1
|
Bhattacharyya R, Jha BK. A fuzzy based computational model to analyze the influence of mitochondria, buffer, and ER fluxes on cytosolic calcium distribution in neuron cells. Cogn Neurodyn 2025; 19:25. [PMID: 39816214 PMCID: PMC11729615 DOI: 10.1007/s11571-024-10212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 01/18/2025] Open
Abstract
A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes. Small organelles called mitochondria are found in the nervous system and are involved in several cellular functions, including energy production, response to stress, calcium homeostasis regulation, and pathways leading to cell death. It has been discovered that buffer, endoplasmic reticulum, and mitochondria significantly affect calcium signaling. To investigate how various circumstances impact the quantity of calcium in the cytosol, a mathematical model of a second-order linear partial differential equation with fuzzy boundary conditions has been developed. Systems having ambiguous or imprecise boundary values can be effectively modeled and simulated with the help of fuzzy boundary conditions. Models can provide more dependable and instructive outcomes and become adaptable to real-world circumstances by implementing fuzzy logic into boundary conditions. In this paper, we observed the Fuzzy Laplace Transform to solve variable coefficient fuzzy differential equations using triangular fuzzy numbers. It is noted that maintaining the delicate calcium ion balance, which controls essential cellular functions, depends on the buffer affinity. Also, neurodegenerative illnesses like Alzheimer's, Parkinson's, etc. are linked to disruptions in the control of components such as buffers, mitochondria, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, 382426 India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, 382426 India
| |
Collapse
|
2
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Bhattacharyya R, Jha BK. Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes. Cell Biochem Biophys 2024:10.1007/s12013-024-01541-0. [PMID: 39373904 DOI: 10.1007/s12013-024-01541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.
Collapse
Affiliation(s)
- Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382426, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
4
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
5
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
6
|
Ramakrishna S, Radhakrishna BK, Kaladiyil AP, Shah NM, Basavaraju N, Freude KK, Kommaddi RP, Muddashetty RS. Distinct calcium sources regulate temporal profiles of NMDAR and mGluR-mediated protein synthesis. Life Sci Alliance 2024; 7:e202402594. [PMID: 38749544 PMCID: PMC11096670 DOI: 10.26508/lsa.202402594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
Collapse
Affiliation(s)
- Sarayu Ramakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bindushree K Radhakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Ahamed P Kaladiyil
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Naumenko N, Koivumäki JT, Lunko O, Tuomainen T, Leigh R, Rabiee M, Laurila J, Oksanen M, Lehtonen S, Koistinaho J, Tavi P. Presenilin-1 ΔE9 mutation associated sarcoplasmic reticulum leak alters [Ca 2+] i distribution in human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2024; 193:78-87. [PMID: 38851626 DOI: 10.1016/j.yjmcc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Mutations in ubiquitously expressed presenilin genes (PSENs) lead to early-onset familial Alzheimer's disease (FAD), but patients carrying the mutation also suffer from heart diseases. To elucidate the cardiac myocyte specific effects of PSEN ΔE9, we studied cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) from patients carrying AD-causing PSEN1 exon 9 deletion (PSEN1 ΔE9). When compared with their isogenic controls, PSEN1 ΔE9 cardiomyocytes showed increased sarcoplasmic reticulum (SR) Ca2+ leak that was resistant to blockage of ryanodine receptors (RyRs) by tetracaine or inositol-3-reseceptors (IP3Rs) by 2-ABP. The SR Ca2+ leak did not affect electrophysiological properties of the hiPSC-CMs, but according to experiments and in silico simulations the leak induces a diastolic buildup of [Ca2+] near the perinuclear SR and reduces the releasable Ca2+ during systole. This demonstrates that PSEN1 ΔE9 induced SR Ca2+ leak has specific effects in iPSC-CMs, reflecting their unique structural and calcium signaling features. The results shed light on the physiological and pathological mechanisms of PSEN1 in cardiac myocytes and explain the intricacies of comorbidity associated with AD-causing mutations in PSEN1.
Collapse
Affiliation(s)
- Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olesia Lunko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Leigh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mina Rabiee
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jalmari Laurila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
8
|
Oswalia J, Singh S, Gautam V, Arya R. Altered autophagic flux in GNE mutant cells of Indian origin: Potential drug target for GNE myopathy. Exp Cell Res 2024; 440:114118. [PMID: 38852763 DOI: 10.1016/j.yexcr.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of β-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.
Collapse
Affiliation(s)
- Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shagun Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vaishali Gautam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
10
|
R HC, Datta A, S UK, Zayed H, D TK, C GPD. Decoding genetic and pathophysiological mechanisms in amyotrophic lateral sclerosis and primary lateral sclerosis: A comparative study of differentially expressed genes and implicated pathways in motor neuron disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:177-201. [PMID: 38960473 DOI: 10.1016/bs.apcsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Motor Neuron Disorders (MNDs), characterized by the degradation and loss of function of motor neurons, are recognized as fatal conditions with limited treatment options and no known cure. The present study aimed to identify the pathophysiological functions and affected genes in patients with MNDs, specifically Amyotrophic Lateral Sclerosis (ALS) and Primary Lateral Sclerosis (PLS). The GSE56808 dataset comprised three sample groups: six patients diagnosed with ALS (GSM1369650, GSM1369652, GSM1369654, GSM1369656, GSM1369657, GSM1369658), five patients diagnosed with PLS (GSM1369648, GSM1369649, GSM1369653, GSM1369655, GSM1369659), and six normal controls (GSM1369642, GSM1369643, GSM1369644, GSM1369645, GSM1369646, and GSM1369647). The application of computational analysis of microarray gene expression profiles enabled us to identify 346 significantly differentially expressed genes (DEGs), 169 genes for the ALS sample study, and 177 genes for the PLS sample study. Enrichment was carried out using MCODE, a Cytoscape plugin. Functional annotation of DEGs was carried out via ClueGO/CluePedia (v2.5.9) and further validated via the DAVID database. NRP2, SEMA3D, ROBO3 and, CACNB1, CACNG2 genes were identified as the gene of interest for ALS and PLS sample groups, respectively. Axonal guidance (GO:0007411) and calcium ion transmembrane transport (GO:0070588) were identified to be some of the significantly dysregulated gene ontology (GO) terms, with arrhythmogenic right ventricular cardiomyopathy (KEGG:05412) to be the top relevant KEGG pathway which is affected in MND patients. ROBO3 gene was observed to have distinctive roles in ALS and PLS-affected patients, hinting towards the differential progression of ALS from PLS. The insights derived from our comprehensive analysis accentuate the distinct variances in the underlying molecular pathogenesis of ALS and PLS. Further research should investigate the mechanistic roles of the identified DEGs and molecular pathways, leading to potential targeted therapies for ALS and PLS.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ankur Datta
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India; Department of Medicine, Division Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Jha BK, Bhattacharyya R. A Comprehensive Fuzzy Model for Understanding Neuronal Calcium Distribution in Presence of VGCC, Na +/Ca 2+ Exchanger, Buffer, and ER Fluxes. Cell Biochem Biophys 2024; 82:1367-1379. [PMID: 38743137 DOI: 10.1007/s12013-024-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Free Calcium ions in the cytosol are essential for many physiological and physical functions. The free calcium ions are commonly regarded as a second messenger, are an essential part of brain communication. Numerous physiological activities, such as calcium buffering and calcium ion channel flow, etc. influence the cytosolic calcium concentration. In light of the above, the primary goal of this study is to develop a model of calcium distribution in neuron cells when a Voltage-Gated Calcium Channel and Sodium Calcium Exchanger are present. As we know, decreased buffer levels and increased calcium activity in the Voltage-Gated Calcium Channel and Sodium Calcium Exchanger lead to Alzheimer's disease. Due to these changes, the calcium diffusion in that location becomes disrupted and impacted by Alzheimer's disease. The model has been constructed by considering key factors like buffers and ER fluxes when Voltage-Gated Calcium Channels and Sodium Calcium Exchangers are present. Based on the physiological conditions of the parameters, appropriate boundary conditions have been constructed in the fuzzy environment. This model is considered a fuzzy boundary value problem with the source term and initial boundary conditions are modeled by triangular fuzzy functions. In this, paper we observed the approximate solution of the mathematical model which was investigated by the fuzzy undetermined coefficient method. The solution has been performed through MATLAB and numerical results have been computed using simulation. The observation made that the proper operation of the Voltage-Gated Calcium Channel and Sodium Calcium Exchanger is critical for maintaining the delicate equilibrium of calcium ions, which regulates vital cellular activities. Dysregulation of Voltage-Gated Calcium Channel and Sodium Calcium Exchanger activity has been linked to neurodegenerative illnesses like Alzheimer's disease.
Collapse
Affiliation(s)
- Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| | - Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
12
|
Kaar A, Weir MP, Rae MG. Altered neuronal group 1 metabotropic glutamate receptor- and endoplasmic reticulum-mediated Ca 2+ signaling in two rodent models of Alzheimer's disease. Neurosci Lett 2024; 823:137664. [PMID: 38309326 DOI: 10.1016/j.neulet.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.
Collapse
Affiliation(s)
- Aidan Kaar
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Megan P Weir
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
13
|
Bhattacharyya R, Jha BK. Analyzing fuzzy boundary value problems: a study on the influence of mitochondria and ER fluxes on calcium ions in neuron cells. J Bioenerg Biomembr 2024; 56:15-29. [PMID: 38064155 DOI: 10.1007/s10863-023-09994-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 01/07/2024]
Abstract
Cytosolic-free calcium ions play an important role in various physical and physiological processes. A vital component of neural signaling is the free calcium ion concentration often known as the second messenger. There are many parameters that effect the cytosolic free calcium concentration like buffer, voltage-gated ion channels, Endoplasmic reticulum, Mitochondria, etc. Mitochondria are small organelles located within the nervous system that are involved in processes within cells such as calcium homeostasis management, energy generation, response to stress, and cell demise pathways. In this work, a mathematical model with fuzzy boundary values has been developed to study the effect of Mitochondria and ER fluxes on free Calcium ions. The intended findings are displayed utilizing the physiological understanding that amyloid beta plaques and tangles of neurofibrillary fibers have been identified as the two main causes of AD. The key conclusion of the work is the investigation of [Formula: see text] for healthy cells and cells affected by Alzheimer's disease, which may aid in the study of such processes for computational scientists and medical practitioners. Also, it has been shown that when a unique solution is found for a specific precise problem, it also successfully deals with any underlying ambiguity within the problem by utilizing a technique based on the principles of linear transformation. Furthermore, the comparison between the analytical approach and the generalized hukuhara derivative approach is shown here, which illustrates the benefits of the analytical approach. The simulation is carried out in MATLAB.
Collapse
Affiliation(s)
- Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
14
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
15
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
16
|
Vatsal VH, Jha BK, Singh TP. To study the effect of ER flux with buffer on the neuronal calcium. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:494. [PMID: 37304245 PMCID: PMC10240135 DOI: 10.1140/epjp/s13360-023-04077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Calcium signaling is decisive for cellular functions. This calcium random walk stipulates neuronal functions. Calcium concentration could provoke gene transcription, apoptosis, neuronal plasticity, etc. A malformation in calcium could change the neuron's intracellular behavior. Calcium concentration balancing is a complex cellular mechanism. This occurrence can be handled with the Caputo fractional reaction-diffusion equation. In this mathematical modeling, we have included the STIM-Orai mechanism and Endoplasmic Reticulum (ER) flux, Inositol Triphosphate Receptor (IPR), SERCA, plasma membrane flux, voltage-gated calcium entry, and different buffer interactions. A hybrid integral transform and Green's function approach were taken to solve the initial boundary problem. A closed-form solution of a Mittag-Leffler family function plotted using MATLAB software. Different parameters impact changes in the spatiotemporal behavior of the calcium concentration. Specific roles of organelles involved in Alzheimer's disease-affected neurons are computed. Ethylene glycol tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane N,N,N,N-tetraacetic acid (BAPTA), and S100B protein effects are also observed. In all simulations, we can say S100B and the STIM-Orai effect cannot be neglected. This model lights up the different approaches for calcium signaling pathway simulation. As a consequence, we determine that a generalized reaction-diffusion approach is a better fit realistic model.
Collapse
Affiliation(s)
- Vora Hardagna Vatsal
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| | - Brajesh Kumar Jha
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| | - Tajinder Pal Singh
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382007 Gujarat India
| |
Collapse
|
17
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
18
|
Reed KJ, Landry GM. Diglycolic acid inhibits succinate dehydrogenase activity, depletes mitochondrial membrane potential, and induces inflammation in an SH-SY5Y neuroblastoma model of neurotoxicity in vitro. Toxicol Appl Pharmacol 2023; 463:116414. [PMID: 36754214 DOI: 10.1016/j.taap.2023.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Diethylene glycol is a toxic industrial solvent resulting in a well-defined toxidrome. Diglycolic acid (DGA) has been identified as the metabolite responsible for the nephrotoxicity and hepatotoxicity. These studies assess the mechanism of DGA-induced neurotoxicity, specifically addressing the known ability of DGA to chelate calcium (Ca2+) in solution and inhibit mitochondrial complex II. SH-SY5Y cells were seeded into 96-well plates to assess intracellular Ca2+ chelation, complex II activity, mitochondrial membrane potential (ΔΨm), ATP production, and release of inflammatory cytokines TNF-α and IL-1β with 2-, 4-, 6-, 24-, and 48-h DGA exposure. Peak Ca2+ chelation occurred at 4 h in cells treated with 6.25-50 mM DGA; however, effects were transient. Complex II activity was significantly decreased at all DGA concentrations tested, with 12.5 mM DGA causing 80% inhibition and 25 and 50 mM DGA causing 97 and 100% inhibition, respectively. Subsequently, 12.5-50 mM DGA concentrations significantly decreased ΔΨm at all time points. 50 mM DGA significantly increased release of TNF-α and IL-1β after 24 and 48 h with significantly decreased ATP production observed at the same time points and concentration. These studies demonstrate that the DGA-induced mechanism of SH-SY5Y cell death involves complex II inhibition leading to mitochondrial depolarization, and subsequent ATP depletion with accompanying inflammatory cytokine release. These results indicate a direct mechanism of DGA-induced neurotoxicity in vitro, similarly observed in other DEG-affected target organs.
Collapse
Affiliation(s)
- Kristi J Reed
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States.
| |
Collapse
|
19
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
20
|
Age-associated alterations of brain mitochondria energetics. Biochem Biophys Res Commun 2023; 643:1-7. [PMID: 36584587 DOI: 10.1016/j.bbrc.2022.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
The study aimed to explore the role of age-associated elevated cytosolic Ca2+ in changes of brain mitochondria energetic processes. Two groups of rats, young adults (4 months) and advanced old (24 months), were evaluated for potential alterations of mitochondrial parameters, the oxidative phosphorylation (OxPhos), membrane potential, calcium retention capacity, activity of glutamate/aspartate carrier (aralar), and ROS formation. We demonstrated that the brain mitochondria of older animals have a lower resistance to Ca2+ stress with resulting consequences. The suppressed complex I OxPhos and decreased membrane potential were accompanied by reduction of the Ca2+ threshold required for induction of mPTP. The Ca2+ binding sites of mitochondrial aralar mediated a lower activity of old brain mitochondria. The altered interaction between aralar and mPTP may underlie mitochondrial dysregulation leading to energetic depression during aging. At the advanced stages of aging, the declined metabolism is accompanied by the diminished oxidative background.
Collapse
|
21
|
Dhage PA, Sharbidre AA, Magdum SM. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer's disease. Brain Res Bull 2023; 192:83-92. [PMID: 36372374 DOI: 10.1016/j.brainresbull.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Caspases, a family of cysteine proteases is a renowned regulator of apoptosis. Members of this family are responsible for the proteolytic dismantling of numerous cellular structures. Apart from apoptosis, caspases remarkably contribute to a diverse range of molecular processes. Being the imperative members of several cellular cascades their abnormal activation/deactivation has severe implications and also leads to various diseased conditions. Similar aberrant activation of caspases is one of the several causes of neuropathologies associated with Alzheimer's disease (AD), a form of dementia severely affecting neuropsychiatric and cognitive functions. Emerging studies are providing deeper insights into the mechanisms of caspase action in the progression of AD. Current article is an attempt to review these studies and present the action mechanisms of different mammalian caspases in the advancement of AD associated neuropathologies.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sujata M Magdum
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| |
Collapse
|
22
|
Ahmad F, Sachdeva P. Critical appraisal on mitochondrial dysfunction in Alzheimer's disease. Aging Med (Milton) 2022; 5:272-280. [PMID: 36606272 PMCID: PMC9805294 DOI: 10.1002/agm2.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
It is widely recognized that Alzheimer's disease (AD) is a common type of progressive neurodegenerative disorder that results in cognitive impairment over time. Approximately 152 million cases of AD are predicted to be reported by 2050. Amyloid plaques and tau proteins are two major hallmarks of AD which can be seen under electron microscope. Mitochondria plays a vital role in the pathogenesis of AD and mitochondria disruption leads to mitochondrial DNA (mtDNA) dysfunction, alteration of mitochondria dependent Ca2+ homeostasis, copper dysfunction, immune cell dysfunction, etc. In this review, we try to cover all the mechanisms related with mitochondrial dysfunction and mitochondrial pathogenesis that may help us to better understand AD as well as open a new era for therapeutic target of AD and treat this progressive disease.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
23
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
24
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
25
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
26
|
Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Zhang L, Johnston A, Ruby HP, Barbera G, Wong PC, Zhang Z, Chen R, Lin DT, Li Y. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol 2022; 215:102297. [PMID: 35667630 PMCID: PMC9258405 DOI: 10.1016/j.pneurobio.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Mislocalization of TAR DNA binding protein 43 kDa (TARDBP, or TDP-43) is a principal pathological hallmark identified in cases of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As an RNA binding protein, TDP-43 serves in the nuclear compartment to repress non-conserved cryptic exons to ensure the normal transcriptome. Multiple lines of evidence from animal models and human studies support the view that loss of TDP-43 leads to neuron loss, independent of its cytosolic aggregation. However, the underlying pathogenic pathways driven by the loss-of-function mechanism are still poorly defined. We employed a genetic approach to determine the impact of TDP-43 loss in pyramidal neurons of the prefrontal cortex (PFC). Using a custom-built miniscope imaging system, we performed repetitive in vivo calcium imaging from freely behaving mice for up to 7 months. By comparing calcium activity in PFC pyramidal neurons between TDP-43 depleted and TDP-43 intact mice, we demonstrated remarkably increased numbers of pyramidal neurons exhibiting hyperactive calcium activity after short-term TDP-43 depletion, followed by rapid activity declines prior to neuron loss. Our results suggest aberrant neural activity driven by loss of TDP-43 as the pathogenic pathway at early stage in ALS and FTD.
Collapse
Affiliation(s)
- Bo Liang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA.
| | - Rashmi Thapa
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Gracie Zhang
- Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA.
| | - Casey Moffitt
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Lifeng Zhang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA; Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA; Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA; Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Amanda Johnston
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Hyrum P Ruby
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| |
Collapse
|
27
|
Khan FZ, Mostaid MS, Apu MNH. Molecular Signaling Pathway Targeted Therapeutic Potential of Thymoquinone in Alzheimer’s disease. Heliyon 2022; 8:e09874. [PMID: 35832342 PMCID: PMC9272348 DOI: 10.1016/j.heliyon.2022.e09874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with rapid progression. Black cumin (Nigella sativa) is a nutraceutical that has been investigated as a prophylactic and therapeutic agent for this disease due to its ability to prevent or retard the progression of neurodegeneration. Thymoquinone (TQ) is the main bioactive compound isolated from the seeds of black cumin. Several reports have shown that it has promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory, and antiapoptotic properties along with several other mechanisms that target the altered signaling pathways due to the disease pathogenesis. In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage. The aim of this review is to summarize the potential aspects and mechanisms by which TQ imparts its action in AD.
Collapse
|
28
|
Cheng K, Huang C, Hsieh T, Chiang H. Disrupted cellular calcium homeostasis is responsible for Aβ‐induced learning and memory damage and lifespan shortening in a model of Aβ transgenic fly. IUBMB Life 2022; 74:754-762. [DOI: 10.1002/iub.2621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Kuan‐Chung Cheng
- Department of Pharmacology, College of Medicine National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences, College of Medicine National Cheng‐Kung University Tainan Taiwan
| | - Chih‐Yuan Huang
- Division of Nephrology, Department of Internal Medicine Ditmanson Medical Foundation Chia‐Yi Christian Hospital Chiayi Taiwan
- Department of Sport Management, College of Recreation and Health Management Chia Nan University of Pharmacy and Science Tainan Taiwan
| | - Tsung‐Chi Hsieh
- Department of Pharmacology, College of Medicine National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences, College of Medicine National Cheng‐Kung University Tainan Taiwan
- Brain Research Center National Tsing Hua University Hsinchu City Taiwan
| | - Hsueh‐Cheng Chiang
- Department of Pharmacology, College of Medicine National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences, College of Medicine National Cheng‐Kung University Tainan Taiwan
| |
Collapse
|
29
|
Hernandez M, Vaughan J, Gordon T, Lippmann M, Gandy S, Chen LC. World Trade Center dust induces nasal and neurological tissue injury while propagating reduced olfaction capabilities and increased anxiety behaviors. Inhal Toxicol 2022; 34:175-188. [PMID: 35533138 PMCID: PMC9728549 DOI: 10.1080/08958378.2022.2072027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Objective: Previous in vitro and in vivo World Trade Center particulate matter (WTCPM) exposure studies have provided evidence of exposure-driven oxidative/nitrative stress and inflammation on respiratory tract and aortic tissues. What remains to be fully understood are secondary organ impacts due to WTCPM exposure. This study was designed to test if WTC particle-induced nasal and neurologic tissue injury may result in unforeseen functional and behavioral outcomes.Material and Methods: WTCPM was intranasally administered in mice, evaluating genotypic, histopathologic, and olfaction latency endpoints.Results: WTCPM exposure was found to incite neurologic injury and olfaction latency in intranasally (IN) exposed mice. Single high-dose and repeat low-dose nasal cavity insults from WTCPM dust resulted in significant olfaction delays and enduring olfaction deficits. Anxiety-dependent behaviors also occurred in mice experiencing olfaction loss including significant body weight loss, increased incidence and time spent in hind stretch postures, as well as increased stationary time and decreased exploratory time. Additionally, WTCPM exposure resulted in increased whole brain wet/dry ratios and wet whole brain to body mass ratios that were correlated with exposure and increased exposure dose (p<0.05).Discussion: The potential molecular drivers of WTCPM-driven tissue injury and olfaction latency may be linked to oxidative/nitrative stress and inflammatory cascades in both upper respiratory nasal and brain tissues.Conclusion: Cumulatively, these data provide evidence of WTCPM exposure in relation to tissue damage related to oxidative stress-driven inflammation identified in the nasal cavity, propagated to olfactory bulb tissues and, potentially, over extended periods, to other CNS tissues.
Collapse
Affiliation(s)
- Michelle Hernandez
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Joshua Vaughan
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sam Gandy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peter VA Medical Center, Bronx, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
30
|
Berrocal M, Mata AM. The Plasma Membrane Ca 2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience 2022; 518:112-118. [PMID: 35469971 DOI: 10.1016/j.neuroscience.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid β-peptides (Aβ) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aβ has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
31
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
32
|
Tian D, Gao Q, Chang Z, Lin J, Ma D, Han Z. Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia. BMC Complement Med Ther 2022; 22:33. [PMID: 35109845 PMCID: PMC8812053 DOI: 10.1186/s12906-021-03465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Background Shenzhi Jiannao (SZJN) prescription is a type of herbal formula adopted in the management of cognitive impairment and related disorders. However, its effects and related regulatory mechanisms on vascular dementia (VD) are elusive. Herein, network pharmacology prediction was employed to explore the pharmacological effects and molecular mechanisms of SZJN prescription on VD using network pharmacology prediction, and validated the results through in vitro experiments. Methods Through a search in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, chemical composition and targets for SZJN prescription were retrieved. The potential targets for VD were then obtained from the GeneCards and DisGeNET databases. The network was constructed that depicted the interactions between putative SZJN prescription and known therapeutic targets for VD using Cytoscape 3.7.1. Analysis of protein-protein interaction was achieved via STRING 11.0 software, followed by Gene Ontology (GO) functional enrichment and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analyses. To validate the computer-predicted results, in vitro experiments based on an excitotoxic injury model were designed using glutamate-exposed PC12 cells, and treated with varying concentrations (low, 0.05; medium, 0.1 and high, 0.2 mg/mL) of SZJN prescription. Cell viability and cell death were detected using the IncuCyte imaging system. Moreover, the expression profiles of Caspase-3 were analyzed through qRT-PCR. Results Twenty-eight potentially active ingredients for SZJN prescription, including stigmasterol, beta-sitosterol, and kaempferol, plus 21 therapeutic targets for VD, including PTGS2, PTGS1, and PGR were revealed. The protein-protein interaction network was employed for the analysis of 20 target proteins, including CASP3, JUN, and AChE. The enrichment analysis demonstrated candidate targets of SZJN prescription were more frequently involved in neuroactive ligand-receptor interaction, calcium, apoptosis, and cholinergic synaptic signaling pathways. In vitro experiments revealed that SZJN prescription could significantly reverse glutamate-induced cell viability loss and cell death, and lower the levels of Caspase-3 mRNA in glutamate-induced PC12 cells. Conclusions Collectively, this study demonstrated that SZJN prescription exerted the effect of treating VD by regulating multi-targets and multi-channels with multi-components through the method of network pharmacology. Furthermore, in vitro results confirmed that SZJN prescription attenuated glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Dayong Ma
- Neurology Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine (Longgang), No.1 Dayun road, Sports New City Road, Shenzhen, 518172, China.
| |
Collapse
|
33
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
34
|
Jeong ES, Bajgai J, You IS, Rahman MH, Fadriquela A, Sharma S, Kwon HU, Lee SY, Kim CS, Lee KJ. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int J Mol Sci 2021; 22:ijms222413313. [PMID: 34948107 PMCID: PMC8703468 DOI: 10.3390/ijms222413313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress (OS) is one of the causative factors in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease (AD) and cognitive dysfunction. In the present study, we investigated the effects of hydrogen (H2) gas inhalation in trimethyltin (TMT)-induced neurotoxicity and cognitive dysfunction in the C57BL/6 mice. First, mice were divided into the following groups: mice without TMT injection (NC), TMT-only injection group (TMT only), TMT injection + lithium chloride-treated group as a positive control (PC), and TMT injection + 2% H2 inhalation-treated group (H2). The TMT injection groups were administered a single dosage of intraperitoneal TMT injection (2.6 mg/kg body weight) and the H2 group was treated with 2% H2 for 30 min once a day for four weeks. Additionally, a behavioral test was performed with Y-maze to test the cognitive abilities of the mice. Furthermore, multiple OS- and AD-related biomarkers such as reactive oxygen species (ROS), nitric oxide (NO), calcium (Ca2+), malondialdehyde (MDA), glutathione peroxidase (GPx), catalase, inflammatory cytokines, apolipoprotein E (Apo-E), amyloid β (Aβ)-40, phospho-tau (p-tau), Bcl-2, and Bcl-2- associated X (Bax) were investigated in the blood and brain. Our results demonstrated that TMT exposure alters seizure and spatial recognition memory. However, after H2 treatment, memory deficits were ameliorated. H2 treatment also decreased AD-related biomarkers, such as Apo-E, Aβ-40, p-tau, and Bax and OS markers such as ROS, NO, Ca2+, and MDA in both serum and brain. In contrast, catalase and GPx activities were significantly increased in the TMT-only group and decreased after H2 gas treatment in serum and brain. In addition, inflammatory cytokines such as granulocyte colony-stimulating factors (G-CSF), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) were found to be significantly decreased after H2 treatment in both serum and brain lysates. In contrast, Bcl-2 and vascular endothelial growth factor (VEGF) expression levels were found to be enhanced after H2 treatment. Taken together, our results demonstrated that 2% H2 gas inhalation in TMT-treated mice exhibits memory enhancing activity and decreases the AD, OS, and inflammatory-related markers. Therefore, H2 might be a candidate for repairing neurodegenerative diseases with cognitive dysfunction. However, further mechanistic studies are needed to fully clarify the effects of H2 inhalation on TMT-induced neurotoxicity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eun-Sook Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - In-Soo You
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Hwang-Un Kwon
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - So-Yeon Lee
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Correspondence: ; Tel.: +82-(033)-741-331
| |
Collapse
|
35
|
Wang L, Chen H, Tang J, Guo Z, Wang Y. Peptidylarginine Deiminase and Alzheimer's Disease. J Alzheimers Dis 2021; 85:473-484. [PMID: 34842193 DOI: 10.3233/jad-215302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) are indispensable enzymes for post-translational modification of proteins, which can convert Arg residues on the surface of proteins to citrulline residues. The PAD family has five isozymes, PAD1, 2, 3, 4, and 6, which have been found in multiple tissues and organs. PAD2 and PAD4 were detected in cerebral cortex and hippocampus from human and rodent brain. In the central nervous system, abnormal expression and activation of PADs are involved in the pathological changes and pathogenesis of Alzheimer's disease (AD). This article reviews the classification, distribution, and function of PADs, with an emphasis on the relationship between the abnormal activation of PADs and AD pathogenesis, diagnosis, and the therapeutic potential of PADs as drug targets for AD.
Collapse
Affiliation(s)
- Lai Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Hongyang Chen
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Jing Tang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Zhengwei Guo
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yanming Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
36
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
37
|
Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I. Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. Front Cell Neurosci 2021; 15:739425. [PMID: 34720880 PMCID: PMC8554225 DOI: 10.3389/fncel.2021.739425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.
Collapse
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neve Costello Heaven
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Samantha Wallworth
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aaron Bradshaw
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - J. Mark Cooper
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies, University College London, London, United Kingdom
| | - Surjit Kaila Srai
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Oksana Malanchuk
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Margreet B. Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| |
Collapse
|
38
|
Babaei P. NMDA and AMPA receptors dysregulation in Alzheimer's disease. Eur J Pharmacol 2021; 908:174310. [PMID: 34265291 DOI: 10.1016/j.ejphar.2021.174310] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by cognitive dysfunction and synaptic failure. The current therapeutic approaches are mainly focused on symptomatic treatment and possess limited effectiveness in addressing the pathophysiology of AD. It is known that neurodegeneration is negatively correlated with synaptic plasticity. This negative correlation highlights glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and (AMPA) receptors as a critical mediator of synaptic plasticity. Despite this favorable role, extensive extracellular glutamate concentration induces excitotoxicity and neurodegeneration. NMDA receptors containing GluN2A subunits are located at synaptic sites, implicated in the protective pathways. In comparison, GluN2B containing receptors are located mainly at extrasynaptic sites and increase neuronal vulnerability. AMPA receptors are consistently endocytosed and recycled back to the membrane. An increase in the rate of endocytosis has been implicated as a part of AD pathophysiology through inducing long-term depression (LTD) and synaptic disintegration. In the present review, we focused on the mechanisms of glutamatergic system dysregulation in AD, particularly on its interaction with amyloid-beta. We concluded that assigning a specific role to an individual subtype of either NMDA receptors or AMPA receptors might be an oversimplification as they are not static receptors. Therefore, any imbalance between synaptic and extrasynaptic NMDA receptors and a reduced number of surface AMPA receptors will lead to synaptopathy.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
39
|
Ademuyiwa OH, Fasogbon BM, Adebo OA. The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review. Crit Rev Food Sci Nutr 2021; 63:2840-2850. [PMID: 34609267 DOI: 10.1080/10408398.2021.1980764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of β-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.
Collapse
Affiliation(s)
| | - Beatrice Mofoluwaso Fasogbon
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| |
Collapse
|
40
|
Ghoweri AO, Gagolewicz P, Frazier HN, Gant JC, Andrew RD, Bennett BM, Thibault O. Neuronal Calcium Imaging, Excitability, and Plasticity Changes in the Aldh2-/- Mouse Model of Sporadic Alzheimer's Disease. J Alzheimers Dis 2021; 77:1623-1637. [PMID: 32925058 PMCID: PMC7683088 DOI: 10.3233/jad-200617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Dysregulated signaling in neurons and astrocytes participates in pathophysiological alterations seen in the Alzheimer’s disease brain, including increases in amyloid-β, hyperphosphorylated tau, inflammation, calcium dysregulation, and oxidative stress. These are often noted prior to the development of behavioral, cognitive, and non-cognitive deficits. However, the extent to which these pathological changes function together or independently is unclear. Objective: Little is known about the temporal relationship between calcium dysregulation and oxidative stress, as some reports suggest that dysregulated calcium promotes increased formation of reactive oxygen species, while others support the opposite. Prior work has quantified several key outcome measures associated with oxidative stress in aldehyde dehydrogenase 2 knockout (Aldh2–/–) mice, a non-transgenic model of sporadic Alzheimer’s disease. Methods: Here, we tested the hypothesis that early oxidative stress can promote calcium dysregulation across aging by measuring calcium-dependent processes using electrophysiological and imaging methods and focusing on the afterhyperpolarization (AHP), synaptic activation, somatic calcium, and long-term potentiation in the Aldh2–/– mouse. Results: Our results show a significant age-related decrease in the AHP along with an increase in the slow AHP amplitude in Aldh2–/– animals. Measures of synaptic excitability were unaltered, although significant reductions in long-term potentiation maintenance were noted in the Aldh2–/– animals compared to wild-type. Conclusion: With so few changes in calcium and calcium-dependent processes in an animal model that shows significant increases in HNE adducts, Aβ, p-tau, and activated caspases across age, the current findings do not support a direct link between neuronal calcium dysregulation and uncontrolled oxidative stress.
Collapse
Affiliation(s)
- Adam O Ghoweri
- Pharmacology and Nutritional Sciences University of Kentucky, University of Kentucky Medical Center, Lexington, KY, USA
| | - Peter Gagolewicz
- Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Hilaree N Frazier
- Pharmacology and Nutritional Sciences University of Kentucky, University of Kentucky Medical Center, Lexington, KY, USA
| | - John C Gant
- Pharmacology and Nutritional Sciences University of Kentucky, University of Kentucky Medical Center, Lexington, KY, USA
| | - R David Andrew
- Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Brian M Bennett
- Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Olivier Thibault
- Pharmacology and Nutritional Sciences University of Kentucky, University of Kentucky Medical Center, Lexington, KY, USA
| |
Collapse
|
41
|
Magi S, Preziuso A, Piccirillo S, Giampieri F, Cianciosi D, Orciani M, Amoroso S. The Neuroprotective Effect of L-Carnitine against Glyceraldehyde-Induced Metabolic Impairment: Possible Implications in Alzheimer's Disease. Cells 2021; 10:cells10082109. [PMID: 34440878 PMCID: PMC8394427 DOI: 10.3390/cells10082109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive regression and memory loss. Dysfunctions of both glucose metabolism and mitochondrial dynamics have been recognized as the main upstream events of the degenerative processes leading to AD. It has been recently found that correcting cell metabolism by providing alternative substrates can prevent neuronal injury by retaining mitochondrial function and reducing AD marker levels. Here, we induced an AD-like phenotype by using the glycolysis inhibitor glyceraldehyde (GA) and explored whether L-carnitine (4-N-trimethylamino-3-hydroxybutyric acid, LC) could mitigate neuronal damage, both in SH-SY5Y neuroblastoma cells and in rat primary cortical neurons. We have already reported that GA significantly modified AD marker levels; here we demonstrated that GA dramatically compromised cellular bioenergetic status, as revealed by glycolysis and oxygen consumption rate (OCR) evaluation. We found that LC ameliorated cell survival, improved OCR and ATP synthesis, prevented the loss of the mitochondrial membrane potential (Δψm) and reduced the formation of reactive oxygen species (ROS). Of note, the beneficial effect of LC did not rely on the glycolytic pathway rescue. Finally, we noticed that LC significantly reduced the increase in pTau levels induced by GA. Overall, these findings suggest that the use of LC can promote cell survival in the setting of the metabolic impairments commonly observed in AD. Our data suggest that LC may act by maintaining mitochondrial function and by reducing the pTau level.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (A.P.); (S.P.); (S.A.)
- Correspondence: ; Tel./Fax: +39-071-220-6040
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (A.P.); (S.P.); (S.A.)
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (A.P.); (S.P.); (S.A.)
| | - Francesca Giampieri
- Department of Clinical Sciences, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (F.G.); (D.C.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Danila Cianciosi
- Department of Clinical Sciences, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (F.G.); (D.C.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (A.P.); (S.P.); (S.A.)
| |
Collapse
|
42
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
43
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
The Relevance of Amyloid β-Calmodulin Complexation in Neurons and Brain Degeneration in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094976. [PMID: 34067061 PMCID: PMC8125740 DOI: 10.3390/ijms22094976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Intraneuronal amyloid β (Aβ) oligomer accumulation precedes the appearance of amyloid plaques or neurofibrillary tangles and is neurotoxic. In Alzheimer’s disease (AD)-affected brains, intraneuronal Aβ oligomers can derive from Aβ peptide production within the neuron and, also, from vicinal neurons or reactive glial cells. Calcium homeostasis dysregulation and neuronal excitability alterations are widely accepted to play a key role in Aβ neurotoxicity in AD. However, the identification of primary Aβ-target proteins, in which functional impairment initiating cytosolic calcium homeostasis dysregulation and the critical point of no return are still pending issues. The micromolar concentration of calmodulin (CaM) in neurons and its high affinity for neurotoxic Aβ peptides (dissociation constant ≈ 1 nM) highlight a novel function of CaM, i.e., the buffering of free Aβ concentrations in the low nanomolar range. In turn, the concentration of Aβ-CaM complexes within neurons will increase as a function of time after the induction of Aβ production, and free Aβ will rise sharply when accumulated Aβ exceeds all available CaM. Thus, Aβ-CaM complexation could also play a major role in neuronal calcium signaling mediated by calmodulin-binding proteins by Aβ; a point that has been overlooked until now. In this review, we address the implications of Aβ-CaM complexation in the formation of neurotoxic Aβ oligomers, in the alteration of intracellular calcium homeostasis induced by Aβ, and of dysregulation of the calcium-dependent neuronal activity and excitability induced by Aβ.
Collapse
|
45
|
Abyadeh M, Gupta V, Chitranshi N, Gupta V, Wu Y, Saks D, Wander Wall R, Fitzhenry MJ, Basavarajappa D, You Y, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. Mitochondrial dysfunction in Alzheimer's disease - a proteomics perspective. Expert Rev Proteomics 2021; 18:295-304. [PMID: 33874826 DOI: 10.1080/14789450.2021.1918550] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is involved in Alzheimer's disease (AD) pathogenesis. Mitochondria have their own genetic material; however, most of their proteins (∼99%) are synthesized as precursors on cytosolic ribosomes, and then imported into the mitochondria. Therefore, exploring proteome changes in these organelles can yield valuable information and shed light on the molecular mechanisms underlying mitochondrial dysfunction in AD. Here, we review AD-associated mitochondrial changes including the effects of amyloid beta and tau protein accumulation on the mitochondrial proteome. We also discuss the relationship of ApoE genetic polymorphism with mitochondrial changes, and present a meta-analysis of various differentially expressed proteins in the mitochondria in AD.Area covered: Proteomics studies and their contribution to our understanding of mitochondrial dysfunction in AD pathogenesis.Expert opinion: Proteomics has proven to be an efficient tool to uncover various aspects of this complex organelle, which will broaden our understanding of mitochondrial dysfunction in AD. Evidently, mitochondrial dysfunction is an early biochemical event that might play a central role in driving AD pathogenesis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Danit Saks
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Roshana Wander Wall
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yuyi You
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
46
|
Reddish FN, Miller CL, Deng X, Dong B, Patel AA, Ghane MA, Mosca B, McBean C, Wu S, Solntsev KM, Zhuo Y, Gadda G, Fang N, Cox DN, Mabb AM, Treves S, Zorzato F, Yang JJ. Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER . iScience 2021; 24:102129. [PMID: 33665552 PMCID: PMC7900224 DOI: 10.1016/j.isci.2021.102129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.
Collapse
Affiliation(s)
- Florence N. Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Cassandra L. Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Dong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad A. Ghane
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Barbara Mosca
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
| | - Cheyenne McBean
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Shengnan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Ning Fang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Treves
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
47
|
Khurana K, Kumar M, Bansal N. Lacidipine Prevents Scopolamine-Induced Memory Impairment by Reducing Brain Oxido-nitrosative Stress in Mice. Neurotox Res 2021; 39:1087-1102. [PMID: 33721210 DOI: 10.1007/s12640-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Cholinergic deficits and oxido-nitrosative stress are consistently associated with Alzheimer's disease (AD). Previous findings indicate that acetylcholine subdues Ca2+ current in the brain. Cholinergic antagonists (e.g., scopolamine) can instigate Ca2+-induced redox imbalance, inflammation, and cell-death pathways leading to AD-type memory impairment. Earlier, several Ca2+-channel blockers (CCB, e.g., dihydropyridine type) or cholinergic enhancers showed promising results in animal models of AD. In the present research, pretreatment effects of lacidipine (L-type CCB) on learning and memory functions were investigated using the scopolamine mouse model of AD. Swiss albino mice (20-25 g) were administered lacidipine (1 and 3 mg/kg) for 14 days. Scopolamine, an anti-muscarinic drug, was given (1 mg/kg) from days 8 to 14. The mice were subjected to elevated plus maze (EPM) and passive-avoidance (PA) paradigms. Bay-K8644 (a Ca2+-channel agonist) was administered before behavioral studies on days 13 and 14. Biochemical parameters of oxidative stress and acetylcholinesterase (AChE) activity were quantified using the whole brain. Behavioral studies showed an increase in transfer latency (TL) in the EPM test and a decrease in step-through latency (STL) in the PA test in scopolamine-administered mice. Scopolamine enhanced the AChE activity and oxidative stress in the brain of mice which resulted in memory impairment. Lacidipine prevented the amnesia against scopolamine and reduced the oxidative stress and AChE activity in the brain of mice. Bay-K8644 attenuated the lacidipine-induced improvement in memory and redox balance in scopolamine-administered mice. Lacidipine can prevent the oxidative stress and improve the cholinergic function in the brain. These properties of lacidipine can mitigate the pathogenesis of AD-type dementia.
Collapse
Affiliation(s)
- Kunal Khurana
- I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India.,Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India
| | - Manish Kumar
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, 140111, India
| | - Nitin Bansal
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India. .,Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana, 127021, India.
| |
Collapse
|
48
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
49
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
50
|
Rinaldi DE, Ontiveros MQ, Saffioti NA, Vigil MA, Mangialavori IC, Rossi RC, Rossi JP, Espelt MV, Ferreira-Gomes MS. Epigallocatechin 3-gallate inhibits the plasma membrane Ca 2+-ATPase: effects on calcium homeostasis. Heliyon 2021; 7:e06337. [PMID: 33681501 PMCID: PMC7930289 DOI: 10.1016/j.heliyon.2021.e06337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Flavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis. EGCG also was found to be involved in calcium (Ca2+) homeostasis in excitable and in non-excitable cells. In this study, we investigate the effect of catechins on plasma membrane Ca2+-ATPase (PMCA), which is one of the main mechanisms that extrude Ca2+ out of the cell. Our studies comprised experiments on the isolated PMCA and on cells overexpressing the pump. Among catechins that inhibited PMCA activity, the most potent inhibitor was EGCG. EGCG inhibited PMCA activity in a reversible way favoring E1P conformation. EGCG inhibition also occurred in the presence of calmodulin, the main pump activator. Finally, the effect of EGCG on PMCA activity was studied in human embryonic kidney cells (HEK293T) that transiently overexpress hPMCA4. Results show that EGCG inhibited PMCA activity in HEK293T cells, suggesting that the effects observed on isolated PMCA occur in living cells.
Collapse
Affiliation(s)
| | | | - Nicolas A. Saffioti
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Maximiliano A. Vigil
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Irene C. Mangialavori
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Rolando C. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Juan P. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - María V. Espelt
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Mariela S. Ferreira-Gomes
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|