1
|
Yang F, Guo J, Kang N, Yu X, Ma Y. rESWT promoted angiogenesis via Bach1/Wnt/β-catenin signaling pathway. Sci Rep 2024; 14:11733. [PMID: 38777838 PMCID: PMC11111732 DOI: 10.1038/s41598-024-62582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Previous reports have established that rESWT fosters angiogenesis, yet the mechanism by which rESWT promotes cerebral angiogenesis remains elusive. rESWT stimulated HUVECs proliferation as evidenced by the CCK-8 test, with an optimal dosage of 2.0 Bar, 200 impulses, and 2 Hz. The tube formation assay of HUVECs revealed that tube formation peaked at 36 h post-rESWT treatment, concurrent with the lowest expression level of Bach1, as detected by both Western blot and immunofluorescence. The expression level of Wnt3a, β-catenin, and VEGF also peaked at 36 h. A Bach1 overexpression plasmid was transfected into HUVECs, resulting in a decreased expression level of Wnt3a, β-catenin, and VEGF. Upon treatment with rESWT, the down-regulation of Wnt3a, β-catenin, and VEGF expression in the transfected cells was reversed. The Wnt/β-catenin inhibitor DKK-1 was utilized to suppress Wnt3a and β-catenin expression, which led to a concurrent decrease in VEGF expression. However, rESWT treatment could restore the expression of these three proteins, even in the presence of DKK-1. Moreover, in the established OGD model, it was observed that rESWT could inhibit the overexpression of Bach1 and enhance VEGF and VEGFR-2 expression under the OGD environment.
Collapse
Affiliation(s)
- Fan Yang
- Department of Rehabilitation Medicine, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Juan Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaotong Yu
- Institute of Meta-Synthesis Medicine, Beijing, 100097, China
| | - Yuewen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Sarkar H, Tracey-White D, Hagag AM, Burgoyne T, Nair N, Jensen LD, Edwards MM, Moosajee M. Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166963. [PMID: 37989423 PMCID: PMC11157692 DOI: 10.1016/j.bbadis.2023.166963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Dhani Tracey-White
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Ahmed M Hagag
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; Boehringer Ingelheim Limited, Bracknell, UK
| | - Thomas Burgoyne
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Neelima Nair
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Lasse D Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Malia M Edwards
- The Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Wang D, Xie Y, Peng HQ, Wen ZM, Ying ZY, Geng C, Wu J, Lv HY, Xu B. LPS preconditioning of MSC-CM improves protection against hypoxia/reoxygenation-induced damage in H9c2 cells partly via HMGB1/Bach1 signalling. Clin Exp Pharmacol Physiol 2022; 49:1319-1333. [PMID: 36052438 DOI: 10.1111/1440-1681.13714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 01/31/2023]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function after myocardial infarction; however, this cardioprotective effect is moderate and transient. Lipopolysaccharide (LPS) pretreatment partially improves MSC-CM-mediated cardioprotective effects owing to the presence of paracrine factors. However, the mechanism underlying these improved effects remains unknown. To study the effect of LPS-pretreated MSC-CM on hypoxia/reoxygenation (H/R)-induced injury, MSCs were treated with or without LPS (400 ng/mL) for 48 h, and the supernatant was collected (MSC-CM). Subsequently, H9c2 cells were co-cultured with Nor-CM (CM derived from LPS-untreated MSCs) and LPS-CM (CM derived from LPS-pretreated MSCs) for 24 h and subjected to H/R. MSC-CM inhibited the progression of H/R-induced injury in H9c2 cells, and this protective effect was enhanced via LPS pretreatment as evidenced by the improved apoptosis assessment index (i.e. caspase-3 and B-cell lymphoma-2 [Bcl-2] expression) and decreased levels of lactic dehydrogenase (LDH) and cardiac troponin (cTn). In addition, the results of haematoxylin-eosin staining (H&E), transmission electron microscopy (TEM) and TdT-mediated dUTP nick-end labelling (TUNEL) validated that MSC-CM inhibited H/R-induced injury in H9c2 cardiomyocytes. LPS pretreatment downregulated the expression of high mobility group box-1 (HMGB1) and BTB and CNC homology-1 (Bach1) proteins in MSCs but upregulated the expression of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth factor (IGF). HMGB1 knockdown (MSC/siHMGB1-CM) significantly decreased the expression of Bach1 and increased the expression of VEGF, HGF and IGF. Bach1 knockdown (MSC/siBach1-CM) did not alter the production of HMGB1 but increased the expression of VEGF and IGF. LPS pretreatment did not alter the expression of the paracrine factors VEGF and HGF in the MSC/siHMGB1 group but increased their expression in the MSC/siBach1 group. The myocyte anti-apoptotic effects of MSCs/siBach1-CM were similar to those of untreated MSCs, which were not enhanced by LPS. LPS-pretreated MSC-CM protects H9c2 cells against H/R-induced injury partly through the HMGB1/Bach1 signalling pathway.
Collapse
Affiliation(s)
- Dan Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, Ordos Central Hospital, Ordos, China
| | - Yu Xie
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Qian Peng
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Min Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zi-Yue Ying
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Wu
- Department of Echocardiography, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Yi Lv
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Xu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Dunaway LS, Pollock JS. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc Res 2022; 118:1885-1903. [PMID: 34264338 PMCID: PMC9239577 DOI: 10.1093/cvr/cvab198] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The histone deacetylases (HDACs) are a family of enzymes that catalyse lysine deacetylation of both histone and non-histone proteins. Here, we review, summarize, and provide perspectives on the literature regarding one such HDAC, HDAC1, in endothelial biology. In the endothelium, HDAC1 mediates the effects of external and environmental stimuli by regulating major endothelial functions such as angiogenesis, inflammatory signalling, redox homeostasis, and nitric oxide signalling. Angiogenesis is most often, but not exclusively, repressed by endothelial HDAC1. The regulation of inflammatory signalling is more complex as HDAC1 promotes or suppresses inflammatory signalling depending upon the environmental stimuli. HDAC1 is protective in models of atherosclerosis where loss of HDAC1 results in increased cytokine and cell adhesion molecule (CAM) abundance. In other models, HDAC1 promotes inflammation by increasing CAMs and repressing claudin-5 expression. Consistently, from many investigations, HDAC1 decreases antioxidant enzyme expression and nitric oxide production in the endothelium. HDAC1 decreases antioxidant enzyme expression through the deacetylation of histones and transcription factors, and also regulates nitric oxide production through regulating both the expression and activity of nitric oxide synthase 3. The HDAC1-dependent regulation of endothelial function through the deacetylation of both histone and non-histone proteins ultimately impacts whole animal physiology and health.
Collapse
Affiliation(s)
- Luke S Dunaway
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Jia M, Li Q, Guo J, Shi W, Zhu L, Huang Y, Li Y, Wang L, Ma S, Zhuang T, Wang X, Pan Q, Wei X, Qin Y, Li X, Jin J, Zhi X, Tang J, Jing Q, Li S, Jiang L, Qu L, Osto E, Zhang J, Wang X, Yu B, Meng D. Deletion of BACH1 Attenuates Atherosclerosis by Reducing Endothelial Inflammation. Circ Res 2022; 130:1038-1055. [PMID: 35196865 DOI: 10.1161/circresaha.121.319540] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1β levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Weihao Shi
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Lei Zhu
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Yijun Huang
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Yongbo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China (L.W.)
| | - Siyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiaoqun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Xiaoqun Wang.)
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Yue Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jingdong Tang
- Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J.T., B.Y.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Q.J.)
| | - Shanqun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, (L.J.).,Department of General Surgery, Shanghai Pudon (L.J.)
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China (L.Q.)
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, University Heart Center, University and University Hospital Zurich, Switzerland (E.O.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (J.Z.)
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Bo Yu
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.).,Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J.T., B.Y.)
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| |
Collapse
|
6
|
Igarashi K, Nishizawa H, Matsumoto M. Iron in Cancer Progression: Does BACH1 Promote Metastasis by Altering Iron Homeostasis? Subcell Biochem 2022; 100:67-80. [PMID: 36301491 DOI: 10.1007/978-3-031-07634-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor BACH1, which is regulated by direct binding of prosthetic group heme, promotes epithelial-mesenchymal transition (EMT) and drives metastasis of diverse types of cancer cells. De-regulated target genes of BACH1 in cancer cells include those for glycolysis, oxidative phosphorylation, epithelial cell adhesion, and mesodermal cell motility. In addition, the canonical target genes of BACH1 include genes for the regulation of iron homeostasis. Importantly, cancer cells are addicted to iron. We summarize known functions of BACH1 in cancer and discuss how BACH1 may affect iron homeostasis in cancer cells to support their progression by increasing mobile iron within cells. The dependency on BACH1 for cancer progression may also confer upon cancer cells susceptibility to iron-dependent cell death ferroptosis. Finally, we discuss that the human transcription factors provide research opportunities for better understanding of cancer cell properties.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
8
|
Igarashi K, Nishizawa H, Saiki Y, Matsumoto M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. J Biol Chem 2021; 297:101032. [PMID: 34339740 PMCID: PMC8387770 DOI: 10.1016/j.jbc.2021.101032] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell–cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a “two-faced BACH1 model”, which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Jian L, Mei Y, Xing C, Rongdi Y. Haem relieves hyperoxia-mediated inhibition of HMEC-1 cell proliferation, migration and angiogenesis by inhibiting BACH1 expression. BMC Ophthalmol 2021; 21:104. [PMID: 33632168 PMCID: PMC7905865 DOI: 10.1186/s12886-021-01866-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background Hyperoxia-mediated inhibition of vascular endothelial growth factor (VEGF) in the retina is the main cause of impeded angiogenesis during phase I retinopathy of prematurity (ROP). Human retinal angiogenesis involves the proliferation, migration and vessel-forming ability of microvascular endothelial cells. Previous studies have confirmed that BTB and CNC homology l (BACH1) can inhibit VEGF and angiogenesis, while haem can specifically degrade BACH1. However, the effect of haem on endothelial cells and ROP remains unknown. Methods In this report, we established a model of the relative hyperoxia of phase I ROP by subjecting human microvascular endothelial cells (HMEC-1) to 40% hyperoxia. Haem was added, and its effects on the growth and viability of HMEC-1 cells were evaluated. Cell counting kit 8 (CCK8) and 5-ethynyl-2′-deox-yuridine (EdU) assays were used to detect proliferation, whereas a wound healing assay and Matrigel cultures were used to detect the migration and vessel-forming ability, respectively. Western blot (WB) and immunofluorescence (IF) assays were used to detect the relative protein levels of BACH1 and VEGF. Results HMEC-1 cells could absorb extracellular haem under normoxic or hyperoxic conditions. The proliferation, migration and angiogenesis abilities of HMEC-1 cells were inhibited under hyperoxia. Moderate levels of haem can promote endothelial cell proliferation, while 20 μM haem could inhibit BACH1 expression, promote VEGF expression, and relieve the inhibition of proliferation, migration and angiogenesis in HMEC-1 cells induced by hyperoxia. Conclusions Haem (20 μM) can relieve hyperoxia-induced inhibition of VEGF activity in HMEC-1 cells by inhibiting BACH1 and may be a potential medicine for overcoming stunted retinal angiogenesis induced by relative hyperoxia in phase I ROP. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-01866-x.
Collapse
Affiliation(s)
- Lan Jian
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Yang Mei
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Chen Xing
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan Rongdi
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China.
| |
Collapse
|
10
|
Madeddu P. Cell therapy for the treatment of heart disease: Renovation work on the broken heart is still in progress. Free Radic Biol Med 2021; 164:206-222. [PMID: 33421587 DOI: 10.1016/j.freeradbiomed.2020.12.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) continues to be the number one killer in the aging population. Heart failure (HF) is also an important cause of morbidity and mortality in patients with congenital heart disease (CHD). Novel therapeutic approaches that could restore stable heart function are much needed in both paediatric and adult patients. Regenerative medicine holds promises to provide definitive solutions for correction of congenital and acquired cardiac defects. In this review article, we recap some important aspects of cardiovascular cell therapy. First, we report quantifiable data regarding the scientific advancements in the field and how this has been translated into tangible outcomes according clinical studies and related meta-analyses. We then comment on emerging trends and technologies, such as the use of second-generation cell products, including pericyte-like vascular progenitors, and reprogramming of cells by different approaches including modulation of oxidative stress. The more affordable and feasible strategy of repurposing clinically available drugs to awaken the intrinsic healing potential of the heart will be discussed in the light of current social, financial, and ethical context. Cell therapy remains a work in progress field. Uncertainty in the ability of the experts and policy makers to solve urgent medical problems is growing in a world that is significantly influenced by them. This is particularly true in the field of regenerative medicine, due to great public expectations, polarization of leadership and funding, and insufficient translational vision. Cardiovascular regenerative medicine should be contextualized in a holistic program with defined priorities to allow a complete realization. Reshaping the notion of medical expertise is fundamental to fill the current gap in translation.
Collapse
Affiliation(s)
- Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, BS28HW, Bristol, United Kingdom.
| |
Collapse
|
11
|
Zhong J, Lu W, Zhang J, Huang M, Lyu W, Ye G, Deng L, Chen M, Yao N, Li Y, Liu G, Liang Y, Fu J, Zhang D, Ye W. Notoginsenoside R1 activates the Ang2/Tie2 pathway to promote angiogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153302. [PMID: 32823242 DOI: 10.1016/j.phymed.2020.153302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce. PURPOSE We aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway. METHODS We examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis. RESULTS We found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1. CONCLUSIONS Our results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Jincheng Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Weijin Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jiayan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guanping Liu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Yunfei Liang
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Jingwen Fu
- The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Cohen B, Tempelhof H, Raz T, Oren R, Nicenboim J, Bochner F, Even R, Jelinski A, Eilam R, Ben-Dor S, Adaddi Y, Golani O, Lazar S, Yaniv K, Neeman M. BACH family members regulate angiogenesis and lymphangiogenesis by modulating VEGFC expression. Life Sci Alliance 2020; 3:e202000666. [PMID: 32132179 PMCID: PMC7063472 DOI: 10.26508/lsa.202000666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Batya Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hanoch Tempelhof
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Raz
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Oren
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Even
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Jelinski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Adaddi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Park S, Lee JY, Park H, Song G, Lim W. Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108671. [PMID: 31734314 DOI: 10.1016/j.cbpc.2019.108671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Bifenthrin is a synthesized pyrethroid insecticide which is frequently used in the farmland to eradicate insects. Bifenthrin mainly disrupts sodium ion channel inducing neurotoxicity in the target insects. It also exerts toxic effects such as hormone dysregulation, hepatotoxicity and immunotoxicity in other vertebrates. However, there is no evidence of the acute-toxicity associated embryogenesis and organogenesis of bifenthrin in zebrafish. Here we first demonstrated that bifenthrin induced acute-toxicity accompanying inflammatory response and physiological degradations resulting in loss of embryogenesis and vascular development in zebrafish embryos. We found that bifenthrin increased intestinal ROS accumulation and the inflammatory genes including tnfa, il6, il8 and ptgs2b, thereby increasing embryo mortality. Moreover, bifenthrin disrupted angiogenesis by down-regulation of VEGF receptors in embryos. Not only in the zebrafish, bifenthrin also decreased cell viability and hampered vascular formation of HUVECs. Collectively, bifenthrin induced developmental toxicity, inflammatory cell death and anti-angiogenesis during embryogenesis.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
14
|
Jiang L, Jia M, Wei X, Guo J, Hao S, Mei A, Zhi X, Wang X, Li Q, Jin J, Zhang J, Li S, Meng D. Bach1-induced suppression of angiogenesis is dependent on the BTB domain. EBioMedicine 2020; 51:102617. [PMID: 31911270 PMCID: PMC6948167 DOI: 10.1016/j.ebiom.2019.102617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 11/04/2022] Open
Abstract
The transcription factor Bach1 impairs angiogenesis after ischemic injury by suppressing Wnt/β-catenin signaling; however, the specific domains responsible for the anti-angiogenic effects of Bach1 remain unclear. This study determined the role of the BTB domain of Bach1 in ischemic angiogenesis. Bach1 is highly expressed in circulating endothelial cells from acute myocardial infarction patients and is the early induction gene after ischemia. Mice were treated with adenoviruses coding for GFP (AdGFP), Bach1 (AdBach1), or a Bach1 mutant lacking the BTB domain (AdBach1-ΔBTB) after surgically induced hind-limb ischemia. Measures of blood-flow recovery, capillary density, and the expression of vascular endothelial growth factor (VEGF) and heme oxygenase-1 (HO-1) were significantly lower and ROS levels were higher in the AdBach1 group, but not in AdBach1-ΔBTB animals. Furthermore, transfection with AdBach1, but not AdBach1-ΔBTB, in human endothelial cells was associated with significant declines in 1) capillary density and hemoglobin content in the Matrigel-plug assay, 2) proliferation, migration, tube formation, and VEGF and HO-1 expression in endothelial cells. Bach1 binds directly with TCF4, and this interaction is mediated by residues 81–89 of the Bach1 BTB domain and the N-terminal domain of TCF4. Bach1, but not Bach1-ΔBTB, also co-precipitated with histone deacetylase 1 (HDAC1), while the full-length HDAC1 proteins, but not HDAC1 mutants lacking the protein-interaction domain, co-precipitated with Bach1. Collectively, these results demonstrate that the anti-angiogenic activity of Bach1 is crucially dependent on molecular interactions that are mediated by the protein's BTB domain, and this domain could be a drug target for angiogenic therapy.
Collapse
Affiliation(s)
- Li Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Aihong Mei
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham 35294, USA
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Zamariolli M, Colovati M, Moysés-Oliveira M, Nunes N, Caires Dos Santos L, Alvarez Perez AB, Bragagnolo S, Melaragno MI. Rare single-nucleotide variants in oculo-auriculo-vertebral spectrum (OAVS). Mol Genet Genomic Med 2019; 7:e00959. [PMID: 31469246 PMCID: PMC6785430 DOI: 10.1002/mgg3.959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023] Open
Abstract
Background Oculo‐auriculo‐vertebral spectrum (OAVS) is a craniofacial developmental disorder that affects structures derived from the first and second pharyngeal arches. The clinically heterogeneous phenotype involves mandibular, oral, and ear development anomalies. Etiology is complex and poorly understood. Genetic factors have been associated, evidenced by chromosomal abnormalities affecting different genomic regions and genes. However, known pathogenic single‐nucleotide variants (SNVs) have only been identified in MYT1 in a restricted number of patients. Therefore, investigations of SNVs on candidate genes may reveal other pathogenic mechanisms. Methods In a cohort of 73 patients, coding and untranslated regions (UTR) of 10 candidate genes (CRKL, YPEL1, MAPK1, NKX3‐2, HMX1, MYT1, OTX2, GSC, PUF60, HOXA2) were sequenced. Rare SNVs were selected and in silico predictions were performed to ascertain pathogenicity. Likely pathogenic variants were validated by Sanger sequencing and heritability was assessed when possible. Results Four likely pathogenic variants in heterozygous state were identified in different patients. Two SNVs were located in the 5’UTR of YPEL1; one in the 3’UTR of CRKL and one in the 3’UTR of OTX2. Conclusion Our work described variants in candidate genes for OAVS and supported the genetic heterogeneity of the spectrum.
Collapse
Affiliation(s)
- Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mileny Colovati
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natália Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana B Alvarez Perez
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silvia Bragagnolo
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Malsin ES, Kim S, Lam AP, Gottardi CJ. Macrophages as a Source and Recipient of Wnt Signals. Front Immunol 2019; 10:1813. [PMID: 31417574 PMCID: PMC6685136 DOI: 10.3389/fimmu.2019.01813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are often viewed through the lens of their core functions, but recent transcriptomic studies reveal them to be largely distinct across tissue types. While these differences appear to be shaped by their local environment, the key signals that drive these transcriptional differences remain unclear. Since Wnt signaling plays established roles in cell fate decisions, and tissue patterning during development and tissue repair after injury, we consider evidence that Wnt signals both target and are affected by macrophage functions. We propose that the Wnt gradients present in developing and adult tissues effectively shape macrophage fates and phenotypes. We also highlight evidence that macrophages, through an ability to dispatch Wnt signals, may couple tissue debridement and matrix remodeling with stem cell activation and tissue repair.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Seokjo Kim
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Anna P Lam
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cara J Gottardi
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, Zhou B, Chen J, Gao S, Zhang X, Jia M, Niu C, Yang W, Zhi X, Wang X, Yu D, Bai L, Wang L, Na J, Zou Y, Zhang J, Zhang S, Meng D. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. SCIENCE ADVANCES 2019; 5:eaau7887. [PMID: 30891497 PMCID: PMC6415956 DOI: 10.1126/sciadv.aau7887] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/30/2019] [Indexed: 05/03/2023]
Abstract
The transcription factor BTB and CNC homology 1 (Bach1) is expressed in the embryos of mice, but whether Bach1 regulates the self-renewal and early differentiation of human embryonic stem cells (hESCs) is unknown. We report that the deubiquitinase ubiquitin-specific processing protease 7 (Usp7) is a direct target of Bach1, that Bach1 interacts with Nanog, Sox2, and Oct4, and that Bach1 facilitates their deubiquitination and stabilization via the recruitment of Usp7, thereby maintaining stem cell identity and self-renewal. Bach1 also interacts with polycomb repressive complex 2 (PRC2) and represses mesendodermal gene expression by recruiting PRC2 to the genes' promoters. The loss of Bach1 in hESCs promotes differentiation toward the mesendodermal germ layers by reducing the occupancy of EZH2 and H3K27me3 in mesendodermal gene promoters and by activating the Wnt/β-catenin and Nodal/Smad2/3 signaling pathways. Our study shows that Bach1 is a key determinant of pluripotency, self-renewal, and lineage specification in hESCs.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qianqian Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinyue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cong Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Shanghai Cardiovascular Medical Center, Shanghai Institute of Cardiovascular Diseases, Institute of Pan-vascular Medicine, Fudan University, Shanghai 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dian Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lufeng Bai
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Shanghai Cardiovascular Medical Center, Shanghai Institute of Cardiovascular Diseases, Institute of Pan-vascular Medicine, Fudan University, Shanghai 200032, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Cardiovascular Medical Center, Shanghai Institute of Cardiovascular Diseases, Institute of Pan-vascular Medicine, Fudan University, Shanghai 200032, China
- Corresponding author. (D.M.); (S.Z.)
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Corresponding author. (D.M.); (S.Z.)
| |
Collapse
|
18
|
Han W, Zhang Y, Niu C, Guo J, Li J, Wei X, Jia M, Zhi X, Yao L, Meng D. BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition. Cancer Lett 2019; 445:45-56. [PMID: 30654010 DOI: 10.1016/j.canlet.2019.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023]
Abstract
Transcriptional factor BTB and CNC homology 1 (Bach1) has been linked to tumor progression and metastasis, but the mechanisms underlying the effects of Bach1 on tumor growth and metastasis are largely uncharacterized. Here, we report that Bach1 expression was significantly higher in human epithelial ovarian cancer (EOC) tissues than in normal ovarian tissues and that higher levels of Bach1 were associated with tumor stage and poorer overall and progression-free survival. We found that Bach1 enhanced the expression of epithelial-mesenchymal transition (EMT) genes, including Slug and Snail, and promoted cell migration by recruiting HMGA2 in the human EOC cell line A2780. Bach1 overexpression enhanced and Bach1 knockout reduced the expression of Slug and the metastasis of EOC cells in a tumor metastasis mouse model. Bach1 expression was positively correlated with Slug and HMGA2 expression in human ovarian cancer tissues. In addition, Bach1 activated p-AKT and p-p70S6K, increased the expression of cyclin D1, and promoted the growth of ovarian cancer cells in vitro and tumor xenografts in vivo. Together, our findings reveal that Bach1 enhances tumor growth and recruits HMGA2 to promote EMT and ovarian cancer metastasis.
Collapse
Affiliation(s)
- Wenyan Han
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiqun Zhang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Cong Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Li X, Sun Y, Huang S, Chen Y, Chen X, Li M, Si X, He X, Zheng H, Zhong L, Yang Y, Liao W, Liao Y, Chen G, Bin J. Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 2018; 39:69-82. [PMID: 30545799 PMCID: PMC6355659 DOI: 10.1016/j.ebiom.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND We previously found that loss of lncRNA-AZIN2 splice variant (AZIN2-sv) increases cardiomyocyte (CM) proliferation and attenuates adverse ventricular remodelling post-myocardial infarction (MI). However, whether inhibition of AZIN2-sv can simultaneously induce angiogenesis and thus improve prognosis after MI is unclear. METHODS We used in situ hybridization and quantitative PCR to determine AZIN2-sv expression in endothelial cells. Knockdown and overexpression were performed to detect the role of AZIN2-sv in endothelial cell function, angiogenesis and prognosis after MI. RNA pulldown, RNA immunoprecipitation and luciferase reporter assays were used to determine the interaction with talin1 (Tln1) protein and miRNA-214 (miR-214). DNA pulldown and chromatin immunoprecipitation (ChIP) assays were used to study AZIN2-sv binding to upstream transcription factors. FINDINGS AZIN2-sv was enriched in cardiac endothelial cells. The loss of AZIN2-sv reduced endothelial cell apoptosis and promoted endothelial sprouting and capillary network formation in vitro. Moreover, in vivo, the loss of AZIN2-sv induced angiogenesis and improved cardiac function after MI. Mechanistically, AZIN2-sv reduced Tln1 and integrin β1 (ITGB1) protein levels to inhibit neovascularization. AZIN2-sv activated the ubiquitination-dependent degradation of Tln1 mediated by proteasome 26S subunit ATPase 5 (PSMC5). In addition, AZIN2-sv could bind to miR-214 and suppress the phosphatase and tensin homologue (PTEN)/Akt pathway to inhibit angiogenesis. With regard to the upstream mechanism, Bach1, a negative regulator of angiogenesis, bound to the promoter of AZIN2-sv and increased its expression. INTERPRETATION Bach1-activated AZIN2-sv could participate in angiogenesis by promoting the PSMC5-mediated ubiquitination-dependent degradation of Tln1 and blocking the miR-214/PTEN/Akt pathway. Inhibition of AZIN2-sv induced angiogenesis and myocardial regeneration simultaneously, thus, AZIN2-sv could be an ideal therapeutic target for improving myocardial repair after MI. FUND: National Natural Science Foundations of China.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqiang Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| |
Collapse
|
20
|
Corrigendum to "The Transcription Factor Bach1 Suppresses the Developmental Angiogenesis of Zebrafish". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2852343. [PMID: 30498559 PMCID: PMC6222213 DOI: 10.1155/2018/2852343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023]
Abstract
[This corrects the article DOI: 10.1155/2017/2143875.].
Collapse
|
21
|
Bach1: Function, Regulation, and Involvement in Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1347969. [PMID: 30370001 PMCID: PMC6189649 DOI: 10.1155/2018/1347969] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
The transcription factor BTB and CNC homology 1 (Bach1) is widely expressed in most mammalian tissues and functions primarily as a transcriptional suppressor by heterodimerizing with small Maf proteins and binding to Maf recognition elements in the promoters of targeted genes. It has a key regulatory role in the production of reactive oxygen species, cell cycle, heme homeostasis, hematopoiesis, and immunity and has been shown to suppress ischemic angiogenesis and promote breast cancer metastasis. This review summarizes how Bach1 controls these and other cellular and physiological and pathological processes. Bach1 expression and function differ between different cell types. Thus, therapies designed to manipulate Bach1 expression will need to be tightly controlled and tailored for each specific disease state or cell type.
Collapse
|
22
|
The Bioactive Substance Secreted by MSC Retards Mouse Aortic Vascular Smooth Muscle Cells Calcification. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6053567. [PMID: 29967775 PMCID: PMC6008760 DOI: 10.1155/2018/6053567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification, which is associated with low-level chronic inflammation, is a complication that occurs during aging, atherosclerosis, chronic kidney disease, diabetes mellitus, and hyperlipaemia. In this study, we used conditioned media from mesenchymal stem cells (MSC-CM), a source of autologous cytokines, to test the hypothesis that MSC-CM inhibits vascular smooth muscle cell (VSMC) calcification by suppressing inflammation and apoptosis. Methods VSMCs were treated with β-glycerophosphate (β-GP) to induce calcification and MSC-CM was used as a treatment. Calcium deposition was evaluated using alizarin red and von Kossa staining after a 7-day induction period. Intracellular calcium contents were measured via the o-cresolphthalein complexone method, and alkaline phosphatase (ALP) activity was determined using the para-nitrophenyl phosphate method. The expressions of specific-osteogenic markers, inflammatory cytokines, and apoptosis-associated genes/proteins were examined by real-time polymerase chain reaction or western blotting. Results MSC-CM inhibited β-GP-induced calcium deposition in VSMCs and decreased intracellular calcium content and ALP activity. Additionally, MSC-CM suppressed the β-GP-induced increases in BMP2, Msx2, Runx2, and osteocalcin expression. Additionally, MSC-CM decreased the expression of TNF-α, IL-1β, and IL-6 in VSMC. MSC-CM also partly blocked β-GP-induced VSMC apoptosis, which was associated with an increase in the Bcl-2/Bax expression ratio and a decrease in caspase-3 expression. Conclusion Our study results suggest that MSC-CM can inhibit VSMC calcification. This suggests a potential novel clinical application for MSCs in the treatment of vascular calcification and associated diseases.
Collapse
|