1
|
Chen M, Qi Y, Gong S. C1QL1 regulates auditory nerve fibers growth via ELMO1-DOCK180-RAC1 integrin. Acta Otolaryngol 2025:1-7. [PMID: 40193629 DOI: 10.1080/00016489.2025.2486613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Complement C1q Like 1 (C1QL1), a secreted protein, is known to play an important role in synaptic maturation, regulation, and maintenance in central nervous system. C1QL1 is expressed in adult cochlea inner and outer hair cells. However, the mechanism of C1QL1 in cochlea remains unclear. OBJECTIVE This study aims to reveal the mechanism of C1ql1 gene in cochlea, including its target and pathway. MATERIAL AND METHODS The protein-protein interaction analysis of C1QL1 was conducted with STRING database. The interaction between C1QL1 and BAI3 in cochlea was further confirmed by colocalization and co-immunoprecipitation. via upregulating and downregulating the expression of C1ql1, the factors in the pathway can be detected. RESULTS C1QL1 protein interacts with BAI3 protein in cochlea. C1ql1 overexpression had no effect on auditory phenotype. C1ql1 regulates auditory nerve fibers growth via BAI3 and ELMO1-DOCK180-RAC1 integrin. Meanwhile, C1ql1 overexpression inhibited the expression of TIAM1-PARD3 integrin. CONCLUSIONS AND SIGNIFICANCE C1QL1 interacts with BAI3 in cochlea and C1ql1 regulates auditory nerve fibers growth via ELMO1-DOCK180-RAC1 integrin. C1ql1 overexpression can inhibit the expression of TIAM1-PARD3 integrin.
Collapse
Affiliation(s)
- Minglin Chen
- Otorhinolaryngology Head and Neck Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Yue Qi
- Otorhinolaryngology Head and Neck Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Otorhinolaryngology Head and Neck Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
De Chiara S, De Simone Carone L, Cirella R, Andretta E, Silipo A, Molinaro A, Mercogliano M, Di Lorenzo F. Beyond the Toll-Like Receptor 4. Structure-Dependent Lipopolysaccharide Recognition Systems: How far are we? ChemMedChem 2025; 20:e202400780. [PMID: 39752323 PMCID: PMC11911305 DOI: 10.1002/cmdc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
With an enormous potential in immunology and vaccinology, lipopolysaccharides (LPSs) are among the most extensively studied bacteria-derived molecules. LPS centered studies are countless, and their results reverberate in all areas of the life sciences, including chemistry, biology, genetics, biophysics, and medicine. Most of these research activities are focused on the LPS-induced immune response activation by means of Myeloid Differentiation protein-2/Toll Like Receptor 4 (MD-2/TLR4) complex, which currently is the most largely explored LPS sensing pathway. However, the enormous structural variability of LPS allows interactions with numerous other receptors involved in a wide range of equally important immunological scenarios. In this review, we explore these additional LPS recognition systems, which operate within interconnected signaling cascades, highlighting their role in maintaining physiological homeostasis and their involvement in the development of severe human diseases. Understanding these pathways, their interconnections, and the crosstalk between them and TLR4/MD-2 is essential for guiding the development of pharmacologically active molecules that could specifically modulate the inflammatory response, paving the way to new strategies for combating immune-mediated diseases and resistant infections.
Collapse
Affiliation(s)
- Stefania De Chiara
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Luca De Simone Carone
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Roberta Cirella
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Emanuela Andretta
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Alba Silipo
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore, 486, 80131, Naples, Italy
| | - Antonio Molinaro
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore, 486, 80131, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Marcello Mercogliano
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
| | - Flaviana Di Lorenzo
- Department of chemical sciences, University of Naples Federico II, via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore, 486, 80131, Naples, Italy
| |
Collapse
|
3
|
Lu C, Huang XX, Huang M, Liu C, Xu J. Mendelian randomization of plasma proteomics identifies novel ALS-associated proteins and their GO enrichment and KEGG pathway analyses. BMC Neurol 2025; 25:82. [PMID: 40033250 DOI: 10.1186/s12883-025-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disorder with an increasing incidence rate. Despite advances in ALS research over the years, the precise etiology and pathogenic mechanisms remain largely elusive. OBJECTIVE To identify novel plasma proteins associated with ALS through Mendelian randomization methods in large-scale plasma proteomics and to provide potential biomarkers and therapeutic targets for ALS treatment. METHODS This study employed a large-scale plasma proteomic Mendelian randomization approach using genetic data from 80,610 individuals of European ancestry (including 20,806 ALS patients and 59,804 controls) derived from a genome-wide association study (GWAS). Protein quantitative trait loci (pQTLs) data were obtained from Ferkingstad et al. (2021), which measured 4,907 proteins in 35,559 Icelandic individuals. Multiple Mendelian randomization (MR) techniques were utilized, including weighted median, MR-Egger, Wald ratio, inverse-variance weighting (IVW), basic model, and weighted model. Heterogeneity was evaluated using Cochran's Q test. Horizontal pleiotropy was assessed through the MR-Egger intercept test and MR-PRESSO outlier detection. Sensitivity analysis was performed via leave-one-out analysis. RESULTS MR analysis revealed potential causal associations between 491 plasma proteins and ALS, identifying 19 novel plasma proteins significantly linked to the disease. Proteins such as C1QC, UMOD, SLITRK5, ASAP2, TREML2, DAPK2, ARHGEF10, POLM, SST, and SIGLEC1 showed positive correlations with ALS risk, whereas ADPGK, BTNL9, COLEC12, ADGRF5, FAIM, CRTAM, PRSS3, BAG5, and PSMD11 exhibited negative correlations. Reverse MR analyses confirmed that ALS negatively correlates with ADPGK and ADGRF5 expression. Enrichment analyses, including Gene Ontology (GO) functional analysis, indicated involvement in critical biological processes such as external encapsulating structure organization, extracellular matrix organization, chemotaxis, and taxis. KEGG pathway analysis highlighted significant enrichment in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and axon guidance. CONCLUSION This study enhances the understanding of ALS pathophysiology and proposes potential biomarkers and mechanistic insights for therapeutic development. Future research should explore the clinical translation of these findings to improve ALS patient outcomes and quality of life.
Collapse
Affiliation(s)
- Chuan Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Xiao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ming Huang
- School of Continuing Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chaoning Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2025; 69:31-49. [PMID: 38499245 PMCID: PMC11954809 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
5
|
Meyer CM, Vafaeva O, Low H, Speca DJ, Díaz E. Regulation of hippocampal excitatory synapse development by the adhesion G-protein coupled receptor Brain-specific angiogenesis inhibitor 2 (BAI2/ADGRB2). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636169. [PMID: 39975290 PMCID: PMC11838441 DOI: 10.1101/2025.02.02.636169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Glutamatergic synapses and their associated dendritic spines are critical information processing sites within the brain. Proper development of these specialized cellular junctions is important for normal brain functionality. Synaptic adhesion G protein-coupled receptors (aGPCRs) have been identified as regulators of synapse development and function. While two members of the Brain-specific angiogenesis inhibitor (BAI/ADGRB) subfamily of synaptic aGPCRs, BAI1/ADGRB1 and BAI3/ADGRB3, have been found to mediate synapse and spine formation, BAI2/ADGRB2 function remains uncharacterized at the synapse. Here, we show that endogenous BAI2 is expressed throughout the nervous system with prominent expression in synapse dense regions of the hippocampus. In dissociated hippocampal cultures, BAI2 is highly enriched at large postsynaptic sites, defined by the size of the postsynaptic scaffold PSD95. Loss of BAI2 negatively impacts glutamatergic synapses across development in dissociated hippocampal cultures. In contrast, GABAergic synapse density is unchanged. Furthermore, BAI2 deficient neurons have significant alterations in spine morphology with decreased density of mature PSD95-containing mushroom-shaped spines compared with wild-type neurons. Interestingly, no major alterations in dendritic complexity were observed in BAI2 deficient neurons, in contrast to previous results for the other BAIs. The reduction in mature mushroom-shaped spine is commensurate with a reduction in spine volume and head diameter. Altogether, these results demonstrate that the aGPCR BAI2 is an important regulator of glutamatergic synapse and PSD95-associated spine development in cultured hippocampal neurons. These results expand the knowledge of the BAI subfamily of aGPCRs in mediating excitatory synapse and spine development and highlight differences unique to BAI2.
Collapse
Affiliation(s)
- Christina M. Meyer
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Olga Vafaeva
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Henry Low
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - David J. Speca
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Elva Díaz
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Parag RR, Yamamoto T, Saito K, Zhu D, Yang L, Van Meir EG. Novel Isoforms of Adhesion G Protein-Coupled Receptor B1 (ADGRB1/BAI1) Generated from an Alternative Promoter in Intron 17. Mol Neurobiol 2025; 62:900-917. [PMID: 38941066 PMCID: PMC11711277 DOI: 10.1007/s12035-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Brain-specific angiogenesis inhibitor 1 (BAI1) belongs to the adhesion G-protein-coupled receptors, which exhibit large multi-domain extracellular N termini that mediate cell-cell and cell-matrix interactions. To explore the existence of BAI1 isoforms, we queried genomic datasets for markers of active chromatin and new transcript variants in the ADGRB1 (adhesion G-protein-coupled receptor B1) gene. Two major types of mRNAs were identified in human/mouse brain, those with a start codon in exon 2 encoding a full-length protein of a predicted size of 173.5/173.3 kDa and shorter transcripts starting from alternative exons at the intron 17/exon 18 boundary with new or exon 19 start codons, predicting two shorter isoforms of 76.9/76.4 and 70.8/70.5 kDa, respectively. Immunoblots on wild-type and Adgrb1 exon 2-deleted mice, reverse transcription PCR, and promoter-luciferase reporter assay confirmed that the shorter isoforms originate from an alternative promoter in intron 17. The shorter BAI1 isoforms lack most of the N terminus and are very close in structure to the truncated BAI1 isoform generated through GPS processing from the full-length receptor. The cleaved BAI1 isoform has a 19 amino acid extracellular stalk that may serve as a receptor agonist, while the alternative transcripts generate BAI1 isoforms with extracellular N termini of 5 or 60 amino acids. Further studies are warranted to compare the functions of these isoforms and examine the distinct roles they play in different tissues and cell types.
Collapse
Affiliation(s)
- Rashed Rezwan Parag
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Takahiro Yamamoto
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Department of Neurosurgery, Kumamoto University, Kumamoto, Japan
| | - Kiyotaka Saito
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Liquan Yang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
7
|
Garbett K, Tosun B, Lopez JM, Smith CM, Honkanen K, Sando RC. Synaptic Gα12/13 signaling establishes hippocampal PV inhibitory circuits. Proc Natl Acad Sci U S A 2024; 121:e2407828121. [PMID: 39693341 PMCID: PMC11670215 DOI: 10.1073/pnas.2407828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions. Impairment of the Gα12/13 pathway in postnatal hippocampal neurons diminishes inhibitory inputs without altering neuronal morphology or excitatory transmission. Gα12/13 signaling in hippocampal CA1 neurons in vivo selectively regulates PV interneuron synaptic connectivity, supporting an inhibitory synapse subtype-specific function of this pathway. Our studies establish Gα12/13 as a signaling node that shapes inhibitory hippocampal circuitry.
Collapse
Affiliation(s)
- Krassimira Garbett
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Baris Tosun
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Jaybree M. Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Cassandra M. Smith
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Kelly Honkanen
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Richard C. Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
8
|
Pan Y, Cai Z, Wang Y, Zhang J, Sheng H, Shao D, Cui D, Guo X, Zheng P, Lai B. Formation of chronic morphine withdrawal memories requires C1QL3-mediated regulation of PSD95 in the mouse basolateral amygdala. Biochem Biophys Res Commun 2024; 720:150076. [PMID: 38772224 DOI: 10.1016/j.bbrc.2024.150076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.
Collapse
Affiliation(s)
- Yan Pan
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Zhangyin Cai
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yingqi Wang
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Junfang Zhang
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huan Sheng
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Da Shao
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Dongyang Cui
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xinli Guo
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ping Zheng
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Bin Lai
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Wahbeh MH, Boyd RJ, Yovo C, Rike B, McCallion AS, Avramopoulos D. A functional schizophrenia-associated genetic variant near the TSNARE1 and ADGRB1 genes. HGG ADVANCES 2024; 5:100303. [PMID: 38702885 PMCID: PMC11130735 DOI: 10.1016/j.xhgg.2024.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Recent collaborative genome-wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes, yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated four isogenic clones homozygous for the risk allele and five clones homozygous for the non-risk allele into neural progenitor cells. Employing RNA sequencing, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at a false discovery rate (FDR) of <0.05 and 259 genes at a FDR of <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.
Collapse
Affiliation(s)
- Marah H Wahbeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Rike
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Pan X, Cheng L, Zeng J, Jiang X, Zhou P. Three-needle electroacupuncture ameliorates depressive-like behaviors in a mouse model of post-stroke depression by promoting excitatory synapse formation via the NGL-3/L1cam pathway. Brain Res 2024; 1841:149087. [PMID: 38871241 DOI: 10.1016/j.brainres.2024.149087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Three-needle electroacupuncture (TNEA) has shown promise as a non-pharmacological treatment for post-stroke depression (PSD). However, the underlying mechanisms of its therapeutic effects remain unclear. In this study, we investigated the potential molecular and synaptic mechanisms by which TNEA ameliorates depressive-like behaviors in a mouse model of PSD. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) to induce PSD and subsequently treated with TNEA for three weeks at specific acupoints (GV24 and bilateral GB13). Through a combination of behavioral tests, neuronal activation assessment, synaptic function examination, transcriptomic analysis, and various molecular techniques, we found that TNEA treatment significantly improved anxiety and depressive-like behaviors in PSD mice. These improvements were accompanied by enhanced neuronal activation in the medial prefrontal cortex (mPFC) and primary somatosensory cortex (PSC), as well as the promotion of excitatory synapse formation and transmission function in the mPFC. Transcriptomic analysis revealed that TNEA upregulated the expression of Netrin-G Ligand-3 (NGL-3), a postsynaptic cell adhesion molecule, in the mPFC. Further investigation showed that the extracellular domain of NGL-3 binds to the presynaptic protein L1cam, promoting the formation of Vesicular Glutamate Transporter 1 (vGluT1) puncta on neuronal dendrites. Notably, cortical neuron-specific knockout of NGL-3 abolished the antidepressant-like effects of TNEA in PSD mice, confirming the crucial role of the NGL-3/L1cam pathway in mediating the therapeutic effects of TNEA. These findings provide novel insights into the molecular and synaptic mechanisms underlying the therapeutic effects of acupuncture in the treatment of PSD and highlight the potential of targeting the NGL-3/L1cam pathway for the development of alternative interventions for PSD and other depressive disorders.
Collapse
Affiliation(s)
- Xiaojin Pan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China.
| | - Lihua Cheng
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Xin Jiang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Peng Zhou
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China.
| |
Collapse
|
11
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wahbeh MH, Boyd RJ, Yovo C, Rike B, McCallion AS, Avramopoulos D. A Functional Schizophrenia-associated genetic variant near the TSNARE1 and ADGRB1 genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.570831. [PMID: 38187620 PMCID: PMC10769312 DOI: 10.1101/2023.12.18.570831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.
Collapse
Affiliation(s)
- Marah H Wahbeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Rike
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Saegusa C, Kakegawa W, Miura E, Aimi T, Mogi S, Harada T, Yamashita T, Yuzaki M, Fujioka M. Brain-Specific Angiogenesis Inhibitor 3 Is Expressed in the Cochlea and Is Necessary for Hearing Function in Mice. Int J Mol Sci 2023; 24:17092. [PMID: 38069416 PMCID: PMC10707444 DOI: 10.3390/ijms242317092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying the development and maintenance of pillar cells remains to be elucidated. In this study, we examined the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore, old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute to understanding the mechanisms of hearing loss in human patients.
Collapse
Affiliation(s)
- Chika Saegusa
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa 252-0374, Japan;
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Sachiyo Mogi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, Kanagawa 252-0374, Japan; (S.M.); (T.Y.)
| | - Tatsuhiko Harada
- Department of Otolaryngology, International University of Health and Welfare, Shizuoka 413-0012, Japan;
| | - Taku Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, Kanagawa 252-0374, Japan; (S.M.); (T.Y.)
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa 252-0374, Japan;
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Clinical and Translational Research Center, Keio University Hospital, Tokyo 162-8582, Japan
| |
Collapse
|
14
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
16
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Shiu FH, Wong JC, Yamamoto T, Lala T, Purcell RH, Owino S, Zhu D, Van Meir EG, Hall RA, Escayg A. Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Exp Neurol 2022; 351:113994. [PMID: 35114205 PMCID: PMC9817291 DOI: 10.1016/j.expneurol.2022.113994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.
Collapse
Affiliation(s)
- Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Takahiro Yamamoto
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Trisha Lala
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan H Purcell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon Owino
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Rosa M, Noel T, Harris M, Ladds G. Emerging roles of adhesion G protein-coupled receptors. Biochem Soc Trans 2021; 49:1695-1709. [PMID: 34282836 PMCID: PMC8421042 DOI: 10.1042/bst20201144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.
Collapse
Affiliation(s)
- Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Timothy Noel
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
20
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
21
|
Fu CH, Han XY, Tong L, Nie PY, Hu YD, Ji LL. miR-142 downregulation alleviates the impairment of spatial learning and memory, reduces the level of apoptosis, and upregulates the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2021; 414:113485. [PMID: 34302879 DOI: 10.1016/j.bbr.2021.113485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023]
Abstract
MicroRNA-142-5p (miR-142-5p) has been found to be dysregulated in several neurodegenerative disorders. However, little is known about the involvement of miR-142-5p in Alzheimer's disease (AD). Brain angiogenesis inhibitor 3 (BAI3), which belongs to the adhesion-G protein-coupled receptor subgroup, contributes to a variety of neuropsychiatric disorders. Despite its very high expression in neurons, the role of BAI3 in AD remains elusive, and its mechanism at the cellular and molecular levels needs to be further elucidated. The current study sought to investigate whether miR-142-5p influenced BAI3 expression and neuronal synaptotoxicity induced by Aβ, both in APP/PS1 transgenic mice and a cellular model of Alzheimer's disease. Altered expression of miR-142-5p was found in the hippocampus of AD mice. Inhibition of miR-142 could upregulate BAI3 expression, enhance neuronal viability and prevent neurons from undergoing apoptosis. In addition, the reduction of phosphorylation of Synapsin I and calcium/calmodulin-dependent protein kinase II (CaMKII), as well as the expression of PSD-95 in the hippocampus of APP/PS1 transgenic mice, were significantly restored by inhibiting miR-142. Meanwhile, the levels of Aβ1-42, β-APP, BACE-1 and PS-1 in cultured neurons were detected, and the effects of inhibiting miR-142 on spatial learning and memory were also observed. Interestingly, we found that BAI3, an important regulator of excitatory synapses, was a potential target gene of miR-142-5p. Collectively, our findings suggest that miR-142 inhibition can alleviate the impairment of spatial learning and memory, reduce the level of apoptosis, and upregulate the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice; thus, appropriate interference of miR-142 may provide a potential therapeutic approach to rescue cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Yan Han
- Department of Neurology, Seventh People's Hospital of Jinan City, Jinan, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue-Dong Hu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Perinatal SSRI Exposure Disrupts G Protein-coupled Receptor BAI3 in Developing Dentate Gyrus and Adult Emotional Behavior: Relevance to Psychiatric Disorders. Neuroscience 2021; 471:32-50. [PMID: 34293414 DOI: 10.1016/j.neuroscience.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are widely prescribed to pregnant women suffering with depression, although the long-term impact of these medications on exposed offspring are poorly understood. Perinatal SSRI exposure alters human offspring's neurodevelopment and increases risk for psychiatric illness in later life. Rodent studies suggest that perinatal SSRI-induced behavioral abnormalities are driven by changes in the serotonin system as well as epigenetic and transcriptomic changes in the developing hippocampus. A major gene altered by perinatal SSRI exposure is the G-protein coupled receptor Brain Angiogenesis Inhibitor 3 (BAI3). Our present study shows that perinatal exposure to the SSRI citalopram increases mRNA expression of Bai3 and related molecules (including its C1ql ligands) in the early postnatal dentate gyrus of male and female offspring. Transient Bai3 mRNA knockdown in perinatal SSRI-exposed dentate gyrus lessened behavioral consequences of perinatal SSRI exposure, leading to increased active stress coping. To determine translational implications of this work, we examined expression of BAI3 and related molecules in hippocampus and prefrontal cortex from patients that suffered with depression or schizophrenia relative to healthy control subjects. We found sex- and region-specific changes in mRNA expression of BAI3 and its ligands C1QL2 and C1QL3 in men and women with a history of psychiatric disorders compared to healthy controls. Together these results suggest that abnormal BAI3 signaling may contribute to molecular mechanisms that drive adverse effects of perinatal SSRI exposure, and show evidence for alterations of BAI3 signaling in the hippocampus of patients that suffer depression and schizophrenia.
Collapse
|
23
|
Garcia-Manteiga JM, Clarelli F, Bonfiglio S, Mascia E, Giannese F, Barbiera G, Guaschino C, Sorosina M, Santoro S, Protti A, Martinelli V, Cittaro D, Lazarevic D, Stupka E, Filippi M, Esposito F, Martinelli-Boneschi F. Identification of differential DNA methylation associated with multiple sclerosis: A family-based study. J Neuroimmunol 2021; 356:577600. [PMID: 33991750 DOI: 10.1016/j.jneuroim.2021.577600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is caused by a still unknown interplay between genetic and environmental factors. Epigenetics, including DNA methylation, represents a model for environmental factors to influence MS risk. Twenty-six affected and 26 unaffected relatives from 8 MS multiplex families were analysed in a multicentric Italian study using MeDIP-Seq, followed by technical validation and biological replication in two additional families of differentially methylated regions (DMRs) using SeqCap Epi Choice Enrichment kit (Roche®). Associations from MeDIP-Seq across families were combined with aggregation statistics, yielding 162 DMRs at FDR ≤ 0.1. Technical validation and biological replication led to 2 hypo-methylated regions, which point to NTM and BAI3 genes, and to 2 hyper-methylated regions in PIK3R1 and CAPN13. These 4 novel regions contain genes of potential interest that need to be tested in larger cohorts of patients.
Collapse
Affiliation(s)
- J M Garcia-Manteiga
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - F Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy
| | - S Bonfiglio
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - E Mascia
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy
| | - F Giannese
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - G Barbiera
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - C Guaschino
- Department of Neurology, Sant'Antonio Abate Hospital, Gallarate, Italy
| | - M Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy
| | - S Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy
| | - A Protti
- Ospedale Niguarda, Department of Neurology, Milan, Italy
| | - V Martinelli
- Neurology Unit, San Raffaele Scientific Institute, Via Olgettina 48, 20132 Milan, Italy
| | - D Cittaro
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - D Lazarevic
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - E Stupka
- Centre for Omics Sciences, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - M Filippi
- Neurology Unit, San Raffaele Scientific Institute, Via Olgettina 48, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 48, 20132 Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 48, 20132 Milan, Italy; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, San Raffaele Scientific Institute, Via Olgettina 48, 20132 Milan, Italy
| | - F Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy; Neurology Unit, San Raffaele Scientific Institute, Via Olgettina 48, 20132 Milan, Italy
| | - F Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy; Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit and MS Centre, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
24
|
Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD. FMRP links optimal codons to mRNA stability in neurons. Proc Natl Acad Sci U S A 2020; 117:30400-30411. [PMID: 33199649 PMCID: PMC7720238 DOI: 10.1073/pnas.2009161117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
Collapse
Affiliation(s)
- Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Elisa Donnard
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
25
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
26
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Dean B, Parkin GM, Gibbons AS. Associations between catechol-O-methyltransferase (COMT) genotypes at rs4818 and rs4680 and gene expression in human dorsolateral prefrontal cortex. Exp Brain Res 2020; 238:477-486. [DOI: 10.1007/s00221-020-05730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
|
28
|
Zhu F, Collins MO, Harmse J, Choudhary JS, Grant SGN, Komiyama NH. Cell-type-specific visualisation and biochemical isolation of endogenous synaptic proteins in mice. Eur J Neurosci 2019; 51:793-805. [PMID: 31621109 PMCID: PMC7079123 DOI: 10.1111/ejn.14597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1,000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here, we report an efficient method for the purification of synaptic protein complexes, fusing a high‐affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy, which enables the visualisation of endogenous PSD95 with fluorescent‐protein tag in Cre‐recombinase‐expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein complexes and visualisation of these in specific cell types. We find that the composition of PSD95 complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95 complexes in different brain regions. We have detected differentially interacting proteins by comparing data sets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region‐ and cell‐type‐specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses.
Collapse
Affiliation(s)
- Fei Zhu
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark O Collins
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Johan Harmse
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK
| | - Noboru H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre for Research into Autism, Fragile X Syndrome and Intellectual Disabilities, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Morgan RK, Anderson GR, Araç D, Aust G, Balenga N, Boucard A, Bridges JP, Engel FB, Formstone CJ, Glitsch MD, Gray RS, Hall RA, Hsiao CC, Kim HY, Knierim AB, Kusuluri DK, Leon K, Liebscher I, Piao X, Prömel S, Scholz N, Srivastava S, Thor D, Tolias KF, Ushkaryov YA, Vallon M, Van Meir EG, Vanhollebeke B, Wolfrum U, Wright KM, Monk KR, Mogha A. The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors. Ann N Y Acad Sci 2019; 1456:5-25. [PMID: 31168816 PMCID: PMC7891679 DOI: 10.1111/nyas.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.
Collapse
Affiliation(s)
- Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Garret R. Anderson
- Department of Molecular, Cell and Systems Biology, University of California – Riverside, Riverside, California
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, Leipzig University, Leipzig, Germany
| | - Nariman Balenga
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Molecular and Structural Biology, Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, Maryland
| | - Antony Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
| | - James P. Bridges
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline J. Formstone
- Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, UK
- Department of Biological and Environmental Sciences, College Lane Campus, University of Hertfordshire, Hatfield, UK
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ryan S. Gray
- Department of Pediatrics, University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Alexander B. Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Xianhua Piao
- Newborn Brain Research Institute, Department of Pediatrics, University of California – San Francisco, San Francisco, California
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Mario Vallon
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
30
|
Duman JG, Mulherkar S, Tu YK, Erikson KC, Tzeng CP, Mavratsas VC, Ho TSY, Tolias KF. The adhesion-GPCR BAI1 shapes dendritic arbors via Bcr-mediated RhoA activation causing late growth arrest. eLife 2019; 8:47566. [PMID: 31461398 PMCID: PMC6713510 DOI: 10.7554/elife.47566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor architecture profoundly impacts neuronal connectivity and function, and aberrant dendritic morphology characterizes neuropsychiatric disorders. Here, we identify the adhesion-GPCR BAI1 as an important regulator of dendritic arborization. BAI1 loss from mouse or rat hippocampal neurons causes dendritic hypertrophy, whereas BAI1 overexpression precipitates dendrite retraction. These defects specifically manifest as dendrites transition from growth to stability. BAI1-mediated growth arrest is independent of its Rac1-dependent synaptogenic function. Instead, BAI1 couples to the small GTPase RhoA, driving late RhoA activation in dendrites coincident with growth arrest. BAI1 loss lowers RhoA activation and uncouples it from dendrite dynamics, causing overgrowth. None of BAI1's known downstream effectors mediates BAI1-dependent growth arrest. Rather, BAI1 associates with the Rho-GTPase regulatory protein Bcr late in development and stimulates its cryptic RhoA-GEF activity, which functions together with its Rac1-GAP activity to terminate arborization. Our results reveal a late-acting signaling pathway mediating a key transition in dendrite development.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Yen-Kuei Tu
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
| | - Kelly C Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Christopher P Tzeng
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Vasilis C Mavratsas
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Rice University, Houston, United States
| | - Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
31
|
Glover ME, McCoy CR, Shupe EA, Unroe KA, Jackson NL, Clinton SM. Perinatal exposure to the SSRI paroxetine alters the methylome landscape of the developing dentate gyrus. Eur J Neurosci 2019; 50:1843-1870. [PMID: 30585666 DOI: 10.1111/ejn.14315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Evidence in humans and rodents suggests that perinatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants can have serious long-term consequences in offspring exposed in utero or infancy via breast milk. In spite of this, there is limited knowledge of how perinatal SSRI exposure impacts brain development and adult behaviour. Children exposed to SSRIs in utero exhibit increased internalizing behaviour and abnormal social behaviour between the ages of 3 and 6, and increased risk of depression in adolescence; however, the neurobiological changes underlying this behaviour are poorly understood. In rodents, perinatal SSRI exposure perturbs hippocampal gene expression and alters adult emotional behaviour (including increased depression-like behaviour). The present study demonstrates that perinatal exposure to the SSRI paroxetine leads to DNA hypomethylation and reduces DNA methyltransferase 3a (Dnmt3a) mRNA expression in the hippocampus during the second and third weeks of life. Next-generation sequencing identified numerous differentially methylated genomic regions, including altered methylation and transcription of several dendritogenesis-related genes. We then tested the hypothesis that transiently decreasing Dnmt3a expression in the early postnatal hippocampus would mimic the behavioural effects of perinatal SSRI exposure. We found that siRNA-mediated knockdown of Dnmt3a in the dentate gyrus during the second to third week of life produced greater depression-like behaviour in adult female (but not male) offspring, akin to the behavioural consequences of perinatal SSRI exposure. Overall, these data suggest that perinatal SSRI exposure may increase depression-like behaviours, at least in part, through reduced Dnmt3a expression in the developing hippocampus.
Collapse
Affiliation(s)
| | | | | | - Keaton A Unroe
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nateka L Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
32
|
Spence EF, Dube S, Uezu A, Locke M, Soderblom EJ, Soderling SH. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Nat Commun 2019; 10:386. [PMID: 30674877 PMCID: PMC6344529 DOI: 10.1038/s41467-019-08288-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Excitatory synapse formation during development involves the complex orchestration of both structural and functional alterations at the postsynapse. However, the molecular mechanisms that underlie excitatory synaptogenesis are only partially resolved, in part because the internal machinery of developing synapses is largely unknown. To address this, we apply a chemicogenetic approach, in vivo biotin identification (iBioID), to discover aspects of the proteome of nascent synapses. This approach uncovered sixty proteins, including a previously uncharacterized protein, CARMIL3, which interacts in vivo with the synaptic cytoskeletal regulator proteins SrGAP3 (or WRP) and actin capping protein. Using new CRISPR-based approaches, we validate that endogenous CARMIL3 is localized to developing synapses where it facilitates the recruitment of capping protein and is required for spine structural maturation and AMPAR recruitment associated with synapse unsilencing. Together these proteomic and functional studies reveal a previously unknown mechanism important for excitatory synapse development in the developing perinatal brain.
Collapse
Affiliation(s)
- Erin F Spence
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shataakshi Dube
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Margaret Locke
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Molenhuis RT, Bruining H, Brandt MJV, van Soldt PE, Abu-Toamih Atamni HJ, Burbach JPH, Iraqi FA, Mott RF, Kas MJH. Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice. Mol Autism 2018; 9:63. [PMID: 30559955 PMCID: PMC6293525 DOI: 10.1186/s13229-018-0252-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background Animal models for neurodevelopmental disorders (NDD) generally rely on a single genetic mutation on a fixed genetic background. Recent human genetic studies however indicate that a clinical diagnosis with ASDAutism Spectrum Disorder (ASD) is almost always associated with multiple genetic fore- and background changes. The translational value of animal model studies would be greatly enhanced if genetic insults could be studied in a more quantitative framework across genetic backgrounds. Methods We used the Collaborative Cross (CC), a novel mouse genetic reference population, to investigate the quantitative genetic architecture of mouse behavioral phenotypes commonly used in animal models for NDD. Results Classical tests of social recognition and grooming phenotypes appeared insufficient for quantitative studies due to genetic dilution and limited heritability. In contrast, digging, locomotor activity, and stereotyped exploratory patterns were characterized by continuous distribution across our CC sample and also mapped to quantitative trait loci containing genes associated with corresponding phenotypes in human populations. Conclusions These findings show that the CC can move animal model studies beyond comparative single gene-single background designs, and point out which type of behavioral phenotypes are most suitable to quantify the effect of developmental etiologies across multiple genetic backgrounds.
Collapse
Affiliation(s)
- Remco T. Molenhuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Myrna J. V. Brandt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Petra E. van Soldt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hanifa J. Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Richard F. Mott
- Genetics Institute, University College London, Gower Street, London, WC1E 6BT UK
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Gupta R, Nguyen DC, Schaid MD, Lei X, Balamurugan AN, Wong GW, Kim JA, Koltes JE, Kimple ME, Bhatnagar S. Complement 1q-like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G protein-coupled receptor BAI3. J Biol Chem 2018; 293:18086-18098. [PMID: 30228187 DOI: 10.1074/jbc.ra118.005403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.
Collapse
Affiliation(s)
- Rajesh Gupta
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Dan C Nguyen
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Michael D Schaid
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705
| | - Xia Lei
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - G William Wong
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jeong-A Kim
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - James E Koltes
- the Department of Animal Science, Iowa State University, Ames, Iowa 50011
| | - Michelle E Kimple
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705,; the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and the Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Sushant Bhatnagar
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294,.
| |
Collapse
|
35
|
The Adhesion-GPCR BAI1 Promotes Excitatory Synaptogenesis by Coordinating Bidirectional Trans-synaptic Signaling. J Neurosci 2018; 38:8388-8406. [PMID: 30120207 DOI: 10.1523/jneurosci.3461-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Excitatory synapses are specialized cell-cell contacts located on actin-rich dendritic spines that mediate information flow and storage in the brain. The postsynaptic adhesion-G protein-coupled receptor (A-GPCR) BAI1 is a critical regulator of excitatory synaptogenesis, which functions in part by recruiting the Par3-Tiam1 polarity complex to spines, inducing local Rac1 GTPase activation and actin cytoskeletal remodeling. However, a detailed mechanistic understanding of how BAI1 controls synapse and spine development remains elusive. Here, we confirm that BAI1 is required in vivo for hippocampal spine development, and we identify three distinct signaling mechanisms mediating BAI1's prosynaptogenic functions. Using in utero electroporation to sparsely knock down BAI1 expression in hippocampal pyramidal neurons, we show that BAI1 cell-autonomously promotes spinogenesis in the developing mouse brain. BAI1 appears to function as a receptor at synapses, as its extracellular N-terminal segment is required for both its prospinogenic and prosynaptogenic functions. Moreover, BAI1 activation with a Stachel-derived peptide, which mimics a tethered agonist motif found in A-GPCRs, drives synaptic Rac1 activation and subsequent spine and synapse development. We also reveal, for the first time, a trans-synaptic function for BAI1, demonstrating in a mixed-culture assay that BAI1 induces the clustering of presynaptic vesicular glutamate transporter 1 (vGluT1) in contacting axons, indicative of presynaptic differentiation. Finally, we show that BAI1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development. Together, these findings establish BAI1 as an essential postsynaptic A-GPCR that regulates excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.SIGNIFICANCE STATEMENT Adhesion-G protein-coupled receptors are cell-adhesion receptors with important roles in nervous system development, function, and neuropsychiatric disorders. The postsynaptic adhesion-G protein-coupled receptor BAI1 is a critical regulator of dendritic spine and excitatory synapse development. However, the mechanism by which BAI1 controls these functions remains unclear. Our study identifies three distinct signaling paradigms for BAI1, demonstrating that it mediates forward, reverse, and lateral signaling in spines. Activation of BAI1 by a Stachel-dependent mechanism induces local Rac1 activation and subsequent spinogenesis/synaptogenesis. BAI1 also signals trans-synaptically to promote presynaptic differentiation. Furthermore, BAI1 interacts with the postsynaptic cell-adhesion molecule Neuroligin-1 (NRLN1) and facilitates NRLN1-dependent spine growth and excitatory synaptogenesis. Thus, our findings establish BAI1 as a functional synaptogenic receptor that promotes presynaptic and postsynaptic development in cooperation with synaptic organizer NRLN1.
Collapse
|
36
|
Choi JS, Bae WY, Nam S, Jeong JW. New Targets for Parkinson's Disease: Adhesion G Protein-Coupled Receptor B1 is Downregulated by AMP-Activated Protein Kinase Activation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:493-501. [PMID: 30004846 DOI: 10.1089/omi.2018.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While progressive dopaminergic neurodegeneration is responsible for the cardinal motor defects in Parkinson's disease (PD), new diagnostics and therapeutic targets are necessary to effectively address this major global health burden. We evaluated whether the adhesion G protein-coupled receptor B1 (ADGRB1, formerly BAI1, brain-specific angiogenesis inhibitor 1) might contribute to dopaminergic neuronal loss. We used bioinformatic analyses, as well as in vitro and in vivo PD models. We report in this study that ADGRB1 is decreased in PD and that the ADGRB1 level is specifically decreased in dopaminergic neurons in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In primary mouse mesencephalic neurons and human neuroblastoma cell lines, 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP, suppressed the expression of ADGRB1. Moreover, we applied a network generation tool, Ingenuity Pathway Analysis®, with the transcriptomics dataset to extend the upstream regulatory pathway of ADGRB1 expression. AMP-activated protein kinase (AMPK) was predicted as a regulator, and consequently, 5-aminoimidazole-4-carboxamide ribonucleotide, a specific activator of AMPK, reduced the ADGRB1 protein level. Finally, ADGRB1 overexpression decreased nuclear condensation induced by MPP+ treatment. Taken together, we observed that decreased ADGRB1 by activation of AMPK induced neuronal cell death in MPTP/MPP+-mediated PD models, suggesting that ADGRB1 might potentially play a survival role in the neurodegenerative pathway of PD. These data offer new insights into dopaminergic cell death with therapeutic implications for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jae-Sun Choi
- 1 Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Woom-Yee Bae
- 2 Department of Biomedical Science, Graduate School, Kyung Hee University , Seoul, Republic of Korea
| | - Seungyoon Nam
- 3 Department of Genome Medicine and Science, College of Medicine, Gachon University , Incheon, Republic of Korea.,4 Department of Life Sciences, Gachon University , Seongnam, Republic of Korea.,5 Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center , Incheon, Republic of Korea
| | - Joo-Won Jeong
- 1 Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Department of Biomedical Science, Graduate School, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
37
|
Gritsenko DA, Orlova OA, Linkova NS, Khavinson VK. Transcription factor p53 and skin aging. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017020072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Lütjens R, Rocher JP. Recent advances in drug discovery of GPCR allosteric modulators for neurodegenerative disorders. Curr Opin Pharmacol 2017; 32:91-95. [PMID: 28135635 DOI: 10.1016/j.coph.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
Abstract
The activation or the inhibition of G-protein coupled receptors (GPCRs) implicated in the pathophysiology of neurodegenerative disorders is considered as a relevant approach for the treatment of these diseases. The modulation of the relevant GPCRs targets by positive or by negative allosteric modulators appears to be promising, the major challenge remaining the discovery of these molecules. In this review, we highlight the recent development in this field and the therapeutic potential of selected GPCRs allosteric modulators.
Collapse
|
39
|
Liao Z, Ju Y, Zou Q. Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest. SCIENTIFICA 2016; 2016:8309253. [PMID: 27529053 PMCID: PMC4978840 DOI: 10.1155/2016/8309253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs.
Collapse
Affiliation(s)
- Zhijun Liao
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
| | - Ying Ju
- School of Information Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Krishnan A, Nijmeijer S, de Graaf C, Schiöth HB. Classification, Nomenclature, and Structural Aspects of Adhesion GPCRs. Handb Exp Pharmacol 2016; 234:15-41. [PMID: 27832482 DOI: 10.1007/978-3-319-41523-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Representation of the nine distinct aGPCR subfamilies and their unique N-terminal domain architecture. The illustration also shows the extracellular structural feature shared by all aGPCRs (except ADGRA1), known as the GPCR autoproteolysis-inducing (GAIN) domain, that mediates autoproteolysis and subsequent attachment of the cleaved NTF and CTF fragments The adhesion family of G protein-coupled receptors (aGPCRs) is unique among all GPCR families with long N-termini and multiple domains that are implicated in cell-cell and cell-matrix interactions. Initially, aGPCRs in the human genome were phylogenetically classified into nine distinct subfamilies based on their 7TM sequence similarity. This phylogenetic grouping of genes into subfamilies was found to be in congruence in closely related mammals and other vertebrates as well. Over the years, aGPCR repertoires have been mapped in many species including model organisms, and, currently, there is a growing interest in exploring the pharmacological aspects of aGPCRs. Nonetheless, the aGPCR nomenclature has been highly diverse because experts in the field have used different names for different family members based on their characteristics (e.g., epidermal growth factor-seven-span transmembrane (EGF-TM7)), but without harmonization with regard to nomenclature efforts. In order to facilitate naming of orthologs and other genetic variants in different species in the future, the Adhesion-GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposed a unified nomenclature for aGPCRs. Here, we review the classification and the most recent/current nomenclature of aGPCRs and as well discuss the structural topology of the extracellular domain (ECD)/N-terminal fragment (NTF) that is comparable with this 7TM subfamily classification. Of note, we systematically describe the structural domains in the ECD of aGPCR subfamilies and highlight their role in aGPCR-protein interactions.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, 593, Uppsala, 75 124, Sweden
| | - Saskia Nijmeijer
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, 593, Uppsala, 75 124, Sweden.
| |
Collapse
|