1
|
Mullins AV, Snider JM, Michael B, Porter LR, Brinton RD, Chilton FH. Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes. Nutr Metab (Lond) 2024; 21:43. [PMID: 38978004 PMCID: PMC11232345 DOI: 10.1186/s12986-024-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results. METHODS We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis. RESULTS FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21. CONCLUSIONS This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts. TRIAL REGISTRATION All deidentified data are available at ClinicalTrials.gov #NCT0479207.
Collapse
Affiliation(s)
- Anne Veronica Mullins
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Bryce Michael
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Lydia Rose Porter
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, The University of Arizona Health Sciences, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ, 85719, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
| |
Collapse
|
2
|
Anthony R, Jaffrey N, Byron C, Peoples GE, Macartney MJ. Omega-3 Status Evaluation in Australian Female Rugby League Athletes: Ad Libitum Fish Oil Provision Results in a Varied Omega-3 Index. Int J Sport Nutr Exerc Metab 2024; 34:218-222. [PMID: 38648883 DOI: 10.1123/ijsnem.2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Optimal omega-3 status, influenced by increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is vital for physiological health. This study investigated the impact of ad libitum fish oil supplementation on the omega-3 status of female athletes in a professional rugby league team during a competitive season. Twenty-four (n = 24) athletes participated, and their omega-3 status was assessed using the Omega-3 Index (O3I) and arachidonic acid (AA) to EPA ratio through finger-prick blood samples taken at the start and end of the season. They were given access to a fish oil supplement (PILLAR Performance, Australia) with a recommended daily dose of four capsules per day (2,160 mg EPA and 1,440 mg docosahexaenoic acid). At the beginning of the season, the group mean O3I was 4.77% (95% confidence interval [CI: 4.50, 5.04]) and the AA to EPA ratio was 14.89 (95% CI [13.22, 16.55]). None of the athletes had an O3I exceeding 8%. By the season's end, the O3I was a significantly increased to 7.28% (95% CI [6.64, 7.93], p < .0001) and AA to EPA ratio significantly decreased to a mean of 6.67 (95% CI [5.02, 8.31], p < .0001), driven primarily by the significant increase in EPA of +1.14% (95% CI [0.77, 1.51], p < .0001). However, these changes were varied between the athletes and most likely due to compliance. This study has demonstrated that using the objective O3I feedback scale is possible with elite female rugby athletes, but individual strategies will be required to achieve daily intake targets of EPA + DHA.
Collapse
Affiliation(s)
- Ryan Anthony
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Nicola Jaffrey
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Caitlin Byron
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Michael J Macartney
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| |
Collapse
|
3
|
Medoro A, Buonsenso A, Centorbi M, Calcagno G, Scapagnini G, Fiorilli G, Davinelli S. Omega-3 Index as a Sport Biomarker: Implications for Cardiovascular Health, Injury Prevention, and Athletic Performance. J Funct Morphol Kinesiol 2024; 9:91. [PMID: 38804457 PMCID: PMC11197025 DOI: 10.3390/jfmk9020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
The composition of polyunsaturated fatty acids (PUFA) in the cell membrane plays a crucial role in cell signaling and function. Physical activity can induce shifts in PUFA metabolism, potentially altering their membrane composition. Given the multifaceted regulatory and structural roles of PUFA, training-related fluctuations in PUFA concentrations may impact health and athletic performance in both elite and non-elite athletes, highlighting the critical role of these fatty acids' nutritional intake. The ω-3 index (O3I), a biomarker reflecting the proportion of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in red blood cell membranes, is considered a marker of cardiovascular risk, gaining increasing interest in sports medicine. Dietary interventions aimed at maintaining an optimal O3I may offer several benefits for elite and non-elite athletes, including cardiovascular health performance optimization, recovery, and injury prevention. Here, we discuss emerging evidence on the application of O3I in sports and physical exercise, highlighting its promising role as a biomarker in a wide range of sports practices.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanni Fiorilli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (A.B.); (M.C.); (G.C.); (G.S.); (S.D.)
| | | |
Collapse
|
4
|
Kim H, Shin S, Jeon IH, Kwak JM. Biological assessment of the omega-3 status after omega-3 enriched dietary during an active seasonal performance on soccer players. BMC Sports Sci Med Rehabil 2024; 16:71. [PMID: 38519976 PMCID: PMC10960390 DOI: 10.1186/s13102-024-00823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND To assess the physiological change of blood fatty acid composite during the seasonal performance of soccer players with omega-6/omega-3 polyunsaturated fatty acid balanced dietary supplementation. METHODS This study included 20 healthy and trained male soccer players. During the study, data collection was performed three times (pre-, mid-, post-season). Anthropometric data collection and blood sampling for the assessment of the omega index were performed. The mid- and post-seasonal data were compared with baseline data collected before the starting season (pre-seasonal data). RESULTS Elevated levels of omega-3, HS-omega, and trans fatty acid were observed in both the mid- and post-seasonal data. During the season, the levels of omega-6/omega-3 and saturated fatty acid decreased, whereas there were no differences in total cholesterol, cholesterol LDL, HDL, BUN/Cr, HbA1c (NGSP), and cystatin C. CONCLUSIONS n-3 PUFA-enriched dietary supplementation might alter blood omega-3 indices in soccer players during the season.
Collapse
Affiliation(s)
| | | | - In-Ho Jeon
- Department of Orthopedic Surgery, College of Medicine, Asan Medical Center, Ulsan University, Seoul, South Korea
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, College of Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea.
- Department of Orthopedic Surgery, College of Medicine, Asan Medical Center, Ulsan University, Seoul, South Korea.
| |
Collapse
|
5
|
Campanari DD, Cipriano UG, Fraga-Silva TFDC, Ramalho LNZ, Ovidio PP, Jordão Júnior AA, Bonato VLD, Ferriolli E. Effect of Dietary Supplementation with Omega-3 Fatty Acid on the Generation of Regulatory T Lymphocytes and on Antioxidant Parameters and Markers of Oxidative Stress in the Liver Tissue of IL-10 Knockout Mice. Nutrients 2024; 16:634. [PMID: 38474762 DOI: 10.3390/nu16050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION chronic low-grade inflammation, or inflammaging, emerges as a crucial element in the aging process and is associated with cardiovascular and neurological diseases, sarcopenia, and malnutrition. Evidence suggests that omega-3 fatty acids present a potential therapeutic agent in the prevention and treatment of inflammatory diseases, mitigating oxidative stress, and improving muscle mass, attributes that are particularly relevant in the context of aging. The objective of the present study was to evaluate the effectiveness of supplementation with omega-3 fish oil in improving the immune response and oxidative stress in knockout mice for interleukin IL-10 (IL-10-/-). MATERIAL AND METHODS female C57BL/6 wild-type (WT) and interleukin IL-10 knockout (IL-10-/-) mice were fed during 90 days with a standard diet (control groups), or they were fed/supplemented with 10% of the omega-3 polyunsaturated fatty acid diet (omega-3 groups). Muscle, liver, intestinal, and mesenteric lymph node tissue were collected for analysis. RESULTS the IL-10-/-+O3 group showed greater weight gain compared to the WT+O3 (p = 0.001) group. The IL-10-/-+O3 group exhibited a higher frequency of regulatory T cells than the IL-10-/- group (p = 0.001). It was found that animals in the IL-10-/-+O3 group had lower levels of steatosis when compared to the IL-10-/- group (p = 0.017). There was even greater vitamin E activity in the WT group compared to the IL-10-/-+O3 group (p = 0.001) and WT+O3 compared to IL-10-/-+O3 (p = 0.002), and when analyzing the marker of oxidative stress, MDA, an increase in lipid peroxidation was found in the IL-10-/-+O3 group when compared to the IL-10-/- group (p = 0.03). Muscle tissue histology showed decreased muscle fibers in the IL-10-/-+O3, IL-10-/-, and WT+O3 groups. CONCLUSION the findings show a decrease in inflammation, an increase in oxidative stress markers, and a decrease in antioxidant markers in the IL-10-/-+O3 group, suggesting that supplementation with omega-3 fish oil might be a potential intervention for inflammaging that characterizes the aging process and age-related diseases.
Collapse
Affiliation(s)
- Daniela Dalpubel Campanari
- Postgraduate Program in Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Ualter Guilherme Cipriano
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Paula Payão Ovidio
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Alceu Afonso Jordão Júnior
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Eduardo Ferriolli
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| |
Collapse
|
6
|
Peña N, Amézaga J, Marrugat G, Landaluce A, Viar T, Arce J, Larruskain J, Lekue J, Ferreri C, Ordovás JM, Tueros I. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players. J Int Soc Sports Nutr 2023; 20:2245386. [PMID: 37605439 PMCID: PMC10446798 DOI: 10.1080/15502783.2023.2245386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND An optimal and correctly balanced metabolic status is essential to improve sports performance in athletes. Recent advances in omic tools, such as the lipid profile of the mature erythrocyte membranes (LPMEM), allow to have a comprehensive vision of the nutritional and metabolic status of these individuals to provide personalized recommendations for nutrients, specifically, the essential omega-3 and omega-6 fatty acids, individuating deficiencies/unbalances that can arise from both habitual diet and sportive activity. This work aimed to study the LPMEM in professional female football players during the football season for the first time and compare it with those defined as optimal values for the general population and a control group. METHODS An observational study was carried out on female football players from the Athletic Club (Bilbao) playing in the first division of the Spanish league. Blood samples were collected at three points: at the beginning, mid-season, and end of the season for three consecutive seasons (2019-2020, 2020-2021, and 2021-2022), providing a total of 160 samples from 40 women. The LPMEM analysis was obtained by GC-FID by published method and correlated to other individual data, such as blood biochemical parameters, body composition, and age. RESULTS We observed a significant increase in docosahexaenoic acid (DHA) (p 0.048) and total polyunsaturated fatty acid (PUFA) (p 0.021) in the first season. In the second season, we observed a buildup in the membrane arachidonic acid (AA) (p < .001) and PUFA (p < .001) contents when high training accumulated. In comparison with the benchmark of average population values, 69% of the football players showed lower levels of omega-6 dihomo-γ-linolenic acid (DGLA), whereas 88%, 44%, and 81% of the participants showed increased values of AA, eicosapentaenoic acid (EPA), and the ratio of saturated and monounsaturated fatty acids (SFA/MUFA), respectively. Regarding relationships between blood biochemical parameters, body composition, and age with LPMEM, we observed some mild negative correlations, such as AA and SFA/MUFA ratio with vitamin D levels (coefficient = -0.34 p = .0019 and coefficient = -.25 p = .042); DGLA with urea and cortisol (coefficient = -0.27 p < .006 and coefficient = .28 p < .0028) and AA with age (coefficient = -0.33 p < .001). CONCLUSION In conclusion, relevant variations in several fatty acids of the membrane fatty acid profile of elite female football players were observed during the competitive season and, in comparison with the general population, increased PUFA contents were confirmed, as reported in other sportive activities, together with the new aspect of DGLA diminution, an omega-6 involved in immune and anti-inflammatory responses. Our results highlight membrane lipidomics as a tool to ascertain the molecular profile of elite female football players with a potential application for future personalized nutritional strategies (diet and supplementation) to address unbalances created during the competitive season.
Collapse
Affiliation(s)
- Nere Peña
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Javier Amézaga
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Gerard Marrugat
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | | | | | - Julen Arce
- Athletic Club, Medical Services, Lezama, Spain
| | | | | | - Carla Ferreri
- Consiglio Nazionale Delle Ricerche, Istituto per la Sintesi Organica E la Fotoreattività, Bologna, Italy
| | - José María Ordovás
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, MA, USA
- Instituto de Salud Carlos III (ISCIII), Consortium CIBERObn, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Tueros
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| |
Collapse
|
7
|
Jaworska M, Siatkowski S, Żebrowska A. The Effects of Omega-3 Fatty Acid Supplementation on the Lipid Profile and Cardiovascular Markers Following Downhill Running in Long-Distance Runners. J Hum Kinet 2023; 89:123-138. [PMID: 38053947 PMCID: PMC10694724 DOI: 10.5114/jhk/174107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
Exercise-induced injury may intensify inflammatory response and reduce the cardiovascular protection mechanisms of omega 3 polyunsaturated fatty acids (ω 3 PUFA). Therefore, this study aimed to determine the erythrocyte content of fatty acids (ω 3 and ω 6), the levels of cardiac damage markers (CKMB, hsTnT, H - FABP), the concentration of inflammation mediators (IL-6, TNF α) in long distance runners supplemented with ω 3 PUFA. Twenty-four male long distance runners, who were randomly assigned to a placebo group (GrP) or a group supplemented (GrSuppl) with a daily dose of 3,000 mg of ω 3 PUFA for three weeks, participated in the study. Participants performed a downhill running exercise test. Blood samples were collected at rest and after the exercise protocol to analyse the levels of cardiac markers and inflammatory cytokines. The erythrocyte membrane content of EPA and DHA in the GrSuppl at the 3rd week of supplementation was significantly higher than at the baseline (p < 0.001). The erythrocyte membrane content of ω 3 PUFA in the GrSuppl was significantly higher at the completion of supplementation (p < 0.001). Supplementation with ω 3 PUFA improved blood lipid profiles and reduced the concentration of inflammation mediators measured after the eccentric exercise tests. The increased ω 3 PUFA content in the erythrocyte membrane and lower blood concentrations of cardiac damage markers and inflammation mediators in distance runners supplemented for three weeks with ω 3 PUFA suggest that the cardiovascular function has been improved.
Collapse
Affiliation(s)
- Marzena Jaworska
- Department of Physiological and Medical Sciences, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Szymon Siatkowski
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aleksandra Żebrowska
- Department of Physiological and Medical Sciences, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
8
|
Hooks MP, Madigan SM, Woodside JV, Nugent AP. Dietary Intake, Biological Status, and Barriers towards Omega-3 Intake in Elite Level (Tier 4), Female Athletes: Pilot Study. Nutrients 2023; 15:2821. [PMID: 37447148 DOI: 10.3390/nu15132821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) have unique properties which benefit athlete populations. The literature investigating NCAA collegiate, rugby sevens and German endurance athletes indicates suboptimal n-3 PUFA dietary intake and biological status. The aims of this study were: (i) to explore the dietary intakes and FA profiles of elite level, team-based, female athletes and (ii) to understand perceived barriers towards achieving n-3 dietary guidelines. A total of 35 athletes (24.8 ± 4.5 years) completed both a questionnaire and a finger prick test. All the participants reported consuming fish and seafood over the previous six months however only nine athletes consumed ≥ 2 servings of fish per week. Four participants reported using an n-3 supplement. The mean omega-3 index (O3I; including supplementers) was below target levels of >8% (5.19 ± 0.86%). O3I was significantly higher (p < 0.001) in those consuming ≥ 2 servings of fish per week and/or supplements (5.91 ± 0.81%) compared with those who did not (4.82 ± 0.63%). The main barriers reported by those not consuming two servings of fish per week were sensory (n = 11; 42%), cooking skills (n = 10; 38%) and knowledge of n-3 benefits (n = 7; 27%). The current study shows that elite level female athletes present with suboptimal n-3 dietary intake and O3I due to their food preferences, cooking skills and n-3 knowledge.
Collapse
Affiliation(s)
- Matthew P Hooks
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, UK
| | - Sharon M Madigan
- Sport Ireland Institute of Sport, D15 Y52H Dublin, Ireland
- Sport and Human Performance Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jayne V Woodside
- Centre for Public Health, Institute for Global Food Security, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Anne P Nugent
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, UK
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
9
|
Davinelli S, Intrieri M, Ali S, Righetti S, Mondazzi L, Scapagnini G, Corbi G. Omega-3 index and AA/EPA ratio as biomarkers of running-related injuries: An observational study in recreational runners. Eur J Sport Sci 2023; 23:134-142. [PMID: 34694208 DOI: 10.1080/17461391.2021.1998643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACTThe aim of this study was to examine the association between biomarkers of polyunsaturated fatty acids (PUFA), such as omega-3 (ω-3) index and arachidonic acid (AA; 20:4 ω-6)/eicosapentaenoic acid (EPA; 20:5ω-3) ratio (AA/EPA), and the prevalence of running-related injuries (RRI) in a cohort of recreational runners. We performed a retrospective, observational study of 275 non-elite runners (mean age: 41.20 ± 12.47 years) who were not supplemented with ω-3 fatty acids. The training characteristics and RRI were recorded over a period of 12 months through a self-reported questionnaire. Using whole blood samples collected by finger prick, PUFA were quantified by gas chromatography and ω-3 index and AA/EPA ratio measured. A total of 191 RRI cases were reported, with an injury prevalence rate of 50.9% in the overall population. The injured runners ran a significantly greater weekly distance than uninjured subjects (53.54 ± 25.27 km/week; p = 0.007). In a multivariate regression analysis, the lowest number of RRI was associated with higher values of ω-3 index (β = - 0.237; 95% CI - 0.308 to - 0.164; R2 = 0.172; p < 0.0001), while a higher AA/EPA ratio was correlated with higher number of RRI (β = 0.019; 95% CI 0.007-0.031; R2 = 0.038; p = 0.003). This study identifies ω-3 index and AA/EPA ratio as potential parameters associated with the risk of RRI. Future research is needed to confirm these results and apply specific nutritional strategies to successfully modify these biochemical variables.Trial registration: ISRCTN.org identifier: ISRCTN12847156..
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Luca Mondazzi
- School of Clinical Nutrition, University of Milano, Milano, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
10
|
Rittenhouse M, Sambuughin N, Deuster P. Optimization of Omega-3 Index Levels in Athletes at the US Naval Academy: Personalized Omega-3 Fatty Acid Dosage and Molecular Genetic Approaches. Nutrients 2022; 14:nu14142966. [PMID: 35889922 PMCID: PMC9321651 DOI: 10.3390/nu14142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
The Dietary Guidelines for Americans recommend increasing the intake of omega-3 polyunsaturated fatty acids. The Omega-3 Index (O3I) is one marker used to assess omega-3 status. The O3I national average is 4.3%, which translates into a high risk for developing cardiovascular disease. Research has reported an association between variants in the two desaturase encoding genes, fatty acid desaturase 1 and fatty acid desaturase 2 (FADS1/2), and the concentration of O3I. The aim of this study was to assess whether a personalized dosage of omega-3 supplementation would lead to an O3I ≥ 8%. A secondary aim was to identify if changes in O3I levels would be associated with either of the two FADS1/2 variants. Methods: This interventional study had a pre- and post-intervention design to assess changes in O3I. Ninety participants completed demographic, biometrics, O3I, and genetic testing. Participants were provided a personalized dose of omega-3 supplements based on their baseline O3I. Results: The majority (63%) of participants were 20 year old white males with an average O3I at baseline of 4.6%; the post-supplementation average O3I was 5.6%. The most frequent genetic variants expressed in the full sample for FADS1/2 were GG (50%) and CA/AA (57%). Conclusions: O3I was significantly increased following omega-3 supplementation. However, it was not possible to conclude whether the two FADS1/2 variants led to differential increases in OI3 or if a personalized dosage of omega-3 supplementation led to an O3I ≥ 8%, due to our study limitations.
Collapse
Affiliation(s)
- Melissa Rittenhouse
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence:
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
| |
Collapse
|
11
|
Laumann RD, Iversen T, Frandsen TL, Mølgaard C, Stark KD, Schmiegelow K, Lauritzen L. Whole blood long-chain n-3 fatty acids as a measure of fish oil compliance in children with acute lymphoblastic leukemia: a pilot study. Prostaglandins Leukot Essent Fatty Acids 2022; 177:102401. [PMID: 35085895 DOI: 10.1016/j.plefa.2022.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/19/2023]
Abstract
Long-chain n-3 fatty acids (n-3 LCPUFA) may prevent chemotherapy-induced hyperlipidemia in children with acute lymphoblastic leukemia (ALL). However, compliance could be a problem and intake-biomarker correlations may be affected by bodyweight and blood transfusions. We assessed whole blood n-3 LCPUFA three times during the first 83 days of treatment in six 1-17-year-old children with ALL, who received 2.4-4.9 g/d n-3 LCPUFA depending on bodyweight. Mean compliance was 73%, which resulted in a 2.5-fold increase in blood n-3 LCPUFA irrespective of blood transfusions. The correlation between relative blood content of n-3 LCPUFA and intake in g/d across the study period was strong (r=0.76, p=0.001). When n-3 LCPUFA was expressed in absolute concentrations and intake per kg bodyweight the correlation decreased (r=0.39, p=0.164) and was driven by baseline values. Thus, relative content of n-3 LCPUFA in blood reflects fish oil compliance in children with ALL despite blood transfusions and differences in bodyweight.
Collapse
Affiliation(s)
- R D Laumann
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark. Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - T Iversen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark. Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - T L Frandsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark. Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - C Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark; Pediatric Nutrition Unit, University Hospital Rigshospitalet, Copenhagen, Denmark, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - K D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - K Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark. Blegdamsvej 9, 2100, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen, Denmark
| | - L Lauritzen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Krill-Oil-Dependent Increases in HS-Omega-3 Index, Plasma Choline and Antioxidant Capacity in Well-Conditioned Power Training Athletes. Nutrients 2021; 13:nu13124237. [PMID: 34959789 PMCID: PMC8708578 DOI: 10.3390/nu13124237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
There is evidence that both omega-3 polyunsaturated fatty acids (n-3 PUFAs) and choline can influence sports performance, but information establishing their combined effects when given in the form of krill oil during power training protocols is missing. The purpose of this study was therefore to characterize n-3 PUFA and choline profiles after a one-hour period of high-intensity physical workout after 12 weeks of supplementation. Thirty-five healthy power training athletes received either 2.5 g/day of Neptune krill oilTM (550 mg EPA/DHA and 150 mg choline) or olive oil (placebo) in a randomized double-blind design. After 12 weeks, only the krill oil group showed a significant HS-Omega-3 Index increase from 4.82 to 6.77% and a reduction in the ARA/EPA ratio (from 50.72 to 13.61%) (p < 0.001). The krill oil group showed significantly higher recovery of choline concentrations relative to the placebo group from the end of the first to the beginning of the second exercise test (p = 0.04) and an 8% decrease in total antioxidant capacity post-exercise versus 21% in the placebo group (p = 0.35). In conclusion, krill oil can be used as a nutritional strategy for increasing the HS-Omega-3 Index, recover choline concentrations and address oxidative stress after intense power trainings.
Collapse
|
13
|
Lee SM, Kim HK, Lee HB, Kwon OD, Lee EB, Bok JD, Cho CS, Choi YJ, Kang SK. Effects of flaxseed supplementation on omega-6 to omega-3 fatty acid ratio, lipid mediator profile, proinflammatory cytokines and stress indices in laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.2000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sang-Mok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hee Kyum Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ho-Bin Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Oh-Dae Kwon
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Eun-Bi Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Jin-Duck Bok
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Żebrowska A, Hall B, Stolecka-Warzecha A, Stanula A, Sadowska-Krępa E. The Effect of Omega-3 Fatty Acid Supplementation on Serum Adipocytokines, Lipid Profile and Biochemical Markers of Inflammation in Recreational Runners. Nutrients 2021; 13:456. [PMID: 33573042 PMCID: PMC7912656 DOI: 10.3390/nu13020456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The study aimed to evaluate the effects of a 3-week ω-3 PUFA supplementation on serum adipocytokines (i.e., adiponectin, leptin), neuregulin-4 (NRG4) and erythrocyte omega-3 (ω-3) fatty acid content, as well as the blood antioxidant defense capacity in non-elite endurance runners. METHODS Twenty-four runners were randomized into two groups: the supplemented group, who received omega free fatty acids extract containing 142 mg of EPA, 267 mg of DHA, 12 mg of vitamin E and 5 µg of vitamin D, each administrated at a dose of six capsules twice a day for three weeks, or the placebo group. Venous blood samples were withdrawn at the start and at the end of the study protocols to estimate serum biochemical variables. RESULTS A significantly higher ω-3 index and lower AA/EPA ratio was observed after ω-3 PUFA compared to pre-supplementation levels (p < 0.001 and p < 0.001, respectively). An increase in baseline adiponectin and NRG4 levels, as well as a decrease of leptin concentration and lipid profile improvement, were observed in subjects after a ω-3 PUFA diet. The increased ω-3 index had a significant effect on TNFα levels and a serum marker of antioxidant defense. CONCLUSIONS The ω-3 PUFA extract with added vitamin E and D supplementation may have a positive effect on the function of the adipocyte tissue, as well as the ability to prevent cardiovascular complications in athletes.
Collapse
Affiliation(s)
- Aleksandra Żebrowska
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| | - Barbara Hall
- School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK;
| | - Anna Stolecka-Warzecha
- Department of Basic Biomedical Sciences, Silesia Medical University, 40-055 Katowice, Poland;
| | - Arkadiusz Stanula
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| |
Collapse
|
15
|
Lewis NA, Daniels D, Calder PC, Castell LM, Pedlar CR. Are There Benefits from the Use of Fish Oil Supplements in Athletes? A Systematic Review. Adv Nutr 2020; 11:1300-1314. [PMID: 32383739 PMCID: PMC7490155 DOI: 10.1093/advances/nmaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
Despite almost 25 y of fish oil supplementation (FS) research in athletes and widespread use by the athletic community, no systematic reviews of FS in athletes have been conducted. The objectives of this systematic review are to: 1) provide a summary of the effect of FS on the athlete's physiology, health, and performance; 2) report on the quality of the evidence; 3) document any side effects as reported in the athlete research; 4) discuss any risks associated with FS use; and 5) provide guidance for FS use and highlight gaps for future research. Electronic databases (PubMed, Embase, Web of Science, Google Scholar) were searched up until April 2019. Only randomized placebo-controlled trials (RCTs) in athletes, assessing the effect of FS on a health, physiological/biochemical, or performance variable were included. Of the 137 papers identified through searches, 32 met inclusion criteria for final analysis. Athletes varied in classification from recreational to elite, and from Olympic to professional sports. Mean age for participants was 24.9 ± 4.5 y, with 70% of RCTs in males. We report consistent effects for FS on reaction time, mood, cardiovascular dynamics in cyclists, skeletal muscle recovery, the proinflammatory cytokine TNF-α, and postexercise NO responses. No clear effects on endurance performance, lung function, muscle force, or training adaptation were evident. Methodological quality, applying the Physiotherapy Evidence Database (PEDro) scale, ranged from 6 to a maximum of 11, with only 4 RCTs reporting effect sizes. Few negative outcomes were reported. We report various effects for FS on the athlete's physiology; the most consistent findings were on the central nervous system, cardiovascular system, proinflammatory cytokines, and skeletal muscle. We provide recommendations for future research and discuss the potential risks with FS use.
Collapse
Affiliation(s)
- Nathan A Lewis
- English Institute of Sport, Sports Training Village, University of Bath, United Kingdom,Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Address correspondence to NAL (e-mail: )
| | - Diarmuid Daniels
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,School of Medicine, National University of Ireland, Galway, Ireland
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Lindy M Castell
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| |
Collapse
|
16
|
Ritz PP, Rogers MB, Zabinsky JS, Hedrick VE, Rockwell JA, Rimer EG, Kostelnik SB, Hulver MW, Rockwell MS. Dietary and Biological Assessment of the Omega-3 Status of Collegiate Athletes: A Cross-Sectional Analysis. PLoS One 2020; 15:e0228834. [PMID: 32348305 PMCID: PMC7190167 DOI: 10.1371/journal.pone.0228834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
Omega-3 fatty acids (ω-3 FA) are associated with cardiovascular health, brain function, reduction of inflammation, and several other physiological roles of importance to competitive athletes. The ω-3 FA status of National Collegiate Athletic Association (NCAA) Division I athletes has not been well-described. The purpose of this study was to evaluate the ω-3 FA status of NCAA Division I athletes using dietary and biological assessment methodology. Athletes from nine NCAA Division I institutions from throughout the U.S. (n = 1,528, 51% male, 34 sports represented, 19.9 ± 1.4 years of age) completed a food frequency questionnaire (FFQ) to assess ω-3 FA from diet and supplements. Omega-3 Index (O3i) was evaluated in a sub-set of these participants (n = 298, 55% male, 21 sports represented, 20.0 ± 1.3 years of age) using dried blood spot sampling. Only 6% (n = 93) of athletes achieved the Academy of Nutrition & Dietetics’ recommendation to consume 500 mg DHA+EPA per day. Use of ω-3 FA supplements was reported by 15% (n = 229) of participants. O3i was 4.33 ± 0.81%, with no participants meeting the O3i benchmark of 8% associated with the lowest risk of cardiovascular disease. Every additional weekly serving of fish or seafood was associated with an absolute O3i increase of 0.27%. Overall, sub-optimal ω-3 FA status was observed among a large, geographically diverse group of male and female NCAA Division I athletes. These findings may inform interventions aimed at improving ω-3 FA status of collegiate athletes. Further research on athlete-specific ω-3 FA requirements is needed.
Collapse
Affiliation(s)
- Peter P. Ritz
- Athletics Department, Virginia Tech, Blacksburg, VA, United States of America
| | - Mark B. Rogers
- Athletics Department, Virginia Tech, Blacksburg, VA, United States of America
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
| | - Jennifer S. Zabinsky
- Athletics Department, Virginia Tech, Blacksburg, VA, United States of America
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
| | - Valisa E. Hedrick
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
| | - John A. Rockwell
- Department of Medicine, Carilion Clinic, Roanoke, VA, United States of America
| | - Ernest G. Rimer
- Department of Exercise & Sport Science, College of Health, University of Utah, Salt Lake City, UT, United States of America
- Athletics Department, University of Utah, Salt Lake City, UT, United States of America
| | - Samantha B. Kostelnik
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
- Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute Roanoke, Roanoke, VA, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States of America
| | - Michelle S. Rockwell
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
- Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute Roanoke, Roanoke, VA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pedlar CR, Newell J, Lewis NA. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med 2019; 49:185-198. [PMID: 31691931 PMCID: PMC6901403 DOI: 10.1007/s40279-019-01158-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood test data were traditionally confined to the clinic for diagnostic purposes, but are now becoming more routinely used in many professional and elite high-performance settings as a physiological profiling and monitoring tool. A wealth of information based on robust research evidence can be gleaned from blood tests, including: the identification of iron, vitamin or energy deficiency; the identification of oxidative stress and inflammation; and the status of red blood cell populations. Serial blood test data can be used to monitor athletes and make inferences about the efficacy of training interventions, nutritional strategies or indeed the capacity to tolerate training load. Via a profiling and monitoring approach, blood biomarker measurement combined with contextual data has the potential to help athletes avoid injury and illness via adjustments to diet, training load and recovery strategies. Since wide inter-individual variability exists in many biomarkers, clinical population-based reference data can be of limited value in athletes, and statistical methods for longitudinal data are required to identify meaningful changes within an athlete. Data quality is often compromised by poor pre-analytic controls in sport settings. The biotechnology industry is rapidly evolving, providing new technologies and methods, some of which may be well suited to athlete applications in the future. This review provides current perspectives, limitations and recommendations for sports science and sports medicine practitioners using blood profiling and monitoring for nutrition and performance purposes.
Collapse
Affiliation(s)
- Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, UK.
- Orreco, Business Innovation Unit, National University of Ireland, Galway, Ireland.
- Division of Surgery and Interventional Science, University College London (UCL), London, UK.
| | - John Newell
- Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Nathan A Lewis
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, UK
- Orreco, Business Innovation Unit, National University of Ireland, Galway, Ireland
- English Institute of Sport, Bath, UK
| |
Collapse
|
18
|
Cross-sectional study of the combined associations of dietary and supplemental eicosapentaenoic acid + docosahexaenoic acid on Omega-3 Index. Nutr Res 2019; 71:43-55. [PMID: 31757628 DOI: 10.1016/j.nutres.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Studies have linked an Omega-3 Index (O3I), which measures eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in red blood cell membranes, of ≥8% with improved health. Previous studies found that the American Heart Association (AHA) recommendation of 1-2 seafood meals per week does not achieve an O3I ≥8% even with an EPA + DHA supplement; however, these studies did not assess the frequency or amount of supplemental intake. Among participants in a predominantly US and Canadian cohort with high nutrient supplement use, we hypothesized that those adhering to the AHA guidelines would not have an average O3I ≥8% but that those taking a daily supplement would. Fish consumption and EPA + DHA supplement use were reported by 1795 participants; 985 also completed a blood spot test for O3I. A majority (71%) consumed <2 servings per week of fatty fish, and 61% took an EPA + DHA supplement. The amount of EPA + DHA for 1 serving (based on the product label) significantly differed among the >400 supplement products (50-3570 mg). O3I was ≥8.0% in 19% of participants. Among non-supplement takers, 3% of those consuming 1 fish serving per week and 17% consuming ≥2 achieved an O3I ≥8.0%. Among those consuming ≥2 fish servings per week, only those also taking an average of 1100 mg/d of supplemental EPA + DHA had a median O3I ≥8.0%. Based on the relationship between supplemental EPA + DHA intake and O3I for non-fish eaters (R2 = 0.40, P < .0001), an average of ~1300 mg/d of EPA + DHA achieved an O3I of 8.0%. This study suggests that following the AHA guidelines does not produce an O3I ≥8% nor does taking 1 serving per day of most omega-3 supplements.
Collapse
|