyrus, and greater activation than the healthy controls in the postcentral gyrus. Few group differences were noted with respect to disease severity. These preliminary findings support evidence showing a neurologic basis to the cognitive difficulties evident in pediatric CKD, and lay the foundation for future studies to explore the neural underpinnings for neurocognitive (dys)function in this population.
Collapse
Affiliation(s)
- Waverly Harrell
- School of Education, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Aysenil Belger
- Department of Psychiatry, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Mina Matsuda-Abedini
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Bjornson
- Division of Neurology, B.C. Children's' Hospital, Vancouver, British Columbia, Canada
| | - Stephen R Hooper
- Department of Allied Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
4
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
5
|
Gallardo-Moreno GB, Alvarado-Rodríguez FJ, Romo-Vázquez R, Vélez-Pérez H, González-Garrido AA. Type 1 diabetes affects the brain functional connectivity underlying working memory processing. Psychophysiology 2021; 59:e13969. [PMID: 34762737 DOI: 10.1111/psyp.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Visuospatial working memory (VSWM) deficits have been demonstrated to occur during the development of type-1-diabetes (T1D). Despite confirming the early appearance of distinct task-related brain activation patterns in T1D patients compared to healthy controls, the effect of VSWM load on functional brain connectivity during task performance is still unknown. Using electroencephalographic methods, the present study evaluated this topic in clinically well-controlled T1D young patients and healthy individuals, while they performed a VSWM task with different memory load levels during two main VSWM processing phases: encoding and maintenance. The results showed a significantly lower number of correct responses and longer reaction times in T1D while performing the task. Besides, higher and progressively increasing functional connectivity indices were found for T1D patients in response to cumulative degrees of VSWM load, from the beginning of the VSWM encoding phase, without notably affecting the VSWM maintenance phase. In contrast, healthy controls managed to solve the task, showing lower functional brain connectivity during the initial VSWM processing steps with more gradual task-related adjustments. Present results suggest that T1D patients anticipate high VSWM load demands by early recruiting supplementary processing resources as the probable expression of a more inefficient, though paradoxically better adjusted to task demands cognitive strategy.
Collapse
Affiliation(s)
| | - Francisco J Alvarado-Rodríguez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico.,Dpto. de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara, Mexico
| | - Rebeca Romo-Vázquez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Hugo Vélez-Pérez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
6
|
Xu P, Ning J, Jiang Q, Li C, Yan J, Zhao L, Gao H, Zheng H. Region-specific metabolic characterization of the type 1 diabetic brain in mice with and without cognitive impairment. Neurochem Int 2020; 143:104941. [PMID: 33333211 DOI: 10.1016/j.neuint.2020.104941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes (T1D) has been reported to cause cognitive decline, but brain metabolic changes during this process are still far from being fully understood. Here, we found that streptozotocin (STZ)-induced T1D mice exhibited impaired learning and memory at 11 weeks after STZ treatment but not at 3 weeks. Therefore, we studied metabolic alterations in six different brain regions of T1D mice with and without cognitive decline, and attempted to identify key metabolic pathways related to diabetic cognitive dysfunction. The results demonstrate that lactate had already increased in all brain regions of T1D mice prior to cognitive decline, but a decreased TCA cycle was only observed in hippocampus, cortex and striatum of T1D mice with cognitive impairment. Reduced N-acetylaspartate and choline were found in all brain regions of T1D mice, irrespective of cognitive decline. In addition, disrupted neurotransmitter metabolism was noted to occur in T1D mice before cognitive deficit. Of note, we found that the level of uridine was significantly reduced in cerebellum, cortex, hypothalamus and midbrain of T1D mice when cognitive decline was presented. Therefore, brain region-specific metabolic alterations may comprise possible biomarkers for the early-diagnosis and monitoring of diabetic cognitive decline. Moreover, down-regulated TCA cycle and pyrimidine metabolism could be closely related to T1D-associated cognitive impairment.
Collapse
Affiliation(s)
- Pengtao Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Gallardo-Moreno GB, González-Garrido AA, Villaseñor-Cabrera T, Alvarado-Rodríguez FJ, Ruiz-Stovel VD, Jiménez-Maldonado ME, Contreras-Piña N, Gómez-Velázquez FR. Sustained attention in schoolchildren with type-1 diabetes. A quantitative EEG study. Clin Neurophysiol 2020; 131:2469-2478. [DOI: 10.1016/j.clinph.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 01/13/2023]
|
8
|
Foland-Ross LC, Tong G, Mauras N, Cato A, Aye T, Tansey M, White NH, Weinzimer SA, Englert K, Shen H, Mazaika PK, Reiss AL. Brain Function Differences in Children With Type 1 Diabetes: A Functional MRI Study of Working Memory. Diabetes 2020; 69:1770-1778. [PMID: 32471809 PMCID: PMC7372069 DOI: 10.2337/db20-0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Glucose is a primary fuel source to the brain, yet the influence of dysglycemia on neurodevelopment in children with type 1 diabetes remains unclear. We examined brain activation using functional MRI in 80 children with type 1 diabetes (mean ± SD age 11.5 ± 1.8 years; 46% female) and 47 children without diabetes (control group) (age 11.8 ± 1.5 years; 51% female) as they performed a visuospatial working memory (N-back) task. Results indicated that in both groups, activation scaled positively with increasing working memory load across many areas, including the frontoparietal cortex, caudate, and cerebellum. Between groups, children with diabetes exhibited reduced performance on the N-back task relative to children in the control group, as well as greater modulation of activation (i.e., showed greater increase in activation with higher working memory load). Post hoc analyses indicated that greater modulation was associated in the diabetes group with better working memory function and with an earlier age of diagnosis. These findings suggest that increased modulation may occur as a compensatory mechanism, helping in part to preserve working memory ability, and further, that children with an earlier onset require additional compensation. Future studies that test whether these patterns change as a function of improved glycemic control are warranted.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Gabby Tong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children's Health System, Jacksonville, FL
| | - Allison Cato
- Division of Neurology, Nemours Children's Health System, Jacksonville, FL
| | - Tandy Aye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Michael Tansey
- Department of Pediatrics, The University of Iowa, Iowa City, IA
| | - Neil H White
- Department of Pediatrics, Washington University in St. Louis and the St. Louis Children's Hospital, St. Louis, MO
| | | | - Kimberly Englert
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children's Health System, Jacksonville, FL
| | - Hanyang Shen
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Paul K Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | | | |
Collapse
|
9
|
Mazaika PK, Marzelli M, Tong G, Foland-Ross LC, Buckingham BA, Aye T, Reiss AL. Functional near-infrared spectroscopy detects increased activation of the brain frontal-parietal network in youth with type 1 diabetes. Pediatr Diabetes 2020; 21:515-523. [PMID: 32003523 DOI: 10.1111/pedi.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
When considered as a group, children with type 1 diabetes have subtle cognitive deficits relative to neurotypical controls. However, the neural correlates of these differences remain poorly understood. Using functional near-infrared spectroscopy (fNIRS), we investigated the brain functional activations of young adolescents (19 individuals with type 1 diabetes, 18 healthy controls, ages 8-16 years) during a Go/No-Go response inhibition task. Both cohorts had the same performance on the task, but the individuals with type 1 diabetes subjects had higher activations in a frontal-parietal network including the bilateral supramarginal gyri and bilateral rostrolateral prefrontal cortices. The activations in these regions were positively correlated with fewer parent-reported conduct problems (ie, lower Conduct Problem scores) on the Behavioral Assessment System for Children, Second Edition. Lower Conduct Problem scores are characteristic of less rule-breaking behavior suggesting a link between this brain network and better self-control. These findings are consistent with a large functional magnetic resonance imaging (fMRI) study of children with type 1 diabetes using completely different participants. Perhaps surprisingly, the between-group activation results from fNIRS were statistically stronger than the results using fMRI. This pilot study is the first fNIRS investigation of executive function for individuals with type 1 diabetes. The results suggest that fNIRS is a promising functional neuroimaging resource for detecting the brain correlates of behavior in the pediatric clinic.
Collapse
Affiliation(s)
- Paul K Mazaika
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Matthew Marzelli
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Gabby Tong
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Bruce A Buckingham
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Tandy Aye
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
Foland-Ross LC, Buckingam B, Mauras N, Arbelaez AM, Tamborlane WV, Tsalikian E, Cato A, Tong G, Englert K, Mazaika PK, Reiss AL, for the Diabetes Research in Children Network (DirecNet). Executive task-based brain function in children with type 1 diabetes: An observational study. PLoS Med 2019; 16:e1002979. [PMID: 31815939 PMCID: PMC6901178 DOI: 10.1371/journal.pmed.1002979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Optimal glycemic control is particularly difficult to achieve in children and adolescents with type 1 diabetes (T1D), yet the influence of dysglycemia on the developing brain remains poorly understood. METHODS AND FINDINGS Using a large multi-site study framework, we investigated activation patterns using functional magnetic resonance imaging (fMRI) in 93 children with T1D (mean age 11.5 ± 1.8 years; 45.2% female) and 57 non-diabetic (control) children (mean age 11.8 ± 1.5 years; 50.9% female) as they performed an executive function paradigm, the go/no-go task. Children underwent scanning and cognitive and clinical assessment at 1 of 5 different sites. Group differences in activation occurring during the contrast of "no-go > go" were examined while controlling for age, sex, and scan site. Results indicated that, despite equivalent task performance between the 2 groups, children with T1D exhibited increased activation in executive control regions (e.g., dorsolateral prefrontal and supramarginal gyri; p = 0.010) and reduced suppression of activation in the posterior node of the default mode network (DMN; p = 0.006). Secondary analyses indicated associations between activation patterns and behavior and clinical disease course. Greater hyperactivation in executive control regions in the T1D group was correlated with improved task performance (as indexed by shorter response times to correct "go" trials; r = -0.36, 95% CI -0.53 to -0.16, p < 0.001) and with better parent-reported measures of executive functioning (r values < -0.29, 95% CIs -0.47 to -0.08, p-values < 0.007). Increased deficits in deactivation of the posterior DMN in the T1D group were correlated with an earlier age of T1D onset (r = -0.22, 95% CI -0.41 to -0.02, p = 0.033). Finally, exploratory analyses indicated that among children with T1D (but not control children), more severe impairments in deactivation of the DMN were associated with greater increases in hyperactivation of executive control regions (T1D: r = 0.284, 95% CI 0.08 to 0.46, p = 0.006; control: r = 0.108, 95% CI -0.16 to 0.36, p = 0.423). A limitation to this study involves glycemic effects on brain function; because blood glucose was not clamped prior to or during scanning, future studies are needed to assess the influence of acute versus chronic dysglycemia on our reported findings. In addition, the mechanisms underlying T1D-associated alterations in activation are unknown. CONCLUSIONS These data indicate that increased recruitment of executive control areas in pediatric T1D may act to offset diabetes-related impairments in the DMN, ultimately facilitating cognitive and behavioral performance levels that are equivalent to that of non-diabetic controls. Future studies that examine whether these patterns change as a function of improved glycemic control are warranted.
Collapse
Affiliation(s)
- Lara C. Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Bruce Buckingam
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nelly Mauras
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Ana Maria Arbelaez
- Division of Endocrinology, Washington University, Saint Louis, Missouri, United States of America
| | - William V. Tamborlane
- Division of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Eva Tsalikian
- Division of Endocrinology, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison Cato
- Division of Neurology, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Gabby Tong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Kimberly Englert
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Paul K. Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | | |
Collapse
|
11
|
Decroix L, van Schuerbeek P, Tonoli C, van Cutsem J, Soares DD, Heyman E, Vanderhasselt T, Verrelst R, Raeymaekers H, de Mey J, Meeusen R. The effect of acute cocoa flavanol intake on the BOLD response and cognitive function in type 1 diabetes: a randomized, placebo-controlled, double-blinded cross-over pilot study. Psychopharmacology (Berl) 2019; 236:3421-3428. [PMID: 31236643 DOI: 10.1007/s00213-019-05306-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Type 1 diabetes (T1D), a chronic autoimmune disease, can result in cognitive dysfunction and is associated with vascular dysfunction. Cocoa flavanols (CFs) can stimulate nitric oxide-dependent vasodilation, resulting in enhanced hemodynamic responses and better cognitive function. OBJECTIVES To investigate whether acute CF supplementation can improve cognitive function and hemodynamic responses in T1D. METHODS In this randomized, double-blinded, cross-over pilot study, 11 patients with T1D and their healthy matched controls consumed CF (900 mg CF) and placebo (15 mg CF) 2 h before a flanker test. fMRI was used to measure blood oxygen level-dependent (BOLD) response during the cognitive test. Repeated measure ANOVAs were used to test the effects of CF and T1D on BOLD response and cognitive performance. RESULTS CF improved reaction time on the flanker test and increased the BOLD response in the supramarginal gyrus parietal lobe and inferior frontal gyrus, compared to placebo, in both groups. In patients with T1D, cognitive performance was not deteriorated while the BOLD response was smaller in T1D compared to healthy controls in the subgyral temporal lobe and the cerebellum. CONCLUSIONS Acute CF intake improved reaction time on the flanker test and increased the BOLD response in the activated brain areas in patients with T1D and their matched controls.
Collapse
Affiliation(s)
- Lieselot Decroix
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.,URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université de Lille, Artois, Littoral Cote d'Opale EA 7369- URePSSS, Eurasport, 413 rue Eugène Avinée, 59120, Loos, France
| | - Peter van Schuerbeek
- Department of Radiology UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Jette, Belgium
| | - Cajsa Tonoli
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Jeroen van Cutsem
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Danusa Dias Soares
- Department of Physical Education, University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Elsa Heyman
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université de Lille, Artois, Littoral Cote d'Opale EA 7369- URePSSS, Eurasport, 413 rue Eugène Avinée, 59120, Loos, France
| | - Tim Vanderhasselt
- Department of Radiology UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Jette, Belgium
| | - Ruth Verrelst
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Hubert Raeymaekers
- Department of Radiology UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Jette, Belgium
| | - Johan de Mey
- Department of Radiology UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Jette, Belgium
| | - Romain Meeusen
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.
| |
Collapse
|
12
|
González-Garrido AA, Gallardo-Moreno GB, Gómez-Velázquez FR. Type 1 diabetes and working memory processing of emotional faces. Behav Brain Res 2019; 363:173-181. [PMID: 30738100 DOI: 10.1016/j.bbr.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Several executive functions decline with the development of type-1 diabetes (T1D), particularly working memory (WM). In adults, WM ensures efficient cognitive processing by focusing on task-relevant information while suppressing distractors. It has been well documented that WM can be influenced by emotional stimuli, which may facilitate the retention of information, interfere with uptake, or even affect its capacity. We evaluated the effect of T1D on visual WM processing using emotional faces as stimuli, in young patients with satisfactory clinical evolution, and matched controls without T1D. All subjects performed a 2-back task detecting facial identity using neutral, happy or fearful faces in a block design for fMRI. Behavioral performance was similar with the exception that patients responded significantly slower. Most importantly, between-group differences were found in patterns of brain activation. In comparison, more widespread brain activation -predominantly prefrontal- was found in the participants with T1D when processing neutral faces, while a decrease was observed when processing happy and fearful ones. Statistical contrasts demonstrated significantly-different activation patterns between groups when processing emotional faces, as controls exhibited greater activation in the cuneus, posterior cortex and parahippocampal gyrus, while the patients showed greater activation in the prefrontal structures. Results may reflect compensatory efforts made to minimize the deleterious effects of disease development on attention allocation processes and the operational efficiency of WM. The results suggest that emotional parameters should be periodically assessed in individuals with T1D in order to anticipate the emergence of attention and WM impairment.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Mexico; Antiguo Hospital Civil de Guadalajara "Fray Antonio Alcalde", Mexico.
| | | | | |
Collapse
|
13
|
Ryan JP, Aizenstein HJ, Orchard TJ, Nunley KA, Karim H, Rosano C. Basal ganglia cerebral blood flow associates with psychomotor speed in adults with type 1 diabetes. Brain Imaging Behav 2019; 12:1271-1278. [PMID: 29164504 DOI: 10.1007/s11682-017-9783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes is associated with slower psychomotor speed, but the neural basis of this relationship is not yet understood. The basal ganglia are a set of structures that are vulnerable to small vessel disease, particularly in individuals with type 1 diabetes. Thus, we examined the relationship between psychomotor speed and resting state resting cerebral blood flow in a sample of adults with diabetes onset during childhood (≤ 17 years of age). The sample included 77 patients (39 M, 38 F) with a mean age of 47.43 ± 5.72 years, age of onset at 8.50 ± 4.26 years, and duration of disease of 38.92 ± 4.18 years. Resting cerebral blood flow was quantified using arterial spin labeling. After covarying for sex, years of education and normalized gray matter volume, slower psychomotor speed was associated with lower cerebral blood flow in bilateral caudate nucleus-thalamus and a region in the superior frontal gyrus. These results suggest that the basal ganglia and frontal cortex may underlie slower psychomotor speed in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- John P Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA.
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA
| | - Trevor J Orchard
- Department of Epidemiology, Diabetes and Lipid Research Building, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Karen A Nunley
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Helmet Karim
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Guàrdia-Olmos J, Gudayol-Ferré E, Gallardo-Moreno GB, Martínez-Ricart M, Peró-Cebollero M, González-Garrido AA. Complex systems representing effective connectivity in patients with Type One diabetes mellitus. PLoS One 2018; 13:e0208247. [PMID: 30496324 PMCID: PMC6264830 DOI: 10.1371/journal.pone.0208247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1D) affects the entire cellular network of the organism. Some patients develop cognitive disturbances due to the disease, but several authors have suggested that the brain develops compensatory mechanisms to minimize or prevent neuropsychological decline. The present study aimed to assess the effective connectivity underlying visuospatial working memory performance in young adults diagnosed with T1D using neuroimaging techniques (fMRI). METHODS Fifteen T1D right-handed, young adults with sustained metabolic clinical stability and a control group matched by age, sex, and educational level voluntarily participated. All participants performed 2 visuospatial working memory tasks using a block design within an MRI scanner. Regions of interest and their signal values were obtained. Effective connectivity-by means of structural equations models-was evaluated for each group and task through maximum likelihood estimation, and the model with the best fit was chosen in each case. RESULTS Compared to the control group, the patient group showed a significant reduction in brain activity in the two estimated networks (one for each group and task). The models of effective connectivity showed greater brain connectivity in healthy individuals, as well as a more complex network. T1D patients showed a pattern of connectivity mainly involving the cerebellum and the red nucleus. In contrast, the control group showed a connectivity network predominantly involving brain areas that are typically activated while individuals are performing working memory tasks. CONCLUSION Our results suggest a specific effective connectivity between the cerebellum and the red nucleus in T1D patients during working memory tasks, probably reflecting a compensatory mechanism to fulfill task demands.
Collapse
Affiliation(s)
- Joan Guàrdia-Olmos
- Facultat de Psicologia, Universitat de Barcelona, Institut de Neurociències, Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Esteve Gudayol-Ferré
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Francisco, Michoacán, México
| | | | | | - Maribel Peró-Cebollero
- Facultat de Psicologia, Universitat de Barcelona, Institut de Neurociències, Institute of Complex Systems (UBICS), Barcelona, Spain
| | | |
Collapse
|
15
|
Embury CM, Wiesman AI, McDermott TJ, Proskovec AL, Heinrichs-Graham E, Lord GH, Brau KL, Drincic AT, Desouza CV, Wilson TW. The impact of type 1 diabetes on neural activity serving attention. Hum Brain Mapp 2018; 40:1093-1100. [PMID: 30368968 DOI: 10.1002/hbm.24431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes has been associated with alterations in attentional processing and other cognitive functions, and previous studies have found alterations in both brain structure and function in affected patients. However, these previous neuroimaging studies have generally examined older patients, particularly those with major comorbidities known to affect functioning independent of diabetes. The primary aim of the current study was to examine the neural dynamics of selective attention processing in a young group of patients with type 1 diabetes who were otherwise healthy (i.e., without major comorbidities). Our hypothesis was that these patients would exhibit significant aberrations in attention circuitry relative to closely matched controls. The final sample included 69 participants age 19-35 years old, 35 with type 1 diabetes and 34 matched nondiabetic controls, who completed an Eriksen flanker task while undergoing magnetoencephalography. Significant group differences in flanker interference activity were found across a network of brain regions, including the anterior cingulate, inferior parietal cortices, paracentral lobule, and the left precentral gyrus. In addition, neural activity in the anterior cingulate and the paracentral lobule was correlated with disease duration in patients with type 1 diabetes. These findings suggest that alterations in the neural circuitry underlying selective attention emerge early in the disease process and are specifically related to type 1 diabetes and not common comorbidities. These findings highlight the need for longitudinal studies in large cohorts to clarify the clinical implications of type 1 diabetes on cognition and the brain.
Collapse
Affiliation(s)
- Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska.,Department of Psychology, University of Nebraska Omaha, Omaha, Nebraska
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska
| | - Timothy J McDermott
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska.,Department of Psychology, University of Nebraska Omaha, Omaha, Nebraska
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska
| | - Grace H Lord
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, Nebraska
| | - Kaitlin L Brau
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, Nebraska
| | - Andjela T Drincic
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, Nebraska
| | - Cyrus V Desouza
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, UNMC, Omaha, Nebraska
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Center for Magnetoencephalography, UNMC, Omaha, Nebraska
| |
Collapse
|
16
|
González-Garrido AA, Gallardo-Moreno GB, Romo-Vázquez R, Vélez-Pérez H, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Santos-Arce SR, Ruiz-Stovel VD, Gómez-Velázquez FR, Ramos-Loyo J. Is sex an influential factor in type-1 diabetes neurofunctional development? A preliminary study. J Neurosci Res 2018; 96:1699-1706. [PMID: 30027655 DOI: 10.1002/jnr.24268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
The aim of the study was to evaluate the neurofunctional effect of gender in Type-1 Diabetes Mellitus (T1DM) patients during a Visual Spatial Working Memory (VSWM) task. The study included 28 participants with ages ranging from 17-28 years. Fourteen well-controlled T1DM patients (7 female) and 14 controls matched by age, sex, and education level were scanned performing a block-design VSWM paradigm. Behavioral descriptive analyses and mean comparisons were done, and between-group and condition functional activation patterns were also compared. Whole-brain cumulative BOLD signal (CumBS), voxel-wise BOLD level frequency, Euclidean distance, and divergence indices were also calculated. There were no significant differences between or within-group sex differences for correct responses and reaction times. Functional activation analyses showed that females had activation in more brain regions, and with larger clusters of cortical activations than males. Furthermore, BOLD activation was higher in males. Despite the preliminary nature of the present study given the relatively small sample size, current results acknowledge for the first time that sex might contribute to differences in functional activation in T1DM patients. Findings suggest that sex differences should be considered when studying T1DM-disease development.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Geisa B Gallardo-Moreno
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Rebeca Romo-Vázquez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Hugo Vélez-Pérez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Adolfo Flores-Saiffe-Farías
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Gerardo Mendizabal-Ruiz
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Stewart R Santos-Arce
- Departamento de Electrónica, CUCEI, Universidad de Guadalajara. Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Vanessa D Ruiz-Stovel
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Fabiola R Gómez-Velázquez
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| | - Julieta Ramos-Loyo
- Instituto de Neurociencias. Universidad de Guadalajara. Francisco de Quevedo 180. Col. Arcos Vallarta, Guadalajara, Jalisco, 44130, México
| |
Collapse
|
17
|
Vitvarová T, Neumann D, Šimáková R, Kremláček J. Neurophysiological Evidence for a Compensatory Activity during a Simple Oddball Task in Adolescents with Type 1 Diabetes Mellitus. J Diabetes Res 2018; 2018:8105407. [PMID: 30116745 PMCID: PMC6079416 DOI: 10.1155/2018/8105407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The poor metabolic control in type 1 diabetes mellitus (T1D) has a negative impact on the developing brain. Hyperglycemia and glycemic fluctuations disrupt mainly executive functions. To assess a hypothesized deficit of the executive functions, we evaluated visual processing and reaction time in an oddball task. METHODS Oddball visual event-related potentials (ERPs), reaction time, and pattern-reversal visual evoked potentials (VEPs) were examined in a cohort of twenty-two 12- to 18-year-old T1D patients without diabetic retinopathy at normal glycemia and in nineteen 10- to 21-year-old healthy controls. RESULTS The P100 peak time of the VEPs was significantly prolonged in T1D patients compared with the control group (p < 0.017). In contrast to the deteriorated sensory response, the area under the curve of the P3b component of the ERPs was significantly larger (p = 0.035) in patients, while reaction time in the same task did not differ between groups (p = 0.713). CONCLUSIONS The deterioration on a sensory level, enhanced activity during cognitive processing, and balanced behavioral response support the view that neuroplasticity counterbalances the neural impairment by enhanced cognitive processing to achieve normal behavioral performance in T1D adolescents.
Collapse
Affiliation(s)
- Tereza Vitvarová
- Department of Pediatrics, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - David Neumann
- Department of Pediatrics, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radka Šimáková
- Philosophy Faculty, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Kremláček
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Moran C, Beare R, Phan T, Starkstein S, Bruce D, Romina M, Srikanth V. Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. J Alzheimers Dis 2017; 59:405-419. [DOI: 10.3233/jad-161166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Moran
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Aged Care Services, Caulfield Hospital, Alfred Health, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Richard Beare
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Thanh Phan
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Sergio Starkstein
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - David Bruce
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - Mizrahi Romina
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Guàrdia-Olmos J, Gallardo-Moreno GB, Gudayol-Ferré E, Peró-Cebollero M, González-Garrido AA. Effect of verbal task complexity in a working memory paradigm in patients with type 1 diabetes. A fMRI study. PLoS One 2017; 12:e0178172. [PMID: 28582399 PMCID: PMC5459425 DOI: 10.1371/journal.pone.0178172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is commonly diagnosed in childhood and adolescence, and the developing brain has to cope with its deleterious effects. Although brain adaptation to the disease may not result in evident cognitive dysfunction, the effects of T1D on neurodevelopment could alter the pattern of BOLD fMRI activation. The aim of this study was to explore the neural BOLD activation pattern in patients with T1D versus that of healthy matched controls while performing two visuospatial working memory tasks, which included a pair of assignments administered through a block design. In the first task (condition A), the subjects were shown a trial sequence of 3 or 4 white squares positioned pseudorandomly around a fixation point on a black background. After a fixed delay, a second corresponding sequence of 3 or 4 red squares was shown that either resembled (direct, 50%) or differed from (50%) the previous stimulation order. The subjects were required to press one button if the two spatial sequences were identical or a second button if they were not. In condition B, the participants had to determine whether the second sequence of red squares appeared in inverse order (inverse, 50%) or not (50%) and respond by pressing a button. If the latter sequence followed an order distinct from the inverse sequence, the subjects were instructed to press a different button. Sixteen patients with normal IQ and without diabetes complications and 16 healthy control subjects participated in the study. In the behavioral analysis, there were no significant differences between the groups in the pure visuo-spatial task, but the patients with diabetes exhibited poorer performance in the task with verbal stimuli (p < .001). However, fMRI analyses revealed that the patients with T1D showed significantly increased activation in the prefrontal inferior cortex, subcortical regions and the cerebellum (in general p < .001). These different activation patterns could be due to adaptive compensation mechanisms that are devoted to improving efficiency while solving more complex cognitive tasks.
Collapse
Affiliation(s)
- Joan Guàrdia-Olmos
- Facultat de Psicologia, Universitat de Barcelona, Institut de Neurociències. Institute of Complex Systems (UBICS), Passeig de la Vall d’Hebron 171, Barcelona, Spain
| | - Geisa B. Gallardo-Moreno
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Colonia Arcos Vallarta, Guadalajara, Jalisco, Mexico
| | - Esteve Gudayol-Ferré
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Universitat de Barcelona, Institut de Neurociències. Institute of Complex Systems (UBICS), Passeig de la Vall d’Hebron 171, Barcelona, Spain
| | - Andrés A. González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Colonia Arcos Vallarta, Guadalajara, Jalisco, Mexico
| |
Collapse
|
20
|
Saggar M, Tsalikian E, Mauras N, Mazaika P, White NH, Weinzimer S, Buckingham B, Hershey T, Reiss AL. Compensatory Hyperconnectivity in Developing Brains of Young Children With Type 1 Diabetes. Diabetes 2017; 66:754-762. [PMID: 27702833 PMCID: PMC5319714 DOI: 10.2337/db16-0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
Sustained dysregulation of blood glucose (hyper- or hypoglycemia) associated with type 1 diabetes (T1D) has been linked to cognitive deficits and altered brain anatomy and connectivity. However, a significant gap remains with respect to how T1D affects spontaneous at-rest connectivity in young developing brains. Here, using a large multisite study, resting-state functional MRI data were examined in young children with T1D (n = 57; mean age = 7.88 years; 27 females) as compared with age-matched control subjects without diabetes (n = 26; mean age = 7.43 years; 14 females). Using both model-driven seed-based analysis and model-free independent component analysis and controlling for age, data acquisition site, and sex, converging results were obtained, suggesting increased connectivity in young children with T1D as compared with control subjects without diabetes. Further, increased connectivity in children with T1D was observed to be positively associated with cognitive functioning. The observed positive association of connectivity with cognitive functioning in T1D, without overall group differences in cognitive function, suggests a putative compensatory role of hyperintrinsic connectivity in the brain in children with this condition. Altogether, our study attempts to fill a critical gap in knowledge regarding how dysglycemia in T1D might affect the brain's intrinsic connectivity at very young ages.
Collapse
Affiliation(s)
- Manish Saggar
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA
| | - Eva Tsalikian
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Nelly Mauras
- Pediatric Endocrinology, Nemours Children's Health System, Jacksonville, FL
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA
| | - Neil H White
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Stuart Weinzimer
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
21
|
Hwang M, Tudorascu DL, Nunley K, Karim H, Aizenstein HJ, Orchard TJ, Rosano C. Brain Activation and Psychomotor Speed in Middle-Aged Patients with Type 1 Diabetes: Relationships with Hyperglycemia and Brain Small Vessel Disease. J Diabetes Res 2016; 2016:9571464. [PMID: 26998494 PMCID: PMC4779538 DOI: 10.1155/2016/9571464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023] Open
Abstract
Slower psychomotor speed is very common in patients with type 1 diabetes mellitus (T1D), but the underlying mechanisms are not clear. We propose that hyperglycemia is associated with slower psychomotor speed via disruption of brain activation. Eighty-five adults (48% women, mean age: 49.0 years, mean duration: 40.8) with childhood onset T1D were recruited for this cross-sectional study. Median response time in seconds (longer = worse performance) and brain activation were measured while performing a psychomotor speed task. Exposure to hyperglycemia, measured as glycosylated hemoglobin A1c, was associated with longer response time and with higher activation in the inferior frontal gyrus and primary sensorimotor and dorsal cingulate cortex. Higher activation in inferior frontal gyrus, primary sensorimotor cortex, thalamus, and cuneus was related to longer response times; in contrast, higher activation in the superior parietal lobe was associated with shorter response times. Associations were independent of small vessel disease in the brain or other organs. In this group of middle-aged adults with T1D, the pathway linking chronic hyperglycemia with slower processing speed appears to include increased brain activation, but not small vessel disease. Activation in the superior parietal lobe may compensate for dysregulation in brain activation in the presence of hyperglycemia.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, University of Pittsburgh, 3600 Forbes Avenue, Plaza Level, Pittsburgh, PA 15213, USA
| | - Dana L. Tudorascu
- Department of Internal Medicine, Department of Psychiatry, and Department of Biostatistics, University of Pittsburgh, 200 Meyran Avenue, Suite 326, Pittsburgh, PA 15213, USA
| | - Karen Nunley
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 443, Pittsburgh, PA 15213, USA
| | - Helmet Karim
- Department of Bioengineering, University of Pittsburgh, 253 Sterling Plaza, Pittsburgh, PA 15213, USA
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Trevor J. Orchard
- Department of Epidemiology, University of Pittsburgh, 3512 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 467, Pittsburgh, PA 15213, USA
- *Caterina Rosano:
| |
Collapse
|
22
|
Gudayol-Ferré E, Peró-Cebollero M, González-Garrido AA, Guàrdia-Olmos J. Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Front Hum Neurosci 2015; 9:582. [PMID: 26578927 PMCID: PMC4630287 DOI: 10.3389/fnhum.2015.00582] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/06/2015] [Indexed: 01/18/2023] Open
Abstract
Depression is a mental illness that presents alterations in brain connectivity in the Default Mode Network (DMN), the Affective Network (AN) and other cortical-limbic networks, and the Cognitive Control Network (CCN), among others. In recent years the interest in the possible effect of the different antidepressant treatments on functional connectivity has increased substantially. The goal of this paper is to conduct a systematic review of the studies on the relationship between the treatment of depression and brain connectivity. Nineteen studies were found in a systematic review on this topic. In all of them, there was improvement of the clinical symptoms after antidepressant treatment. In 18 out of the 19 studies, clinical improvement was associated to changes in brain connectivity. It seems that both DMN and the connectivity between cortical and limbic structures consistently changes after antidepressant treatment. However, the current evidence does not allow us to assure that the treatment of depression leads to changes in the CCN. In this regard, some papers report a positive correlation between changes in brain connectivity and improvement of depressive symptomatology, particularly when they measure cortical-limbic connectivity, whereas the changes in DMN do not significantly correlate with clinical improvement. Finally, some papers suggest that changes in connectivity after antidepressant treatment might be partly related to the mechanisms of action of the treatment administered. This effect has been observed in two studies with stimulation treatment (one with rTMS and one with ECT), and in two papers that administered three different pharmacological treatments. Our review allows us to make a series of recommendations that might guide future researchers exploring the effect of anti-depression treatments on brain connectivity.
Collapse
Affiliation(s)
- Esteve Gudayol-Ferré
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo Morelia, Mexico
| | - Maribel Peró-Cebollero
- Departament de Metodologia de les Ciències del Comportament, Facultat de Psicologia, Institut de Recerca en Cervell, Cognició i Conducta IR3C, Universitat de Barcelona Barcelona, Spain
| | | | - Joan Guàrdia-Olmos
- Departament de Metodologia de les Ciències del Comportament, Facultat de Psicologia, Institut de Recerca en Cervell, Cognició i Conducta IR3C, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|