1
|
Han YK, Lim HJ, Jang G, Jang SY, Park KM. Kidney ischemia/reperfusion injury causes cholangiocytes primary cilia disruption and abnormal bile secretion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167225. [PMID: 38749218 DOI: 10.1016/j.bbadis.2024.167225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) causes distant liver injury, to date, which causes poor outcomes of patients with AKI. Many studies have been performed to overcome AKI-associated liver injury. However, those studies have mainly focused on hepatocytes, and AKI-induced liver injury still remains a clinical problem. Here, we investigated the implication of cholangiocytes and their primary cilia which are critical in final bile secretion. Cholangiocyte, a lining cell of bile ducts, are the only liver epithelial cell containing primary cilium (a microtubule-based cell surface signal-sensing organelle). METHODS Cystathione γ-lyase (CSE, a transsulfuration enzyme) deficient and wild-type mice were subjected to kidney ischemia followed by reperfusion (KIR). Some mice were administered with N-acetyl-cysteine (NAC). RESULTS KIR damaged hepatocytes and cholagiocytes, disrupted cholangiocytes primary cilia, released the disrupted ciliary fragments into the bile, and caused abnormal bile secretion. Glutathione (GSH) and H2S levels in the livers were significantly reduced by KIR, resulting in increased the ratio oxidized GSH to total GSH, and oxidation of tissue and bile. CSE and cystathione β-synthase (CBS) expression were lowered in the liver after KIR. NAC administration increased total GSH and H2S levels in the liver and attenuated KIR-induced liver injuries. In contrast, Cse deletion caused the reduction of total GSH levels and worsened KIR-induced liver injuries, including primary cilia damage and abnormal bile secretion. CONCLUSIONS These results indicate that KIR causes cholangiocyte damage, cholangiocytes primary cilia disruption, and abnormal bile secretion through reduced antioxidative ability of the liver.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Hui Jae Lim
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - GiBong Jang
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Emmanuel NS, Yusuf T, Bako IG, Malgwi IS, Eze ED, Ali Z, Aliyu M. Hematological changes, oxidative stress assessment, and dysregulation of aquaporin-3 channel, prolactin, and oxytocin receptors in kidneys of lactating Wistar rats treated with monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6213-6229. [PMID: 38446217 DOI: 10.1007/s00210-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
High consumption of locally produced delicacies could expose nursing mothers to high monosodium glutamate (MSG) levels, frequently used as a necessary condiment in low-income countries. Thus, this study evaluated some novel preliminary changes in renal hormonal receptors, the aquaporin-3 channel, oxidative stress markers, and hematological indices induced by monosodium glutamate in lactating rats. Post-parturition, twenty-four (24) lactating Wistar rats were divided into four (4) groups of six rats each (n = 6). Oral administration of distilled water and MSG started three (3) days postpartum as follows: group 1: distilled water (1 ml/kg BW), group 2: MSG (925 mg/kg BW), group 3: MSG (1850 mg/kg BW), and group 4: MSG (3700 mg/kg BW). At the end of the experiment, which lasted fourteen (14) days, animals were sacrificed and samples of blood and tissues were obtained for biochemical analysis. MSG administration significantly (p < 0.05) increased ROS and MDA, with a significant (p < 0.05) decrease in kidney antioxidants. Serum creatinine, total, conjugated, and unconjugated bilirubin significantly (p < 0.05) increased with MSG administration. The prolactin receptor was significantly reduced (p < 0.05), while the oxytocin receptor and aquaporin-3 channel were significantly (p < 0.05) increased in the MSG-administered groups. There were significant (p < 0.05) changes in the hematological indices of the MSG-administered animals. Thus, the findings of this study suggest that high MSG consumption causes hematological alterations and may alter renal function via increased ROS production and dysregulation of the AQP-3 channel, prolactin, and oxytocin receptors in the kidneys of lactating Wistar rats.
Collapse
Affiliation(s)
- Nachamada Solomon Emmanuel
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.
| | - Tanko Yusuf
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Gaya Bako
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Samaila Malgwi
- Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Huye, Rwanda
| | - Zubairu Ali
- Department of Human Physiology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammed Aliyu
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
3
|
Kayalar O, Bayrak BB, Yildirim M, Yanardag R, Oztay F. Retinoic acid reduces kidney injury by regulating oxidative stress, NRF-2, and apoptosis in hyperoxic mice. Cell Biochem Funct 2024; 42:e4094. [PMID: 39001564 DOI: 10.1002/cbf.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
- School of Medicine, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Merve Yildirim
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Baker PR, Li AS, Griffin BR, Gil HW, Orlicky DJ, Fox BM, Park B, Sparagna GC, Goff J, Altmann C, Elajaili H, Okamura K, He Z, Stephenson D, D'Alessandro A, Reisz JA, Nozik ES, Sucharov CC, Faubel S. Disruption in glutathione metabolism and altered energy production in the liver and kidney after ischemic acute kidney injury in mice. Sci Rep 2024; 14:13862. [PMID: 38879688 PMCID: PMC11180093 DOI: 10.1038/s41598-024-64586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic disease that affects energy metabolism in various remote organs in murine models of ischemic AKI. However, AKI-mediated effects in the liver have not been comprehensively assessed. After inducing ischemic AKI in 8-10-week-old, male C57BL/6 mice, mass spectrometry metabolomics revealed that the liver had the most distinct phenotype 24 h after AKI versus 4 h and 7 days. Follow up studies with in vivo [13C6]-glucose tracing on liver and kidney 24 h after AKI revealed 4 major findings: (1) increased flux through glycolysis and the tricarboxylic (TCA) cycle in both kidney and liver; (2) depleted hepatic glutathione levels and its intermediates despite unchanged level of reactive oxygen species, suggesting glutathione consumption exceeds production due to systemic oxidative stress after AKI; (3) hepatic ATP depletion despite unchanged rate of mitochondrial respiration, suggesting increased ATP consumption relative to production; (4) increased hepatic and renal urea cycle intermediates suggesting hypercatabolism and upregulation of the urea cycle independent of impaired renal clearance of nitrogenous waste. Taken together, this is the first study to describe the hepatic metabolome after ischemic AKI in a murine model and demonstrates that there is significant liver-kidney crosstalk after AKI.
Collapse
Affiliation(s)
- Peter R Baker
- Division of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16th Avenue, Box 300, Aurora, CO, 80045, USA
| | - Amy S Li
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Benjamin R Griffin
- Division of Nephrology, Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hyo-Wook Gil
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Benjamin M Fox
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Bryan Park
- Division of Pulmonary Sciences and Critical Care, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Jared Goff
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Christopher Altmann
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Hanan Elajaili
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO, B13180045, USA
| | - Kayo Okamura
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Zhibin He
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Eva S Nozik
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO, B13180045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Magaji UF, Coremen M, Karabulut Bulan O, Sacan O, Yanardag R. Biochemical and Histological Effects of Moringa oleifera Extract against Valproate-Induced Kidney Damage. J Med Food 2024; 27:533-544. [PMID: 38836511 DOI: 10.1089/jmf.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
6
|
Lee YS, Park YR, Lee HB, Park HJ, Lee HE, Kim GA, Kim SH, Shin JH. The preventive effect of Gastrodia elata Blume extract on vancomycin-induced acute kidney injury in rats. Lab Anim Res 2024; 40:14. [PMID: 38589968 PMCID: PMC11000351 DOI: 10.1186/s42826-024-00200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Gastrodia elata Blume (GEB), a traditional medicinal herb, has been reported to have pharmacological effect including protection against liver, neuron and kidney toxicity. However, explanation of its underlying mechanisms remains a great challenge. This study investigated the protective effects of GEB extract on vancomycin (VAN)-induced nephrotoxicity in rats and underlying mechanisms with emphasis on the anti-oxidative stress, anti-inflammation and anti-apoptosis. The male Sprague-Dawley rats were randomly divided three groups: control (CON) group, VAN group and GEB group with duration of 14 days. RESULTS The kidney weight and the serum levels of blood urea nitrogen and creatinine in the GEB group were lower than the VAN group. Histological analysis using hematoxylin & eosin and periodic acid Schiff staining revealed pathological changes of the VAN group. Immunohistochemical analysis revealed that the expression levels of N-acetyl-D-glucosaminidase, myeloperoxidase and tumor necrosis factor-alpha in the GEB group were decreased when compared with the VAN group. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells, phosphohistone and malondialdehyde levels were lower in the GEB group than VAN group. The levels of total glutathione in the GEB group were higher than the VAN group. CONCLUSIONS The findings of this study suggested that GEB extract prevents VAN-induced renal tissue damage through anti-oxidation, anti-inflammation and anti-apoptosis.
Collapse
Affiliation(s)
- Yeon Su Lee
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea
| | - Yu Rim Park
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea
| | - Hyo Bin Lee
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea
| | - Hye Joon Park
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea
| | - Ha Eun Lee
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea
| | - Geon A Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea
- Department of Biomedical Laboratory Science, Eulji University, Uijeongbu, 11759, Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Eulji Hospital, Seoul, 01830, Korea.
- Eulji Medi-Bio Research Institute, Eulji University School of Medicine, Seoul, 01830, Korea.
| | - Jae-Ho Shin
- Department of Senior Healthcare, Eulji University, Uijeongbu, 11549, Korea.
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, 13135, Korea.
- Eulji Medi-Bio Research Institute, Eulji University School of Medicine, Seoul, 01830, Korea.
| |
Collapse
|
7
|
Oit-Wiscombe I, Soomets U, Altraja A. Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Curr Issues Mol Biol 2024; 46:2343-2354. [PMID: 38534765 PMCID: PMC10969540 DOI: 10.3390/cimb46030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Increased oxidative stress (OS) and systemic inflammation are key players in the pathophysiology of chronic obstructive pulmonary disease (COPD). We aimed to clarify the effects of synthetic glutathione (GSH) analogue peptides UPF1 and UPF17 on the mRNA levels of enzymes involved in systemic inflammation and GSH metabolism in peripheral blood mononuclear cells (PBMCs) from patients with acute exacerbation of COPD (AE-COPD) and stable COPD along with non-obstructive smokers and non-smokers. UPF1 and UPF17 increased the expression of enzymes involved in the formation of the antioxidant capacity: superoxide dismutase 1 (SOD1) and the catalytic subunit of glutamyl-cysteine ligase (GCLC) in patients with AE-COPD and stable COPD, but also in non-obstructive smokers and non-smokers. Similarly, both UPF1 and UPF17 increased the expression of inflammatory enzymes poly(ADP-ribose) polymerase-1 (PARP-1), dipeptidyl peptidase 4 (DPP4), and cyclooxygenase-2 (COX-2). Both UPF analogues acted in a gender-dependent manner by increasing the expression of certain anti-inflammatory (histone deacetylase 2 (HDAC2)) and GSH metabolism pathway (SOD1 and GSH reductase (GSR))-related enzymes in females and decreasing them in males. UPF1 and UPF17 are able to increase the expression of the enzymes involved in GSH metabolism and could serve as a lead for designing potential COPD therapies against excessive OS.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Alan Altraja
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Lung Clinic, Tartu University Hospital, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Rauckhorst AJ, Vasquez Martinez G, Mayoral Andrade G, Wen H, Kim JY, Simoni A, Robles-Planells C, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular mitochondrial pyruvate carrier disruption elicits redox adaptations that protect from acute kidney injury. Mol Metab 2024; 79:101849. [PMID: 38056691 PMCID: PMC10733108 DOI: 10.1016/j.molmet.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Claudia Robles-Planells
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA.
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Kopacz A, Klóska D, Cysewski D, Kraszewska I, Przepiórska K, Lenartowicz M, Łoboda A, Grochot-Przęczek A, Nowak W, Józkowicz A, Piechota-Polańczyk A. Co-administration of angiotensin II and simvastatin triggers kidney injury upon heme oxygenase-1 deficiency. Free Radic Biol Med 2023; 205:188-201. [PMID: 37302617 DOI: 10.1016/j.freeradbiomed.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
Kidneys are pivotal organ in iron redistribution and can be severely damaged in the course of hemolysis. In our previous studies, we observed that induction of hypertension with angiotensin II (Ang II) combined with simvastatin administration results in a high mortality rate or the appearance of signs of kidney failure in heme oxygenase-1 knockout (HO-1 KO) mice. Here, we aimed to address the mechanisms underlying this effect, focusing on heme and iron metabolism. We show that HO-1 deficiency leads to iron accumulation in the renal cortex. Higher mortality of Ang II and simvastatin-treated HO-1 KO mice coincides with increased iron accumulation and the upregulation of mucin-1 in the proximal convoluted tubules. In vitro studies showed that mucin-1 hampers heme- and iron-related oxidative stress through the sialic acid residues. In parallel, knock-down of HO-1 induces the glutathione pathway in an NRF2-depedent manner, which likely protects against heme-induced toxicity. To sum up, we showed that heme degradation during heme overload is not solely dependent on HO-1 enzymatic activity, but can be modulated by the glutathione pathway. We also identified mucin-1 as a novel redox regulator. The results suggest that hypertensive patients with less active HMOX1 alleles may be at higher risk of kidney injury after statin treatment.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Molecular Mechanisms of Diseases Laboratory, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland; Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Przepiórska
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland; Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Witold Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Soliman E, Elshazly SM, Shewaikh SM, El-Shaarawy F. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling. Food Chem Toxicol 2023:113868. [PMID: 37269893 DOI: 10.1016/j.fct.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a common cause of acute kidney injury and remote liver damage is an ultimate negative outcome. Current treatments for I/R typically involve the use of antioxidants and anti-inflammatory to protect against oxidative stress and inflammation. Xanthine oxidase (XO) and PPAR-γ contribute to renal I/R-induced oxidative stress; however, the crosstalk between the two pathways remains unexplored. In the present study, we report that XO inhibitor, allopurinol (ALP), protects kidney and liver after renal I/R by PPAR-γ activation. Rats with renal I/R showed reduced kidney and liver functions, increased XO, and decreased PPAR-γ. ALP increased PPAR-γ expression and improved liver and kidney functions. ALP also reduced inflammation and nitrosative stress indicated by reduction in TNF-α, iNOS, nitric oxide (NO), and peroxynitrite formation. Interestingly, rats co-treated with PPAR-γ inhibitor, BADGE, and ALP showed diminished beneficial effect on renal and kidney functions, inflammation, and nitrosative stress. This data suggests that downregulation of PPAR-γ contributes to nitrosative stress and inflammation in renal I/R and the use of ALP reverses this effect by increasing PPAR-γ expression. In conclusion, this study highlights the potential therapeutic value of ALP and suggests targeting XO-PPAR-γ pathway as a promising strategy for preventing I/R injury.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa Mustafa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar M Shewaikh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma El-Shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, El-Arish, 45511, Egypt.
| |
Collapse
|
11
|
Goel H, Printz RL, Shiota C, Estes SK, Pannala V, AbdulHameed MDM, Shiota M, Wallqvist A. Assessing Kidney Injury Induced by Mercuric Chloride in Guinea Pigs with In Vivo and In Vitro Experiments. Int J Mol Sci 2023; 24:7434. [PMID: 37108594 PMCID: PMC10138559 DOI: 10.3390/ijms24087434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shanea K. Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Venkat Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
12
|
Gołyński M, Metyk M, Ciszewska J, Szczepanik MP, Fitch G, Bęczkowski PM. Homocysteine-Potential Novel Diagnostic Indicator of Health and Disease in Horses. Animals (Basel) 2023; 13:ani13081311. [PMID: 37106874 PMCID: PMC10135347 DOI: 10.3390/ani13081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Homocysteine is an endogenous, non-protein sulfuric amino acid, an intermediate metabolite formed by the methionine transmethylation reaction. Its elevated serum concentration in humans, hyperhomocysteinemia, is a sensitive indicator and a risk factor for coagulation disorders, cardiovascular diseases and dementia. However, the role of homocysteine in veterinary species has not been unequivocally established. Although some research has been conducted in dogs, cats, cattle and pigs, relatively few studies on homocysteine have been conducted in horses. So far, it has been established in this species that homocysteine has an atherogenic effect, plays a role in early embryo mortality and is responsible for the induction of oxidative stress. These preliminary findings support establishing a reference range in a normal population of horses, including horses in training and merit further investigations into the role of this amino acid in health and disease in this species.
Collapse
Affiliation(s)
- Marcin Gołyński
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Metyk
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Jagoda Ciszewska
- Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Marcin Paweł Szczepanik
- Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Gareth Fitch
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Paweł Marek Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
13
|
Au-Yeung KKW, Shang Y, Wijerathne CUB, Madduma Hewage S, Siow YL, O K. Acute Kidney Injury Induces Oxidative Stress and Hepatic Lipid Accumulation through AMPK Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12040883. [PMID: 37107258 PMCID: PMC10135179 DOI: 10.3390/antiox12040883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Acute kidney injury (AKI) often impairs the function of other organs leading to distant organ injury. The liver is the major organ that regulates metabolism and lipid homeostasis in the body. It has been reported that AKI causes liver injury with increased oxidative stress, inflammatory response and steatosis. In the present study, we investigated the mechanisms by which ischemia-reperfusion-induced AKI caused hepatic lipid accumulation. Kidney ischemia (45 min)-reperfusion (24 h) led to a significant increase in plasma creatinine and transaminase in Sprague Dawley rats, indicating kidney and liver injury. Histological and biochemical analyses revealed hepatic lipid accumulation with a significant elevation of triglyceride and cholesterol levels in the liver. This was accompanied by a decreased AMP-activated protein kinase (AMPK) phosphorylation, indicating the reduced activation of AMPK, which is an energy sensor that regulates lipid metabolism. The expression of AMPK-regulated genes that were responsible for fatty acid oxidation (CPTIα, ACOX) was significantly decreased, while the expression of lipogenesis genes (SREPB-1c, ACC1) was significantly elevated. The oxidative stress biomarker malondialdehyde was elevated in the plasma and liver. Incubation of HepG2 cells with an oxidative stress inducer hydrogen peroxide inhibited AMPK phosphorylation and caused cellular lipid accumulation. This was accompanied by decreased expression of genes responsible for fatty acid oxidation and increased expression of genes responsible for lipogenesis. These results suggest that AKI elicits hepatic lipid accumulation through decreased fatty acid metabolism and increased lipogenesis. Oxidative stress may contribute, in part, to the downregulation of the AMPK signaling pathway leading to hepatic lipid accumulation and injury.
Collapse
Affiliation(s)
- Kathy K. W. Au-Yeung
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charith U. B. Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yaw L. Siow
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
14
|
Khajepour F, Mahmoodpoor F, Jafari E, Kakaei F, Bahraminia F, Aghajani S, Vahed SZ, Bagheri Y. Prazosin Protects the Liver Against Renal Ischemia/Reperfusion Injury in Rats. Drug Res (Stuttg) 2023. [PMID: 36940722 DOI: 10.1055/a-2015-7976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) is a common subsequent problem after many medical conditions. AKI is associated with distant organ dysfunction where systemic inflammation and oxidative stress play major roles. In this study, the effect of Prazosin, an α1-Adrenergic receptor antagonist, was investigated on the liver injury induced by kidney ischemia-reperfusion (I/R) in rats. Male adult Wistar rats (n=21) were divided into three groups: sham, kidney I/R, and kidney I/R pre-treated with Prazosin (1 mg/kg). Kidney I/R was induced by vascular clamping of the left kidney for 45 min to reduce the blood flow. Oxidative and antioxidant factors along with apoptotic (Bax, Bcl-2, caspase3), and inflammatory (NF-κβ, IL-1β, and IL-6) factors were measured in the liver at protein levels. Prazosin could reserve liver function (p<0.01) and increase glutathione level (p<0.05) after kidney I/R significantly. Malonil dialdehyde (MDA), a lipid peroxidation marker, was diminished more significantly in Prazosin-treated rats compared to the kidney I/R group (p<0.001). Inflammatory and apoptotic factors were diminished by Prazosin pre-treatment in the liver tissue (p<0.05). Pre-administration of Prazosin could preserve liver function and decrease its inflammatory and apoptotic factors under kidney I/R conditions.
Collapse
Affiliation(s)
- Fatemeh Khajepour
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Fariba Mahmoodpoor
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elmira Jafari
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farzad Kakaei
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farina Bahraminia
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Guo W, Wang Y, Wu Y, Liu J, Li Y, Wang J, Ou S, Wu W. Integration of transcriptomics and metabolomics reveals the molecular mechanisms underlying the effect of nafamostat mesylate on rhabdomyolysis-induced acute kidney injury. Front Pharmacol 2022; 13:931670. [PMID: 36532745 PMCID: PMC9748812 DOI: 10.3389/fphar.2022.931670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/17/2022] [Indexed: 11/09/2023] Open
Abstract
Objective: To investigate the role and mechanisms of action of nafamostat mesylate (NM) in rhabdomyolysis-induced acute kidney injury (RIAKI). Methods: RIAKI rats were assigned into control group (CN), RIAKI group (RM), and NM intervention group (NM). Inflammatory cytokines and proenkephalin a 119-159 (PENKID) were assessed. Cell apoptosis and glutathione peroxidase-4 (GPX4) were detected using TUNEL assay and immunohistochemical staining. Mitochondrial membrane potential (MMP) was detected by JC-1 dye. The expression of genes and metabolites after NM intervention was profiled using transcriptomic and metabolomic analysis. The differentially expressed genes (DEGs) were validated using qPCR. The KEGG and conjoint analysis of transcriptome and metabolome were used to analyze the enriched pathways and differential metabolites. The transcription factors were identified based on the animal TFDB 3.0 database. Results: Serum creatinine, blood urea nitrogen, and PENKID were remarkably higher in the RM group and lower in the NM group compared to the CN group. Pro-inflammatory cytokines increased in the RM group and notably decreased following NM treatment compared to the CN group. Tubular pathological damages were markedly attenuated and renal cell apoptosis was reduced significantly in the NM group compared to the RM group. The expression of GPX4 was lower in the RM group compared to the CN group, and it increased significantly after NM treatment. A total of 294 DEGs were identified in the RM group compared with the NM group, of which 192 signaling pathways were enriched, and glutathione metabolism, IL-17 signaling, and ferroptosis-related pathways were the top-ranking pathways. The transcriptional levels of Anpep, Gclc, Ggt1, Mgst2, Cxcl13, Rgn, and Akr1c1 were significantly different between the NM and RM group. Gclc was the key gene contributing to NM-mediated renal protection in RIAKI. Five hundred and five DEGs were annotated. Compared with the RM group, most of the upregulated DEGs in the NM group belonged to Glutathione metabolism, whereas most of the downregulated DEGs were related to the transcription factor Cytokine-cytokine receptor interaction. Conclusion: NM protects the kidneys against RIAKI, which is mainly associated with NM mediated regulation of glutathione metabolism, inflammatory response, ferroptosis-related pathways, and the related key DEGs. Targeting these DEGs might emerge as a potential molecular therapy for RIAKI.
Collapse
Affiliation(s)
- Wenli Guo
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Nephrology and Rheumatology, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital Of Qionglai City. Chengdu, Sichuan, China
| | - Yu Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxuan Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiang Liu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Santao Ou
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weihua Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
17
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
18
|
5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense. Antioxidants (Basel) 2022; 11:antiox11061046. [PMID: 35739943 PMCID: PMC9219715 DOI: 10.3390/antiox11061046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is a major mediator of adverse outcomes in acute kidney injury (AKI). Deficiency of micronutrients, such as folate, is common in AKI. Our previous study reported that AKI impaired kidney reabsorption of folate and decreased plasma folate level in rats. The present study investigated the effect of 5-methyltetrahydrofolate (5-MTHF), a biologically active form of folate/folic acid, on AKI-impaired kidney function and oxidative stress. Sprague-Dawley rats developed AKI after kidney ischemia (45 min) and reperfusion (24 h). Injection of 5-MTHF (3 µg/kg body weight) improved kidney function and attenuated oxidative stress with a restoration of glutathione and a reduction of lipid peroxidation in the kidney. Injection of 5-MTHF activated transcription factor Nrf2 and increased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 and heme oxygenase-1 in the kidney. Simulated ischemia-reperfusion through hypoxia-reoxygenation increased oxidative stress in proximal tubular cells. Incubation of cells with 5-MTHF alleviated cell injury and increased antioxidant enzyme expression and intracellular glutathione levels. Inhibition of Nrf2 expression through siRNA transfection abolished the effect of 5-MTHF against oxidative stress. These results suggest that low-dose folic acid can improve kidney function through activation of Nrf2 and restoration of antioxidant defence. Micronutrient supplements may improve clinical outcomes in AKI.
Collapse
|
19
|
Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6807700. [PMID: 35656467 PMCID: PMC9152371 DOI: 10.1155/2022/6807700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a complex condition which has an intricate pathology mostly involving hemodynamic, inflammatory, and direct toxic effects at the cellular level with high morbidity and mortality ratios. Renal ischemic reperfusion injury (RIRI) is the main factor responsible for AKI, most often observed in different types of shock, kidney transplantation, sepsis, and postoperative procedures. The RIRI-induced AKI is accompanied by increased reactive oxygen species generation together with the activation of various inflammatory pathways. In this context, plant-derived medicines have shown encouraging nephroprotective properties. Evidence provided in this systemic review leads to the conclusion that plant-derived extracts and compounds exhibit nephroprotective action against renal ischemic reperfusion induced-AKI by increasing endogenous antioxidants and decreasing anti-inflammatory cytokines. However, there is no defined biomarker or target which can be used for treating AKI completely. These plant-derived extracts and compounds are only tested in selected transgenic animal models. To develop the results obtained into a therapeutic entity, one should apply them in proper vertebrate multitransgenic animal models prior to further validation in humans.
Collapse
|
20
|
Huang T, Gao Y, Cao Y, Wang Q, Dong Z. Downregulation of mmu_circ_0000943 ameliorates renal ischemia reperfusion-triggered inflammation and oxidative stress via regulating mmu-miR-377-3p/Egr2 axis. Int Immunopharmacol 2022; 106:108614. [PMID: 35168080 DOI: 10.1016/j.intimp.2022.108614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
|
21
|
Azim A, Murray J, Beddhu S, Raphael KL. Urinary Sulfate, Kidney Failure, and Death in CKD: The African American Study of Kidney Disease and Hypertension. KIDNEY360 2022; 3:1183-1190. [PMID: 35919537 PMCID: PMC9337883 DOI: 10.34067/kid.0000322022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
Background Sulfur is an important mineral element whose principal source is animal protein. Animal protein contributes to the daily acid load, which is associated with poor outcomes in individuals with chronic kidney disease (CKD). We hypothesized that higher urinary sulfate, as a reflection of the daily acid load, is associated with a greater risk of death and CKD progression. Methods Urinary sulfate was measured in 1057 African American Study of Kidney Disease and Hypertension (AASK) participants at baseline. Participants were categorized by tertiles of daily sulfate excretion. The longitudinal outcome of interest was the composite of death, dialysis, or 50% reduction in measured glomerular filtration rate (GFR). Multivariable adjusted Cox regression models were fit to relate the composite outcome to daily sulfate excretion using the lowest tertile as the reference. Results Participants in the highest urinary sulfate tertile were more likely to be men and have a higher body mass index, protein intake, measured GFR, and urinary ammonium and phosphate excretion, and lower urinary protein/creatinine. Compared with those in the lowest tertile of sulfate, those in the highest tertile had a 44% lower hazard (95% CI, 0.37 to 0.84), and those in the middle tertile had a 27% lower hazard (95% CI, 0.55 to 0.96) of death, dialysis, or 50% reduction in measured GFR during follow-up after adjusting for demographics, GFR, protein intake, and other potential confounders. Protein intake was not associated with risk of these events. Conclusions Higher urinary sulfate excretion is associated with more favorable outcomes in Blacks who have CKD attributed to hypertension.
Collapse
Affiliation(s)
- Aniqa Azim
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jennifer Murray
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, New Hampshire
| | - Srinivasan Beddhu
- Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah
| | - Kalani L. Raphael
- Department of Medicine, Oregon Health and Science University, Portland, Oregon,Division of Hospital and Specialty Medicine, VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
22
|
El-Sayed SS, Shahin RM, Fahmy A, Elshazly SM. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide. Life Sci 2021; 287:120144. [PMID: 34785193 DOI: 10.1016/j.lfs.2021.120144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 10/24/2022]
Abstract
AIMS This study was designated to investigate the means through which quercetin confers its cardioprotective action against remote cardiomyopathy elicited by renal ischemia/reperfusion (I/R). Potential involvement of hydrogen sulfide (H2S) and its related mechanisms were accentuated herein. MAIN METHODS In anesthetized male Wistar rats, renal I/R was induced by bilateral renal pedicles occlusion for 30 min (ischemia) followed by 24 h reperfusion. Quercetin (50 mg/kg, gavage) was administered at 5 h post reperfusion initiation and 2 h before euthanasia. Cystathionine β-synthase (CBS) inhibitor, amino-oxyacetic acid (AOAA; 10 mg/kg, i.p) was given 30 min prior to each quercetin dose. KEY FINDINGS Quercetin reversed renal I/R induced derangements; as quercetin administration improved renal function and reversed I/R induced histopathological changes in both myocardium and kidney. Further, quercetin enhanced renal CBS content/activity, while mitigated myocardial cystathionine ɤ-lyase (CSE) content/activity as well as myocardial H2S. On the other hand, quercetin augmented myocardial nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2) and its nuclear trasnslocation, glutamate cysteine ligase (GCL), reduced glutathione (GSH) and peroxiredoxin-2 (Prx2), while further reduced lipid peroxidation measured as malondialdehyde (MDA) as well as nuclear factor-kappa B (NF-κB), caspase-3 content and activity, and Rho-kinase activity. SIGNIFICANCE Cardioprotective effects of quercetin may be mediated through regulation of Rho-kinase pathway and H2S production.
Collapse
Affiliation(s)
- Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Rania M Shahin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
23
|
Deng Y, Li RW, Yang YL, Weiss S, Smith PN. Pharmacological prevention of renal ischemia-reperfusion injury in a rat model. ANZ J Surg 2021; 92:518-525. [PMID: 34820987 DOI: 10.1111/ans.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) can lead to significant morbidity and mortality. It remains a leading cause of acute kidney injury and is therefore an important issue in trauma and renal transplant surgery. Various pharmaceutical agents have been used in an attempt to dampen the harmful effects of IRI but few have been shown to be useful clinically. Riluzole, Lidocaine and Lamotrigine have been demonstrated to show anti-ischaemic properties in other organs; however, their use has not been tested in the kidneys. We investigated Riluzole, Lidocaine and Lamotrigine for their preventive effects of renal IRI using a rat model. METHODS Winstar rats (n = 48) were divided into four groups (n = 12 per group)-three treatment groups and one control group. Riluzole, Lidocaine and Lamotrigine were given prior to renal ischemia only (IO) or IRI. The degree of ischemia was measured by glutathione levels and a TUNEL assay was used to measure DNA fragmentation. RESULTS Riluzole, Lidocaine and Lamotrigine pre-treatment each resulted in statistically higher glutathione levels compared to controls (P = 0.002; P = 0.007 and P = 0.005, respectively). Riluzole and Lidocaine were also effective at preventing depletion of glutathione following IO (P = 0.007 and P = 0.014 respectively), while Lamotrigine was ineffective in IO (P = 0.71). The degree of DNA fragmentation seen on the TUNEL assay was markedly reduced in all three-drug groups in both IO and IRI. DISCUSSION Riluzole, Lidocaine and Lamotrigine all have anti-ischaemic effects in the rat kidney and can have potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Deng
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Orthopaedic Surgery, Canberra Hospital, Yamba Drive, Garran, Australian Capital Territory, Australia
| | - Rachel W Li
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yong Liang Yang
- Department of Orthopaedics, Shandong Provincial Trauma and Orthopaedics Hospital, Jinan, China
| | - Steven Weiss
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paul N Smith
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Orthopaedic Surgery, Canberra Hospital, Yamba Drive, Garran, Australian Capital Territory, Australia
| |
Collapse
|
24
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|
25
|
Lingonberry Improves Non-Alcoholic Fatty Liver Disease by Reducing Hepatic Lipid Accumulation, Oxidative Stress and Inflammatory Response. Antioxidants (Basel) 2021; 10:antiox10040565. [PMID: 33917360 PMCID: PMC8067338 DOI: 10.3390/antiox10040565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally and there is a pressing need for effective treatment. Lipotoxicity and oxidative stress are the important mediators in NAFLD pathogenesis. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins that have antioxidant and anti-inflammatory properties. The present study investigated the effect of lingonberry supplementation on liver injury in C57BL/6J male mice fed a high-fat diet (HFD) for 12 weeks. Mice fed HFD displayed liver injury with steatosis, increased lipid peroxidation and inflammatory cytokine expression in the liver as compared to mice fed a control diet. Lingonberry supplementation for 12 weeks alleviated HFD-induced liver injury, attenuated hepatic lipid accumulation, and inflammatory cytokine expression. Lingonberry supplementation inhibited the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-CoA carboxylase-1 (AAC-1) as well as activated AMP-activated protein kinase (AMPK) in the liver. It also decreased HFD-induced hepatic oxidative stress and aggregation of inflammatory foci. This was associated with a restoration of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione level in the liver. These results suggest that lingonberry supplementation can protect against HFD-induced liver injury partly through attenuation of hepatic lipid accumulation, oxidative stress, and inflammatory response.
Collapse
|
26
|
Bagheri Y, Aghajani S, Hosseinzadeh M, Hoshmandan F, Abdollahpour A, Vahed SZ. Protective effects of Gamma Oryzanol on distant organs after kidney ischemia-reperfusion in rats: A focus on liver protection. Hum Exp Toxicol 2020; 40:1022-1030. [PMID: 33325270 DOI: 10.1177/0960327120979014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is the main clinical concern resulted from ischemia-reperfusion injury (IRI). Ample clinical data indicates that AKI is associated with distant organ dysfunctions and poor patients' outcomes. Oxidative stress and inflammation have a critical role in the pathogenesis of organ injuries following IRI. The objectives of this study were to determine the impact of Gamma Oryzanol (GO), extracted from rice bran oil, on distant organs in rats after IRI. METHODS Twelve out of 24 Wistar rats were treated by one dosage of GO (100mg/kg) 1 h before I/R induction through both oral gavage and intraperitoneal injection. Then, the AKI model rats were induced by IRI. Oxidative stress and antioxidant protein levels were assessed in the brain, heart, and liver tissues in the experimental groups. Furthermore, the effects of GO on IRI-induced liver dysfunction, apoptosis, and inflammation were measured by Western blot. RESULTS GO pretreatment could significantly restore the levels and activity of antioxidant proteins in the brain, heart, and liver tissues (P < 0.05). Moreover, GO pretreatment could decrease the inflammatory cytokine (IL-1, IL-6, and TNF-α) in the liver (P < 0.01). By reducing Bax/Bcl-2 ratio and down-regulating caspase-3, GO could significantly diminish apoptosis in the liver tissue after the kidney I/R (P < 0.01). Additionally, GO could significantly diminish the deterioration of liver function in the kidney I/R model. CONCLUSION GO protects distant organs against renal IRI-induced oxidative stress. Furthermore, it ameliorates liver function and remarkably exerts anti-oxidative, anti-inflammatory, and anti-apoptotic roles in the liver as an important detoxifying organ.
Collapse
Affiliation(s)
- Yasin Bagheri
- Young Researchers and Elite Club, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahla Hosseinzadeh
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farid Hoshmandan
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abdollah Abdollahpour
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Kidney Ischemia-Reperfusion Decreases Hydrogen Sulfide and Increases Oxidative Stress in the Heart. Biomolecules 2020; 10:biom10111565. [PMID: 33212962 PMCID: PMC7698428 DOI: 10.3390/biom10111565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Patients with acute kidney injury (AKI) have an increased risk of cardiovascular disease. The underlying mechanism of AKI-induced heart injury is not well-understood. Hydrogen sulfide (H2S), at physiological concentrations, has been implicated in cardiovascular protection through redox balance and vessel relaxation. Cystathionine gamma-lyase (CSE) plays an essential role in H2S production in the heart. The present study investigated the effect of AKI on H2S production and oxidative stress in the heart. AKI was induced by kidney ischemia-reperfusion in male and female Sprague-Dawley rats, which led to an increase in plasma creatinine and blood urea nitrogen levels. There was a significant increase in lipid peroxidation and a decrease in glutathione (antioxidant) levels in the plasma and heart, indicating systemic and cardiac oxidative stress. Kidney ischemia-reperfusion reduced CSE expression and H2S production in the heart. There was a decrease in antioxidant transcription factor Nrf2 level in the nucleus and an increase in inflammatory cytokine (IL-6, TNF-α) expression in the heart. These results suggest that AKI can down-regulate CSE-mediated H2S production, reduce glutathione levels and increase oxidative stress in the heart. This may contribute to an increased risk of cardiovascular disease in AKI.
Collapse
|
28
|
Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW. Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes. Biomedicines 2020; 8:biomedicines8090352. [PMID: 32942603 PMCID: PMC7555803 DOI: 10.3390/biomedicines8090352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022] Open
Abstract
Glutathione (GSH) is an endogenous antioxidant found in plants, animals, fungi, and some microorganisms that protects cells by neutralizing hydrogen peroxide. Honokiol, an active ingredient of Magnolia officinalis, is known for antioxidant, anti-inflammatory, and anti-bacterial properties. We investigated the protective mechanism of honokiol through regulating cellular GSH in renal proximal tubules against acute kidney injury (AKI). First, we measured cellular GSH levels and correlated them with the expression of GSH biosynthetic enzymes after honokiol treatment in human kidney-2 (HK-2) cells. Second, we used pharmacological inhibitors or siRNA-mediated gene silencing approach to determine the signaling pathway induced by honokiol. Third, the protective effect of honokiol via de novo GSH biosynthesis was investigated in renal ischemia-reperfusion (IR) mice. Honokiol significantly increased cellular GSH levels by upregulating the subunits of glutamate-cysteine ligase (Gcl)—Gclc and Gclm. These increases were mediated by activation of nuclear factor erythroid 2-related factor 2, via PI3K/Akt and protein kinase C signaling. Consistently, honokiol treatment reduced the plasma creatinine, tubular cell death, neutrophil infiltration and lipid peroxidation in IR mice and the effect was correlated with upregulation of Gclc and Gclm. Conclusively, honokiol may benefit to patients with AKI by increasing antioxidant GSH via transcriptional activation of the biosynthetic enzymes.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
29
|
Therapeutic Potential of Selenium as a Component of Preservation Solutions for Kidney Transplantation. Molecules 2020; 25:molecules25163592. [PMID: 32784639 PMCID: PMC7463670 DOI: 10.3390/molecules25163592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
Selenium has strong antioxidant properties and diverse effects on the immune system. The aim of the study was to analyse the protective effect of selenium as a component of a kidney preservation solution on the prevention of ischemia-reperfusion injury of nephrons. The solution was modified by the addition of Se (1 µg/L), prolactin (0.1 µg/L) and Se with prolactin (1 µg/L Se + 0.1 µg/L PRL). The study used a model for storing isolated porcine kidneys in Biolasol® (modified Biolasol®), which minimizes ischemia-reperfusion injury of grafts. The introduction of Se4+ ions at a dose of 1 µg/L into the Biolasol® preservation solution in the form of Na2SeO3 caused an increase in the activity/concentration of the analysed biochemical parameters: aspartate transaminase, alanine transaminase, urea and protein. This suggests an adverse effect of Se4+ on nephron function during ischemia-reperfusion. The best graft protection was obtained by using Biolasol® modified with the addition of selenium (IV) at a dose of 1 µg/L and prolactin at a concentration of 0.1 µg/L. We proposed the mechanism of prolactin action in the metabolic reduction of selenite (SO32−) during ischemia/reperfusion.
Collapse
|
30
|
Ceftriaxone Calcium Crystals Induce Acute Kidney Injury by NLRP3-Mediated Inflammation and Oxidative Stress Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6428498. [PMID: 32695257 PMCID: PMC7368937 DOI: 10.1155/2020/6428498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/29/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Objective To investigate the role of inflammatory reactions and oxidative stress injury in the mechanisms of ceftriaxone calcium crystal-induced acute kidney injury (AKI) both in vivo and in vitro. Methods Male Sprague Dawley rats were randomly divided into five groups of ten each according to different concentrations of ceftriaxone and calcium. Based on the levels of serum creatinine (Scr) and blood urea nitrogen (BUN), the AKI group was chosen for the subsequent experiments. Kidney histological examination and immunohistochemistry were performed. The expression of NLRP3 and IL-1β protein and the concentrations of oxidative stress markers such as ROS, MDA, and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to ceftriaxone calcium crystals. The mRNA expression levels of NLRP3 and IL-1β and the concentrations of oxidative stress markers were evaluated. Finally, cell viability and rat survival were also assessed. Results The results showed that significantly increased Scr and BUN levels, consistent with morphological changes and kidney stones, were found in the rats that received the highest concentration of ceftriaxone (1000 mg/kg) combined with calcium (800 mg/kg). The activation of the NLRP3 inflammasome axis and the marked elevation of MDA, H2O2, and ROS levels were observed both in vivo and in vitro. High expression of Nrf2, HO-1, and NQO1 was also documented. In addition, cell apoptosis and rat mortality were promoted by ceftriaxone calcium crystals. Conclusions Notably, we found that ceftriaxone-induced urolithiasis was associated with a high risk of AKI and NLRP3-mediated inflammasome and oxidative stress injury were of major importance in the pathogenesis.
Collapse
|
31
|
Shang Y, Madduma Hewage S, Wijerathne CUB, Siow YL, Isaak CK, O K. Kidney Ischemia-Reperfusion Elicits Acute Liver Injury and Inflammatory Response. Front Med (Lausanne) 2020; 7:201. [PMID: 32582723 PMCID: PMC7280447 DOI: 10.3389/fmed.2020.00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) is a common risk factor that causes acute kidney injury (AKI). AKI is associated with dysfunction of other organs also known as distant organ injury. The liver function is often compromised in patients with AKI and in animal models. However, the underlying mechanisms are not fully understood. Inflammatory response plays an important role in IR-induced tissue injury. Although increased proinflammatory cytokines have been detected in the kidney and the distant organs after renal IR, their original sources remain uncertain. In the present study, we investigated the acute effect of renal IR on hepatic inflammatory cytokine expression and the mechanism involved. Sprague-Dawley rats that were subjected to renal IR (ischemia for 45 min followed by reperfusion for 1 h or 6 h) had increased plasma levels of creatinine, urea, and transaminases, indicating kidney and liver injuries. There was a significant increase in the expression of proinflammatory cytokine mRNA (MCP-1, TNF-α, IL-6) in the kidney and liver in rats with renal IR. This was accompanied by a significant increase in proinflammatory cytokine protein levels in the plasma, kidney, and liver. Activation of a nuclear transcription factor kappa B (NF-κB) was detected in the liver after renal IR. The inflammatory foci and an increased myeloperoxidase (MPO) activity were detected in the liver after renal IR, indicating hepatic inflammatory response and leukocyte infiltration. These results suggest that renal IR can directly activate NF-κB and induce acute production of proinflammatory cytokines in the liver. Renal IR-induced hepatic inflammatory response may contribute to impaired liver function and systemic inflammation.
Collapse
Affiliation(s)
- Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Cara K Isaak
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
32
|
AlBasher G, Alfarraj S, Alarifi S, Alkhtani S, Almeer R, Alsultan N, Alharthi M, Alotibi N, Al-Dbass A, Abdel Moneim AE. Nephroprotective Role of Selenium Nanoparticles Against Glycerol-Induced Acute Kidney Injury in Rats. Biol Trace Elem Res 2020; 194:444-454. [PMID: 31264127 DOI: 10.1007/s12011-019-01793-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is a clinical syndrome associated with the incidence of rhabdomyolysis (RM). The current study was carried out to evaluate whether selenium nanoparticles (SeNPs) can protect against the glycerol-induced AKI model. Rats were distributed into four equal groups (n = 7): the control group (G1), SeNPs group (G2), AKI group (G3), and SeNPs+AKI group (G4). Rats in G1 were intramuscularly injected with physiological saline (0.9% NaCl). Rats in G2 were gavaged with SeNPs (0.1 mg/kg) for 14 days. Rats in G3 were intramuscularly injected with 50% glycerol (10 ml/kg). Rats in G4 were administered with SeNPs for 14 days and then injected with glycerol, as in G3. Glycerol-injected rats showed a significant increase in the kidney relative weight, as well as in the serum urea, creatinine, Kim-1, and renal malondialdehyde, nitric oxide, TNF-α, IL-1β, cytochrome c, Bax, and caspase-3 levels. In addition, a significant decrease in glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase was recorded in the renal tissue. Selenium nanoparticles reduced the biochemical, molecular, and histological changes produced by glycerol. Overall, our results suggest that selenium nanoparticles could be used to protect against AKI development via antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Saleh Alfarraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkhtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mada Alharthi
- Department of Applied Medical Science, Collage of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia
| | - Nouf Alotibi
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
33
|
Vagus Nerve Stimulation Alleviates Hepatic Ischemia and Reperfusion Injury by Regulating Glutathione Production and Transformation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1079129. [PMID: 32064020 PMCID: PMC6996675 DOI: 10.1155/2020/1079129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
Inflammation and oxidative stress are pivotal mechanisms for the pathogenesis of ischemia and reperfusion injury (IRI). Vagus nerve stimulation (VNS) may participate in maintaining oxidative homeostasis and response to external stimulus or injury. We investigated whether the in vivo VNS can protect the liver from IRI. In this study, hepatic IRI were induced by ligating the vessels supplying the left and middle lobes of the liver, which underwent 1 h occlusion followed with 24 h reperfusion. VNS was initiated 15 min after ischemia and continued 30 min. Hepatic function, histology, and apoptosis rates were evaluated after 24 h reperfusion. Compared with the IRI group, VNS significantly improved hepatic function. The protective effect was accompanied by a reduction in histological damage in the ischemic area, and the apoptosis rate of hepatocytes has considerable reduction. To find the underlying mechanism, proteomic analysis was performed and differential expression of glutathione synthetase (GSS) and glutathione S-transferase (GST) was observed. Subsequently, test results indicated that VNS upregulated the expression of mRNA and protein of GSS and GST. Meanwhile, VNS increased the plasma levels of glutathione and glutathione peroxidases. We found that VNS alleviated hepatic IRI by upregulating the antioxidant glutathione via the GSS/glutathione/GST signaling pathway.
Collapse
|
34
|
Yang L, Chang B, Guo Y, Wu X, Liu L. The role of oxidative stress-mediated apoptosis in the pathogenesis of uric acid nephropathy. Ren Fail 2020; 41:616-622. [PMID: 31269852 PMCID: PMC6610514 DOI: 10.1080/0886022x.2019.1633350] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: By copying the uric acid nephropathy rat model, the oxidative stress injury of mitochondria was caused in renal tubular epithelial cells and the relationship between the injury and the induction of cell apoptosis was identified. Methods: All rats were randomly divided into NC (normal control, NC) group, HUA (high uric acid, HUA) group and GSH (reductive glutathione, GSH) group. The values were quantitatively tested in the kidney tissues, including 24-h urinary protein quantity, serum creatinine, blood uric acid, the MDA (malondialdehyde, MDA) and SOD (superoxide dismutase, SOD) oxidative stress indicators. The expression of p53, Bax and caspase-9/-3 were detected by immunoblotting. TUNEL assays were used to detect the apoptosis of renal tubular epithelial cells. Result: In HUA and GSH groups, the 24-h urinary protein(24UTP), serum creatinine, and blood uric acid increased gradually with the increase of the replication cycle and the increase was significant compared to the NC group (p < .05). Compared to the NC group, MDA increased whereas SOD decreased. The expression of apoptotic proteins, such as p53, Bax, and caspase-9/-3 in the mitochondria was significantly different (p < .05). TUNEL assay revealed that the renal tubular epithelial cells in HUA group were largely apoptotic, whereas the GSH group improved significantly. Conclusion: Mitochondria incurred the substantial damage due to being in a state of oxidative stress, which was the primary cause of apoptosis in the renal tubule epithelial cells. GSH exhibited the effective resistance to the influence of oxidative stress and can restore the damage in the renal tubular epithelial cells.
Collapse
Affiliation(s)
- Lijuan Yang
- a Department of Physiology , Bengbu Medical College , Bengbu , People's Republic of China
| | - Baochao Chang
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Yaling Guo
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Xueping Wu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Lei Liu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| |
Collapse
|
35
|
Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S. Resveratrol Supplementation Protects Against Nicotine-Induced Kidney Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224445. [PMID: 31726798 PMCID: PMC6888267 DOI: 10.3390/ijerph16224445] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.R.); (T.S.); (S.S.A.)
| | - Thulasiprevinnah Santhanathas
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.R.); (T.S.); (S.S.A.)
- Institut Latihan Kementerian Kesihatan Malaysia, Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Shafreena Shaukat Ali
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.R.); (T.S.); (S.S.A.)
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.R.); (T.S.); (S.S.A.)
- Correspondence: ; Tel.: +603-9289-7684
| |
Collapse
|
36
|
N-Acetylcysteine Attenuates the Increasing Severity of Distant Organ Liver Dysfunction after Acute Kidney Injury in Rats Exposed to Bisphenol A. Antioxidants (Basel) 2019; 8:antiox8100497. [PMID: 31640182 PMCID: PMC6826922 DOI: 10.3390/antiox8100497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Distant organ liver damage after acute kidney injury (AKI) remains a serious clinical setting with high mortality. This undesirable outcome may be due to some hidden factors that can intensify the consequences of AKI. Exposure to bisphenol A (BPA), a universal chemical used in plastics industry, is currently unavoidable and can be harmful to the liver. This study explored whether BPA exposure could be a causative factor that increase severity of remote liver injury after AKI and examined the preventive benefit by N-acetylcysteine (NAC) in this complex condition. Male Wistar rats were given vehicle, BPA, or BPA + NAC for 5 weeks then underwent 45 min renal ischemia followed by 24 h reperfusion (RIR), a group of vehicle-sham-control was also included. RIR not only induced AKI but produced liver injury, triggered systemic oxidative stress as well as inflammation, which increasing severity upon exposure to BPA. Given NAC to BPA-exposed rats diminished the added-on effects of BPA on liver functional impairment, oxidative stress, inflammation, and apoptosis caused by AKI. NAC also mitigated the abnormalities in mitochondrial functions, dynamics, mitophagy, and ultrastructure of the liver by improving the mitochondrial homeostasis regulatory signaling AMPK-PGC-1α-SIRT3. The study demonstrates that NAC is an effective adjunct for preserving mitochondrial homeostasis and reducing remote effects of AKI in environments where BPA exposure is vulnerable.
Collapse
|
37
|
Martinez AM, Mirkovic J, Stanisz ZA, Patwari FS, Yang WS. NSC-34 motor neuron-like cells are sensitized to ferroptosis upon differentiation. FEBS Open Bio 2019; 9:582-593. [PMID: 30984534 PMCID: PMC6443867 DOI: 10.1002/2211-5463.12577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a form of regulated cell death that is driven by lethal accumulation of lipid peroxides upon inhibition of glutathione peroxidase 4 (GPx4). Deletion of the Gpx4 gene in mice revealed that neurons are sensitive to ferroptosis in vivo. However, few studies have been conducted on ferroptosis regulation in neurons. Here, we report that cells of a motor neuron‐like cell line, NSC‐34, became more sensitive to ferroptosis upon differentiation into a more motor neuron‐like condition. We identified three factors that influence ferroptosis sensitivity under differentiation conditions: low serum antioxidants, decreased GPx4 protein amount, and inhibition of the transsulfuration pathway. Our results support the hypothesis that neurons, especially motor neurons, are sensitive to ferroptosis, and suggest that ferroptosis in a neuronal context should be investigated further to develop strategies for neuroprotection.
Collapse
Affiliation(s)
| | - Jovan Mirkovic
- Department of Biological Sciences St John's University Queens NY USA
| | - Zofia A Stanisz
- Department of Biological Sciences St John's University Queens NY USA
| | - Fahmida S Patwari
- Department of Biological Sciences St John's University Queens NY USA
| | - Wan Seok Yang
- Department of Biological Sciences St John's University Queens NY USA
| |
Collapse
|
38
|
3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 2019; 9:1138. [PMID: 30718751 PMCID: PMC6361991 DOI: 10.1038/s41598-018-37946-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
3-ketodihydrosphingosine reductase (KDSR) is the key enzyme in the de novo sphingolipid synthesis. We identified a novel missense kdsrI105R mutation in zebrafish that led to a loss of function, and resulted in progression of hepatomegaly to steatosis, then hepatic injury phenotype. Lipidomics analysis of the kdsrI105R mutant revealed compensatory activation of the sphingolipid salvage pathway, resulting in significant accumulation of sphingolipids including ceramides, sphingosine and sphingosine 1-phosphate (S1P). Ultrastructural analysis revealed swollen mitochondria with cristae damage in the kdsrI105R mutant hepatocytes, which can be a cause of hepatic injury in the mutant. We found elevated sphingosine kinase 2 (sphk2) expression in the kdsrI105R mutant. Genetic interaction analysis with the kdsrI105R and the sphk2wc1 mutants showed that sphk2 depletion suppressed liver defects observed in the kdsrI105R mutant, suggesting that liver defects were mediated by S1P accumulation. Further, both oxidative stress and ER stress were completely suppressed by deletion of sphk2 in kdsrI105R mutants, linking these two processes mechanistically to hepatic injury in the kdsrI105R mutants. Importantly, we found that the heterozygous mutation in kdsr induced predisposed liver injury in adult zebrafish. These data point to kdsr as a novel genetic risk factor for hepatic injury.
Collapse
|
39
|
Tocmo R, Parkin K. S-Alk(en)ylmercaptocysteine suppresses LPS-induced pro-inflammatory responses in murine macrophages through inhibition of NF-κB pathway and modulation of thiol redox status. Free Radic Biol Med 2018; 129:548-558. [PMID: 30342185 DOI: 10.1016/j.freeradbiomed.2018.10.424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
The Allium vegetable-derived metabolite, S-alk(en)ylmercaptocysteine (CySSR), has been reported to modulate oxidative stress and inflammatory responses. However, the underlying mechanisms of action and structure-activity relationships are not completely understood. We investigated the mechanistic basis of the protective effects of CySSR on pro-inflammatory responses involving redox/oxidative stress induced by E. coli lipopolysaccharide (LPS) using RAW 264.7 cells. CySSR (R = allyl, "A" or 1-propenyl, "Pe") pre-treatments conferred concentration-dependent reductions in cytokines (TNF-α, IL-1β and IL-6), NO production and iNOS (inducible nitric synthase) overexpression, and attenuated oxidant production in LPS-stimulated RAW 264.7 cells where viability remained > 90%. These protective effects were manifested through inhibited activation of the nuclear factor-kappa B (NF-κB) signaling pathway via suppression of the IκB kinases (IKK) phosphorylation possibly by transforming growth factor β-activated kinase 1 or a kinase further upstream the canonical NF-κB signaling pathway. The attenuation of LPS-induced inflammation by CySSRs was associated with enhanced levels of cellular cysteine (CySH) and glutathione (GSH) mediated by cellular import/reduction of CySSR and the induction of glutamate cysteine ligase (GCL), one of > 200 nuclear factor erythroid 2-related factor 2 (Nrf2) regulated proteins. The reduction of anti-inflammatory effect of CySSR following pretreatment of cells with L-buthionine-S,R-sulfoximine (BSO) implicates GSH having a major role in reducing inflammation, likely in the context of other Nrf2-regulated antioxidant enzymes that scavenge H2O2 and peroxides using GSH as co-substrate. The anti-inflammatory effect of CySSPe was significantly greater than CySSA for almost all indicators measured, and cell metabolites of CySSRs may have a role in attenuating NF-κB signaling.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
40
|
Morello J, Derks RJE, Lopes SS, Steenvoorden E, Monteiro EC, Mayboroda OA, Pereira SA. Zebrafish Larvae Are a Suitable Model to Investigate the Metabolic Phenotype of Drug-Induced Renal Tubular Injury. Front Pharmacol 2018; 9:1193. [PMID: 30459607 PMCID: PMC6232664 DOI: 10.3389/fphar.2018.01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Prevention and treatment of drug-induced renal injury (DIRI) rely on the availability of sensitive and specific biomarkers of early kidney injury and predictive animal models of human pathophysiology. This study aimed to evaluate the potential of zebrafish larvae as translational model in metabolic profiling of DIRI. Zebrafish larvae were exposed to the lethal concentration for 10% of the larvae (LC10) or ½ LC10 of gentamicin, paracetamol and tenofovir as tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). Metabolites were extracted from whole larvae and analyzed by liquid chromatography-mass spectrometry. Principal component analysis showed that drug exposition to the LC10 of paracetamol, TFV, and TDF was the main source of the variance of the data. To identify the metabolites responsible for the toxic effects of the drugs, partial least squares discriminant analyses were built between the LC10 and ½ LC10 for each drug. Features with variable importance in projection> 1.0 were selected and Venn diagrams were built to differentiate between the common and drug specific metabolites of DIRI. Creatine, tyrosine, glutamine, guanosine, hypoxanthine were identified as common metabolites, adenosine and tryptophan as paracetamol-specific and xanthine and oxidized glutathione as tenofovir-specific. Those metabolic changes can be associated with alterations in energy metabolism, xenobiotic detoxification and protein catabolism, all described in the human pathophysiology of DIRI. Thus, zebrafish proved to be a suitable model to characterize the metabolic changes associated with DIRI. This information can be useful to early diagnose DIRI and to improve our knowledge on the mechanisms of DIRI.
Collapse
Affiliation(s)
- Judit Morello
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Evelyne Steenvoorden
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Emilia C Monteiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands.,Department of Chemistry, Tomsk State University, Tomsk, Russia
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Lou JW, Cao LL, Zhang Q, Jiang DJ, Yao WF, Bao BH, Cao YD, Tang YP, Zhang L, Wang K, Dai GC. The toxicity and efficacy evaluation of different fractions of Kansui fry-baked with vinegar on Walker-256 tumor-bearing malignant ascites effusion rats and normal rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:257-268. [PMID: 29559373 DOI: 10.1016/j.jep.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kansui, the root of Euphorbia kansui S.L.Liou ex S.B.Ho (E.kansui), is a classical traditional Chinese medicine (TCM) with certain toxicity. According to the theory of TCM, kansui fry-baked wtith vinegar (VEK) possesses low toxicity and mild diuretic and purgative efficacy. In clinical practice, it is commonly used for the treatmtablent of ascites and oliguria. The present study aimed to evaluate the toxicity and efficacy of different fractions of VEK and reveal the underlying material basis by employing an animal model of malignant ascites effusion (MAE) in rats. MATERIALS AND METHODSTA The MAE rats as the model were constructed in SPF male wistar rats by intraperitoneal injection of Walker-256 tumor cells. The MAE rats were used and randomly divided into the control group (normal rats), control groups with different fractions (VEKA, VEKB, VEKC and VEKD), model group (MAE rats), positive control group (model group with furosemide), model groups with different fractions (VEKA, VEKB, VEKC and VEKD). Histopathological observation was used to confirm Walker-256 tumor-bearing organ injuries in rats. For the efficacy evaluation, the ascites and urine volumes, the urinary electrolyte concentrations (Na+, K+ and Cl-) and pH, the ascites levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, IFN-γ and VEGF), PRA, the serum levels of Ang II, ALD and ADH, as well as AQP8 protein expression in the gastrointestinal tract were detected. Furthermore, different levels of indicators were measured in the toxicity evaluation of different fractions both on normal and model rats, including serum liver enzymes (AST and ALT), serum oxidative damage parameters (GSH, MDA, LDH and SOD), expressions of inflammatory parameters (NF-κB, ICAM-1 and E-cadherin) and apoptosis signals (caspase-3, -8, -9, Bcl-2 and Bax) in the liver and gastrointestinal tract. RESULTS Walker-256 tumor-bearing malignant ascites effusion rats showed obvious hepatic and gastrointestinal injuries by histopathological observation. In the efficacy evaluation, model rats treated with VEKB and VEKC showed significant urine increase (VEKB, P < 0.01; VEKC, P < 0.01) and ascites reduction (VEKB, P < 0.01; VEKC, P < 0.01). These two fractions also balanced the concentrations of Na+, K+ and Cl- in urine (VEKB, all P < 0.05; VEKC, all P < 0.05), remarkably decreased urinary pH (VEKB, P < 0.01; VEKC, P < 0.01), and reduced the ascites levels of IL-2, IL-6, TNF-α, IFN-γ and VEGF (VEKB, all P < 0.01; VEKC, all P < 0.01) in the model rats. Moreover, levels of PRA, the serum Ang II, ALD and ADH of model rats were decreased after treated by VEKB and VEKC (VEKB, all P < 0.05; VEKC, all P < 0.05). Meanwhile, the expression of gastrointestinal AQP8 of the model rats was also enhanced after treated by VEKB and VEKC (VEKB, P < 0.01; VEKC, P < 0.01). In the toxicity evaluation, although VEKB and VEKC caused toxic indexes moved to the worse aspects in normal rats, nearly all of these indicators notably improved in the model rats. Additionally, VEKA showed no effect on the indicators, either in the efficacy evaluation or in the toxicity evaluation. And VEKD could significantly improve some indicators (urine volume, concentration of K+ in urine, serum MDA, AI and caspase-9) in MAE rats. CONCLUSIONS VEKB and VEKC were demonstrated a significant efficacy in treating malignant ascites effusion, which could reduce hepatic and gastrointestinal damage on the model rats but cause the same damage to the normal. These data embody the traditional Chinese medicine application principle: You Gu Wu Yun. And these results will provide reference for the safer and better clinical utilization of kansui.
Collapse
Affiliation(s)
- Jian-Wei Lou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang-Liang Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210001, China
| | - Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong-Jing Jiang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Dan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Ping Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kun Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guan-Cheng Dai
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
42
|
Choi YJ, Zhou D, Barbosa ACS, Niu Y, Guan X, Xu M, Ren S, Nolin TD, Liu Y, Xie W. Activation of Constitutive Androstane Receptor Ameliorates Renal Ischemia-Reperfusion-Induced Kidney and Liver Injury. Mol Pharmacol 2018; 93:239-250. [PMID: 29351922 PMCID: PMC5801556 DOI: 10.1124/mol.117.111146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is associate with high mortality. Despite evidence of AKI-induced distant organ injury, a relationship between AKI and liver injury has not been clearly established. The goal of this study is to investigate whether renal ischemia-reperfusion (IR) can affect liver pathophysiology. We showed that renal IR in mice induced fatty liver and compromised liver function through the downregulation of constitutive androstane receptor (CAR; -90.4%) and inhibition of hepatic very-low-density lipoprotein triglyceride (VLDL-TG) secretion (-28.4%). Treatment of mice with the CAR agonist 1,4-bis[2-(3,5 dichloropyridyloxy)] benzene (TCPOBOP) prevented the development of AKI-induced fatty liver and liver injury, which was associated with the attenuation of AKI-induced inhibition of VLDL-TG secretion. The hepatoprotective effect of TCPOBOP was abolished in CAR-/- mice. Interestingly, alleviation of fatty liver by TCPOBOP also improved the kidney function, whereas CAR ablation sensitized mice to AKI-induced kidney injury and lethality. The serum concentrations of interleukin-6 (IL-6) were elevated by 27-fold after renal IR, but were normalized in TCPOBOP-treated AKI mice, suggesting that the increased release of IL-6 from the kidney may have mediated the AKI responsive liver injury. Taken together, our results revealed an interesting kidney-liver organ cross-talk in response to AKI. Given the importance of CAR in the pathogenesis of renal IR-induced fatty liver and impaired kidney function, fatty liver can be considered as an important risk factor for kidney injury, and a timely management of hepatic steatosis by CAR activation may help to restore kidney function in patients with AKI or kidney transplant.
Collapse
Affiliation(s)
- You-Jin Choi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Dong Zhou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Anne Caroline S Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Xiudong Guan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Thomas D Nolin
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Youhua Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| |
Collapse
|
43
|
Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8325754. [PMID: 28811867 PMCID: PMC5546123 DOI: 10.1155/2017/8325754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/26/2022]
Abstract
Background Reactive oxygen species- (ROS-) mediated ischemia-reperfusion injury (IRI) detrimentally impacts liver transplantation and resection. 12/15-Lipoxygenase (12/15-LOX), an antagonistic protein of the glutathione peroxidase 4 (GPX4) signaling cascade, was proven to mediate cell death in postischemic cerebral and myocardial tissue. The aim of this study was to investigate the impact of 12/15-LOX inhibition on hepatic IRI. Methods Livers of C57BL/6 mice were exposed to 60 minutes of partial warm ischemia and 90 minutes of reperfusion after previous Baicalein administration, an inhibitor of 12/15-LOX. Tissue samples were analyzed by TUNEL assay, Western blot, and spectral photometry. Results TUNEL labeling showed a significant reduction of hepatic cell death following baicalein pretreatment. Western Blot analysis revealed a significant downregulation of Jun-amino-terminal-kinase (JNK), caspase-3, and poly-ADP-ribose-polymerase (PARP), besides considerably lowered p44/42-MAP-kinase (ERK1/2) expression after Baicalein administration. A significant elevation of glutathione oxidation was measured in Baicalein pretreated livers. Conclusion Our data show that inhibition of 12/15-lipoxygenase causes significant cell death reduction after hepatic ischemia and reperfusion by enhancing glutathione metabolism. We conclude that GPX4-dependent cell death signaling cascade might play a major role in development of hepatic IRI, in which the investigated proteins JNK, caspase-3, ERK1/2, and PARP might contribute to tissue damage.
Collapse
|