1
|
Cheon H, Chen L, Kim SA, Gelvosa MN, Hong JP, Jeon JY, Suh HP. Improved lymphangiogenesis around vascularized lymph node flaps by periodic injection of hyaluronidase in a rodent model. Sci Rep 2024; 14:24430. [PMID: 39424818 PMCID: PMC11489753 DOI: 10.1038/s41598-024-74414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
Vascularized lymph node transfer (VLNT) is an advanced surgical approach for secondary lymphedema (SLE) treatment, but tissue fibrosis around the lymph node flap (VLNF) inhibiting lymphangiogenesis is the biggest challenge undermining its therapeutic efficacy. This study explored the effects of periodic hyaluronidase (HLD) injection in reducing fibrosis and promoting lymphangiogenesis in 52 Sprague-Dawley rats with a VLNF over 13 weeks. The results demonstrated that HLD administration significantly enhanced swelling reduction, lymphatic drainage efficiency, and lymphatic vessel regeneration, with up to a 26% decrease in tissue fibrosis around the VLNF. These findings suggest that combining VLNT with periodic injections of HLD could substantially improve SLE treatment outcomes in clinical settings. It offers a promising direction for future therapeutic strategies and drug development aimed at increasing the efficacy of surgical treatment for SLE patients.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Rehabilitation Research Center, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Linhai Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Sang Ah Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ma Nessa Gelvosa
- Physical Medicine and Rehabilitation Physician, Adela Serra-Ty Memorial Medical Center, Caraga, Philippines
| | - Joon Pio Hong
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Yong Jeon
- Rehabilitation Research Center, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Hyunsuk Peter Suh
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hellman U, Rosendal E, Lehrstrand J, Henriksson J, Björsell T, Wennemo A, Hahn M, Österberg B, Dorofte L, Nilsson E, Forsell MNE, Smed-Sörensen A, Lange A, Karlsson MG, Ahlm C, Blomberg A, Cajander S, Ahlgren U, Lind A, Normark J, Överby AK, Lenman A. SARS-CoV-2 infection induces hyaluronan production in vitro and hyaluronan levels in COVID-19 patients relate to morbidity and long-term lung impairment: a prospective cohort study. mBio 2024; 15:e0130324. [PMID: 39302125 PMCID: PMC11492986 DOI: 10.1128/mbio.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
We previously demonstrated that the lungs of deceased COVID-19 patients were filled with a clear hydrogel consisting of hyaluronan (HA). In this translational study, we investigated the role of HA at all stages of COVID-19 disease to map the consequences of elevated HA on morbidity and identify the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced HA production. A reduced alveolar surface area was observed in the lungs of deceased COVID-19 patients compared to healthy controls, as visualized by a 3D rendering of lung morphology using light-sheet fluorescence microscopy. We confirmed the presence of HA in lung biopsies and found large quantities of proinflammatory fragmented HA. The association of systemic HA in blood plasma and disease severity was assessed in patients with mild (WHO Clinical Progression Scale, WHO-CPS, 1-5) and severe COVID-19 (WHO-CPS, 6-9) during the acute and convalescent phases and related to lung function. We found that systemic levels of HA were high during acute COVID-19 disease, remained elevated during convalescence, and were associated with a reduced diffusion capacity. In vitro 3D-lung models, differentiated from primary human bronchial epithelial cells, were used to study the effects of SARS-CoV-2 infection on HA metabolism, and transcriptomic analyses revealed a dysregulation of HA synthases and hyaluronidases, both contributing to increased HA in apical secretions. Furthermore, corticosteroid treatment reduced the inflammation and downregulated HA synthases. Our findings demonstrate that HA plays a role in COVID-19 morbidity and that sustained elevated HA concentrations may contribute to long-term respiratory impairment.IMPORTANCEThis study provides insights into the role of hyaluronan (HA) in the severity and long-term impact of COVID-19 on lung function. Through extensive morphological examination of lung tissues and a multicenter study, we identified that HA levels are significantly elevated in COVID-19 patients, correlating with a reduced lung diffusion capacity during convalescence. Using a 3D-lung model, we further uncovered how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection causes a dysregulated HA metabolism, leading to increased HA production. Our findings provide valuable insights into the pathogenesis of SARS-CoV-2 and suggest that targeting HA metabolism could offer new therapeutic avenues for managing COVID-19, particularly to prevent long-term lung impairment. Additionally, HA holds potential as a biomarker for predicting disease severity, which could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Ebba Rosendal
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Joakim Lehrstrand
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Johan Henriksson
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
- Department of
Molecular Biology, Umeå Centre for Microbial Research (UCMR),
Umeå University,
Umeå, Sweden
- IceLab, Umeå
University, Umeå,
Sweden
| | - Tove Björsell
- Centre for Clinical
Research and Education, Region
Värmland, Karlstad,
Sweden
| | - Alfred Wennemo
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Max Hahn
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Björn Österberg
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Luiza Dorofte
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Emma Nilsson
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | | | - Anna Smed-Sörensen
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Anna Lange
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Mats G. Karlsson
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Clas Ahlm
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Anders Blomberg
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Sara Cajander
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Ulf Ahlgren
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Alicia Lind
- Department of
Surgical and Perioperative Sciences, Umeå
University, Umeå,
Sweden
| | - Johan Normark
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Wallenberg Centre
for Molecular Medicine, Umeå
University, Umeå,
Sweden
| | - Anna K. Överby
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Annasara Lenman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Markovic J, Li R, Khanal R, Peng Q, Möbus S, Yuan Q, Engel B, Taubert R, Vondran FWR, Bantel H, Singh MK, Cantz T, Büning H, Wedemeyer H, Ott M, Balakrishnan A, Sharma AD. Identification and functional validation of miR-190b-5p and miR-296-3p as novel therapeutic attenuators of liver fibrosis. J Hepatol 2024:S0168-8278(24)02492-9. [PMID: 39218230 DOI: 10.1016/j.jhep.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Liver fibrosis and its end-stage form known as cirrhosis contributes to millions of deaths annually. The lack of robust anti-fibrotic molecules is in part attributed to absence of any functional screens to identify molecular regulators using patient-derived primary human hepatic myofibroblasts, which are key drivers of fibrosis. METHODS Here, to identify robust regulators of fibrosis, we performed functional microRNA screenings in primary human hepatic myofibroblasts followed by in vivo validation in three independent mouse models of fibrosis (toxin, cholestasis and MASH). RESULTS We identified miR-190b-5p and miR-296-3p as robust anti-fibrotic miRNAs that suppress liver fibrosis. Notably, the expression of miR-190b-5p and miR-296-3p was found significantly reduced in human livers with fibrosis. Mechanistically, we discovered hyaluronan synthase 2 (HAS2) and integrin alpha-6 (ITGA6) as novel targets of miR-190b-5p and miR-296-3p, respectively. Furthermore, we demonstrated that the anti-fibrotic properties of miR-190b-5p and miR-296-3p are, at least in part, dependent on HAS2 and ITGA6. Finally, we showed the anti-fibrotic function of both miRNAs in a human liver bud model, which mimics multiple features of human liver. CONCLUSIONS Collectively, in our study we discovered miR-190b-5p and miR-296-3p as two novel anti-fibrotic miRNAs, and that HAS2 and ITGA6 contribute to miR-190b-5p- and miR-296-3p-mediated inhibition of liver fibrosis. These results provide a foundation for future research to explore the clinical utility of miR-190b-5p and miR-296-3p in liver injuries with fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis and cirrhosis contribute to millions of deaths world-wide and, till date, remain as unmet medical needs. In this study, we discovered two microRNAs, miR-190b-5p and miR-296-3p, which suppress liver fibrosis in preclinical mouse models and a human liver bud model. Our promising results encourage further studies that aim to develop both miRNAs for the treatment of liver fibrosis in patients.
Collapse
Affiliation(s)
- Jovana Markovic
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qi Peng
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Office 08-15, Singapore 169857, Singapore
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Finch RH, Vitry G, Siew K, Walsh SB, Behesti A, Hardiman G, da Silveira WA. Spaceflight causes strain dependent gene expression changes associated with lipid and extracellular matrix dysregulation in the mouse kidney in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584781. [PMID: 38559158 PMCID: PMC10979940 DOI: 10.1101/2024.03.13.584781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to development of new countermeasures against kidney disease in astronauts and people here on Earth.
Collapse
|
6
|
Lund LM, Marchi AN, Alderfer L, Hall E, Hammer J, Trull KJ, Hanjaya-Putra D, White KA. Intracellular pH dynamics respond to microenvironment stiffening and mediate vasculogenic mimicry through β-catenin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597454. [PMID: 38895391 PMCID: PMC11185592 DOI: 10.1101/2024.06.04.597454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dysregulated intracellular pH (pHi) dynamics and an altered tumor microenvironment have emerged as drivers of cancer cell phenotypes. However, the molecular integration between the physical properties of the microenvironment and dynamic intracellular signaling responses remains unclear. Here, we use two metastatic cell models, one breast and one lung, to assess pHi response to varying extracellular matrix (ECM) stiffness. To experimentally model ECM stiffening, we use two tunable-stiffness hydrogel systems: Matrigel and hyaluronic acid (HA) gels, which mimic the increased protein secretion and crosslinking associated with ECM stiffening. We find that single-cell pHi decreases with increased ECM stiffness in both hydrogel systems and both metastatic cell types. We also observed that stiff ECM promotes vasculogenic mimicry (VM), a phenotype associated with metastasis and resistance. Importantly, we show that decreased pHi is both a necessary and sufficient mediator of VM, as raising pHi on stiff ECM reduces VM phenotypes and lowering pHi on soft ECM drives VM. We characterize β-catenin as a pH-dependent molecular mediator of pH-dependent VM, where stiffness-driven changes in β-catenin abundance can be overridden by increased pHi. We uncover a dynamic relationship between matrix stiffness and pHi, thus suggesting pHi dynamics can override mechanosensitive cell responses to the extracellular microenvironment.
Collapse
Affiliation(s)
- Leah M Lund
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Angelina N Marchi
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Laura Alderfer
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Current: Vivodyne, Suite 775 601 Walnut Street, Philadelphia PA 19106 USA
| | - Eva Hall
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
| | - Jacob Hammer
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Donny Hanjaya-Putra
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556 USA
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| |
Collapse
|
7
|
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine 2024; 103:105089. [PMID: 38579363 PMCID: PMC11002813 DOI: 10.1016/j.ebiom.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Advances in radiation techniques have enabled the precise delivery of higher doses of radiotherapy to tumours, while sparing surrounding healthy tissues. Consequently, the incidence of radiation toxicities has declined, and will likely continue to improve as radiotherapy further evolves. Nonetheless, ionizing radiation elicits tissue-specific toxicities that gradually develop into radiation-induced fibrosis, a common long-term side-effect of radiotherapy. Radiation fibrosis is characterized by an aberrant wound repair process, which promotes the deposition of extensive scar tissue, clinically manifesting as a loss of elasticity, tissue thickening, and organ-specific functional consequences. In addition to improving the existing technologies and guidelines directing the administration of radiotherapy, understanding the pathogenesis underlying radiation fibrosis is essential for the success of cancer treatments. This review integrates the principles for radiotherapy dosimetry to minimize off-target effects, the tissue-specific clinical manifestations, the key cellular and molecular drivers of radiation fibrosis, and emerging therapeutic opportunities for both prevention and treatment.
Collapse
Affiliation(s)
- Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Yin Yee Kwan
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States of America
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Luo H, Lou KC, Xie LY, Zeng F, Zou JR. Pharmacotherapy of urethral stricture. Asian J Androl 2024; 26:1-9. [PMID: 37738151 PMCID: PMC10846832 DOI: 10.4103/aja202341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/24/2023] Open
Abstract
Urethral stricture is characterized by the chronic formation of fibrous tissue, leading to the narrowing of the urethral lumen. Despite the availability of various endoscopic treatments, the recurrence of urethral strictures remains a common challenge. Postsurgery pharmacotherapy targeting tissue fibrosis is a promising option for reducing recurrence rates. Although drugs cannot replace surgery, they can be used as adjuvant therapies to improve outcomes. In this regard, many drugs have been proposed based on the mechanisms underlying the pathophysiology of urethral stricture. Ongoing studies have obtained substantial progress in treating urethral strictures, highlighting the potential for improved drug effectiveness through appropriate clinical delivery methods. Therefore, this review summarizes the latest researches on the mechanisms related to the pathophysiology of urethral stricture and the drugs to provide a theoretical basis and new insights for the effective use and future advancements in drug therapy for urethral stricture.
Collapse
Affiliation(s)
- Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ke-Cheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ling-Yu Xie
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|
9
|
Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol 2023; 143:1877-1885. [PMID: 37452808 DOI: 10.1016/j.jid.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses. Currently, the best-characterized PRRs include, in addition to TLRs, nucleotide-binding oligomerization domain-like receptors, RIG-I-like RNA helicases, C-type lectin receptors, and many more. Systemic sclerosis (SSc) is a chronic autoimmune condition characterized by inflammation and progressive fibrosis in multiple organs. Using an unbiased survey for SSc-associated DAMPs, we have identified the ECM glycoproteins fibronectin-containing extra domain A and tenascin C as the most highly upregulated in SSc skin and lung biopsies. These DAMPs activate TLR4 on resident stromal cells to elicit profibrotic responses and sustained myofibroblasts activation resulting in progressive fibrosis. This review summarizes the current understanding of the complex functional roles of DAMPs in the progression and failure of resolution of fibrosis in general, with a particular focus on SSc, and considers viable therapeutic approaches targeting DAMPs.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Zhang JL, Du C, Poon CCW, He MC, Wong MS, Wang NN, Zhang Y. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115898. [PMID: 36372193 DOI: 10.1016/j.jep.2022.115898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-β-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chen Du
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
11
|
The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
|
12
|
Menko AS, Romisher A, Walker JL. The Pro-fibrotic Response of Mesenchymal Leader Cells to Lens Wounding Involves Hyaluronic Acid, Its Receptor RHAMM, and Vimentin. Front Cell Dev Biol 2022; 10:862423. [PMID: 35386200 PMCID: PMC8977891 DOI: 10.3389/fcell.2022.862423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic Acid/Hyaluronan (HA) is a major component of the provisional matrix deposited by cells post-wounding with roles both in regulating cell migration to repair a wound and in promoting a fibrotic outcome to wounding. Both are mediated through its receptors CD44 and RHAMM. We now showed that HA is present in the provisional matrix assembled on the substrate surface in a lens post-cataract surgery explant wound model in which mesenchymal leader cells populate the wound edges to direct migration of the lens epithelium across the adjacent culture substrate onto which this matrix is assembled. Inhibiting HA expression with 4-MU blocked assembly of FN-EDA and collagen I by the wound-responsive mesenchymal leader cells and their migration. These cells express both the HA receptors CD44 and RHAMM. CD44 co-localized with HA at their cell-cell interfaces. RHAMM was predominant in the lamellipodial protrusions extended by the mesenchymal cells at the leading edge, and along HA fibrils organized on the substrate surface. Within a few days post-lens wounding the leader cells are induced to transition to αSMA+ myofibroblasts. Since HA/RHAMM is implicated in both cell migration and inducing fibrosis we examined the impact of blocking HA synthesis on myofibroblast emergence and discovered that it was dependent on HA. While RHAMM has not been previously linked to the intermediate filament protein vimentin, our studies with these explant cultures have shown that vimentin in the cells’ lamellipodial protrusions regulate their transition to myofibroblast. PLA studies now revealed that RHAMM was complexed with both HA and vimentin in the lamellipodial protrusions of leader cells, implicating this HA/RHAMM/vimentin complex in the regulation of leader cell function post-wounding, both in promoting cell migration and in the transition of these cells to myofibroblasts. These results increase our understanding of how the post-wounding matrix environment interacts with receptor/cytoskeletal complexes to determine whether injury outcomes are regenerative or fibrotic.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alison Romisher
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2022; 37:735-744. [PMID: 34009465 PMCID: PMC8960635 DOI: 10.1007/s00467-021-05113-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, 77030, TX, USA
- Department of Bioengineering, Rice University, Houston, 77030, TX, USA
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling Yu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Schmaus A, Rothley M, Schreiber C, Möller S, Roßwag S, Franz S, Garvalov BK, Thiele W, Spataro S, Herskind C, Prunotto M, Anderegg U, Schnabelrauch M, Sleeman J. Sulfated hyaluronic acid inhibits the hyaluronidase CEMIP and regulates the HA metabolism, proliferation and differentiation of fibroblasts. Matrix Biol 2022; 109:173-191. [DOI: 10.1016/j.matbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022]
|
15
|
Lee JH, Lee KE, Nam OH, Chae YK, Lee MH, Kweon DK, Kim MS, Lee HS, Choi SC. Orodispersible hyaluronic acid film delivery for oral wound healing in rats. J Dent Sci 2022; 17:1595-1603. [PMID: 36299335 PMCID: PMC9588893 DOI: 10.1016/j.jds.2022.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background/purpose Oral wound healing undergoes a dynamic process of oral environment. This study aimed to investigate the effects of hyaluronic acid (HA) film on oral wound healing in a rat model. Materials and methods A total of 60 rats with tongue wounds (5 mm in diameter) were randomly divided into control (n = 20), HA gel (n = 20), and HA film groups (n = 20). The animals were sacrificed on either 3 or 7 days after the experiment. Clinical, histological, and quantitative reverse transcriptase-polymerase chain reaction analysis were performed to evaluate the healing rate, inflammation, re-epithelialization, and gene expression of wound healing biomarkers. Results The healing rates of HA gel (84.4 ± 9.2%) and HA film (74.0 ± 15.0%) were significantly higher than that of the control (51.7 ± 16.9%) on day 7 (P < 0.001 and P = 0.002, respectively). Histological analysis revealed no significant differences between the groups on day 3. On day 7, only the HA film showed significant improvement in inflammation (P = 0.038) and re-epithelialization (P = 0.011) compared to the control. Regarding wound healing biomarkers, both HA gel and HA film groups showed lower level of COL1α1 expression on day 3 compared to the control. Conclusion Within the limits of this study, HA film was found to be effective for oral wound healing, particularly for re-epithelialization. This finding suggests that HA film delivery can be beneficial not only for clinical convenience but also for promoting oral wound healing.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ko Eun Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
- Corresponding author. Department of Pediatric Dentistry, Kyung Hee University School of Dentistry, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| | - Yong Kwon Chae
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | | | - Mi Sun Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
- Department of Pediatric Dentistry, Kyung Hee University Dental Hospital at Gangdong, Seoul, South Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Duroux D, Climente-González H, Azencott CA, Van Steen K. Interpretable network-guided epistasis detection. Gigascience 2022; 11:6521880. [PMID: 35134928 PMCID: PMC8848319 DOI: 10.1093/gigascience/giab093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
Background Detecting epistatic interactions at the gene level is essential to understanding the biological mechanisms of complex diseases. Unfortunately, genome-wide interaction association studies involve many statistical challenges that make such detection hard. We propose a multi-step protocol for epistasis detection along the edges of a gene-gene co-function network. Such an approach reduces the number of tests performed and provides interpretable interactions while keeping type I error controlled. Yet, mapping gene interactions into testable single-nucleotide polymorphism (SNP)-interaction hypotheses, as well as computing gene pair association scores from SNP pair ones, is not trivial. Results Here we compare 3 SNP-gene mappings (positional overlap, expression quantitative trait loci, and proximity in 3D structure) and use the adaptive truncated product method to compute gene pair scores. This method is non-parametric, does not require a known null distribution, and is fast to compute. We apply multiple variants of this protocol to a genome-wide association study dataset on inflammatory bowel disease. Different configurations produced different results, highlighting that various mechanisms are implicated in inflammatory bowel disease, while at the same time, results overlapped with known disease characteristics. Importantly, the proposed pipeline also differs from a conventional approach where no network is used, showing the potential for additional discoveries when prior biological knowledge is incorporated into epistasis detection.
Collapse
Affiliation(s)
- Diane Duroux
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liège, 4000 Liège, Belgium, 11 Liège 4000, Belgium
| | - Héctor Climente-González
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France.,High-Dimensional Statistical Modeling Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo 103-0027, Japan
| | - Chloé-Agathe Azencott
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75006 Paris, France
| | - Kristel Van Steen
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liège, 4000 Liège, Belgium, 11 Liège 4000, Belgium.,BIO3 - Systems Medicine, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium, 49 3000 Leuven, Belgium
| |
Collapse
|
17
|
Mosca A, Mantovani A, Crudele A, Panera N, Comparcola D, De Vito R, Bianchi M, Byrne CD, Targher G, Alisi A. Higher Levels of Plasma Hyaluronic Acid and N-terminal Propeptide of Type III Procollagen Are Associated With Lower Kidney Function in Children With Non-alcoholic Fatty Liver Disease. Front Pediatr 2022; 10:917714. [PMID: 35733806 PMCID: PMC9207333 DOI: 10.3389/fped.2022.917714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Hyaluronic acid (HA) and N-terminal propeptide of type III procollagen (PIIINP) are two non-invasive biomarkers of liver fibrosis in non-alcoholic fatty liver disease (NAFLD). We examined the relationships of plasma levels of HA and PIIINP with kidney function in children with NAFLD. METHODS Plasma HA and PIIINP levels were measured using two commercially available enzyme-linked immunosorbent assay kits in a cohort of 106 Caucasian overweight or obese children with biopsy-proven NAFLD. Glomerular filtration rate (eGFR) was estimated using the Bedside Schwartz equation. Genotyping for the patatin-like phospholipase domain-containing protein-3 (PNPLA3) rs738409 variant was performed using an allelic discrimination assay. RESULTS Children with fibrosis F2 had significantly higher plasma PIIINP and HA levels than those with F0 or F1 fibrosis. Liver fibrosis was positively associated with plasma HA and PIIINP, as well as with the presence of the risk allele G of PNPLA3 rs738409 variant, and negatively with eGFR. Moreover, eGFR showed significant inverse associations with HA and PIIINP levels, as well as the presence of G of PNPLA3 rs738409, and liver fibrosis stage. Notably, our multivariable regression models showed that higher plasma PIIINP (standardized beta coefficient: -0.206, P = 0.011) and HA levels (standardized beta coefficient: -0.531, P < 0.0001) were associated with lower eGFR values, even after adjustment for age, sex, systolic blood pressure, PNPLA3 rs738409 genotype, and any stage of liver fibrosis. CONCLUSIONS Higher levels of HA and PIIINP were associated with lower eGFR values in Caucasian children with biopsy-proven NAFLD, independently of PNPLA3 rs738409 genotype and other potential confounding factors.
Collapse
Affiliation(s)
- Antonella Mosca
- Hepatology, Gastroenterology and Nutrition Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donatella Comparcola
- Hepatology, Gastroenterology and Nutrition Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita De Vito
- Unit of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Bianchi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, United Kingdom.,Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Mukkamala R, Lindeman SD, Kragness KA, Shahriar I, Srinivasarao M, Low PS. Design and Characterization of Fibroblast Activation Protein Targeted Pan-Cancer Imaging Agent for Fluorescence-Guided Surgery of Solid Tumors. J Mater Chem B 2022; 10:2038-2046. [PMID: 35255116 DOI: 10.1039/d1tb02651h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-targeted fluorescent dyes have been shown to significantly improve a surgeon's ability to locate and resect occult malignant lesions, thereby enhancing a patient’s chances of long term survival. Although several...
Collapse
Affiliation(s)
- Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Kate A Kragness
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Imrul Shahriar
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
19
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
20
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
21
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
22
|
Matsushita K, Toyoda T, Yamada T, Morikawa T, Ogawa K. Specific expression of survivin, SOX9, and CD44 in renal tubules in adaptive and maladaptive repair processes after acute kidney injury in rats. J Appl Toxicol 2020; 41:607-617. [PMID: 32969066 DOI: 10.1002/jat.4069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is thought to be a reversible condition; however, growing evidence has suggested that AKI may be associated with subsequent development of chronic kidney disease. Although renal tubules have intrinsic regeneration capacity, disruption of the regeneration mechanisms leads to irreversible interstitial fibrosis. In this study, we investigated immunohistochemical markers of renal tubules in adaptive and maladaptive repair processes to predict AKI reversibility. Histopathological analysis demonstrated that regenerative tubules and dilated tubules were observed in the kidneys of AKI model rats after ischemia/reperfusion (I/R). Regenerative tubules gradually redifferentiated after I/R, whereas dilated tubules exhibited no tendency for redifferentiation. In fibrotic areas of the kidney in renal fibrosis model rats subjected to I/R, renal tubules were dilated or atrophied. There results suggested that the histopathological features of renal tubules in the maladaptive repair were dilation or atrophy. From microarray data of regenerative tubules, survivin, SOX9, and CD44 were extracted as candidate markers. Immunohistochemical analysis demonstrated that survivin and SOX9 were expressed in regenerative tubules, whereas SOX9 was also detected in renal tubules in fibrotic areas. These findings indicated that survivin and SOX9 contributed to renal tubular regeneration, whereas sustained SOX9 expression may be associated to fibrosis. CD44 was expressed in dilated tubules in the kidneys of AKI model rats and in the tubules of fibrotic areas of renal fibrosis model rats, suggesting that CD44 was expressed in renal tubules in maladaptive repair. Thus, these factors could be useful markers for detecting disruption of the regenerative mechanisms of renal tubules.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
23
|
Lierova A, Kasparova J, Pejchal J, Kubelkova K, Jelicova M, Palarcik J, Korecka L, Bilkova Z, Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front Pharmacol 2020; 11:1199. [PMID: 32903478 PMCID: PMC7435052 DOI: 10.3389/fphar.2020.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
24
|
Baker SG. Rethinking carcinogenesis: The detached pericyte hypothesis. Med Hypotheses 2020; 144:110056. [PMID: 32758893 DOI: 10.1016/j.mehy.2020.110056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
The limiting step in cancer prevention is a lack of understanding of cancer biology. This limitation is exacerbated by a focus on the dominant somatic mutation theory (that driver mutations cause cancer) with little consideration of alternative theories of carcinogenesis. The recently proposed detached pericyte hypothesis explains many puzzling phenomena in cancer biology for which the somatic mutation theory offers no obvious explanation. These puzzling phenomena include foreign-body tumorigenesis, the link between denervation and cancer, tumors in transgenic mice that lack the inducing mutation, and non-genotoxic carcinogens. The detached pericyte hypothesis postulates that (1) a carcinogen or chronic inflammation causes pericytes to detach from blood cell walls, (2) some detached pericytes develop into myofibroblasts which alter the extracellular matrix (3) some detached pericytes develop into mesenchymal stem cells, (4) some of the mesenchymal stem cells adhere to the altered extracellular matrix (5) the altered extracellular matrix disrupts regulatory controls, causing the adjacent mesenchymal stem cells to develop into tumors. Results from experimental studies support the detached pericyte hypothesis. If the detached pericyte hypothesis is correct, pericytes should play a key role in metastasis - a testable prediction. Recent experimental results confirm this prediction and motivate a proposed experiment to partially test the detached pericyte hypothesis. If the detached pericyte hypothesis is correct, it could lead to new strategies for cancer prevention.
Collapse
Affiliation(s)
- Stuart G Baker
- Division of Cancer Prevention, National Cancer Institute, United States.
| |
Collapse
|
25
|
Wang X, Balaji S, Steen EH, Blum AJ, Li H, Chan CK, Manson SR, Lu TC, Rae MM, Austin PF, Wight TN, Bollyky PL, Cheng J, Keswani SG. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight 2020; 5:136345. [PMID: 32396531 DOI: 10.1172/jci.insight.136345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis features exaggerated inflammation, extracellular matrix (ECM) deposition, and peritubular capillary loss. We previously showed that IL-10 stimulates high-molecular weight hyaluronan (HMW-HA) expression by fibroblasts, and we hypothesize that HMW-HA attenuates renal fibrosis by reducing inflammation and ECM remodeling. We studied the effects of IL-10 overexpression on HA production and scarring in mouse models of unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R) to investigate whether IL-10 antifibrotic effects are HA dependent. C57BL/6J mice were fed with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU), before UUO. We observed that in vivo injury increased intratubular spaces, ECM deposition, and HA expression at day 7 and onward. IL-10 overexpression reduced renal fibrosis in both models, promoted HMW-HA synthesis and stability in UUO, and regulated cell proliferation in I/R. 4-MU inhibited IL-10-driven antifibrotic effects, indicating that HMW-HA is necessary for cytokine-mediated reduction of fibrosis. We also found that IL-10 induces in vitro HMW-HA production by renal fibroblasts via STAT3-dependent upregulation of HA synthase 2. We propose that IL-10-induced HMW-HA synthesis plays cytoprotective and antifibrotic roles in kidney injury, thereby revealing an effective strategy to attenuate renal fibrosis in obstructive and ischemic pathologies.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Emily H Steen
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Alexander J Blum
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Hui Li
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Scott R Manson
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas C Lu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Meredith M Rae
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Paul F Austin
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Guo Y, Li H, Chen X, Yang H, Guan H, He X, Chen Y, Pokharel S, Xiao H, Li Y. Novel Roles of Chloroquine and Hydroxychloroquine in Graves' Orbitopathy Therapy by Targeting Orbital Fibroblasts. J Clin Endocrinol Metab 2020; 105:5813893. [PMID: 32249902 PMCID: PMC7183395 DOI: 10.1210/clinem/dgaa161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Graves' orbitopathy (GO) causes infiltrative exophthalmos by inducing excessive proliferation, adipogenesis, and glycosaminoglycan production in orbital fibroblasts (OFs). Interference with OF autophagy is a potential therapy for proptosis. OBJECTIVES Here, we aimed to evaluate the effects of chloroquine (CQ) and hydroxychloroquine (HCQ), the autophagy inhibitors commonly used in clinical practice, on OFs. DESIGN/SETTING/PARTICIPANTS OFs isolated from patients with GO (GO-OFs) or control individuals (non-GO-OFs) were cultured in proliferation medium (PM) or subjected to differentiation medium. OFs were treated with CQ or HCQ (0, 0.5, 2, and 10 μM), and subsequently examined in vitro. MAIN OUTCOME MEASURES CCK-8, EdU incorporation, and flow cytometry assays were used to assess cellular viability. Adipogenesis was assessed with Western blot analysis, real-time polymerase chain reaction (PCR) , and Oil Red O staining. Hyaluronan production was determined by real-time PCR and enzyme-linked immunosorbent assay. Autophagy flux was detected through red fluorescent protein (RFP)-green fluorescent protein (GFP)-LC3 fluorescence staining and Western blot analyses. RESULTS CQ/HCQ halted proliferation and adipogenesis in GO-OFs in a concentration-dependent manner through blockage of autophagy, phenotypes that were not detected in non-GO-OFs. The inhibitory effect of CQ/HCQ on hyaluronan secretion of GO-OFs was also concentration dependent, mediated by downregulation of hyaluronan synthase 2 rather than hyaluronidases. Moreover, CQ (10 μM) induced GO-OF apoptosis without aggravating oxidative stress. CONCLUSIONS The antimalarials CQ/HCQ affect proliferation, adipogenesis, and hyaluronan generation in GO-OFs by inhibiting autophagy, providing evidence that they can be used to treat GO as autophagy inhibitors.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueying Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sunil Pokharel
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Correspondence and Reprint Requests: Yanbing Li, M.D., Ph.D., 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China. E-mail:
| |
Collapse
|
27
|
Gene expression in human liver fibrosis associated with Echinococcus granulosus sensu lato. Parasitol Res 2020; 119:2177-2187. [PMID: 32377911 DOI: 10.1007/s00436-020-06700-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic process that occurs in response to chronic liver disease resulting from factors such as chronic infections, autoimmune reactions, allergic responses, toxins, radiation, and infectious agents. Among the infectious agents, multicellular parasites cause chronic inflammation and fibrosis. Twenty-five patients with different stages of cystic echinococcosis (CE) were enrolled in the study. The expression of ACTA2, COL3A1, IFN-γ, MMP2, MMP9, TGF-β1, and TNF-α genes was determined by qRT-PCR in healthy and fibrotic liver tissue of the CE patients. TGF-β1 expression was evaluated by immunohistochemistry, and histology was conducted to assess the development of liver fibrosis. Expression of MMP9, ACTA2, COL3A1, and MMP2 was found significantly higher in the fibrotic tissue compared to healthy tissue. We observed a significant correlation between TGF-β1 and TNF-α gene expressions and liver fibrosis. The mRNA level of IFN-γ was lower in the fibrotic than in the healthy hepatic tissue. Immunohistochemistry analysis revealed TGF-β1 upregulation in the fibrotic tissue. Histology showed inflammation and fibrosis to be significantly higher in the fibrotic tissue. The findings of this study suggest that Echinococcus granulosussensu lato can promotes fibrosis through the overexpression of TGF-β1, MMP9, ACTA2, COL3A1, and MMP2. The downregulation of IFN-γ mRNA in fibrotic samples is probably due to the increased production of TGF-β1 and the suppression of potential anti-fibrotic role of IFN-γ during advanced liver injury caused by E. granulosussensu lato.
Collapse
|
28
|
Kim Y, de la Motte CA. The Role of Hyaluronan Treatment in Intestinal Innate Host Defense. Front Immunol 2020; 11:569. [PMID: 32411124 PMCID: PMC7201044 DOI: 10.3389/fimmu.2020.00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan (HA) is best known as an abundantly present extracellular matrix component found throughout the body of all vertebrates, including humans. Recent evidence, however, has demonstrated benefits of providing HA exogenously as a therapeutic modality for several medical conditions. Here we discuss the effects of providing HA treatment to increase innate host defense of the intestine, elucidate the size specific effects of HA, and discuss the role of various HA receptors as potential mediators of the HA effects in the intestine. This review especially focuses on HA interaction with the epithelium because it is the primary cellular barrier of the intestine and these cells play a critical balancing role between allowing water and nutrient absorption while excluding microbes and harmful dietary metabolites that are constantly in that organ's environment.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
29
|
Quan N, Harris LR, Halder R, Trinidad CV, Johnson BW, Horton S, Kimler BF, Pritchard MT, Duncan FE. Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiation†. Biol Reprod 2020; 102:133-144. [PMID: 31436294 PMCID: PMC7334620 DOI: 10.1093/biolre/ioz164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/08/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Radiation induces ovarian damage and accelerates reproductive aging. Inbred mouse strains exhibit differential sensitivity to lethality induced by total body irradiation (TBI), with the BALB/cAnNCrl (BALB/c) strain being more sensitive than the 129S2/SvPasCrl (129) strain. However, whether TBI-induced ovarian damage follows a similar pattern of strain sensitivity is unknown. To examine this possibility, female BALB/c and 129 mice were exposed to a single dose of 1 Gy (cesium-137 γ) TBI at 5 weeks of age, and ovarian tissue was harvested for histological and gene expression analyses 2 weeks post exposure. Sham-treated mice served as controls. 1 Gy radiation nearly eradicated the primordial follicles and dramatically decreased the primary follicles in both strains. In contrast, larger growing follicles were less affected in the 129 relative to BALB/c strain. Although this TBI paradigm did not induce detectable ovarian fibrosis in either of the strains, we did observe strain-dependent changes in osteopontin (Spp1) expression, a gene involved in wound healing, inflammation, and fibrosis. Ovaries from BALB/c mice exhibited higher baseline Spp1 expression that underwent a significant decrease in response to radiation relative to ovaries from the 129 strain. A correspondingly greater change in the ovarian matrix, as evidenced by reduced ovarian hyaluronan content, was also observed following TBI in BALB/c mice relative to 129 mice. These early changes in the ovary may predispose BALB/c mice to more pronounced late effects of TBI. Taken together, our results demonstrate that aspects of ovarian damage mirror other organ systems with respect to overall strain-dependent radiation sensitivity.
Collapse
Affiliation(s)
- Natalie Quan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lacey R Harris
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ritika Halder
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Camille V Trinidad
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Shulamit Horton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
4-methylumbelliferone Prevents Liver Fibrosis by Affecting Hyaluronan Deposition, FSTL1 Expression and Cell Localization. Int J Mol Sci 2019; 20:ijms20246301. [PMID: 31847129 PMCID: PMC6941058 DOI: 10.3390/ijms20246301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
4-methylumbelliferone (4MU) is an inhibitor of hyaluronan deposition and an active substance of hymecromone, a choleretic and antispasmodic drug. 4MU reported to be anti-fibrotic in mouse models; however, precise mechanism of action still requires further investigation. Here we describe the cellular and molecular mechanisms of 4MU action on CCl4-induced liver fibrosis in mice using NGS transcriptome, Q-PCR and immunohistochemical analysis. Collagen and hyaluronan deposition were prevented by 4MU. The CCl4 stimulated expression of Col1a and αSMA were reduced, while the expression of the ECM catabolic gene Hyal1 was increased in the presence of 4MU. Bioinformatic analysis identified an activation of TGF-beta and Wnt/beta-catenin signaling pathways, and inhibition of the genes associated with lipid metabolism by CCL4 treatment, while 4MU restored key markers of these pathways to the control level. Immunohistochemical analysis reveals the suppression of hepatic stellate cells (HSCs) transdifferentiation to myofibroblasts by 4MU treatment. The drug affected the localization of HSCs and macrophages in the sites of fibrogenesis. CCl4 treatment induced the expression of FSTL1, which was downregulated by 4MU. Our results support the hypothesis that 4MU alleviates CCl4-induced liver fibrosis by reducing hyaluronan deposition and downregulating FSTL1 expression, accompanied by the suppression of HSC trans-differentiation and altered macrophage localization.
Collapse
|
31
|
Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MY, Oakley F, Knox A, Page A, Luli S, Mann J, Mann DA. Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology 2019; 157:1398-1412.e9. [PMID: 31352003 PMCID: PMC6853276 DOI: 10.1053/j.gastro.2019.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
32
|
Lin CL, Jou IM, Wu CY, Kuo YR, Yang SC, Lee JS, Tu YK, Chen SC, Huang YH. Topically Applied Cross-Linked Hyaluronan Attenuates the Formation of Spinal Epidural Fibrosis in a Swine Model of Laminectomy. Sci Rep 2019; 9:14613. [PMID: 31601849 PMCID: PMC6787060 DOI: 10.1038/s41598-019-50882-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Epidural fibrosis is an inevitable aspect of the postoperative healing process which is one of the causes of failed back surgery syndrome following spinal surgery. The aim of the present study was to examine the inhibitory effect of 1,4-butanediol diglycidyl ether-crosslinked hyaluronan (cHA) on spinal epidural fibrosis in a swine model. Epidural fibrosis was induced through conduction of hemi-laminotomy (L2 and L3) or laminectomy (L4 and L5), while L1 was assigned as the control group in six pigs. The cHA was applied to L3 and L5 surgical sites. MRI evaluation, histologic examination, expressions of matrix metalloproteinases (MMPs), and cytokines in scar tissue were assessed four months after surgery. cHA treatment significantly decreased the scar formation in both hemi-laminotomy and laminectomy sites. cHA also significantly increased MMP-3 and MMP-9 expression in scar tissue. Further, the epithelial-mesenchymal transition -related factors (transforming growth factor-β and vimentin) were suppressed and the anti-inflammatory cytokines (CD44 and interleukin-6) were increasingly expressed in cHA-treated sites. The current study demonstrated that cHA may attenuate spinal epidural fibrosis formation after laminectomy surgery by enhancing the expression of MMPs and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Skeleton Materials and Bio-compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Yi Wu
- Department of Orthopedics, Chia Yi Christian Hospital, Chia Yi, Taiwan
| | - Yuh-Ruey Kuo
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Yang
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | - Yi-Hung Huang
- Department of Orthopedics, Chia Yi Christian Hospital, Chia Yi, Taiwan. .,Department of sports management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan.
| |
Collapse
|
33
|
Pandolfi L, Frangipane V, Bocca C, Marengo A, Tarro Genta E, Bozzini S, Morosini M, D'Amato M, Vitulo S, Monti M, Comolli G, Scupoli MT, Fattal E, Arpicco S, Meloni F. Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells. Molecules 2019; 24:molecules24183291. [PMID: 31509965 PMCID: PMC6766933 DOI: 10.3390/molecules24183291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.
Collapse
Affiliation(s)
- Laura Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Vanessa Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy.
| | - Alessandro Marengo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Erika Tarro Genta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Sara Bozzini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Monica Morosini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maura D'Amato
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Simone Vitulo
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Manuela Monti
- Laboratory of Biotechnology, Center of Regenerative Medicine Research, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
| | - Giuditta Comolli
- Experimental Research Laboratories, Biotechnology Area, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maria Teresa Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 922996 Châtenay-Malabry, France.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Federica Meloni
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
34
|
Yang IH, Rose GE, Ezra DG, Bailly M. Macrophages promote a profibrotic phenotype in orbital fibroblasts through increased hyaluronic acid production and cell contractility. Sci Rep 2019; 9:9622. [PMID: 31270379 PMCID: PMC6610127 DOI: 10.1038/s41598-019-46075-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022] Open
Abstract
Graves’ orbitopathy (GO) is an autoimmune inflammatory disease affecting the orbit. Orbital fibroblasts are a key component in GO pathogenesis, which includes inflammation, adipogenesis, hyaluronic acid (HA) secretion, and fibrosis. Macrophages are thought to participate in the immunological stage of GO, but whether they can directly affect the fibroblasts phenotype and modulate disease progression is unknown. We previously showed that GO adipogenic and fibrotic phenotypes could be modelled in a pseudo-physiological 3D environment in vitro. Here, we introduced macrophages in this 3D culture model to investigate role for macrophages in modulating adipogenesis, HA production, and contractility in orbital fibroblasts. Macrophages had a minimal effect on lipid droplet formation in fibroblasts, but significantly increased HA production and cell contractility, suggesting that they may promote the fibrotic phenotype. This effect was found to be mediated at least in part through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation and linked to an increase in actin polymerization and protrusive activity in fibroblasts. Overall our work shows for the first time a direct role for macrophages in modulating the fibroblasts’ phenotype in GO, supporting a role for macrophages in the progression of the fibrotic phenotype through induction of HA production and stimulation of the contractile phenotype in orbital fibroblasts.
Collapse
Affiliation(s)
- I-Hui Yang
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Geoffrey E Rose
- Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK
| | - Daniel G Ezra
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
35
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
36
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
37
|
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan K, Keswani S, Danielson B, Gao M, Medina C, Nathan A, Chakraborty A, Bollyky PL, De Jesus Perez VA. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019; 203:52-62. [PMID: 30852423 DOI: 10.1016/j.biomaterials.2019.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-β driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Elya A Shamskhou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Mark E Orcholski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nadine Nagy
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Gernot Kaber
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Emily Steen
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sundeep Keswani
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ben Danielson
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Max Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos Medina
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Abinaya Nathan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ananya Chakraborty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Vinicio A De Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Huang X, Li L, Ammar R, Zhang Y, Wang Y, Ravi K, Thompson J, Jarai G. Molecular characterization of a precision-cut rat lung slice model for the evaluation of antifibrotic drugs. Am J Physiol Lung Cell Mol Physiol 2019; 316:L348-L357. [DOI: 10.1152/ajplung.00339.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The translation of novel pulmonary fibrosis therapies from preclinical models into the clinic represents a major challenge demonstrated by the high attrition rate of compounds that showed efficacy in preclinical models but demonstrated no significant beneficial effects in clinical trials. A precision-cut lung tissue slice (PCLS) contains all major cell types of the lung and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study pulmonary fibrosis. In this study, using RNA sequencing, we demonstrated that transforming growth factor-β1 (TGFβ1) induced robust fibrotic responses in the rat PCLS model, as it changed the expression of genes functionally related to extracellular matrix remodeling, cell adhesion, epithelial-to-mesenchymal transition, and various immune responses. Nintedanib, pirfenidone, and sorafenib each reversed a subset of genes modulated by TGFβ1, and of those genes we identified 229 whose expression was reversed by all three drugs. These genes define a molecular signature characterizing many aspects of pulmonary fibrosis pathology and its attenuation in the rat PCLS fibrosis model. A panel of 12 genes and three secreted biomarkers, including procollagen I, hyaluronic acid, and WNT1-inducible signaling pathway protein 1 were validated as efficacy end points for the evaluation of antifibrotic activity of experimental compounds. Finally, we showed that blockade of αV-integrins suppressed TGFβ1-induced fibrotic responses in the rat PCLS fibrosis model. Overall, our results suggest that the TGFβ1-induced rat PCLS fibrosis model may represent a valuable system for target validation and to determine the efficacy of experimental compounds.
Collapse
Affiliation(s)
- Xinqiang Huang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Li Li
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Ron Ammar
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yan Zhang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yihe Wang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Kandasamy Ravi
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - John Thompson
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Gabor Jarai
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| |
Collapse
|
39
|
Lorén CE, Dahl CP, Do L, Almaas VM, Geiran OR, Mörner S, Hellman U. Low Molecular Mass Myocardial Hyaluronan in Human Hypertrophic Cardiomyopathy. Cells 2019; 8:cells8020097. [PMID: 30699940 PMCID: PMC6406527 DOI: 10.3390/cells8020097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
During the development of hypertrophic cardiomyopathy, the heart returns to fetal energy metabolism where cells utilize more glucose instead of fatty acids as a source of energy. Metabolism of glucose can increase synthesis of the extracellular glycosaminoglycan hyaluronan, which has been shown to be involved in the development of cardiac hypertrophy and fibrosis. The aim of this study was to investigate hyaluronan metabolism in cardiac tissue from patients with hypertrophic cardiomyopathy in relation to cardiac growth. NMR and qRT-PCR analysis of human cardiac tissue from hypertrophic cardiomyopathy patients and healthy control hearts showed dysregulated glucose and hyaluronan metabolism in the patients. Gas phase electrophoresis revealed a higher amount of low molecular mass hyaluronan and larger cardiomyocytes in cardiac tissue from patients with hypertrophic cardiomyopathy. Histochemistry showed high concentrations of hyaluronan around individual cardiomyocytes in hearts from hypertrophic cardiomyopathy patients. Experimentally, we could also observe accumulation of low molecular mass hyaluronan in cardiac hypertrophy in a rat model. In conclusion, the development of hypertrophic cardiomyopathy with increased glucose metabolism affected both hyaluronan molecular mass and amount. The process of regulating cardiomyocyte size seems to involve fragmentation of hyaluronan.
Collapse
Affiliation(s)
- Christina E Lorén
- Cardiology, Heart Centre, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden.
| | - Christen P Dahl
- Department of Cardiology, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway.
- Department of Clinical Medicine, UiT, the Arctic University of Norway, 9019 Tromsø, Norway.
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway.
| | - Lan Do
- Cardiology, Heart Centre, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden.
| | - Vibeke M Almaas
- Department of Cardiology, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway.
| | - Odd R Geiran
- Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway.
| | - Stellan Mörner
- Cardiology, Heart Centre, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden.
| | - Urban Hellman
- Cardiology, Heart Centre, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden.
| |
Collapse
|
40
|
Identifying the Growth Factors for Improving Neointestinal Regeneration in Rats through Transcriptome Analysis Using RNA-Seq Data. BIOMED RESEARCH INTERNATIONAL 2019; 2018:4037865. [PMID: 30643803 PMCID: PMC6311312 DOI: 10.1155/2018/4037865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
Using our novel surgical model of simultaneous intestinal adaptation "A" and neointestinal regeneration "N" conditions in individual rats to determine feasibility for research and clinical application, we further utilized next generation RNA sequencing (RNA-Seq) here in normal control tissue and both conditions ("A" and "N") across time to decipher transcriptome changes in neoregeneration and adaptation of intestinal tissue at weeks 1, 4, and 12. We also performed bioinformatics analyses to identify key growth factors for improving intestinal adaptation and neointestinal regeneration. Our analyses indicate several interesting phenomena. First, Gene Ontology and pathway analyses indicate that cell cycle and DNA replication processes are enhanced in week 1 "A"; however, in week 1 "N", many immune-related processes are involved. Second, we found some growth factors upregulated or downregulated especially in week 1 "N" versus "A". Third, based on each condition and time point versus normal control tissue, we found in week 1 "N" BMP2, BMP3, and NTF3 are significantly and specifically downregulated, indicating that the regenerative process may be inhibited in the absence of these growth factors. This study reveals complex growth factor regulation in small neointestinal regeneration and intestinal adaptation and provides potential applications in tissue engineering by introducing key growth factors identified here into the injury site.
Collapse
|
41
|
Huang X, Cai H, Ammar R, Zhang Y, Wang Y, Ravi K, Thompson J, Jarai G. Molecular characterization of a precision-cut rat liver slice model for the evaluation of antifibrotic compounds. Am J Physiol Gastrointest Liver Physiol 2019; 316:G15-G24. [PMID: 30406699 PMCID: PMC6383382 DOI: 10.1152/ajpgi.00281.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Precision-cut liver tissue slice (PCLS) contains all major cell types of the liver parenchyma and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study liver fibrosis and test the antifibrotic effect of experimental compounds in a physiological environment. In this study using RNA sequencing, we demonstrated that various pathways functionally related to fibrotic mechanisms were dysregulated in PCLSs derived from rats subjected to bile duct ligation. The activin receptor-like kinase-5 (Alk5) inhibitor SB525334, nintedanib, and sorafenib each reversed a subset of genes dysregulated in fibrotic PCLSs, and of those genes we identified 608 genes whose expression was reversed by all three compounds. These genes define a molecular signature characterizing many aspects of liver fibrosis pathology and its attenuation in the model. A panel of 12 genes and 4 secreted biomarkers including procollagen I, hyaluronic acid (HA), insulin-like growth factor binding protein 5 (IGFBP5), and WNT1-inducible signaling pathway protein 1 (WISP1) were further validated as efficacy end points for the evaluation of antifibrotic activity of experimental compounds. Finally, we showed that blockade of αV-integrins with a small molecule inhibitor attenuated the fibrotic phenotype in the model. Overall, our results suggest that the rat fibrotic PCLS model may represent a valuable system for target validation and determining the efficacy of experimental compounds. NEW & NOTEWORTHY We investigated the antifibrotic activity of three compounds, the activin receptor-like kinase-5 (Alk5) inhibitor SB525334, nintedanib, and sorafenib, in a rat fibrotic precision-cut liver tissue slice model using RNA sequencing analysis. A panel of 12 genes and 4 secreted biomarkers including procollagen I, hyaluronic acid (HA), insulin-like growth factor binding protein 5 (IGFBP5), and WNT1-inducible signaling pathway protein 1 (WISP1) were then established as efficacy end points to validate the antifibrotic activity of the αV-integrin inhibitor CWHM12. This study demonstrated the value of the rat fibrotic PCLS model for the evaluation of antifibrotic drugs.
Collapse
Affiliation(s)
| | - Hong Cai
- Bristol-Myers Squibb, Pennington, New Jersey
| | - Ron Ammar
- Bristol-Myers Squibb, Pennington, New Jersey
| | - Yan Zhang
- Bristol-Myers Squibb, Pennington, New Jersey
| | - Yihe Wang
- Bristol-Myers Squibb, Pennington, New Jersey
| | | | | | - Gabor Jarai
- Bristol-Myers Squibb, Pennington, New Jersey
| |
Collapse
|
42
|
Sun N, Fernandez IE, Wei M, Witting M, Aichler M, Feuchtinger A, Burgstaller G, Verleden SE, Schmitt-Kopplin P, Eickelberg O, Walch A. Pharmacometabolic response to pirfenidone in pulmonary fibrosis detected by MALDI-FTICR-MSI. Eur Respir J 2018; 52:13993003.02314-2017. [PMID: 30072508 DOI: 10.1183/13993003.02314-2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/15/2018] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal condition that reduces life expectancy and shows a limited response to available therapies. Pirfenidone has been approved for treatment of IPF, but little is known about the distinct metabolic changes that occur in the lung upon pirfenidone administration.Here, we performed a proof-of-concept study using high-resolution quantitative matrix-assisted laser desorption/ionisation Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI) to simultaneously detect, visualise and quantify in situ endogenous and exogenous metabolites in lungs of mice subjected to experimental fibrosis and human patients with IPF, and to assess the effect of pirfenidone treatment on metabolite levels.Metabolic pathway analysis and endogenous metabolite quantification revealed that pirfenidone treatment restores redox imbalance and glycolysis in IPF tissues, and downregulates ascorbate and aldarate metabolism, thereby likely contributing to in situ modulation of collagen processing. As such, we detected specific alterations in metabolite pathways in fibrosis and, importantly, metabolic recalibration following pirfenidone treatment.Together, these results highlight the suitability of high-resolution MALDI-FTICR-MSI for deciphering the therapeutic effects of pirfenidone and provide a preliminary analysis of the metabolic changes that occur during pirfenidone treatment in vivo These data may therefore contribute to improvement of currently available therapies for IPF.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,These authors contributed equally to this work
| | - Isis E Fernandez
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig Maximilian University München, Member of the German Center for Lung Research (DZL), Munich, Germany.,These authors contributed equally to this work
| | - Mian Wei
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig Maximilian University München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stijn E Verleden
- Laboratory of Pneumology, Dept of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven, Belgium
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig Maximilian University München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Respiratory Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA.,These authors contributed equally to this work
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,These authors contributed equally to this work
| |
Collapse
|
43
|
The role of CD44, hyaluronan and NHE1 in cardiac remodeling. Life Sci 2018; 209:197-201. [PMID: 30089233 DOI: 10.1016/j.lfs.2018.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Cardiac remodeling, characterized by excessive extracellular matrix (ECM) remodeling, predisposes the heart to failure if left unresolved. Understanding the signaling mechanisms involved in excessive extracellular matrix (ECM) remodeling is necessary to identify the means to regress the development of cardiac remodeling and heart failure. Recently, hyaluronan (HA), a ubiquitously expressed glycosaminoglycan in the ECM, was shown to participate in tissue fibrosis and myofibroblast proliferation through interacting with its ubiquitously expressed cell-surface receptor, CD44. CD44 is a multifunctional transmembrane glycoprotein that serves as a cell-surface receptor for a number of ECM proteins. The mechanism by which the interaction between CD44-HA contributes to ECM and cardiac remodeling remains unknown. A previous study performed on a non-cardiac model showed that CD44-HA enhances Na+/H+ exchanger isoform-1 (NHE1) activity, causing ECM remodeling, HA metabolism and tumor invasion. Interestingly, NHE1 has been demonstrated to be involved in cardiac remodeling and myocardial fibrosis. In addition, it has previously been demonstrated that CD44 is upregulated in transgenic mouse hearts expressing active NHE-1. The role of CD44, HA and NHE1 and the cellular interplay of these factors in the ECM and cardiac remodeling is the focus of this review.
Collapse
|
44
|
Kim LB, Shkurupy VA, Putyatina AN. Correlations between Extracellular Matrix Components in Mouse Lungs during Chronic BCG-Induced Granulomatosis. Bull Exp Biol Med 2018; 165:302-306. [PMID: 29998442 DOI: 10.1007/s10517-018-4155-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 11/27/2022]
Abstract
Correlations between extracellular matrix components in mouse lungs were examined during various terms of BCG-induced granulomatosis (on postinfection days 3, 30, 60, 90, and 180). During the development of pathological process, the revealed dynamic interrelations between structural units of proteoglycans and hydroxyproline weakened. Most correlations were observed on postinfection day 180. They reflect the relationships not only between the structural units of proteoglycans but also between collagens, presumably determining the maximum degree of fibrosis at this period. The established correlations characterize the systemic nature of reactions in extracellular matrix and its versatile implications determined by the processes going on in the organs and tissues during the onset and development of generalized pathology.
Collapse
Affiliation(s)
- L B Kim
- Research Institute of Experimental and Clinical Medicine, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - V A Shkurupy
- Research Institute of Experimental and Clinical Medicine, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A N Putyatina
- Research Institute of Experimental and Clinical Medicine, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
45
|
Li X, Shepard HM, Cowell JA, Zhao C, Osgood RJ, Rosengren S, Blouw B, Garrovillo SA, Pagel MD, Whatcott CJ, Han H, Von Hoff DD, Taverna DM, LaBarre MJ, Maneval DC, Thompson CB. Parallel Accumulation of Tumor Hyaluronan, Collagen, and Other Drivers of Tumor Progression. Clin Cancer Res 2018; 24:4798-4807. [PMID: 30084839 DOI: 10.1158/1078-0432.ccr-17-3284] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
Purpose: The tumor microenvironment (TME) evolves to support tumor progression. One marker of more aggressive malignancy is hyaluronan (HA) accumulation. Here, we characterize biological and physical changes associated with HA-accumulating (HA-high) tumors.Experimental Design: We used immunohistochemistry, in vivo imaging of tumor pH, and microdialysis to characterize the TME of HA-high tumors, including tumor vascular structure, hypoxia, tumor perfusion by doxorubicin, pH, content of collagen. and smooth muscle actin (α-SMA). A novel method was developed to measure real-time tumor-associated soluble cytokines and growth factors. We also evaluated biopsies of murine and pancreatic cancer patients to investigate HA and collagen content, important contributors to drug resistance.Results: In immunodeficient and immunocompetent mice, increasing tumor HA content is accompanied by increasing collagen content, vascular collapse, hypoxia, and increased metastatic potential, as reflected by increased α-SMA. In vivo treatment of HA-high tumors with PEGylated recombinant human hyaluronidase (PEGPH20) dramatically reversed these changes and depleted stores of VEGF-A165, suggesting that PEGPH20 may also diminish the angiogenic potential of the TME. Finally, we observed in xenografts and in pancreatic cancer patients a coordinated increase in HA and collagen tumor content.Conclusions: The accumulation of HA in tumors is associated with high tIP, vascular collapse, hypoxia, and drug resistance. These findings may partially explain why more aggressive malignancy is observed in the HA-high phenotype. We have shown that degradation of HA by PEGPH20 partially reverses this phenotype and leads to depletion of tumor-associated VEGF-A165. These results encourage further clinical investigation of PEGPH20. Clin Cancer Res; 24(19); 4798-807. ©2018 AACR.
Collapse
Affiliation(s)
- Xiaoming Li
- Halozyme Therapeutics, Inc., San Diego, California
| | | | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Clifford J Whatcott
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Haiyong Han
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Daniel D Von Hoff
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | | | | | | | | |
Collapse
|
46
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
47
|
Walker JKL, Theriot BS, Ghio M, Trempus CS, Wong JE, McQuade VL, Liang J, Jiang D, Noble PW, Garantziotis S, Kraft M, Ingram JL. Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. Am J Respir Cell Mol Biol 2017; 57:702-710. [PMID: 28787175 PMCID: PMC5765419 DOI: 10.1165/rcmb.2017-0095oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.
Collapse
Affiliation(s)
- Julia K. L. Walker
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- School of Nursing, Duke University, Durham, North Carolina; and
| | - Barbara S. Theriot
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael Ghio
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carol S. Trempus
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jordan E. Wong
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victoria L. McQuade
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jiurong Liang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dianhua Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Paul W. Noble
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stavros Garantziotis
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Monica Kraft
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jennifer L. Ingram
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
48
|
Abstract
The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.
Collapse
Affiliation(s)
- Mary K Cowman
- Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
49
|
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a highly Ca2+-permeable non-selective cation channel in TRPV family. Accumulating evidence hints that TRPV4 play a significant role in a wide diversity of pathologic changes. Fibrosis is a kind of chronic disease which was characterized by the formation of excessive accumulation of extracellular matrix (ECM) components in tissues and organs. In recent years, a growing body of studies showed that TRPV4 acted as a crucial regulator in the progression of fibrosis including myocardial fibrosis, cystic fibrosis, pulmonary fibrosis, hepatic fibrosis and pancreatic fibrosis, suggesting TRPV4 may be a potential therapeutic vehicle in fibrotic diseases. However, the mechanisms by which TRPV4 regulates fibrosis are still undefined. In this review, firstly, we intend to sum up the collective knowledge of TRPV4. Then we provided the latent mechanism between TRPV4 and fibrosis. We also elaborated the distinct signaling pathways focus on TRPV4 with fibrosis. Finally, we discussed its potential as a novel therapeutic target for fibrosis.
Collapse
|
50
|
Toson ESA, Shiha GE, Abdelgaleel AE. Fibrogenic/Angiogenic Linker for Non-Invasive Assessment of Hepatic Fibrosis Staging in Chronic Hepatitis C Among Egyptian Patients. Ann Hepatol 2017; 16:862-873. [PMID: 29055924 DOI: 10.5604/01.3001.0010.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Liver biopsy is the golden standard for staging liver fibrosis, but it may be accompanied by complications. Because of this complication, the aim of this study is to evaluate a simple noninvasive score to assess hepatic fibrosis in chronic hepatitis C genotype 4 patients which is very may have an important in diagnosis and therapeutic decision. This score [HA vascular (HAV) score] is a combination of direct markers [hyaluronic acid (HA) and vascular endothelial growth factor (VEGF)] and indirect markers [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (AAR)]. RESULTS Samples were collected from 220 patients (F0-F4): an estimated group (n = 120) and a validated group (n = 100). HA and VEGF levels, HCV RNA, liver function tests, platelet counts were assayed, Fibroscan was done and liver biopsy was taken and the stage of liver fibrosis and the grade of inflammatory activity was calculated according to Metavir score system. HA vascular (HAV) score = -35.1 + 0.14 (HA) (ng/L) + 0.03 (VEGF) (pg/mL) + (-6.7) [AAR (AST/ALT ratio)]. The HAV score produced areas under curve of 0.979 and 0.994 for significant (F2-F4) and advanced fibrosis (F3-F4) (cut off = 0.583 and 6.3, respectively). Surprisingly, the validation study of this score gave very good values of AUCs i.e. 0.990, 0.996 and 0.995 for significant, advanced and liver cirrhosis. CONCLUSIONS Our developed score can not only help to assess liver fibrosis staging effectively but also avoid the invasiveness and the limitations of liver biopsy in Egyptian hepatitis C virus patients.
Collapse
Affiliation(s)
- El-Shahat A Toson
- Chemistry Department (Biochemistry Division), Faculty of Science, Damietta University, Damietta, Egypt
| | - Gamal E Shiha
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa E Abdelgaleel
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|